1
|
Haydak J, Azeloglu EU. Role of biophysics and mechanobiology in podocyte physiology. Nat Rev Nephrol 2024; 20:371-385. [PMID: 38443711 DOI: 10.1038/s41581-024-00815-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Podocytes form the backbone of the glomerular filtration barrier and are exposed to various mechanical forces throughout the lifetime of an individual. The highly dynamic biomechanical environment of the glomerular capillaries greatly influences the cell biology of podocytes and their pathophysiology. Throughout the past two decades, a holistic picture of podocyte cell biology has emerged, highlighting mechanobiological signalling pathways, cytoskeletal dynamics and cellular adhesion as key determinants of biomechanical resilience in podocytes. This biomechanical resilience is essential for the physiological function of podocytes, including the formation and maintenance of the glomerular filtration barrier. Podocytes integrate diverse biomechanical stimuli from their environment and adapt their biophysical properties accordingly. However, perturbations in biomechanical cues or the underlying podocyte mechanobiology can lead to glomerular dysfunction with severe clinical consequences, including proteinuria and glomerulosclerosis. As our mechanistic understanding of podocyte mechanobiology and its role in the pathogenesis of glomerular disease increases, new targets for podocyte-specific therapeutics will emerge. Treating glomerular diseases by targeting podocyte mechanobiology might improve therapeutic precision and efficacy, with potential to reduce the burden of chronic kidney disease on individuals and health-care systems alike.
Collapse
Affiliation(s)
- Jonathan Haydak
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evren U Azeloglu
- Division of Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Bărar AA, Pralea IE, Maslyennikov Y, Munteanu R, Berindan-Neagoe I, Pîrlog R, Rusu I, Nuțu A, Rusu CC, Moldovan DT, Potra AR, Tirinescu D, Ticala M, Elec FI, Iuga CA, Kacso IM. Minimal Change Disease: Pathogenetic Insights from Glomerular Proteomics. Int J Mol Sci 2024; 25:5613. [PMID: 38891801 PMCID: PMC11171934 DOI: 10.3390/ijms25115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
The mechanism underlying podocyte dysfunction in minimal change disease (MCD) remains unknown. This study aimed to shed light on the potential pathophysiology of MCD using glomerular proteomic analysis. Shotgun proteomics using label-free quantitative mass spectrometry was performed on formalin-fixed, paraffin-embedded (FFPE) renal biopsies from two groups of samples: control (CTR) and MCD. Glomeruli were excised from FFPE renal biopsies using laser capture microdissection (LCM), and a single-pot solid-phase-enhanced sample preparation (SP3) digestion method was used to improve yield and protein identifications. Principal component analysis (PCA) revealed a distinct separation between the CTR and MCD groups. Forty-eight proteins with different abundance between the two groups (p-value ≤ 0.05 and |FC| ≥ 1.5) were identified. These may represent differences in podocyte structure, as well as changes in endothelial or mesangial cells and extracellular matrix, and some were indeed found in several of these structures. However, most differentially expressed proteins were linked to the podocyte cytoskeleton and its dynamics. Some of these proteins are known to be involved in focal adhesion (NID1 and ITGA3) or slit diaphragm signaling (ANXA2, TJP1 and MYO1C), while others are structural components of the actin and microtubule cytoskeleton of podocytes (ACTR3 and NES). This study suggests the potential of mass spectrometry-based shotgun proteomic analysis with LCM glomeruli to yield valuable insights into the pathogenesis of podocytopathies like MCD. The most significantly dysregulated proteins in MCD could be attributable to cytoskeleton dysfunction or may be a compensatory response to cytoskeleton malfunction caused by various triggers.
Collapse
Affiliation(s)
- Andrada Alina Bărar
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Ioana-Ecaterina Pralea
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
| | - Yuriy Maslyennikov
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Raluca Munteanu
- Department of In Vivo Studies, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania;
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Radu Pîrlog
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Ioana Rusu
- Department of Pathology, Regional Institute of Gastroenterology and Hepatology, 400394 Cluj-Napoca, Romania;
| | - Andreea Nuțu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (I.B.-N.); (R.P.); (A.N.)
| | - Crina Claudia Rusu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Diana Tania Moldovan
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Alina Ramona Potra
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Dacian Tirinescu
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Maria Ticala
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| | - Florin Ioan Elec
- Department of Urology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine–MedFuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 4-6, 400349 Cluj-Napoca, Romania;
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Ina Maria Kacso
- Department of Nephrology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.A.B.); (Y.M.); (C.C.R.); (D.T.M.); (A.R.P.); (D.T.); (M.T.); (I.M.K.)
| |
Collapse
|
3
|
Mendoza-Soto P, Jara C, Torres-Arévalo Á, Oyarzún C, Mardones GA, Quezada-Monrás C, San Martín R. Pharmacological Blockade of the Adenosine A 2B Receptor Is Protective of Proteinuria in Diabetic Rats, through Affecting Focal Adhesion Kinase Activation and the Adhesion Dynamics of Podocytes. Cells 2024; 13:846. [PMID: 38786068 PMCID: PMC11119713 DOI: 10.3390/cells13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.
Collapse
Affiliation(s)
- Pablo Mendoza-Soto
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Claudia Jara
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Ángelo Torres-Arévalo
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Carlos Oyarzún
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| | - Gonzalo A. Mardones
- Institute of Physiology, Medicine Faculty, Universidad Austral de Chile, Valdivia 5090000, Chile;
| | - Claudia Quezada-Monrás
- Tumor Biology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile;
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Rody San Martín
- Molecular Pathology Laboratory, Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia 5110566, Chile; (P.M.-S.); (C.J.); (Á.T.-A.); (C.O.)
| |
Collapse
|
4
|
Clair G, Soloyan H, Cravedi P, Angeletti A, Salem F, Al-Rabadi L, De Filippo RE, Da Sacco S, Lemley KV, Sedrakyan S, Perin L. The spatially resolved transcriptome signatures of glomeruli in chronic kidney disease. JCI Insight 2024; 9:e165515. [PMID: 38516889 PMCID: PMC11063942 DOI: 10.1172/jci.insight.165515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Here, we used digital spatial profiling (DSP) to describe the glomerular transcriptomic signatures that may characterize the complex molecular mechanisms underlying progressive kidney disease in Alport syndrome, focal segmental glomerulosclerosis, and membranous nephropathy. Our results revealed significant transcriptional heterogeneity among diseased glomeruli, and this analysis showed that histologically similar glomeruli manifested different transcriptional profiles. Using glomerular pathology scores to establish an axis of progression, we identified molecular pathways with progressively decreased expression in response to increasing pathology scores, including signal recognition particle-dependent cotranslational protein targeting to membrane and selenocysteine synthesis pathways. We also identified a distinct signature of upregulated and downregulated genes common to all the diseases investigated when compared with nondiseased tissue from nephrectomies. These analyses using DSP at the single-glomerulus level could help to increase insight into the pathophysiology of kidney disease and possibly the identification of biomarkers of disease progression in glomerulopathies.
Collapse
Affiliation(s)
- Geremy Clair
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Hasmik Soloyan
- The GOFARR Laboratory, The Saban Research Institute, Division of Urology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrea Angeletti
- Nephrology Dialysis and Renal Transplantation, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Fadi Salem
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, Florida, USA
| | - Laith Al-Rabadi
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Utah Health, Salt Lake City, Utah, USA
| | - Roger E. De Filippo
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Stefano Da Sacco
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Kevin V. Lemley
- Division of Nephrology, Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Sargis Sedrakyan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| | - Laura Perin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- Department of Urology, Keck School of Medicine, and
| |
Collapse
|
5
|
Ma S, Qiu Y, Zhang C. Cytoskeleton Rearrangement in Podocytopathies: An Update. Int J Mol Sci 2024; 25:647. [PMID: 38203817 PMCID: PMC10779434 DOI: 10.3390/ijms25010647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/14/2023] [Accepted: 01/01/2024] [Indexed: 01/12/2024] Open
Abstract
Podocyte injury can disrupt the glomerular filtration barrier (GFB), leading to podocytopathies that emphasize podocytes as the glomerulus's key organizer. The coordinated cytoskeleton is essential for supporting the elegant structure and complete functions of podocytes. Therefore, cytoskeleton rearrangement is closely related to the pathogenesis of podocytopathies. In podocytopathies, the rearrangement of the cytoskeleton refers to significant alterations in a string of slit diaphragm (SD) and focal adhesion proteins such as the signaling node nephrin, calcium influx via transient receptor potential channel 6 (TRPC6), and regulation of the Rho family, eventually leading to the disorganization of the original cytoskeletal architecture. Thus, it is imperative to focus on these proteins and signaling pathways to probe the cytoskeleton rearrangement in podocytopathies. In this review, we describe podocytopathies and the podocyte cytoskeleton, then discuss the molecular mechanisms involved in cytoskeleton rearrangement in podocytopathies and summarize the effects of currently existing drugs on regulating the podocyte cytoskeleton.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (S.M.); (Y.Q.)
| |
Collapse
|
6
|
Li X, Zhang Y, Xing X, Li M, Liu Y, Xu A, Zhang J. Podocyte injury of diabetic nephropathy: Novel mechanism discovery and therapeutic prospects. Biomed Pharmacother 2023; 168:115670. [PMID: 37837883 DOI: 10.1016/j.biopha.2023.115670] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes mellitus, posing significant challenges in terms of early prevention, clinical diagnosis, and treatment. Consequently, it has emerged as a major contributor to end-stage renal disease. The glomerular filtration barrier, composed of podocytes, endothelial cells, and the glomerular basement membrane, plays a vital role in maintaining renal function. Disruptions in podocyte function, including hypertrophy, shedding, reduced density, and apoptosis, can impair the integrity of the glomerular filtration barrier, resulting in elevated proteinuria, abnormal glomerular filtration rate, and increased creatinine levels. Hence, recent research has increasingly focused on the role of podocyte injury in DN, with a growing emphasis on exploring therapeutic interventions targeting podocyte injury. Studies have revealed that factors such as lipotoxicity, hemodynamic abnormalities, oxidative stress, mitochondrial dysfunction, and impaired autophagy can contribute to podocyte injury. This review aims to summarize the underlying mechanisms of podocyte injury in DN and provide an overview of the current research status regarding experimental drugs targeting podocyte injury in DN. The findings presented herein may offer potential therapeutic targets and strategies for the management of DN associated with podocyte injury.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ying Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiaodong Xing
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
7
|
Jiang W, Gan C, Zhou X, Yang Q, Chen D, Xiao H, Dai L, Chen Y, Wang M, Yang H, Li Q. Klotho inhibits renal ox-LDL deposition via IGF-1R/RAC1/OLR1 signaling to ameliorate podocyte injury in diabetic kidney disease. Cardiovasc Diabetol 2023; 22:293. [PMID: 37891556 PMCID: PMC10612302 DOI: 10.1186/s12933-023-02025-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
OBJECTIVE Diabetic kidney disease (DKD) is characterized by the abnormal deposition of oxidized low-density lipoprotein (ox-LDL), which contributes to podocyte damage. Klotho, an aging suppressor that plays a critical role in protecting podocytes in DKD, is mainly expressed in kidney tubular epithelium and secreted in the blood. However, it has not been established whether Klotho can alleviate podocyte injury by inhibiting renal ox-LDL deposition, and the potential molecular mechanisms require further investigation. METHODS We conducted a comprehensive analysis of serum and kidney biopsy samples obtained from patients diagnosed with DKD. Additionally, to explore the underlying mechanism of Klotho in the deposition of ox-LDL in the kidneys, we employed a mouse model of DKD with the Klotho genotype induced by streptozotocin (STZ). Furthermore, we conducted meticulous in vitro experiments on podocytes to gain further insights into the specific role of Klotho in the deposition of ox-LDL within the kidney. RESULTS Our groundbreaking study unveiled the remarkable ability of the soluble form of Klotho to effectively inhibit high glucose-induced ox-LDL deposition in podocytes affected by DKD. Subsequent investigations elucidated that Klotho achieved this inhibition by reducing the expression of the insulin/insulin-like growth factor 1 receptor (IGF-1R), consequently leading to a decrease in the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) and an enhancement of mitochondrial function. Ultimately, this series of events culminated in a significant reduction in the expression of the oxidized low-density lipoprotein receptor (OLR1), thereby resulting in a notable decrease in renal ox-LDL deposition in DKD. CONCLUSION Our findings suggested that Klotho had the potential to mitigate podocyte injury and reduced high glucose-induced ox-LDL deposition in glomerulus by modulating the IGF-1R/RAC1/OLR1 signaling. These results provided valuable insights that could inform the development of novel strategies for diagnosing and treating DKD.
Collapse
Affiliation(s)
- Wei Jiang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Chun Gan
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xindi Zhou
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Qing Yang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Dan Chen
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Han Xiao
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Lujun Dai
- Department of Pathology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People's Republic of China
| | - Yaxi Chen
- Department of Infectious Diseases, Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Mo Wang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Haiping Yang
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| | - Qiu Li
- Chongqing Key Laboratory of Pediatrics, Department of Nephrology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
8
|
Li T, Liu TC, Liu N, Li MJ, Zhang M. Urinary exosome proteins PAK6 and EGFR as noninvasive diagnostic biomarkers of diabetic nephropathy. BMC Nephrol 2023; 24:291. [PMID: 37789280 PMCID: PMC10548700 DOI: 10.1186/s12882-023-03343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023] Open
Abstract
OBJECTIVE The actin cytoskeleton plays an essential role in maintaining podocyte functions. However, whether the urinary exosome proteins related to the regulation of the actin cytoskeleton are changed in diabetic nephropathy (DN) is still unknown. This study was to investigate the possibility that related proteins can be applied as diagnostic biomarkers for DN. METHODS Urinary exosomes were obtained from 144 participants (Discovery phase: n = 72; Validation phase: n = 72) by size exclusion chromatography methods. Proteomic analysis of urinary exosome by LC-MS/MS. Western blot and ELISA were applied to validate the selected urinary exosome proteins. The clinical value of selected urinary exosome proteins was evaluated using correlation and receiver operating characteristic curve analyses. RESULTS Fifteen urinary proteins related to the regulation of the actin cytoskeleton were identified in urinary exosomes. Three upregulated proteins were selected, including Serine/threonine-protein kinase PAK6 (PAK6), Epidermal growth factor receptor (EGFR), and SHC-transforming protein 1(SHC1). The expression level of PAK6 and EGFR was negatively correlated with estimated glomerular filtration rate and positively correlated with serum creatinine levels. For diagnosing DN in the discovery phase: the area under curve (AUC) of PAK6 was 0.903, EGFR was 0.842, and the combination of two proteins was 0.912. These better performances were also observed in the validation phase (For PAK6: AUC = 0.829; For EGFR: AUC = 0.797; For PAK6 + EGFR: AUC = 0.897). CONCLUSIONS Urinary exosome proteins PAK6 and EGFR may be promising and noninvasive biomarkers for diagnosing DN.
Collapse
Affiliation(s)
- Tao Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Tian Ci Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Na Liu
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Meng Jie Li
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China.
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, 100038, China.
| |
Collapse
|
9
|
Li C, Yang Y, Li L, Chen Y, Shi Q, Zhang H, Zhang L, Chen Y, Li R, Li Z, Liu S, Ye Z, Zhao X, Liang X. Role of TFEB in regulation of the podocyte actin cytoskeleton. Arch Biochem Biophys 2023; 747:109752. [PMID: 37714254 DOI: 10.1016/j.abb.2023.109752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/16/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Podocyte injury is linked to the pathogenesis and progression of renal disease. The Transcription Factor EB (TFEB), a master regulator of the autophagy and lysosomal pathways, has been found to exert cell- and tissue-specific biological function. To explore TFEB function and underlying mechanisms in podocytes, a total of 4645 differentially expressed genes (DEGs) were detected in TFEB-knockdown mouse podocytes by transcriptome sequencing. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Ingenuity Pathway Analysis showed that, apart from the enrichment in autophagy and lysosomal pathways, DEGs were enriched in cytoskeleton structure (Actin Cytoskeleton, Focal Adhesion, and Adherens Junction), as well as cytoskeleton regulatory molecular signaling (Hippo and Rho GTPase Signaling). In vitro, TFEB knockdown resulted in podocyte cytoskeletal rearrangement, which was disorganized with cortical distribution of actin filaments. Further, TFEB knockdown decreased mRNA and protein levels of Synaptopodin and led to the rearrangement of Synaptopodin. Inhibition of TFEB decreased mRNA levels for proteins involved in actin cytoskeleton dynamics. Moreover, apoptosis was increased by TFEB knockdown in podocyte. In summary, this study initiated a comprehensive analysis of the role of TFEB in podocyte function and the potential underlying mechanisms, and identified a novel role for TFEB in regulation of the podocyte actin cytoskeleton.
Collapse
Affiliation(s)
- Cuili Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yan Yang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Luan Li
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yingwen Chen
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Qingying Shi
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hong Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Li Zhang
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yuanhan Chen
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruizhao Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhilian Li
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shuangxin Liu
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zhiming Ye
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xingchen Zhao
- Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Xinling Liang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China; Department of Nephrology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| |
Collapse
|
10
|
Fu Z, Su X, Zhou Q, Feng H, Ding R, Ye H. Protective effects and possible mechanisms of catalpol against diabetic nephropathy in animal models: a systematic review and meta-analysis. Front Pharmacol 2023; 14:1192694. [PMID: 37621314 PMCID: PMC10446169 DOI: 10.3389/fphar.2023.1192694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Aim of the Study: Rehmannia glutinosa is a core Chinese herbal medicine for the treatment of diabetes and diabetic nephropathy (DN). It has been used for the treatment of diabetes for over 1,000 years. Catalpol is the main active compound in Rehmannia roots. Current evidence suggests that catalpol exhibits significant anti-diabetic bioactivity, and thus it has attracted increasing research attention for its potential use in treating DN. However, no studies have systematically evaluated these effects, and its mechanism of action remains unclear. This study aimed to evaluate the effects of catalpol on DN, as well as to summarize its possible mechanisms of action, in DN animal models. Materials and Methods: We included all DN-related animal studies with catalpol intervention. These studies were retrieved by searching eight databases from their dates of inception to July 2022. In addition, we evaluated the methodological quality of the included studies using the Systematic Review Center for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool. Furthermore, we calculated the weighted standard mean difference (SMD) with 95% confidence interval (CI) using the Review Manager 5.3 software and evaluated publication bias using the Stata (12.0) software. A total of 100 studies were retrieved, of which 12 that included 231 animals were finally included in this review. Results: As compared to the control treatment, treatment with catalpol significantly improved renal function in DN animal models by restoring serum creatinine (Scr) (p = 0.0009) and blood urea nitrogen (BUN) (p < 0.00001) levels, reducing proteinuria (p < 0.00001) and fasting blood glucose (FBG) (p < 0.0001), improving kidney indices (p < 0.0001), and alleviating renal pathological changes in the animal models. In addition, it may elicit its effects by reducing inflammation and oxidative stress, improving podocyte apoptosis, regulating lipid metabolism, delaying renal fibrosis, and enhancing autophagy. Conclusion: The preliminary findings of this preclinical systematic review suggest that catalpol elicits significant protective effects against hyperglycemia-induced kidney injury. However, more high-quality studies need to be carried out in the future to overcome the methodological shortcomings identified in this review.
Collapse
Affiliation(s)
- Zhongmei Fu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaojuan Su
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qi Zhou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoyue Feng
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Ding
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hejiang Ye
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Xie Y, Li X, Deng W, Nan N, Zou H, Gong L, Chen M, Yu J, Chen P, Cui D, Zhang F. Knockdown of USF2 inhibits pyroptosis of podocytes and attenuates kidney injury in lupus nephritis. J Mol Histol 2023; 54:313-327. [PMID: 37341818 DOI: 10.1007/s10735-023-10135-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Abstract
As an essential factor in the prognosis of Systemic lupus erythematosus (SLE), lupus nephritis (LN) can accelerate the rate at which patients with SLE can transition to chronic kidney disease or even end-stage renal disease (ESRD). Proteinuria due to decreased glomerular filtration rate following podocyte injury is LN's most common clinical manifestation. Podocyte pyroptosis and related inflammatory factors in its process can promote lupus to involve kidney cells and worsen the occurrence and progression of LN, but its regulatory mechanism remains unknown. Accumulating evidence has shown that upstream stimulatory factor 2 (USF2) plays a vital role in the pathophysiology of kidney diseases. In this research, multiple experiments were performed to investigate the role of USF2 in the process of LN. USF2 was abnormally highly expressed in MRL/lpr mice kidney tissues. Renal function impairment and USF2 mRNA levels were positively correlated. Silencing of USF2 in MRL/lpr serum-stimulated cells significantly reduced serum-induced podocyte pyroptosis. USF2 enhanced NLRP3 expression at the transcriptional level. Silencing of USF2 in vivo attenuated kidney injury in MRL/lpr mice, which suggests that USF2 is important for LN development and occurrence.
Collapse
Affiliation(s)
- Ying Xie
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Xiaoying Li
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Wenli Deng
- Department of Nephrology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Nan Nan
- Department of Pathology, The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Huimei Zou
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
- School of Nursing, Guizhou Medical University, Guiyang, 550025, China
| | - Lei Gong
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China
| | - Min Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Jie Yu
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Peilei Chen
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China
| | - Daolin Cui
- Department of Basic Medicine, Qujing Medical College, Qujing, 655000, China.
| | - Fan Zhang
- Department of Pathophysiology, Guizhou Medical University, Guiyang, 550025, China.
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
12
|
Rogg M, Maier JI, Helmstädter M, Sammarco A, Kliewe F, Kretz O, Weißer L, Van Wymersch C, Findeisen K, Koessinger AL, Tsoy O, Baumbach J, Grabbert M, Werner M, Huber TB, Endlich N, Schilling O, Schell C. A YAP/TAZ-ARHGAP29-RhoA Signaling Axis Regulates Podocyte Protrusions and Integrin Adhesions. Cells 2023; 12:1795. [PMID: 37443829 PMCID: PMC10340513 DOI: 10.3390/cells12131795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Glomerular disease due to podocyte malfunction is a major factor in the pathogenesis of chronic kidney disease. Identification of podocyte-specific signaling pathways is therefore a prerequisite to characterizing relevant disease pathways and developing novel treatment approaches. Here, we employed loss of function studies for EPB41L5 (Yurt) as a central podocyte gene to generate a cell type-specific disease model. Loss of Yurt in fly nephrocytes caused protein uptake and slit diaphragm defects. Transcriptomic and proteomic analysis of human EPB41L5 knockout podocytes demonstrated impaired mechanotransduction via the YAP/TAZ signaling pathway. Further analysis of specific inhibition of the YAP/TAZ-TEAD transcription factor complex by TEADi led to the identification of ARGHAP29 as an EPB41L5 and YAP/TAZ-dependently expressed podocyte RhoGAP. Knockdown of ARHGAP29 caused increased RhoA activation, defective lamellipodia formation, and increased maturation of integrin adhesion complexes, explaining similar phenotypes caused by loss of EPB41L5 and TEADi expression in podocytes. Detection of increased levels of ARHGAP29 in early disease stages of human glomerular disease implies a novel negative feedback loop for mechanotransductive RhoA-YAP/TAZ signaling in podocyte physiology and disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jasmin I. Maier
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Felix Kliewe
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Kretz
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Lisa Weißer
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karla Findeisen
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Anna L. Koessinger
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Olga Tsoy
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, 22607 Hamburg, Germany; (O.T.)
- Department of Mathematics and Computer Science, University of Southern Denmark, 5230 Odense, Denmark
| | - Markus Grabbert
- Department of Urology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Tobias B. Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, 17489 Greifswald, Germany (N.E.)
| | - Oliver Schilling
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
13
|
Mason WJ, Vasilopoulou E. The Pathophysiological Role of Thymosin β4 in the Kidney Glomerulus. Int J Mol Sci 2023; 24:ijms24097684. [PMID: 37175390 PMCID: PMC10177875 DOI: 10.3390/ijms24097684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Diseases affecting the glomerulus, the filtration unit of the kidney, are a major cause of chronic kidney disease. Glomerular disease is characterised by injury of glomerular cells and is often accompanied by an inflammatory response that drives disease progression. New strategies are needed to slow the progression to end-stage kidney disease, which requires dialysis or transplantation. Thymosin β4 (Tβ4), an endogenous peptide that sequesters G-actin, has shown potent anti-inflammatory function in experimental models of heart, kidney, liver, lung, and eye injury. In this review, we discuss the role of endogenous and exogenous Tβ4 in glomerular disease progression and the current understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- William J Mason
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | | |
Collapse
|
14
|
Li D, Liu L, Murea M, Freedman BI, Ma L. Bioinformatics Analysis Reveals a Shared Pathway for Common Forms of Adult Nephrotic Syndrome. KIDNEY360 2023; 4:e515-e524. [PMID: 36763793 PMCID: PMC10278839 DOI: 10.34067/kid.0000000000000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 02/12/2023]
Abstract
Key Points Dysregulation of the focal adhesion pathway is present in the three most common forms of glomerular disease, that is, Focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease. Zyxin is seen to be upregulated in the glomerular compartment of patients with the three most common forms of glomerular disease. Background Focal segmental glomerulosclerosis, membranous nephropathy, and minimal change disease are common causes of nephrotic syndrome. Although triggers for these diseases differ, disease progression may share common molecular mechanisms. The aim of this study was to investigate the presence of molecular pathways that are dysregulated across these glomerular diseases. Methods The gene expression dataset GSE200828 from the Nephrotic Syndrome Study Network study was obtained from the Gene Expression Omnibus database. R and Python packages, Cytoscape software, and online tools (DAVID and STRING) were used to identify core genes and topologically relevant nodes and molecular pathways. Single-cell RNA sequencing analysis was applied to identify the expression patterns of core genes across kidney cell types in glomerular compartments. Results A total of 1087 differentially expressed genes were identified, including 691 upregulated genes and 396 downregulated genes, which are common in all three forms of nephrotic syndrome compared with kidney donor controls (FDR P <0.01). A multiapproach bioinformatics analysis narrowed down to 28 similarly dysregulated genes across the three proteinuric glomerulopathies. The most topologically relevant nodes belonged to the adherens junction, focal adhesion, and cytoskeleton pathways, where zyxin covers all of those gene ontology terms. Conclusions We report that dysregulation of cell adhesion complexes was present in the three most common forms of glomerular disease. Zyxin could be a biomarker in all three common forms of nephrotic syndrome. If further functional studies confirm its role in their development, zyxin could be a potential therapeutic target.
Collapse
Affiliation(s)
- DengFeng Li
- Informatics and Analytics, The University of North Carolina at Greensboro, Greensboro, North Carolina
| | - Liang Liu
- Bioinformatics Shared Resource, Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mariana Murea
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Barry I. Freedman
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Lijun Ma
- Department of Internal Medicine—Nephrology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
15
|
Medina Rangel PX, Tian X. Understanding Nephrotic Syndrome Using Kidney Transcriptome Profiling and Computational Studies. KIDNEY360 2023; 4:e431-e433. [PMID: 37103957 PMCID: PMC10371383 DOI: 10.34067/kid.0000000000000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
|
16
|
Frommherz LH, Sayar SB, Wang Y, Trefzer LK, He Y, Leppert J, Eßer P, Has C. Integrin α3 negative podocytes: A gene expression study. Matrix Biol Plus 2022; 16:100119. [PMID: 36060790 PMCID: PMC9429797 DOI: 10.1016/j.mbplus.2022.100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 12/04/2022] Open
Abstract
New cell model to investigate the impact of loss of integrin α3 in podocytes. In this novel model, genes of the extracellular matrix and adhesome are mostly downregulated. Loss of integrin α3 results in changes of cell adhesion and spreading.
Integrin α3β1 is a cell adhesion receptor widely expressed in epithelial cells. Pathogenic variants in the gene encoding the integrin α3 subunit ITGA3 lead to a syndrome including interstitial lung disease, nephrotic syndrome, and epidermolysis bullosa (ILNEB). Renal involvement mainly consists of glomerular disease caused by loss of adhesion between podocytes and the glomerular basement membrane. The aim of this study was to characterize the impact of loss of integrin α3 on human podocytes. ITGA3 was stably knocked-out in the human podocyte cell line AB8/13, designated as PodoA3−, and in human proximal tubule epithelial cell line HK2 using the targeted genome editing technique CRISPR/Cas9. Cell clones were characterized by Sanger sequencing, quantitative PCR, Western Blot and immunofluorescence staining. RNASeq of integrin α3 negative cells and controls was performed to identify differential gene expression patterns. Differentiated PodoA3− did not substantially change morphology and adhesion under standard culture conditions, but displayed significantly reduced spreading and adhesion when seed on laminin 511 in serum free medium. Gene expression studies demonstrated a distinct dysregulation of the adhesion network with downregulation of most integrin α3 interaction partners. In agreement with this, biological processes such as “extracellular matrix organization” and “cell differentiation” as well as KEGG pathways such as “ECM-receptor interaction”, “focal adhesion” and the “PI3K-Akt signaling pathway” were significantly downregulated in human podocytes lacking the integrin α3 subunit.
Collapse
Affiliation(s)
- L H Frommherz
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,Department of Dermatology and Allergology, University Hospital, LMU Munich, Germany
| | - S B Sayar
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y Wang
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - L K Trefzer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Y He
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - J Leppert
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - P Eßer
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| | - C Has
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
CdGAP maintains podocyte function and modulates focal adhesions in a Src kinase-dependent manner. Sci Rep 2022; 12:18657. [PMID: 36333327 PMCID: PMC9636259 DOI: 10.1038/s41598-022-21634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
Rho GTPases are regulators of the actin cytoskeleton and their activity is modulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchanging factors (GEFs). Glomerular podocytes have numerous actin-based projections called foot processes and their alteration is characteristic of proteinuric kidney diseases. We reported previously that Rac1 hyperactivation in podocytes causes proteinuria and glomerulosclerosis in mice. However, which GAP and GEF modulate Rac1 activity in podocytes remains unknown. Here, using a proximity-based ligation assay, we identified CdGAP (ARHGAP31) and β-PIX (ARHGEF7) as the major regulatory proteins interacting with Rac1 in human podocytes. CdGAP interacted with β-PIX through its basic region, and upon EGF stimulation, they both translocated to the plasma membrane in podocytes. CdGAP-depleted podocytes had altered cell motility and increased basal Rac1 and Cdc42 activities. When stimulated with EGF, CdGAP-depleted podocytes showed impaired β-PIX membrane-translocation and tyrosine phosphorylation, and reduced activities of Src kinase, focal adhesion kinase, and paxillin. Systemic and podocyte-specific CdGAP-knockout mice developed mild but significant proteinuria, which was exacerbated by Adriamycin. Collectively, these findings show that CdGAP contributes to maintain podocyte function and protect them from injury.
Collapse
|
18
|
Ishimoto T, Mori H. Control of actin polymerization via reactive oxygen species generation using light or radiation. Front Cell Dev Biol 2022; 10:1014008. [PMID: 36211457 PMCID: PMC9538341 DOI: 10.3389/fcell.2022.1014008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Actin is one of the most prevalent proteins in cells, and its amino acid sequence is remarkably conserved from protozoa to humans. The polymerization-depolymerization cycle of actin immediately below the plasma membrane regulates cell function, motility, and morphology. It is known that actin and other actin-binding proteins are targets for reactive oxygen species (ROS), indicating that ROS affects cells through actin reorganization. Several researchers have attempted to control actin polymerization from outside the cell to mimic or inhibit actin reorganization. To modify the polymerization state of actin, ultraviolet, visible, and near-infrared light, ionizing radiation, and chromophore-assisted light inactivation have all been reported to induce ROS. Additionally, a combination of the fluorescent protein KillerRed and the luminescent protein luciferase can generate ROS on actin fibers and promote actin polymerization. These techniques are very useful tools for analyzing the relationship between ROS and cell function, movement, and morphology, and are also expected to be used in therapeutics. In this mini review, we offer an overview of the advancements in this field, with a particular focus on how to control intracellular actin polymerization using such optical approaches, and discuss future challenges.
Collapse
Affiliation(s)
- Tetsuya Ishimoto
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- *Correspondence: Tetsuya Ishimoto,
| | - Hisashi Mori
- Department of Molecular Neuroscience, Faculty of Medicine, University of Toyama, Toyama, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
- Research Center for Pre-Disease Science, University of Toyama, Toyama, Japan
| |
Collapse
|
19
|
Feng Y, Li M, Wang Y, Yang M, Shi G, Yin D, Xuan Z, Xu F. Activation of TRPC6 by AngⅡ Induces Podocyte Injury and Participates in Proteinuria of Nephrotic Syndrome. Front Pharmacol 2022; 13:915153. [PMID: 35991898 PMCID: PMC9382118 DOI: 10.3389/fphar.2022.915153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Nephrotic syndrome (NS) is a common glomerular disease, and podocyte injury is the character of primary NS, usually caused by minimal change disease and membranous nephropathy. Podocytopathy is primarily associated with glomerular proteinuria. Losartan, an angiotensin receptor blocker (ARB), is commonly used in the treatment of NS, and the AngiotensinⅡ (AngⅡ)–transient receptor potential ion channel 6 (TRPC6) axis has been reported to act on podocytes to regulate proteinuria in NS. Therefore, the purpose of this study was to explore the relationship in between AngⅡ–TRPC6, podocyte injury, and proteinuria based on the adriamycin (ADR) NS rat model.Method: All male rats were divided into three groups: control group, model group, and ARB group. The rats in the model group were induced by ADR, and the rats in the ARB group received losartan after induction of renal injury for 4 weeks. The changes in parameters related to renal dysfunction, and glomerular and podocyte structural damage, such as AngⅡ, AngⅡ type I receptor (AT1R), TRPC6, CaN, Caspase-3, Nephrin, and Podocin, were analyzed. Furthermore, the kidneys were isolated for study via transmission electron microscopy (TEM), immunohistochemistry, and western blot (WB) after the rats were sacrificed. In vitro, immortalized mouse MPC5 podocytes were used to investigate the regulatory effect of flufenamic acid (Flu) and SAR7334 (SAR) on the AngⅡ-TRPC6 signaling axis. Flow cytometry and WB were conducted to determine the relationship between podocyte injury and AngⅡ-TRPC6.Results:In vivo results showed that NS rats developed massive albuminuria and abnormal renal function, accompanied by abnormally increased levels of AngⅡ, TRPC6, AT1R, and CaN and a decreased expression of actin molecules in podocytes, extensive fusion of foot processes (FP), loss of glomerular structural integrity, collapse of podocyte structure, and skeletal reorganization. In vitro experiments indicated that both AngⅡ and Flu (the specific agonist of TRPC6) stimulated the expressions of TRPC6, AT1R, and Caspase-3 in podocytes. The AngⅡ receptor–blocker losartan and TRPC6-specific inhibitor SAR blocked the overexpression of the aforementioned proteins. In addition, SAR also attenuated the degradation of podocyte structural proteins and inhibited the fluorescence intensity of intracellular calcium (Ca2+) and cell apoptosis.Conclusion: The involvement of AngⅡ in the occurrence of NS proteinuria may be related to podocyte injury induced by activated TRPC6.
Collapse
Affiliation(s)
- Ye Feng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Manman Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yunlai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Mo Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Zihua Xuan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Zihua Xuan, ; Fan Xu,
| | - Fan Xu
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- *Correspondence: Zihua Xuan, ; Fan Xu,
| |
Collapse
|
20
|
Pathophysiology and system biology of rat c-BSA induced immune complex glomerulonephritis and pathway comparison with human gene sequencing data. Int Immunopharmacol 2022; 109:108891. [PMID: 35691274 DOI: 10.1016/j.intimp.2022.108891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Immune-complex glomerulonephritis (ICGN) is a major cause of nephrotic syndrome in adults and children. Cationic BSA (c-BSA) intravenous injection could produce significant albuminuria within a short time, and is a suitable in vivo experimental animal model to investigate the pathophysiology of ICGN and for drug screening, but lack of thorough study to clarify its dynamic pathophysiological alteration so far, as well as detailed changes in mRNA and LncRNA levels. The purpose of this study is to investigate the dynamic alteration in renal function, lipid metabolism and histopathology during the progress of c-BSA induced ICGN. RNA sequencing was used to identified differentially expressed mRNA and LncRNA in kidney cortex of ICGN. Results demonstrated that c-BSA induced ICGN model could completely exhibit clinical features of immune-mediated nephrotic syndrome with gradual declining renal function, and increased albuminuria and deteriorated histopathological injuries. The correlation analysis suggested that complement activation was the most key element in mediating of ICGN. RNA sequencing using rat kidney tissues combined with Gene Expression Omnibus (GEO) data of human glomerulonephritis showed the most enriched KEGG pathways in ICGN were Toll-like receptor signaling pathway, B cell receptor and Focal adhesion. The differential lncRNAs in ICGN rats were also screened, and the lncRNA-mRNA co-expression network was constructed to clarify lncRNA role in molecular mechanism of ICGN progression. Their human homogenous lncRNAs were also identified, such as ST3GAL5-AS1 and DIO3OS, which provide the potential lncRNA targets to treat ICGN. All the differential LncRNAs in ICGN kidneys caused by MMF were also identified and provided another possible pharmacological mechanism of MMF through lncRNA regulation. In summary, the current study firstly described the dynamic physiological changes of c-BSA induced ICGN, identified most key KEGG pathways, and provided lncRNA-mRNA regulatory network in ICGN.
Collapse
|
21
|
Mason WJ, Jafree DJ, Pomeranz G, Kolatsi-Joannou M, Rottner AK, Pacheco S, Moulding DA, Wolf A, Kupatt C, Peppiatt-Wildman C, Papakrivopoulou E, Riley PR, Long DA, Vasilopoulou E. Systemic gene therapy with thymosin β4 alleviates glomerular injury in mice. Sci Rep 2022; 12:12172. [PMID: 35842494 PMCID: PMC9288454 DOI: 10.1038/s41598-022-16287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Plasma ultrafiltration in the kidney occurs across glomerular capillaries, which are surrounded by epithelial cells called podocytes. Podocytes have a unique shape maintained by a complex cytoskeleton, which becomes disrupted in glomerular disease resulting in defective filtration and albuminuria. Lack of endogenous thymosin β4 (TB4), an actin sequestering peptide, exacerbates glomerular injury and disrupts the organisation of the podocyte actin cytoskeleton, however, the potential of exogenous TB4 therapy to improve podocyte injury is unknown. Here, we have used Adriamycin (ADR), a toxin which injures podocytes and damages the glomerular filtration barrier leading to albuminuria in mice. Through interrogating single-cell RNA-sequencing data of isolated glomeruli we demonstrate that ADR injury results in reduced levels of podocyte TB4. Administration of an adeno-associated viral vector encoding TB4 increased the circulating level of TB4 and prevented ADR-induced podocyte loss and albuminuria. ADR injury was associated with disorganisation of the podocyte actin cytoskeleton in vitro, which was ameliorated by treatment with exogenous TB4. Collectively, we propose that systemic gene therapy with TB4 prevents podocyte injury and maintains glomerular filtration via protection of the podocyte cytoskeleton thus presenting a novel treatment strategy for glomerular disease.
Collapse
Affiliation(s)
- William J Mason
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK.,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniyal J Jafree
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,UCL MB/PhD Programme, Faculty of Medical Science, University College London, London, UK
| | - Gideon Pomeranz
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Antje K Rottner
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sabrina Pacheco
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dale A Moulding
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Anja Wolf
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Christian Kupatt
- Medizinische Klinik und Poliklinik I, University Clinic Rechts der Isar, TUM Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | | | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Internal Medicine and Nephrology, Clinique Saint Jean, Brussels, Belgium
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Elisavet Vasilopoulou
- Division of Natural Sciences, Medway School of Pharmacy, University of Kent, Chatham, Kent, UK. .,Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK. .,Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
22
|
Ye Q, Lan B, Liu H, Persson PB, Lai EY, Mao J. A critical role of the podocyte cytoskeleton in the pathogenesis of glomerular proteinuria and autoimmune podocytopathies. Acta Physiol (Oxf) 2022; 235:e13850. [PMID: 35716094 DOI: 10.1111/apha.13850] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/23/2022] [Accepted: 06/13/2022] [Indexed: 01/19/2023]
Abstract
Selective glomerular filtration relies on the membrane separating the glomerular arterioles from the Bowman space. As a major component of the glomerular filtration barrier, podocytes form foot processes by the actin cytoskeleton, which dynamically adjusts in response to environmental changes to maintain filtration barrier integrity. The slit diaphragms bridge the filtration slits between neighboring foot processes and act as signaling hubs interacting with the actin cytoskeleton. Focal adhesions relay signals to regulate actin dynamics while allowing podocyte adherence to the basement membrane. Mutations in actin regulatory and signaling proteins may disrupt the actin cytoskeleton, resulting in foot process retraction, effacement, and proteinuria. Large-scale gene expression profiling platforms, transgenic animal models, and other in vivo gene delivery methods now enhance our understanding of the interactions among podocyte focal adhesions, slit diaphragms, and actin dynamics. In addition, our team found that at least 66% of idiopathic nephrotic syndrome (INS) children have podocyte autoantibodies, which was defined as a new disease subgroup-, autoimmune podocytopathies. This review outlines the pathophysiological mechanisms of podocyte cytoskeleton protein interactions in proteinuria and glomerular podocytopathy.
Collapse
Affiliation(s)
- Qing Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Bing Lan
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Huihui Liu
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Pontus B Persson
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany
| | - En Yin Lai
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Translational Physiology, Berlin, Germany.,Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| |
Collapse
|
23
|
Hamasaki E, Wakita N, Yasuoka H, Nagaoka H, Morita M, Takashima E, Uchihashi T, Takeda T, Abe T, Lee JW, Iimura T, Saleem MA, Ogo N, Asai A, Narita A, Takei K, Yamada H. The Lipid-Binding Defective Dynamin 2 Mutant in Charcot-Marie-Tooth Disease Impairs Proper Actin Bundling and Actin Organization in Glomerular Podocytes. Front Cell Dev Biol 2022; 10:884509. [PMID: 35620056 PMCID: PMC9127447 DOI: 10.3389/fcell.2022.884509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamin is an endocytic protein that functions in vesicle formation by scission of invaginated membranes. Dynamin maintains the structure of foot processes in glomerular podocytes by directly and indirectly interacting with actin filaments. However, molecular mechanisms underlying dynamin-mediated actin regulation are largely unknown. Here, biochemical and cell biological experiments were conducted to uncover how dynamin modulates interactions between membranes and actin in human podocytes. Actin-bundling, membrane tubulating, and GTPase activities of dynamin were examined in vitro using recombinant dynamin 2-wild-type (WT) or dynamin 2-K562E, which is a mutant found in Charcot-Marie-Tooth patients. Dynamin 2-WT and dynamin 2-K562E led to the formation of prominent actin bundles with constant diameters. Whereas liposomes incubated with dynamin 2-WT resulted in tubule formation, dynamin 2-K562E reduced tubulation. Actin filaments and liposomes stimulated dynamin 2-WT GTPase activity by 6- and 20-fold, respectively. Actin-filaments, but not liposomes, stimulated dynamin 2-K562E GTPase activity by 4-fold. Self-assembly-dependent GTPase activity of dynamin 2-K562E was reduced to one-third compared to that of dynamin 2-WT. Incubation of liposomes and actin with dynamin 2-WT led to the formation of thick actin bundles, which often bound to liposomes. The interaction between lipid membranes and actin bundles by dynamin 2-K562E was lower than that by dynamin 2-WT. Dynamin 2-WT partially colocalized with stress fibers and actin bundles based on double immunofluorescence of human podocytes. Dynamin 2-K562E expression resulted in decreased stress fiber density and the formation of aberrant actin clusters. Dynamin 2-K562E colocalized with α-actinin-4 in aberrant actin clusters. Reformation of stress fibers after cytochalasin D-induced actin depolymerization and washout was less effective in dynamin 2-K562E-expressing cells than that in dynamin 2-WT. Bis-T-23, a dynamin self-assembly enhancer, was unable to rescue the decreased focal adhesion numbers and reduced stress fiber density induced by dynamin 2-K562E expression. These results suggest that the low affinity of the K562E mutant for lipid membranes, and atypical self-assembling properties, lead to actin disorganization in HPCs. Moreover, lipid-binding and self-assembly of dynamin 2 along actin filaments are required for podocyte morphology and functions. Finally, dynamin 2-mediated interactions between actin and membranes are critical for actin bundle formation in HPCs.
Collapse
Affiliation(s)
- Eriko Hamasaki
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Natsuki Wakita
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroki Yasuoka
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Masayuki Morita
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | | | - Tetsuya Takeda
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ji-Won Lee
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Moin A Saleem
- Bristol Renal, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akira Asai
- Center for Drug Discovery, Graduate School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Akihiro Narita
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
24
|
Li Y, Yu J, Wang M, Cui Z, Zhao MH. Anti-phospholipase A2 receptor antibodies directly induced podocyte damage in vitro. Ren Fail 2022; 44:304-313. [PMID: 35333675 PMCID: PMC8959519 DOI: 10.1080/0886022x.2022.2039705] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background The pathogenesis of primary membranous nephropathy (MN) involves the antibodies against antigens on the cell surface of podocytes, with the majority of M-type phospholipase A2 receptor (PLA2R), and a profound podocyte dysfunction. The effects of anti-PLA2R antibodies directly to the podocytes remain unclear. Methods Anti-PLA2R antibodies from patients with PLA2R-associated MN were affinity-purified using a column coupled with recombinant human PLA2R protein. Their effects on conditionally immortalized human podocytes were assessed by apoptosis assays, cellular calcium detection, wound healing assay, and immunofluorescent staining. Proteomics analysis was performed by LC-MS/MS and on PANTHER database. Results The stimulation by anti-PLA2R antibodies could induce early-stage apoptosis of podocytes (MFI of Annexin V = 104.3 ± 19.2 vs. 36.7 ± 7.6, p = 0.004). The increase of calcium concentration in podocytes (MFI = 3309.3 ± 363.6 vs. 1776.3 ± 212.7, p = 0.015) might attribute to the endoplasmic reticulum calcium efflux. The expression of calcium/calmodulin-dependent protein kinase IV (CaMK4) was also increased (MFI = 134.4 ± 9.8 vs. 105.3 ± 10.1, p = 0.011). Proteomics results suggested that anti-PLA2R antibody treatment led to damage on cellular structure, and produced functional disorders on protein binding, actin filament binding, and microtubule motor activity. The staining of F-actin on foot process was reduced (MFI = 27.3 ± 2.8 vs. 47.5 ± 1.0, p = 0.001) and the motility and adherence capacity of podocytes were reduced (number of migrated cells = 44.7 ± 3.1 vs. 53.3 ± 4.9, p = 0.001) after incubation with anti-PLA2R antibodies. Conclusion These data indicate that anti-PLA2R antibodies may directly induce podocyte damage independent of the complement system, which expands the mechanism of anti-PLA2R antibodies on MN.
Collapse
Affiliation(s)
- Yanfen Li
- Department of Nephrology and Renal Division, Peking University First Hospital, Beijing, China
| | - Juntao Yu
- Kintor Pharmaceutical Limited, Suzhou, China
| | - Miao Wang
- Department of Nephrology and Renal Division, Peking University First Hospital, Beijing, China
| | - Zhao Cui
- Department of Nephrology and Renal Division, Peking University First Hospital, Beijing, China
| | - Ming-Hui Zhao
- Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
25
|
Rogg M, Maier JI, Van Wymersch C, Helmstädter M, Sammarco A, Lindenmeyer M, Zareba P, Montanez E, Walz G, Werner M, Endlich N, Benzing T, Huber TB, Schell C. α-Parvin Defines a Specific Integrin Adhesome to Maintain the Glomerular Filtration Barrier. J Am Soc Nephrol 2022; 33:786-808. [PMID: 35260418 PMCID: PMC8970443 DOI: 10.1681/asn.2021101319] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The cell-matrix adhesion between podocytes and the glomerular basement membrane is essential for the integrity of the kidney's filtration barrier. Despite increasing knowledge about the complexity of integrin adhesion complexes, an understanding of the regulation of these protein complexes in glomerular disease remains elusive. METHODS We mapped the in vivo composition of the podocyte integrin adhesome. In addition, we analyzed conditional knockout mice targeting a gene (Parva) that encodes an actin-binding protein (α-parvin), and murine disease models. To evaluate podocytes in vivo, we used super-resolution microscopy, electron microscopy, multiplex immunofluorescence microscopy, and RNA sequencing. We performed functional analysis of CRISPR/Cas9-generated PARVA single knockout podocytes and PARVA and PARVB double knockout podocytes in three- and two-dimensional cultures using specific extracellular matrix ligands and micropatterns. RESULTS We found that PARVA is essential to prevent podocyte foot process effacement, detachment from the glomerular basement membrane, and the development of FSGS. Through the use of in vitro and in vivo models, we identified an inherent PARVB-dependent compensatory module at podocyte integrin adhesion complexes, sustaining efficient mechanical linkage at the filtration barrier. Sequential genetic deletion of PARVA and PARVB induces a switch in structure and composition of integrin adhesion complexes. This redistribution of these complexes translates into a loss of the ventral actin cytoskeleton, decreased adhesion capacity, impaired mechanical resistance, and dysfunctional extracellular matrix assembly. CONCLUSIONS The findings reveal adaptive mechanisms of podocyte integrin adhesion complexes, providing a conceptual framework for therapeutic strategies to prevent podocyte detachment in glomerular disease.
Collapse
Affiliation(s)
- Manuel Rogg
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Jasmin I Maier
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Clara Van Wymersch
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Helmstädter
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Alena Sammarco
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Maja Lindenmeyer
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paulina Zareba
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine, University of Barcelona and Health Sciences and Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Gerd Walz
- Department of Medicine IV, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Martin Werner
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christoph Schell
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany .,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| |
Collapse
|
26
|
The Calcium-Sensing Receptor Stabilizes Podocyte Function in Proteinuric Humans and Mice. Kidney Int 2022; 101:1186-1199. [DOI: 10.1016/j.kint.2022.01.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
|
27
|
Grandy C, Port F, Pfeil J, Gottschalk KE. Influence of ROCK Pathway Manipulation on the Actin Cytoskeleton Height. Cells 2022; 11:cells11030430. [PMID: 35159239 PMCID: PMC8834639 DOI: 10.3390/cells11030430] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
The actin cytoskeleton with its dynamic properties serves as the driving force for the movement and division of cells and gives the cell shape and structure. Disorders in the actin cytoskeleton occur in many diseases. Deeper understanding of its regulation is essential in order to better understand these biochemical processes. In our study, we use metal-induced energy transfer (MIET) as a tool to quantitatively examine the rarely considered third dimension of the actin cytoskeleton with nanometer accuracy. In particular, we investigate the influence of different drugs acting on the ROCK pathway on the three-dimensional actin organization. We find that cells treated with inhibitors have a lower actin height to the substrate while treatment with a stimulator for the ROCK pathway increases the actin height to the substrate, while the height of the membrane remains unchanged. This reveals the precise tuning of adhesion and cytoskeleton tension, which leads to a rich three-dimensional structural behaviour of the actin cytoskeleton. This finetuning is differentially affected by either inhibition or stimulation. The high axial resolution shows the importance of the precise finetuning of the actin cytoskeleton and the disturbed regulation of the ROCK pathway has a significant impact on the actin behavior in the z dimension.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, University Ulm, 89081 Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
28
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
29
|
Yu B, Liu H, Gao X, Liu Q, Du Q, Wang X, An Z, Wang L, Xie H. Effects of Qidi Tangshen granules and their separate prescriptions on podocytes in mice with diabetic nephropathy. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
30
|
Unravelling the Role of PAX2 Mutation in Human Focal Segmental Glomerulosclerosis. Biomedicines 2021; 9:biomedicines9121808. [PMID: 34944624 PMCID: PMC8698597 DOI: 10.3390/biomedicines9121808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
No effective treatments are available for familial steroid-resistant Focal Segmental Glomerulosclerosis (FSGS), characterized by proteinuria due to ultrastructural abnormalities in glomerular podocytes. Here, we studied a private PAX2 mutation identified in a patient who developed FSGS in adulthood. By generating adult podocytes using patient-specific induced pluripotent stem cells (iPSC), we developed an in vitro model to dissect the role of this mutation in the onset of FSGS. Despite the PAX2 mutation, patient iPSC properly differentiated into podocytes that exhibited a normal structure and function when compared to control podocytes. However, when exposed to an environmental trigger, patient podocytes were less viable and more susceptible to cell injury. Fixing the mutation improved their phenotype and functionality. Using a branching morphogenesis assay, we documented developmental defects in patient-derived ureteric bud-like tubules that were totally rescued by fixing the mutation. These data strongly support the hypothesis that the PAX2 mutation has a dual effect, first in renal organogenesis, which could account for a suboptimal nephron number at birth, and second in adult podocytes, which are more susceptible to cell death caused by environmental triggers. These abnormalities might translate into the development of proteinuria in vivo, with a progressive decline in renal function, leading to FSGS.
Collapse
|
31
|
Delézay O, Hodin S, Hé Z, Ollier E, Delavenne X. Functional, proteomic and phenotypic in vitro studies evidence podocyte injury after chronic exposure to heparin. Toxicol Appl Pharmacol 2021; 429:115683. [PMID: 34411582 DOI: 10.1016/j.taap.2021.115683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/25/2022]
Abstract
Unfractionated heparin (UFH) is a widely used anticoagulant that possess numerous properties including anti-inflammatory, anti-viral, anti-angiogenesis, and anti-metastatic effects. The effect of this drug was evaluated on the podocyte, an important actor of the glomerular filtration. Using a functional approach, we demonstrate that heparin treatment leads to a functional podocyte perturbation characterized by the increase of podocyte monolayer permeability. This effect is enhanced with time of exposure. Proteomic study reveals that heparin down regulate focal adhesion and cytoskeletal protein expressions as well as the synthesis of glomerular basement membrane components. This study clearly demonstrates that UFH may affect podocyte function by altering cytoskeleton organization, cell-cell contacts and cell attachment.
Collapse
Affiliation(s)
- Olivier Delézay
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France.
| | - Sophie Hodin
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France
| | - Zhiguo Hé
- EA 2521, Biologie, Ingénierie et Imagerie de la Greffe de Cornée (BIIGC), Saint-Etienne, France
| | - Edouard Ollier
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM, U1059, Dysfonction Vasculaire et Hémostase, Saint-Etienne, France
| |
Collapse
|
32
|
Witecka A, Kwiatkowski S, Ishikawa T, Drozak J. The Structure, Activity, and Function of the SETD3 Protein Histidine Methyltransferase. Life (Basel) 2021; 11:1040. [PMID: 34685411 PMCID: PMC8537074 DOI: 10.3390/life11101040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
SETD3 has been recently identified as a long sought, actin specific histidine methyltransferase that catalyzes the Nτ-methylation reaction of histidine 73 (H73) residue in human actin or its equivalent in other metazoans. Its homologs are widespread among multicellular eukaryotes and expressed in most mammalian tissues. SETD3 consists of a catalytic SET domain responsible for transferring the methyl group from S-adenosyl-L-methionine (AdoMet) to a protein substrate and a RuBisCO LSMT domain that recognizes and binds the methyl-accepting protein(s). The enzyme was initially identified as a methyltransferase that catalyzes the modification of histone H3 at K4 and K36 residues, but later studies revealed that the only bona fide substrate of SETD3 is H73, in the actin protein. The methylation of actin at H73 contributes to maintaining cytoskeleton integrity, which remains the only well characterized biological effect of SETD3. However, the discovery of numerous novel methyltransferase interactors suggests that SETD3 may regulate various biological processes, including cell cycle and apoptosis, carcinogenesis, response to hypoxic conditions, and enterovirus pathogenesis. This review summarizes the current advances in research on the SETD3 protein, its biological importance, and role in various diseases.
Collapse
Affiliation(s)
- Apolonia Witecka
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Sebastian Kwiatkowski
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| | - Takao Ishikawa
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Jakub Drozak
- Department of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (A.W.); (S.K.)
| |
Collapse
|
33
|
Sever S. Role of actin cytoskeleton in podocytes. Pediatr Nephrol 2021; 36:2607-2614. [PMID: 33188449 PMCID: PMC8116355 DOI: 10.1007/s00467-020-04812-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
The selectivity of the glomerular filter is established by physical, chemical, and signaling interplay among its three core constituents: glomerular endothelial cells, the glomerular basement membrane, and podocytes. Functional impairment or injury of any of these three components can lead to proteinuria. Podocytes are injured in many forms of human and experimental glomerular disease, including minimal change disease, focal segmental glomerulosclerosis, and diabetes mellitus. One of the earliest signs of podocyte injury is loss of their distinct structure, which is driven by dysregulated dynamics of the actin cytoskeleton. The status of the actin cytoskeleton in podocytes depends on a set of actin binding proteins, nucleators and inhibitors of actin polymerization, and regulatory GTPases. Mutations that alter protein function in each category have been implicated in glomerular diseases in humans and animal models. In addition, a growing body of studies suggest that pharmacological modifications of the actin cytoskeleton have the potential to become novel therapeutics for podocyte-dependent chronic kidney diseases. This review presents an overview of the essential proteins that establish actin cytoskeleton in podocytes and studies demonstrating the feasibility of drugging actin cytoskeleton in kidney diseases.
Collapse
Affiliation(s)
- Sanja Sever
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
34
|
Chang MY, Chang SY, Su PP, Tian F, Liu ZS. The protective effect of beta-hydroxybutyric acid on renal glomerular epithelial cells in adriamycin-induced injury. Am J Transl Res 2021; 13:8847-8859. [PMID: 34539999 PMCID: PMC8430157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Beta-hydroxybutyric acid (BHB) exerts a protective effect in experimental of kidney disease models. However, the mechanisms underlying this activity are not well defined. BHB stands out for its ability to inhibit the Nε-lysine acetylation of histone and non-histone proteins, which may affect cellular processes and protein functions. In adriamycin-injured murine glomerular podocytes, BHB ameliorates podocyte damage and preserves actin cytoskeleton integrity, reminiscent of the effect of MS275, a highly selective inhibitor of lysine deacetylase. Further research found that adriamycin causes the reduced acetylation of nephrin, WT-1, and GSK3β. This process is abrogated by the lysine deacetylase inhibitor or BHB, suggesting that the acetylation of these molecules regulates their activity. In contrast, anacardic acid, a selective inhibitor of acetyltransferase, decreases the acetylation of nephrin, WT-1, and GSK3β and mitigates the podocyte protective effects of BHB. Taken together, BHB attenuates adriamycin-elicited glomerular epithelial cell injury, at least in part, by inhibiting the deacetylation of the key molecules implicated in glomerular injury.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Si-Yuan Chang
- Department of Surgical Intensive Care Unit, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Pei-Pei Su
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Fei Tian
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| | - Zhang-Suo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou, Henan Province, P. R. China
| |
Collapse
|
35
|
Butt L, Unnersjö-Jess D, Höhne M, Schermer B, Edwards A, Benzing T. A mathematical estimation of the physical forces driving podocyte detachment. Kidney Int 2021; 100:1054-1062. [PMID: 34332959 DOI: 10.1016/j.kint.2021.06.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/27/2021] [Accepted: 06/18/2021] [Indexed: 01/21/2023]
Abstract
Loss of podocytes, possibly through the detachment of viable cells, is a hallmark of progressive glomerular disease. Podocytes are exposed to considerable physical forces due to pressure and flow resulting in circumferential wall stress and tangential shear stress exerted on the podocyte cell body, which have been proposed to contribute to podocyte depletion. However, estimations of in vivo alterations of physical forces in glomerular disease have been hampered by a lack of quantitative functional and morphological data. Here, we used ultra-resolution data and computational analyses in a mouse model of human disease, hereditary late-onset focal segmental glomerular sclerosis, to calculate increased mechanical stress upon podocyte injury. Transversal shear stress on the lateral walls of the foot processes was prominently increased during the initial stages of podocyte detachment. Thus, our study highlights the importance of targeting glomerular hemodynamics to treat glomerular disease.
Collapse
Affiliation(s)
- Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - David Unnersjö-Jess
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin Höhne
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Aurelie Edwards
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; CECAD, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
36
|
Fédou C, Camus M, Lescat O, Feuillet G, Mueller I, Ross B, Buléon M, Neau E, Alves M, Goudounéche D, Breuil B, Boizard F, Bardou Q, Casemayou A, Tack I, Dreux S, Batut J, Blader P, Burlet-Schiltz O, Decramer S, Wirth B, Klein J, Saulnier-Blache JS, Buffin-Meyer B, Schanstra JP. Mapping of the amniotic fluid proteome of fetuses with congenital anomalies of the kidney and urinary tract identifies plastin 3 as a protein involved in glomerular integrity. J Pathol 2021; 254:575-588. [PMID: 33987838 DOI: 10.1002/path.5703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
Congenital anomalies of the kidney and the urinary tract (CAKUT) are the first cause of chronic kidney disease in childhood. Several genetic and environmental origins are associated with CAKUT, but most pathogenic pathways remain elusive. Considering the amniotic fluid (AF) composition as a proxy for fetal kidney development, we analyzed the AF proteome from non-severe CAKUT (n = 19), severe CAKUT (n = 14), and healthy control (n = 22) fetuses using LC-MS/MS. We identified 471 significant proteins that discriminated the three AF groups with 81% precision. Among them, eight proteins independent of gestational age (CSPG4, LMAN2, ENDOD1, ANGPTL2, PRSS8, NGFR, ROBO4, PLS3) were associated with both the presence and the severity of CAKUT. Among those, five were part of a protein-protein interaction network involving proteins previously identified as being potentially associated with CAKUT. The actin-bundling protein PLS3 (plastin 3) was the only protein displaying a gradually increased AF abundance from control, via non-severe, to severe CAKUT. Immunohistochemistry experiments showed that PLS3 was expressed in the human fetal as well as in both the fetal and the postnatal mouse kidney. In zebrafish embryos, depletion of PLS3 led to a general disruption of embryonic growth including reduced pronephros development. In postnatal Pls3-knockout mice, kidneys were macroscopically normal, but the glomerular ultrastructure showed thickening of the basement membrane and fusion of podocyte foot processes. These structural changes were associated with albuminuria and decreased expression of podocyte markers including Wilms' tumor-1 protein, nephrin, and podocalyxin. In conclusion, we provide the first map of the CAKUT AF proteome that will serve as a reference for future studies. Among the proteins strongly associated with CAKUT, PLS3 did surprisingly not specifically affect nephrogenesis but was found as a new contributor in the maintenance of normal kidney function, at least in part through the control of glomerular integrity. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Camille Fédou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Mylène Camus
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Ophélie Lescat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Ilka Mueller
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Bryony Ross
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Marie Buléon
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Eric Neau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Melinda Alves
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Dominique Goudounéche
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, University of Toulouse, Toulouse, France
| | - Benjamin Breuil
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Franck Boizard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Quentin Bardou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Audrey Casemayou
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Département de Néphrologie et Transplantation d'Organes, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Ivan Tack
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Sophie Dreux
- Unité de Biochimie Fœto-Placentaire, Laboratoire de Biochimie - Hormonologie CHU Robert Debré, AP-HP, Paris, France
| | - Julie Batut
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Patrick Blader
- Molecular, Cellular and Developmental Biology Unit (MCD, UMR5077), Centre de Biologie Intégrative (CBI, FR3743), Université de Toulouse, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Stéphane Decramer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France.,Service de Néphrologie Pédiatrique, Hôpital des Enfants, CHU Toulouse, Toulouse, France.,Centre De Référence des Maladies Rénales Rares du Sud-Ouest (SORARE), Toulouse, France
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, and Center for Rare Diseases Cologne, University of Cologne, Cologne, Germany
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Jean Sébastien Saulnier-Blache
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Bénédicte Buffin-Meyer
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Joost P Schanstra
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1297, Institut of Cardiovascular and Metabolic Disease, Toulouse, France.,Université Toulouse III Paul-Sabatier, Toulouse, France
| |
Collapse
|
37
|
Ding X, Ren Y, He X. IFN-I Mediates Lupus Nephritis From the Beginning to Renal Fibrosis. Front Immunol 2021; 12:676082. [PMID: 33959133 PMCID: PMC8093624 DOI: 10.3389/fimmu.2021.676082] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) and a major risk factor for morbidity and mortality. The abundant cell-free nucleic (DNA/RNA) in SLE patients, especially dsDNA, is a key substance in the pathogenesis of SLE and LN. The deposition of DNA/RNA-immune complexes (DNA/RNA-ICs) in the glomerulus causes a series of inflammatory reactions that lead to resident renal cell disturbance and eventually renal fibrosis. Cell-free DNA/RNA is the most effective inducer of type I interferons (IFN-I). Resident renal cells (rather than infiltrating immune cells) are the main source of IFN-I in the kidney. IFN-I in turn damages resident renal cells. Not only are resident renal cells victims, but also participants in this immunity war. However, the mechanism for generation of IFN-I in resident renal cells and the pathological mechanism of IFN-I promoting renal fibrosis have not been fully elucidated. This paper reviews the latest epidemiology of LN and its development process, discusses the mechanism for generation of IFN-I in resident renal cells and the role of IFN-I in the pathogenesis of LN, and may open a new perspective for the treatment of LN.
Collapse
Affiliation(s)
- Xuewei Ding
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Ren
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Pediatric Internal Medicine Department, Haikou Maternal and Child Health Hospital, Haikou, China
| | - Xiaojie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Pediatric Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
38
|
Gu X, Zhang S, Zhang T. Abnormal Crosstalk between Endothelial Cells and Podocytes Mediates Tyrosine Kinase Inhibitor (TKI)-Induced Nephrotoxicity. Cells 2021; 10:cells10040869. [PMID: 33921219 PMCID: PMC8070074 DOI: 10.3390/cells10040869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 12/12/2022] Open
Abstract
Vascular endothelial growth factor A (VEGFA) and its receptor VEGFR2 are the main targets of antiangiogenic therapies, and proteinuria is one of the common adverse events associated with the inhibition of the VEGFA/VEGFR2 pathway. The proteinuric kidney damage induced by VEGFR2 tyrosine kinase inhibitors (TKIs) is characterized by podocyte foot process effacement. TKI therapy promotes the formation of abnormal endothelial‒podocyte crosstalk, which plays a key role in TKI-induced podocyte injury and proteinuric nephropathy. This review article summarizes the underlying mechanism by which the abnormal endothelial‒podocyte crosstalk mediates podocyte injury and discusses the possible molecules and signal pathways involved in abnormal endothelial‒podocyte crosstalk. What is more, we highlight the molecules involved in podocyte injury and determine the essential roles of Rac1 and Cdc42; this provides evidence for exploring the abnormal endothelial‒podocyte crosstalk in TKI-induced nephrotoxicity.
Collapse
Affiliation(s)
| | | | - Ti Zhang
- Correspondence: ; Tel.: +86-21-6417-5590
| |
Collapse
|
39
|
Mavrogeorgis E, Mischak H, Beige J, Latosinska A, Siwy J. Understanding glomerular diseases through proteomics. Expert Rev Proteomics 2021; 18:137-157. [PMID: 33779448 DOI: 10.1080/14789450.2021.1908893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Chronic kidney disease is avery common and complex chronic disease. Uncovering the pathological patterns of CKD on the molecular level of bio-fluids and tissue appears to be both vital and promising for a more favorable outcome. We reviewed recently discovered proteomics biomarkers for CKD to provide new insight into disease pathology. AREAS COVERED We review the application of proteome analysis in the context of CKD with various etiologies within the last 5 years. Proteins and peptides associated with CKD as derived from multiple sources (urine, blood and tissue) are reported along with their various biological pathways. EXPERT OPINION A systematic and theoretical comprehension of the CKD pathology is essential for its successful management. The underlying complexity of the disease further requires specific conditions for reliable and interpretable results. In this context, clinical proteomics has resulted in first encouraging findings in CKD. A more complete understanding of the biological pathways related to the disease, based on the scope of a holistic proteomic approach, could improve substantially the management of CKD, especially when in conjunction with the current trend of personalized medicine.
Collapse
Affiliation(s)
| | - H Mischak
- Mosaiques Diagnostics GmbH, Hannover, Germany.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Beige
- Division of Nephrology and KfH Renal Unit, Hospital St. Georg, Leipzig, Germany.,Department of Internal Medicine 2 (Nephrology, Rheumatology, Endocrinology), Martin-Luther-University Halle, Wittenberg, Germany
| | | | - J Siwy
- Mosaiques Diagnostics GmbH, Hannover, Germany
| |
Collapse
|
40
|
Gao W, Liu Y, Fan L, Zheng B, Jefferson JR, Wang S, Zhang H, Fang X, Nguyen BV, Zhu T, Roman RJ, Fan F. Role of γ-adducin in actin cytoskeleton rearrangements in podocyte pathophysiology. Am J Physiol Renal Physiol 2021; 320:F97-F113. [PMID: 33308016 PMCID: PMC7847051 DOI: 10.1152/ajprenal.00423.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
We recently reported that the enhanced susceptibility to chronic kidney disease (CKD) in the fawn-hooded hypertensive (FHH) rat is caused, at least in part, by a mutation in γ-adducin (ADD3) that attenuates renal vascular function. The present study explored whether Add3 contributes to the modulation of podocyte structure and function using FHH and FHH.Add3 transgenic rats. The expression of ADD3 on the membrane of primary podocytes isolated from FHH was reduced compared with FHH.Add3 transgenic rats. We found that F-actin nets, which are typically localized in the lamellipodia, replaced unbranched stress fibers in conditionally immortalized mouse podocytes transfected with Add3 Dicer-substrate short interfering RNA (DsiRNA) and primary podocytes isolated from FHH rats. There were increased F/G-actin ratios and expression of the Arp2/3 complexes throughout FHH podocytes in association with reduced synaptopodin and RhoA but enhanced Rac1 and CDC42 expression in the renal cortex, glomeruli, and podocytes of FHH rats. The expression of nephrin at the slit diaphragm and the levels of focal adhesion proteins integrin-α3 and integrin-β1 were decreased in the glomeruli of FHH rats. Cell migration was enhanced and adhesion was reduced in podocytes of FHH rats as well as in immortalized mouse podocytes transfected with Add3 DsiRNA. Mean arterial pressures were similar in FHH and FHH.Add3 transgenic rats at 16 wk of age; however, FHH rats exhibited enhanced proteinuria associated with podocyte foot process effacement. These results demonstrate that reduced ADD3 function in FHH rats alters baseline podocyte pathophysiology by rearrangement of the actin cytoskeleton at the onset of proteinuria in young animals.
Collapse
Affiliation(s)
- Wenjun Gao
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua R Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Bond V Nguyen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
41
|
Zhang Z, Liang W, Luo Q, Hu H, Yang K, Hu J, Chen Z, Zhu J, Feng J, Zhu Z, Chi Q, Ding G. PFKP Activation Ameliorates Foot Process Fusion in Podocytes in Diabetic Kidney Disease. Front Endocrinol (Lausanne) 2021; 12:797025. [PMID: 35095764 PMCID: PMC8794994 DOI: 10.3389/fendo.2021.797025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Glycolysis dysfunction is an important pathogenesis of podocyte injury in diabetic kidney disease (DKD). Foot process fusion of podocytes and increased albuminuria are markers of early DKD. Moreover, cytoskeletal remodeling has been found to be involved in the foot process fusion of podocytes. However, the connections between cytoskeletal remodeling and alterations of glycolysis in podocytes in DKD have not been clarified. METHODS mRNA sequencing of glomeruli obtained from db/db and db/m mice with albuminuria was performed to analyze the expression profiling of genes in glucose metabolism. Expressions of phosphofructokinase platelet type (PFKP) in the glomeruli of DKD patients were detected. Clotrimazole (CTZ) was used to explore the renal effects of PFKP inhibition in diabetic mice. Using Pfkp siRNA or recombinant plasmid to manipulate PFKP expression, the effects of PFKP on high glucose (HG) induced podocyte damage were assessed in vitro. The levels of fructose-1,6-bisphosphate (FBP) were measured. Targeted metabolomics was performed to observe the alterations of the metabolites in glucose metabolism after HG stimulation. Furthermore, aldolase type b (Aldob) siRNA or recombinant plasmid were applied to evaluate the influence of FBP level alteration on podocytes. FBP was directly added to podocyte culture media. Db/db mice were treated with FBP to investigate its effects on their kidney. RESULTS mRNA sequencing showed that glycolysis enzyme genes were altered, characterized by upregulation of upstream genes (Hk1, and Pfkp) and down-regulation of downstream genes of glycolysis (Pkm, and Ldha). Moreover, the expression of PFKP was increased in glomeruli of DKD patients. The CTZ group presented more severe renal damage. In vitro, the Pfkp siRNA group and ALDOB overexpression group showed much more induced cytoskeletal remodeling in podocytes, while overexpression of PFKP and suppression of ALDOB in vitro rescued podocytes from cytoskeletal remodeling through regulation of FBP levels and inhibition of the RhoA/ROCK1 pathway. Furthermore, targeted metabolomics showed FBP level was significantly increased in HG group compared with the control group. Exogenous FBP addition reduced podocyte cytoskeletal remodeling and renal damage of db/db mice. CONCLUSIONS These findings provide evidence that PFKP may be a potential target for podocyte injury in DN and provide a rationale for applying podocyte glycolysis enhancing agents in patients with DKD.
Collapse
Affiliation(s)
- Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
- *Correspondence: Wei Liang, ; Guohua Ding,
| | - Qiang Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Hongtu Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Keju Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jili Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
| | - Qingjia Chi
- Department of Mechanics and Engineering Structure, Wuhan University of Technology, Wuhan, China
| | - Guohua Ding
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Nephrology and Urology Research Institute of Wuhan University, Wuhan, China
- *Correspondence: Wei Liang, ; Guohua Ding,
| |
Collapse
|
42
|
Bersie-Larson LM, Gyoneva L, Goodman DJ, Dorfman KD, Segal Y, Barocas VH. Glomerular filtration and podocyte tensional homeostasis: importance of the minor type IV collagen network. Biomech Model Mechanobiol 2020; 19:2433-2442. [PMID: 32462439 PMCID: PMC7606712 DOI: 10.1007/s10237-020-01347-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2020] [Indexed: 03/05/2023]
Abstract
The minor type IV collagen chain, which is a significant component of the glomerular basement membrane in healthy individuals, is known to assemble into large structures (supercoils) that may contribute to the mechanical stability of the collagen network and the glomerular basement membrane as a whole. The absence of the minor chain, as in Alport syndrome, leads to glomerular capillary demise and eventually to kidney failure. An important consideration in this problem is that the glomerular capillary wall must be strong enough to withstand the filtration pressure and porous enough to permit filtration at reasonable pressures. In this work, we propose a coupled feedback loop driven by filtration demand and tensional homeostasis of the podocytes forming the outer portion of the glomerular capillary wall. Briefly, the deposition of new collagen increases the stiffness of basement membrane, helping to stress shield the podocytes, but the new collagen also decreases the permeability of the basement membrane, requiring an increase in capillary transmural pressure drop to maintain filtration; the resulting increased pressure outweighs the increased glomerular basement membrane stiffness and puts a net greater stress demand on the podocytes. This idea is explored by developing a multiscale simulation of the capillary wall, in which a macroscopic (µm scale) continuum model is connected to a set of microscopic (nm scale) fiber network models representing the collagen network and the podocyte cytoskeleton. The model considers two cases: healthy remodeling, in which the presence of the minor chain allows the collagen volume fraction to be increased by thickening fibers, and Alport syndrome remodeling, in which the absence of the minor chain allows collagen volume fraction to be increased only by adding new fibers to the network. The permeability of the network is calculated based on previous models of flow through a fiber network, and it is updated for different fiber radii and volume fractions. The analysis shows that the minor chain allows a homeostatic balance to be achieved in terms of both filtration and cell tension. Absent the minor chain, there is a fundamental change in the relation between the two effects, and the system becomes unstable. This result suggests that mechanobiological or mechanoregulatory therapies may be possible for Alport syndrome and other minor chain collagen diseases of the kidney.
Collapse
Affiliation(s)
- Lauren M Bersie-Larson
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Lazarina Gyoneva
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Daniel J Goodman
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, USA
| | - Yoav Segal
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
43
|
The Protective Effect of Shen Qi Wan on Adenine-Induced Podocyte Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5803192. [PMID: 33273954 PMCID: PMC7700022 DOI: 10.1155/2020/5803192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/21/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022]
Abstract
Podocytes are a special type of differentiated epithelial cells that maintain the glomerular filtration barrier in the kidney. Injury or damages in podocytes can cause kidney-related disorders, like CKD. The injury or dysfunction of podocytes can occur by different metabolic disorders. Due to the severity and complexity of podocyte injuries, this state is considered as a serious health issue worldwide. Here, we examined and addressed the efficacy of an alternative Chinese medicine, Shen Qi Wan (SQW), on podocyte-related kidney injury. We evaluated the role and mechanism of action of SQW in podocyte injury. We observed that SQW significantly reduced 24-hour urinary protein and blood urea nitrogen levels and alleviated the pathological damage caused by adenine. Moreover, SQW significantly decreased the expression of nephrin and increased the expression of WT1 and AQP1 in the kidney of mice treated with adenine. We observed that SQW did not effectively reduce the high level of proteinuria in AQP1−/− mice indicating the prominent role of AQP1 in the SQW-ameliorating pathway. Transmission electron microscopy (TEM) images indicated the food processes effacement in AQP1−/− mice were not lessened by SQW. In conclusion, podocyte injury could alter the pathological nature of the kidney, and SQW administration relieves the nature of pathogenesis by activating AQP1.
Collapse
|
44
|
Tian X, Inoue K, Zhang Y, Wang Y, Sperati CJ, Pedigo CE, Zhao T, Yan M, Groener M, Moledina DG, Ebenezer K, Li W, Zhang Z, Liebermann DA, Greene L, Greer P, Parikh CR, Ishibe S. Inhibiting calpain 1 and 2 in cyclin G associated kinase-knockout mice mitigates podocyte injury. JCI Insight 2020; 5:142740. [PMID: 33208557 PMCID: PMC7710277 DOI: 10.1172/jci.insight.142740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Evidence for reduced expression of cyclin G associated kinase (GAK) in glomeruli of patients with chronic kidney disease was observed in the Nephroseq human database, and GAK was found to be associated with the decline in kidney function. To examine the role of GAK, a protein that functions to uncoat clathrin during endocytosis, we generated podocyte-specific Gak-knockout mice (Gak-KO), which developed progressive proteinuria and kidney failure with global glomerulosclerosis. We isolated glomeruli from the mice carrying the mutation to perform messenger RNA profiling and unearthed evidence for dysregulated podocyte calpain protease activity as an important contributor to progressive podocyte damage. Treatment with calpain inhibitor III specifically inhibited calpain-1/-2 activities, mitigated the degree of proteinuria and glomerulosclerosis, and led to a striking increase in survival in the Gak-KO mice. Podocyte-specific deletion of Capns1, essential for calpain-1 and calpain-2 activities, also improved proteinuria and glomerulosclerosis in Gak-KO mice. Increased podocyte calpain activity-mediated proteolysis of IκBα resulted in increased NF-κB p65-induced expression of growth arrest and DNA-damage-inducible 45 beta in the Gak-KO mice. Our results suggest that loss of podocyte-associated Gak induces glomerular injury secondary to calcium dysregulation and aberrant calpain activation, which when inhibited, can provide a protective role.
Collapse
MESH Headings
- Animals
- Calpain/antagonists & inhibitors
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/therapy
- Female
- Glomerulosclerosis, Focal Segmental/etiology
- Glomerulosclerosis, Focal Segmental/metabolism
- Glomerulosclerosis, Focal Segmental/pathology
- Glomerulosclerosis, Focal Segmental/therapy
- Humans
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Podocytes/metabolism
- Podocytes/pathology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/physiology
- Renal Insufficiency, Chronic/etiology
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/therapy
Collapse
Affiliation(s)
- Xuefei Tian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kazunori Inoue
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Yan Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Wang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - C. John Sperati
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher E. Pedigo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tingting Zhao
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Meihua Yan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Marwin Groener
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dennis G. Moledina
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen Ebenezer
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Wei Li
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, Southern Medical University, Nanfang Hospital, Guangzhou, China
- Center for Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dan A. Liebermann
- Fels Institute of Cancer Research and Molecular Biology and Department of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania USA
| | - Lois Greene
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Peter Greer
- Queen’s Cancer Research Institute, Kingston, Ontario, Canada
| | - Chirag R. Parikh
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
45
|
La TM, Tachibana H, Li SA, Abe T, Seiriki S, Nagaoka H, Takashima E, Takeda T, Ogawa D, Makino SI, Asanuma K, Watanabe M, Tian X, Ishibe S, Sakane A, Sasaki T, Wada J, Takei K, Yamada H. Dynamin 1 is important for microtubule organization and stabilization in glomerular podocytes. FASEB J 2020; 34:16449-16463. [PMID: 33070431 DOI: 10.1096/fj.202001240rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/11/2022]
Abstract
Dynamin 1 is a neuronal endocytic protein that participates in vesicle formation by scission of invaginated membranes. Dynamin 1 is also expressed in the kidney; however, its physiological significance to this organ remains unknown. Here, we show that dynamin 1 is crucial for microtubule organization and stabilization in glomerular podocytes. By immunofluorescence and immunoelectron microscopy, dynamin 1 was concentrated at microtubules at primary processes in rat podocytes. By immunofluorescence of differentiated mouse podocytes (MPCs), dynamin 1 was often colocalized with microtubule bundles, which radially arranged toward periphery of expanded podocyte. In dynamin 1-depleted MPCs by RNAi, α-tubulin showed a dispersed linear filament-like localization, and microtubule bundles were rarely observed. Furthermore, dynamin 1 depletion resulted in the formation of discontinuous, short acetylated α-tubulin fragments, and the decrease of microtubule-rich protrusions. Dynamins 1 and 2 double-knockout podocytes showed dispersed acetylated α-tubulin and rare protrusions. In vitro, dynamin 1 polymerized around microtubules and cross-linked them into bundles, and increased their resistance to the disassembly-inducing reagents Ca2+ and podophyllotoxin. In addition, overexpression and depletion of dynamin 1 in MPCs increased and decreased the nocodazole resistance of microtubules, respectively. These results suggest that dynamin 1 supports the microtubule bundle formation and participates in the stabilization of microtubules.
Collapse
Affiliation(s)
- The Mon La
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiromi Tachibana
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shun-Ai Li
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Tadashi Abe
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Sayaka Seiriki
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hikaru Nagaoka
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Tetsuya Takeda
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Ogawa
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Shin-Ichi Makino
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Katsuhiko Asanuma
- Department of Nephrology, Graduate School of Medicine, Chiba University, Chiba-shi, Japan
| | - Masami Watanabe
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Xuefei Tian
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Shuta Ishibe
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Ayuko Sakane
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima, Japan
| | - Takuya Sasaki
- Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, Tokushima, Japan
| | - Jun Wada
- Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kohji Takei
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Department of Neuroscience, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
46
|
Gao X, Liu Y, Wang L, Sai N, Liu Y, Ni J. Morroniside Inhibits H 2O 2-Induced Podocyte Apoptosis by Down-Regulating NOX4 Expression Controlled by Autophagy In Vitro. Front Pharmacol 2020; 11:533809. [PMID: 33071778 PMCID: PMC7538771 DOI: 10.3389/fphar.2020.533809] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Podocyte apoptosis is the common pathological basis for the progression of various kidney diseases. The overexpression of NOX4, a key enzyme involved in oxidative stress, has been proved to participate in the occurrence of podocyte apoptosis. Autophagy is a kind of adaptive response of cells under stress. However, as a “double-edged sword”, the effect of autophagy on apoptosis in different cells and conditions is complex and variable, which has not been fully explained yet. Morroniside, extracted from the traditional medicinal plant Cornus officinalis, has remarkable antioxidant and anti-apoptosis effects, and has been proven to inhibit the overexpression of NOX4 in kidney tissue. Therefore, H2O2 was used in this study to explore the effects of autophagy on podocyte NOX4 overexpression and apoptosis induced by oxidative stress, as well as the protection mechanism of morroniside in podocytes. The results showed that the autophagy activator rapamycin, as well as the autophagy inhibitor chloroquine, could induce podocyte apoptosis cultured in normal condition, and chloroquine could also significantly increase the NOX4 expression. The NOX4 expression and apoptosis rate of podocytes increased after H2O2 treatment, the expression of LC3-II decreased, and the expressions of p62, mTOR, and p-mTOR increased. The intervention of morroniside and rapamycin improved autophagy activity and inhibited NOX4 overexpression and apoptosis induced by H2O2. And chloroquine reversed the inhibitory effect of morroniside on NOX4 overexpression and podocyte apoptosis. Taken together, our results suggest that the expression level of NOX4 in podocytes is regulated by autophagy activity. Morroniside can reduce oxidative stress induced podocyte apoptosis by restoring the damaged autophagy flux and inhibit the overexpression of NOX4.
Collapse
Affiliation(s)
- Xue Gao
- Beijing University of Chinese Medicine, Beijing, China.,School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na Sai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.,School of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yixiu Liu
- Beijing University of Chinese Medicine, Beijing, China
| | - Jian Ni
- Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
47
|
Maddala R, Rao PV. Global phosphotyrosinylated protein profile of cell-matrix adhesion complexes of trabecular meshwork cells. Am J Physiol Cell Physiol 2020; 319:C288-C299. [PMID: 32432933 PMCID: PMC7500213 DOI: 10.1152/ajpcell.00537.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 12/16/2022]
Abstract
Dysregulation of the mechanical properties and cell adhesive interactions of trabecular meshwork (TM) are known to impair aqueous humor drainage and elevate intraocular pressure in glaucoma patients. The identity of regulatory mechanisms underlying TM mechanotransduction, however, remains elusive. Here we analyzed the phosphotyrosine proteome of human TM cell-extracellular matrix (ECM) adhesion complexes, which play a key role in sensing and transducing extracellular chemical and mechanical cues into intracellular activities, using a two-level affinity pull-down (phosphotyrosine antibody and titanium dioxide beads) method and mass spectrometry. This analysis identified ~1,000 tyrosine-phosphorylated proteins of TM cell-ECM adhesion complexes. Many consensus adhesome proteins were found to be tyrosine phosphorylated. Interestingly, several of the phosphotyrosinylated proteins found in TM cell-ECM adhesion complexes are known to be required for podocyte glomerular filtration, indicating the existence of molecular parallels that are likely relevant to the shared fluid barrier and filtration functions of the two mechanosensitive cell types.
Collapse
Affiliation(s)
- Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Ponugoti Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
48
|
Blaine J, Dylewski J. Regulation of the Actin Cytoskeleton in Podocytes. Cells 2020; 9:cells9071700. [PMID: 32708597 PMCID: PMC7408282 DOI: 10.3390/cells9071700] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Podocytes are an integral part of the glomerular filtration barrier, a structure that prevents filtration of large proteins and macromolecules into the urine. Podocyte function is dependent on actin cytoskeleton regulation within the foot processes, structures that link podocytes to the glomerular basement membrane. Actin cytoskeleton dynamics in podocyte foot processes are complex and regulated by multiple proteins and other factors. There are two key signal integration and structural hubs within foot processes that regulate the actin cytoskeleton: the slit diaphragm and focal adhesions. Both modulate actin filament extension as well as foot process mobility. No matter what the initial cause, the final common pathway of podocyte damage is dysregulation of the actin cytoskeleton leading to foot process retraction and proteinuria. Disruption of the actin cytoskeleton can be due to acquired causes or to genetic mutations in key actin regulatory and signaling proteins. Here, we describe the major structural and signaling components that regulate the actin cytoskeleton in podocytes as well as acquired and genetic causes of actin dysregulation.
Collapse
Affiliation(s)
- Judith Blaine
- Renal Division, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - James Dylewski
- Renal Division, University of Colorado Anschutz Medical Campus and Denver Health Medical Center, Aurora, CO 80045, USA
- Correspondence: ; Tel.: +303-724-4841
| |
Collapse
|
49
|
Transcription factor 21 expression in injured podocytes of glomerular diseases. Sci Rep 2020; 10:11516. [PMID: 32661376 PMCID: PMC7359327 DOI: 10.1038/s41598-020-68422-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/24/2020] [Indexed: 11/08/2022] Open
Abstract
Transcription factor 21 (TCF21) is one of the essential transcription factors in kidney development. To elucidate its influence on glomerular disease, we have investigated TCF21 expression in human and rat kidney tissue, and its urinary concentration. Immunohistological analysis suggested the highest TCF21 expression in nephrotic syndrome along with the urinary protein level. Urinary TCF21 concentration in human showed a positive correlation with its podocyte expression level. In nephrotic rat models, TCF21 expression in podocytes increased along with the severity of nephrotic syndrome. Next, in vitro experiments using Tcf21-expressing murine podocyte cell line, we could observe some Tcf21-dependent effects, related with actin cytoskeleton dysregulation and apoptosis. Our study illustrated TCF21 expression changes in vivo and its in vitro-functional significance injured podocytes.
Collapse
|
50
|
Shen X, Weng C, Wang Y, Wang C, Feng S, Li X, Li H, Jiang H, Wang H, Chen J. Lipopolysaccharide-induced podocyte injury is regulated by calcineurin/NFAT and TLR4/MyD88/NF-κB signaling pathways through angiopoietin-like protein 4. Genes Dis 2020; 9:443-455. [PMID: 35224159 PMCID: PMC8843862 DOI: 10.1016/j.gendis.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/30/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022] Open
Abstract
Podocyte injury is an important cause of proteinuria. Angiopoietin-like protein 4 (Angptl4) is a secreted glycoprotein and has a role in proteinuria. However, the exact role of Angptl4 in podocyte injury and its upstream regulators has not been clarified. In this study, we used lipopolysaccharide (LPS)-induced mice and cultured podocytes as podocyte injury models. Our results indicated that LPS increased the expression of podocyte Angptl4 in vivo and in vitro. Furthermore, we showed that Angptl4 overexpression deteriorated LPS-induced podocyte injury by inducing podocyte cytoskeleton rearrangement, reducing the expression of synaptopodin while Angptl4 knockdown alleviated LPS-induced podocyte injury. In addition, we found that inhibitors and siRNA targeting TLR4/MyD88/NF-κB signaling inhibited the upregulation of Angptl4 in LPS-induced podocytes. Moreover, inhibitors and siRNA targeting calcineurin/NFAT signaling also relieved LPS-induced Angptl4 expression and podocyte injury in vivo and in vitro. Taken together, our study has elucidated that both of the TLR4/MyD88/NF-κB and calcineurin/NFAT signaling mediate the upregulation of Angptl4 in LPS-induced podocytes, which has important implications for further understanding the molecular mechanism of LPS-induced podocyte injury.
Collapse
|