1
|
Feger M, Hammerschmidt K, Liesche I, Rausch S, Alber J, Föller M. Prostaglandin E 2 signaling through prostaglandin E receptor subtype 2 and Nurr1 induces fibroblast growth factor 23 production. Biomed Pharmacother 2024; 180:117475. [PMID: 39332190 DOI: 10.1016/j.biopha.2024.117475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024] Open
Abstract
Bone cells produce fibroblast growth factor 23 (FGF23), a hormone regulating renal phosphate and vitamin D homeostasis, and a paracrine factor produced in further tissues. Chronic kidney disease and cardiovascular disorders are associated with early elevations of plasma FGF23 levels associated with clinical outcomes. FGF23 production is dependent on many conditions including inflammation. Prostaglandin E2 (PGE2) is a major eicosanoid with a broad role in pain, inflammation, and fever. Moreover, it regulates renal blood flow, renin secretion, natriuresis as well as bone formation through prostaglandin E receptor 2 (EP2). Here, we studied the role of PGE2 and its signaling for the production of FGF23. Osteoblast-like UMR-106 cells were exposed to EP receptor agonists, antagonists or RNAi. Wild type and EP2 knockout mice were treated with stable EP2 agonist misoprostol. Fgf23 or Nurr1 gene expression was determined by quantitative real-time PCR, hormone and further blood parameters by enzyme-linked immunosorbent assay and colorimetric methods. PGE2 and EP2 agonists misoprostol and butaprost enhanced FGF23 production in UMR-106 cells, effects mediated by EP2 and transcription factor Nurr1. A single dose of misoprostol up-regulated bone Fgf23 expression and FGF23 serum levels in wild type mice with subtle effects on parameters of mineral metabolism only. Compared to wild type mice, the FGF23 effect of misoprostol was significantly lower in EP2-deficient mice. To conclude, PGE2 signaling through EP2 and Nurr1 induces FGF23 production. Given the broad physiological and pathophysiological implications of PGE2 signaling, this effect is likely of clinical relevance.
Collapse
MESH Headings
- Animals
- Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 2/genetics
- Dinoprostone/metabolism
- Fibroblast Growth Factor-23
- Signal Transduction
- Fibroblast Growth Factors/metabolism
- Fibroblast Growth Factors/genetics
- Mice, Knockout
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/genetics
- Receptors, Prostaglandin E, EP2 Subtype/agonists
- Mice
- Osteoblasts/metabolism
- Osteoblasts/drug effects
- Cell Line
- Mice, Inbred C57BL
- Misoprostol/pharmacology
Collapse
Affiliation(s)
- Martina Feger
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | | | - Ilona Liesche
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Steffen Rausch
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Jana Alber
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany
| | - Michael Föller
- University of Hohenheim, Department of Physiology, 70599 Stuttgart, Germany.
| |
Collapse
|
2
|
Wu A, Zhang Y, Bock F, Arroyo JP, Delpire E, Zhang MZ, Harris RC, Terker AS. Macrophage SPAK deletion limits a low potassium-induced kidney inflammatory program. Am J Physiol Renal Physiol 2024; 327:F899-F909. [PMID: 39298551 PMCID: PMC11563591 DOI: 10.1152/ajprenal.00175.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024] Open
Abstract
Inadequate dietary potassium (K+) consumption is a significant contributor to poor cardiovascular outcomes. A diet with reduced K+ content has been shown to cause salt-sensitive increases in blood pressure. More recently, we have also shown that reductions in blood K+ can cause direct kidney injury, independent of dietary sodium (Na+) content. Here, we investigated the role of the kinase Ste20p-related proline-alanine-rich kinase (SPAK) in this kidney injury response. We observed that global SPAK deletion protected the kidney from the damaging effects of a diet high in Na+ and low in K+. We hypothesized that kidney macrophages were contributing to the injury response and that macrophage-expressed SPAK is essential in this process. We observed SPAK protein expression in isolated macrophages in vitro. Culture in K+-deficient medium increased SPAK phosphorylation and caused SPAK to localize to cytosolic puncta, reminiscent of with-no-lysine kinase (WNK) bodies identified along the distal nephron epithelium. WNK1 also adopted a punctate staining pattern under low K+ conditions, and SPAK phosphorylation was prevented by treatment with the WNK inhibitor WNK463. Macrophage-specific SPAK deletion in vivo protected against the low K+-mediated renal inflammatory and fibrotic responses. Our results highlight an important role for macrophages and macrophage-expressed SPAK in the propagation of kidney damage that occurs in response to reduced dietary K+ consumption.NEW & NOTEWORTHY Global Ste20p-related proline alanine-rich kinase (SPAK) deletion protects against harmful kidney effects of dietary K+ deficiency. Exposure to low K+ conditions increases SPAK phosphorylation and induces SPAK to adopt a punctate staining pattern. Macrophage-specific deletion of SPAK confers protection to low K+-induced kidney injury in vivo. Macrophage-expressed SPAK plays a key role in the development of kidney injury in response to a low K+ diet.
Collapse
Grants
- DP5OD033412 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK135931 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK093501 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK134879 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
- DK51265 HHS | NIH | NIDDK | Division of Diabetes, Endocrinology, and Metabolic Diseases (DEM)
Collapse
Affiliation(s)
- Aihua Wu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| | - Yahua Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| | - Fabian Bock
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| | - Juan Pablo Arroyo
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ming-Zhi Zhang
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| | - Raymond C Harris
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, United States
| | - Andrew S Terker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Center for Kidney Disease, Nashville, Tennessee, United States
| |
Collapse
|
3
|
Kanai M, Nishino T, Daassi D, Kimura A, Liao CW, Javanfekr Shahri Z, Wakimoto A, Gogoleva N, Usui T, Morito N, Arita M, Takahashi S, Hamada M. MAFB in Macrophages Regulates Prostaglandin E2-Mediated Lipid Mediator Class Switch through ALOX15 in Ischemic Acute Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1212-1224. [PMID: 39230290 PMCID: PMC11457724 DOI: 10.4049/jimmunol.2300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms. Our results showed that MAFB regulates the expression of Alox15 (arachidonate 15-lipoxygenase) in macrophages during ischemic AKI. The expression of ALOX15 was significantly decreased at the mRNA and protein levels in macrophages that infiltrated the kidneys of macrophage-specific Mafb-deficient mice at 24 h after ischemia-reperfusion injury. ALOX15 promotes the resolution of inflammation under acute conditions by producing specialized proresolving mediators by oxidizing essential fatty acids. Therefore, MAFB in macrophages promotes the resolution of inflammation in ischemic AKI by regulating the expression of Alox15. Moreover, MAFB expression in macrophages is upregulated via the COX-2/PGE2/EP4 pathway in ischemic AKI. Our in vitro assay showed that MAFB regulates the expression of Alox15 under the COX-2/PGE2/EP4 pathway in macrophages. PGE2 mediates the lipid mediator (LM) class switch from inflammatory LMs to specialized proresolving mediators. Therefore, MAFB plays a key role in the PGE2-mediated LM class switch by regulating the expression of Alox15. Our study identified a previously unknown mechanism by which MAFB in macrophages alleviates ischemic AKI and provides new insights into regulating the LM class switch in acute inflammatory conditions.
Collapse
Affiliation(s)
- Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Dhouha Daassi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akari Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Usui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Morito
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; and
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
4
|
Lv L, Liu Y, Xiong J, Wang S, Li Y, Zhang B, Huang Y, Zhao J. Role of G protein coupled receptors in acute kidney injury. Cell Commun Signal 2024; 22:423. [PMID: 39223553 PMCID: PMC11367933 DOI: 10.1186/s12964-024-01802-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Acute kidney injury (AKI) is a clinical condition characterized by a rapid decline in kidney function, which is associated with local inflammation and programmed cell death in the kidney. The G protein-coupled receptors (GPCRs) represent the largest family of signaling transduction proteins in the body, and approximately 40% of drugs on the market target GPCRs. The expressions of various GPCRs, prostaglandin receptors and purinergic receptors, to name a few, are significantly altered in AKI models. And the role of GPCRs in AKI is catching the eyes of researchers due to their distinctive biological functions, such as regulation of hemodynamics, metabolic reprogramming, and inflammation. Therefore, in this review, we aim to discuss the role of GPCRs in the pathogenesis of AKI and summarize the relevant clinical trials involving GPCRs to assess the potential of GPCRs and their ligands as therapeutic targets in AKI and the transition to AKI-CKD.
Collapse
Affiliation(s)
- Liangjing Lv
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yong Liu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jiachuan Xiong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Shaobo Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yan Li
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Yinghui Huang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University, Third Military Medical University), Chongqing, 400037, China.
| |
Collapse
|
5
|
Yao Y, Zhong Q, Zhong Y, Gao Z, Zhou B, Lu C, Zheng L, Yin F, Tan M. Integrating network pharmacology and experimental verification to explore the pharmacological mechanisms of phlorizin against osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03324-z. [PMID: 39085510 DOI: 10.1007/s00210-024-03324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
To study the pharmacological effects and mechanisms of phlorizin in the treatment of osteoarthritis (OA) through network pharmacological analysis, molecular docking, and experimental validation. First, we screened out the relevant targets related to phlorizin and OA from the public database. The key targets, biological processes, and signaling pathways of phlorizin against OA were identified by protein-protein interaction (PPI) network, Gene Ontology (GO), and Encyclopedia of Kyoto Genes and Genomes (KEGG) pathway enrichment analysis. Subsequently, molecular docking was performed to predict the binding activity between phlorizin and key targets. Finally, we evaluated the effects of phlorizin on hydrogen peroxide-induced OA in rats and validated its possible mechanism of action based on the findings of the network pharmacology analysis. Network pharmacology revealed a total of 235 cross-targets involved in the treatment of OA. Phlorizin's anti-OA effect was found to be primarily mediated through oxidoreductase activity, with JAK-STAT and NF-κB signaling pathways playing a regulating role, according to pathway enrichment analysis. Phlorizin demonstrated a strong affinity for NF-κB1 targets through molecular docking. Moreover, in vitro experiments demonstrated that phlorizin could enhance intracellular antioxidant enzyme activities with good ROS scavenging ability and significantly reduce the expression of NF-κB1 and inflammatory cytokines. Phlorizin can inhibit the progression of OA. The potential underlying mechanism involves inhibiting the NF-κB pathway to reduce inflammation and promote intracellular antioxidant action.
Collapse
Affiliation(s)
- Yi Yao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Qiuling Zhong
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Yanping Zhong
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Zixin Gao
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 53000, PR China
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Feiying Yin
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| | - Manli Tan
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, 530021, China.
- Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
6
|
Lu X, Dai S, Huang B, Li S, Wang P, Zhao Z, Li X, Li N, Wen J, Sun Y, Man Z, Liu B, Li W. Exosomes loaded a smart bilayer-hydrogel scaffold with ROS-scavenging and macrophage-reprogramming properties for repairing cartilage defect. Bioact Mater 2024; 38:137-153. [PMID: 38699244 PMCID: PMC11063794 DOI: 10.1016/j.bioactmat.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Enhancing the regeneration of cartilage defects remains challenging owing to limited innate self-healing as well as acute inflammation arising from the overexpression of reactive oxygen species (ROS) in post-traumatic microenvironments. Recently, stem cell-derived exosomes (Exos) have been developed as potential cell-free therapy for cartilage regeneration. Although this approach promotes chondrogenesis, it neglects the emerging inflammatory microenvironment. In this study, a smart bilayer-hydrogel dual-loaded with sodium diclofenac (DC), an anti-inflammatory drug, and Exos from bone marrow-derived mesenchymal stem cells was developed to mitigate initial-stage inflammation and promote late-stage stem-cell recruitment and chondrogenic differentiation. First, the upper-hydrogel composed of phenylboronic-acid-crosslinked polyvinyl alcohol degrades in response to elevated levels of ROS to release DC, which mitigates oxidative stress, thus reprogramming macrophages to the pro-healing state. Subsequently, Exos are slowly released from the lower-hydrogel composed of hyaluronic acid into an optimal microenvironment for the stimulation of chondrogenesis. Both in vitro and in vivo assays confirmed that the dual-loaded bilayer-hydrogel reduced post-traumatic inflammation and enhanced cartilage regeneration by effectively scavenging ROS and reprogramming macrophages. The proposed platform provides multi-staged therapy, which allows for the optimal harnessing of Exos as a therapeutic for cartilage regeneration.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ningbo Li
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Jie Wen
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Yunhan Sun
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, PR China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| |
Collapse
|
7
|
Gao J, Deng Q, Yu J, Wang C, Wei W. Role of renal tubular epithelial cells and macrophages in cisplatin-induced acute renal injury. Life Sci 2024; 339:122450. [PMID: 38262575 DOI: 10.1016/j.lfs.2024.122450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden and continuous decline in renal function. The drug cisplatin is commonly used as chemotherapy for solid tumors, and cisplatin-induced acute kidney injury (CI-AKI), which is characterized by acute tubular necrosis and inflammation, frequently occurs in tumor patients. Renal tubular epithelial cells (RTECs) are severely damaged early in this process and play an important role in renal tubular injury and the recruitment of immune cells. Macrophages are the most common infiltrating immune cells in the kidney and have a significant impact on CI-AKI and subsequent repair. This article reviews the latest research progress on the effects of RTECs and macrophages on CI-AKI and their interactions in AKI to provide a direction for identifying therapeutic targets for treating AKI.
Collapse
Affiliation(s)
- Jinzhang Gao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Qinxiang Deng
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Third Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jun Yu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China
| | - Chun Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Hefei, China; Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Hefei, China; Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, China.
| |
Collapse
|
8
|
Erreger K, Cao S, Pan Y, Jiang M, Zhang MZ, Harris RC, Hamm HE. Role of protease-activated receptor 4 in mouse models of acute and chronic kidney injury. Am J Physiol Renal Physiol 2024; 326:F219-F226. [PMID: 38031732 PMCID: PMC11198992 DOI: 10.1152/ajprenal.00162.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023] Open
Abstract
Protease-activated receptor 4 (PAR4) is a G protein-coupled receptor activated by thrombin. In the platelet, response to thrombin PAR4 contributes to the predominant procoagulant microparticle formation, increased fibrin deposition, and initiation of platelet-stimulated inflammation. In addition, PAR4 is expressed in other cell types, including endothelial cells. Under inflammatory conditions, PAR4 is overexpressed via epigenetic demethylation of the PAR4 gene, F2RL3. PAR4 knockout (KO) studies have determined a role for PAR4 in ischemia-reperfusion injury in the brain, and PAR4 KO mice display normal cardiac function but present less myocyte death and cardiac dysfunction in response to acute myocardial infarction. Although PAR4 has been reported to be expressed within the kidney, the contribution of PAR4 to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 KO mice are protected against kidney injury in two mouse models. First, PAR4 KO mice are protected against induction of markers of both fibrosis and inflammation in two different models of kidney injury: 1) 7 days following unilateral ureter obstruction (UUO) and 2) an AKI-CKD model of ischemia-reperfusion followed by 8 days of contralateral nephrectomy. We further show that PAR4 expression in the kidney is low in the control mouse kidney but induced over time following UUO. PAR4 KO mice are protected against blood urea nitrogen (BUN) and glomerular filtration rate (GFR) kidney function pathologies in the AKI-CKD model. Following the AKI-CKD model, PAR4 is expressed in the collecting duct colocalizing with Dolichos biflorus agglutinin (DBA), but not in the proximal tubule with Lotus tetragonolobus lectin (LTL). Collectively, the results reported in this study implicate PAR4 as contributing to the pathology in mouse models of acute and chronic kidney injury.NEW & NOTEWORTHY The contribution of the thrombin receptor protease-activated receptor 4 (PAR4) to acute kidney injury (AKI) and chronic kidney disease (CKD) is not well understood. Here we report that PAR4 expression is upregulated after kidney injury and PAR4 knockout (KO) mice are protected against fibrosis following kidney injury in two mouse models. First, PAR4 KO mice are protected against unilateral ureter obstruction. Second, PAR4 KO mice are protected against an AKI-CKD model of ischemia-reperfusion followed by contralateral nephrectomy.
Collapse
Affiliation(s)
- Kevin Erreger
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Shirong Cao
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Yu Pan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Mengdi Jiang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Ming-Zhi Zhang
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Raymond C Harris
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
9
|
Jia Q, Che Q, Zhang X, Chen J, Ren C, Wu Y, Liang W, Zhang X, Li Y, Li Z, Zhang Z, Shu Q. Knockdown of Galectin-9 alleviates rheumatoid arthritis through suppressing TNF-α-induced activation of fibroblast-like synoviocytes. Biochem Pharmacol 2024; 220:115994. [PMID: 38141929 DOI: 10.1016/j.bcp.2023.115994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The role of Galectin-9 (Gal-9) in the pathogenesis of rheumatoid arthritis (RA) remains unclear. This study aimed to investigate the mechanism of action and therapeutic potential of Gal-9 in RA. We detected Gal-9 expression in clinical samples, explored the mechanism of function of Gal-9 by knockdown and overexpression in fibroblast-like synoviocytes (FLSs), and further verified it in collagen-induced arthritis (CIA) model. We found that the levels of Gal-9 were considerably elevated in RA synovium than in osteoarthritis (OA) patients. A substantial decrease of Gal-9 was demonstrated after tumor necrosis factor (TNF-α) inhibitor treatment in the plasma of patients with RA. Additionally, transcriptome sequencing revealed that Gal-9 was involved in the regulation of the TNF-α pathway. Gal-9 was considerably upregulated after TNF-α stimulation in FLSs, and knockdown of Gal-9 substantially inhibited TNF-α activated proliferation, migration and inflammatory response. According to cell transcriptome sequencing results, we further confirmed that Gal-9 could achieve these effects by interacting with MAFB and affecting PI3K/AKT/mTOR pathway. Finally, we knocked down Gal-9 on the CIA model and found that it could alleviate the progression of arthritis. In conclusion, our study revealed that the knockdown of Gal-9 could inhibited TNF-α induced activation in RA through MAFB, PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Qian Jia
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qincheng Che
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Xiaoyu Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Jie Chen
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Chunfeng Ren
- Department of Rheumatology and Immunology, Jining NO.1 People's Hospital, Jining, China
| | - Yunpeng Wu
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Weiqiang Liang
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Xiaojie Zhang
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China
| | - Yanshan Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zunzhong Li
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Zhenchun Zhang
- Department of Rheumatology and Immunology, Linyi People's Hospital, Linyi, China; Department of Rheumatology, Linyi People's Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Linyi, China
| | - Qiang Shu
- Department of Rheumatology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Rheumatology, Qilu Hospital, Shandong Provincial Clinical Research Center for Immune Diseases and Gout, Jinan, China.
| |
Collapse
|
10
|
Cao S, Pan Y, Terker AS, Arroyo Ornelas JP, Wang Y, Tang J, Niu A, Kar SA, Jiang M, Luo W, Dong X, Fan X, Wang S, Wilson MH, Fogo A, Zhang MZ, Harris RC. Epidermal growth factor receptor activation is essential for kidney fibrosis development. Nat Commun 2023; 14:7357. [PMID: 37963889 PMCID: PMC10645887 DOI: 10.1038/s41467-023-43226-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023] Open
Abstract
Fibrosis is the progressive accumulation of excess extracellular matrix and can cause organ failure. Fibrosis can affect nearly every organ including kidney and there is no specific treatment currently. Although Epidermal Growth Factor Receptor (EGFR) signaling pathway has been implicated in development of kidney fibrosis, underlying mechanisms by which EGFR itself mediates kidney fibrosis have not been elucidated. We find that EGFR expression increases in interstitial myofibroblasts in human and mouse fibrotic kidneys. Selective EGFR deletion in the fibroblast/pericyte population inhibits interstitial fibrosis in response to unilateral ureteral obstruction, ischemia or nephrotoxins. In vivo and in vitro studies and single-nucleus RNA sequencing analysis demonstrate that EGFR activation does not induce myofibroblast transformation but is necessary for the initial pericyte/fibroblast migration and proliferation prior to subsequent myofibroblast transformation by TGF-ß or other profibrotic factors. These findings may also provide insight into development of fibrosis in other organs and in other conditions.
Collapse
Affiliation(s)
- Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew S Terker
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Juan Pablo Arroyo Ornelas
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Sarah Abu Kar
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Mengdi Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Wentian Luo
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Xinyu Dong
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
| | - Matthew H Wilson
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA
- Veterans Affairs, Nashville, TN, USA
| | - Agnes Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Department of Medicine, Nashville, TN, USA.
- Vanderbilt Center for Kidney Disease, Nashville, TN, USA.
- Veterans Affairs, Nashville, TN, USA.
| |
Collapse
|
11
|
Deng B, Wang S, Zhou P, Ding F. New insights into immune cell diversity in acute kidney injury. Cell Mol Immunol 2023; 20:680-682. [PMID: 36973486 PMCID: PMC10229659 DOI: 10.1038/s41423-023-01003-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Affiliation(s)
- Bo Deng
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sutian Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Peihui Zhou
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Ding
- Division of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Kim JY, Silvaroli JA, Martinez GV, Bisunke B, Luna Ramirez AV, Jayne LA, Feng MJHH, Girotra B, Acosta Martinez SM, Vermillion CR, Karel IZ, Ferrell N, Weisleder N, Chung S, Christman JW, Brooks CR, Madhavan SM, Hoyt KR, Cianciolo RE, Satoskar AA, Zepeda-Orozco D, Sullivan JC, Davidson AJ, Bajwa A, Pabla NS. Zinc finger protein 24-dependent transcription factor SOX9 up-regulation protects tubular epithelial cells during acute kidney injury. Kidney Int 2023; 103:1093-1104. [PMID: 36921719 PMCID: PMC10200760 DOI: 10.1016/j.kint.2023.02.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 03/14/2023]
Abstract
Transcriptional profiling studies have identified several protective genes upregulated in tubular epithelial cells during acute kidney injury (AKI). Identifying upstream transcriptional regulators could lead to the development of therapeutic strategies augmenting the repair processes. SOX9 is a transcription factor controlling cell-fate during embryonic development and adult tissue homeostasis in multiple organs including the kidneys. SOX9 expression is low in adult kidneys; however, stress conditions can trigger its transcriptional upregulation in tubular epithelial cells. SOX9 plays a protective role during the early phase of AKI and facilitates repair during the recovery phase. To identify the upstream transcriptional regulators that drive SOX9 upregulation in tubular epithelial cells, we used an unbiased transcription factor screening approach. Preliminary screening and validation studies show that zinc finger protein 24 (ZFP24) governs SOX9 upregulation in tubular epithelial cells. ZFP24, a Cys2-His2 (C2H2) zinc finger protein, is essential for oligodendrocyte maturation and myelination; however, its role in the kidneys or in SOX9 regulation remains unknown. Here, we found that tubular epithelial ZFP24 gene ablation exacerbated ischemia, rhabdomyolysis, and cisplatin-associated AKI. Importantly, ZFP24 gene deletion resulted in suppression of SOX9 upregulation in injured tubular epithelial cells. Chromatin immunoprecipitation and promoter luciferase assays confirmed that ZFP24 bound to a specific site in both murine and human SOX9 promoters. Importantly, CRISPR/Cas9-mediated mutation in the ZFP24 binding site in the SOX9 promoter in vivo led to suppression of SOX9 upregulation during AKI. Thus, our findings identify ZFP24 as a critical stress-responsive transcription factor protecting tubular epithelial cells through SOX9 upregulation.
Collapse
Affiliation(s)
- Ji Young Kim
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| | - Josie A Silvaroli
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Gabriela Vasquez Martinez
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA; Division of Nephrology and Hypertension, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Bijay Bisunke
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Alanys V Luna Ramirez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Laura A Jayne
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mei Ji He Ho Feng
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Bhavya Girotra
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Shirely M Acosta Martinez
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Corynne R Vermillion
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Isaac Z Karel
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Nicholas Ferrell
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sangwoon Chung
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - John W Christman
- Pulmonary, Sleep and Critical Care Medicine, Wexner Medical Center, Davis Heart and Lung Research Institute, Columbus, Ohio, USA
| | - Craig R Brooks
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Sethu M Madhavan
- Division of Nephrology, Department of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Kari R Hoyt
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Anjali A Satoskar
- Division of Renal and Transplant Pathology, Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Diana Zepeda-Orozco
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA; Division of Nephrology and Hypertension, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Jennifer C Sullivan
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Alan J Davidson
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| | - Amandeep Bajwa
- Department of Genetics, Genomics, and Informatics, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Microbiology, Immunology, and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA; Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Navjot Singh Pabla
- Division of Pharmaceutics and Pharmacology, College of Pharmacy & Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA.
| |
Collapse
|
13
|
Vlasschaert C, Robinson-Cohen C, Kestenbaum B, Silver SA, Chen JC, Akwo E, Bhatraju PK, Zhang MZ, Cao S, Jiang M, Wang Y, Niu A, Siew E, Kramer HJ, Kottgen A, Franceschini N, Psaty BM, Tracy RP, Alonso A, Arking DE, Coresh J, Ballantyne CM, Boerwinkle E, Grams M, Lanktree MB, Rauh MJ, Harris RC, Bick AG. Clonal Hematopoiesis of Indeterminate Potential is Associated with Acute Kidney Injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.16.23290051. [PMID: 37292692 PMCID: PMC10246021 DOI: 10.1101/2023.05.16.23290051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Age is a predominant risk factor for acute kidney injury (AKI), yet the biological mechanisms underlying this risk are largely unknown and to date no genetic mechanisms for AKI have been established. Clonal hematopoiesis of indeterminate potential (CHIP) is a recently recognized biological mechanism conferring risk of several chronic aging diseases including cardiovascular disease, pulmonary disease and liver disease. In CHIP, blood stem cells acquire mutations in myeloid cancer driver genes such as DNMT3A, TET2, ASXL1 and JAK2 and the myeloid progeny of these mutated cells contribute to end-organ damage through inflammatory dysregulation. We sought to establish whether CHIP causes acute kidney injury (AKI). To address this question, we first evaluated associations with incident AKI events in three population-based epidemiology cohorts (N = 442,153). We found that CHIP was associated with a greater risk of AKI (adjusted HR 1.26, 95% CI: 1.19-1.34, p<0.0001), which was more pronounced in patients with AKI requiring dialysis (adjusted HR 1.65, 95% CI: 1.24-2.20, p=0.001). The risk was particularly high in the subset of individuals where CHIP was driven by mutations in genes other than DNMT3A (HR: 1.49, 95% CI: 1.37-1.61, p<0.0001). We then examined the association between CHIP and recovery from AKI in the ASSESS-AKI cohort and identified that non-DNMT3A CHIP was more common among those with a non-resolving pattern of injury (HR 2.3, 95% CI: 1.14-4.64, p = 0.03). To gain mechanistic insight, we evaluated the role of Tet2-CHIP to AKI in ischemia-reperfusion injury (IRI) and unilateral ureteral obstruction (UUO) mouse models. In both models, we observed more severe AKI and greater post-AKI kidney fibrosis in Tet2-CHIP mice. Kidney macrophage infiltration was markedly increased in Tet2-CHIP mice and Tet2-CHIP mutant renal macrophages displayed greater proinflammatory responses. In summary, this work establishes CHIP as a genetic mechanism conferring risk of AKI and impaired kidney function recovery following AKI via an aberrant inflammatory response in CHIP derived renal macrophages.
Collapse
Affiliation(s)
| | - Cassianne Robinson-Cohen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Bryan Kestenbaum
- Kidney Research Institute, Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
| | - Samuel A. Silver
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Jian-Chun Chen
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Elvis Akwo
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Pavan K Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Edward Siew
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Holly J Kramer
- Departments of Public Health Sciences and Medicine, Loyola University Chicago, Maywood, Illinois, USA
| | - Anna Kottgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Nora Franceschini
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Systems and Population Health, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Russell P. Tracy
- Pathology and Biochemistry, University of Vermont, Burlington, Vermont, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, John Hopkins University School of Medicine, Baltimore, MD
| | - Josef Coresh
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
| | | | - Eric Boerwinkle
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Morgan Grams
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD
- Division of Nephrology, Department of Internal Medicine, Johns Hopkins University, Baltimore, MD
| | - Matthew B. Lanktree
- Department of Medicine and Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- St. Joseph's Healthcare Hamilton, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Michael J. Rauh
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt O'Brien Center for Kidney Disease, School of Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Nashville, Tennessee
| | - Alexander G. Bick
- Division of Genetic Medicine, Department of Medicine, School of Medicine, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
14
|
Liu J, Peng B, Steinmetz-Späh J, Idborg H, Korotkova M, Jakobsson PJ. Microsomal prostaglandin E synthase-1 inhibition promotes shunting in arachidonic acid metabolism during inflammatory responses in vitro. Prostaglandins Other Lipid Mediat 2023; 167:106738. [PMID: 37094780 DOI: 10.1016/j.prostaglandins.2023.106738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Microsomal Prostaglandin E Synthase 1 (mPGES-1) is the key enzyme for the generation of the pro-inflammatory lipid mediator prostaglandin E2 (PGE2), which contributes to several pathological features of many diseases. Inhibition of mPGES-1 has been shown to be a safe and effective therapeutic strategy in various pre-clinical studies. In addition to reduced PGE2 formation, it is also suggested that the potential shunting into other protective and pro-resolving prostanoids may play an important role in resolution of inflammation. In the present study, we analysed the eicosanoid profiles in four in vitro inflammation models and compared the effects of mPGES-1 inhibition with those of cyclooxygenase-2 (Cox-2) inhibition. Our results showed a marked shift to the PGD2 pathway under mPGES-1 inhibition in A549 cells, RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs), whereas enhanced prostacyclin production was observed in rheumatoid arthritis synovial fibroblasts (RASFs) treated with an mPGES-1 inhibitor. As expected, Cox-2 inhibition completely suppressed all prostanoids. This study suggests that the therapeutic effects of mPGES-1 inhibition may be mediated by modulation of other prostanoids in addition to PGE2 reduction.
Collapse
Affiliation(s)
- Jianyang Liu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Bing Peng
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Julia Steinmetz-Späh
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Helena Idborg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Marina Korotkova
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | - Per-Johan Jakobsson
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet and Karolinska University Hospital, SE-171 76 Stockholm, Sweden.
| |
Collapse
|
15
|
Guan X, Liu Y, Xin W, Qin S, Gong S, Xiao T, Zhang D, Li Y, Xiong J, Yang K, He T, Zhao J, Huang Y. Activation of EP4 alleviates AKI-to-CKD transition through inducing CPT2-mediated lipophagy in renal macrophages. Front Pharmacol 2022; 13:1030800. [DOI: 10.3389/fphar.2022.1030800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with complex pathogenesis, characterized by a rapid decline in kidney function in the short term. Worse still, the incomplete recovery from AKI increases the risk of progression to chronic kidney disease (CKD). However, the pathogenesis and underlying mechanism remain largely unknown. Macrophages play an important role during kidney injury and tissue repair, but its role in AKI-to-CKD transition remains elusive. Herein, single nucleus RNA sequencing (snRNA-Seq) and flow cytometry validations showed that E-type prostaglandin receptor 4 (EP4) was selectively activated in renal macrophages, rather than proximal tubules, in ischemia-reperfusion injury (IRI)-induced AKI-to-CKD transition mouse model. EP4 inhibition aggravated AKI-to-CKD transition, while EP4 activation impeded the progression of AKI to CKD though regulating macrophage polarization. Mechanistically, network pharmacological analysis and subsequent experimental verifications revealed that the activated EP4 inhibited macrophage polarization through inducing Carnitine palmitoyltransferase 2 (CPT2)-mediated lipophagy in macrophages. Further, CPT2 inhibition abrogated the protective effect of EP4 on AKI-to-CKD transition. Taken together, our findings demonstrate that EP4-CPT2 signaling-mediated lipophagy in macrophages plays a pivotal role in the transition of AKI to CKD and targeting EP4-CPT2 axis could serve as a promising therapeutic approach for retarding AKI and its progression to CKD.
Collapse
|
16
|
Pan Y, Cao S, Tang J, Arroyo JP, Terker AS, Wang Y, Niu A, Fan X, Wang S, Zhang Y, Jiang M, Wasserman DH, Zhang MZ, Harris RC. Cyclooxygenase-2 in adipose tissue macrophages limits adipose tissue dysfunction in obese mice. J Clin Invest 2022; 132:152391. [PMID: 35499079 PMCID: PMC9057601 DOI: 10.1172/jci152391] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/08/2022] [Indexed: 12/25/2022] Open
Affiliation(s)
- Yu Pan
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shirong Cao
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jiaqi Tang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Juan P. Arroyo
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Andrew S. Terker
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yinqiu Wang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Aolei Niu
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiaofeng Fan
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suwan Wang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yahua Zhang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ming Jiang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Raymond C. Harris
- Division of Nephrology and Hypertension, Department of Medicine and
- Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
17
|
Yu P, Harris RC, Zhang MZ. The authors reply:. Kidney Int 2022; 101:1084-1085. [DOI: 10.1016/j.kint.2022.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
|
18
|
Cravedi P. Role of cyclooxygenase-2 in macrophage subsets during kidney repair. Kidney Int 2022; 101:1084. [DOI: 10.1016/j.kint.2022.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
|
19
|
Basile DP. Macrophage dynamics in kidney repair: elucidation of a COX-2-dependent MafB pathway to affect macrophage differentiation. Kidney Int 2022; 101:15-18. [PMID: 34991803 DOI: 10.1016/j.kint.2021.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022]
Abstract
Cylocloxygenase-2 is an important mediator of arachidonic acid metabolism. Pan et al. recently identified a robust increase in the expression of cylocloxygenase-2 in proresolving macrophages (M2) during the repair phase of acute kidney injury. The investigators determined the prostaglandin E2 was produced in macrophages and demonstrated that signaling through the E-type prostanoid receptor 4 stimulated the expression of the anti-inflammatory transcription factor MafB. MafB was further shown to be essential for macrophage differentiation and mediation of the intrinsic repair response following experimental acute kidney injury.
Collapse
Affiliation(s)
- David P Basile
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| |
Collapse
|