1
|
Williams MD, Bullock MT, Johnson SC, Holland NA, Vuncannon DM, Oswald JZ, Adderley SP, Tulis DA. Protease-Activated Receptor 2 Controls Vascular Smooth Muscle Cell Proliferation in Cyclic AMP-Dependent Protein Kinase/Mitogen-Activated Protein Kinase Kinase 1/2-Dependent Manner. J Vasc Res 2023; 60:213-226. [PMID: 37778342 PMCID: PMC10614497 DOI: 10.1159/000532032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/06/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 μm) with/without PKA (PKI; 10 μm), MEK1/2 (PD98059; 10 μm), and PI3K (LY294002; 1 μm) blockade. RESULTS PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.
Collapse
Affiliation(s)
- Madison D Williams
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | - Michael T Bullock
- Edward Via College of Osteopathic Medicine, Carolinas Campus, Spartanburg, South Carolina, USA
| | - Sean C Johnson
- Department of Internal Medicine/Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nathan A Holland
- Department of Medical Education, Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Danielle M Vuncannon
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joani Zary Oswald
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| | | | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
2
|
Yang F, Smith MJ, Griffiths A, Morrell A, Chapple SJ, Siow RCM, Stewart T, Maret W, Mann GE. Vascular protection afforded by zinc supplementation in human coronary artery smooth muscle cells mediated by NRF2 signaling under hypoxia/reoxygenation. Redox Biol 2023; 64:102777. [PMID: 37315344 PMCID: PMC10363453 DOI: 10.1016/j.redox.2023.102777] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Zinc (Zn) has antioxidant, anti-inflammatory and anti-proliferative actions, with Zn dysregulation associated with coronary ischemia/reperfusion injury and smooth muscle cell dysfunction. As the majority of studies concerning Zn have been conducted under non-physiological hyperoxic conditions, we compare the effects of Zn chelation or supplementation on total intracellular Zn content, antioxidant NRF2 targeted gene transcription and hypoxia/reoxygenation-induced reactive oxygen species generation in human coronary artery smooth muscle cells (HCASMC) pre-adapted to hyperoxia (18 kPa O2) or normoxia (5 kPa O2). Expression of the smooth muscle marker SM22-α was unaffected by lowering pericellular O2, whereas calponin-1 was significantly upregulated in cells under 5 kPa O2, indicating a more physiological contractile phenotype under 5 kPa O2. Inductively coupled plasma mass spectrometry established that Zn supplementation (10 μM ZnCl2 + 0.5 μM pyrithione) significantly increased total Zn content in HCASMC under 18 but not 5 kPa O2. Zn supplementation increased metallothionein mRNA expression and NRF2 nuclear accumulation in cells under 18 or 5 kPa O2. Notably, NRF2 regulated HO-1 and NQO1 mRNA expression in response to Zn supplementation was only upregulated in cells under 18 but not 5 kPa. Furthermore, whilst hypoxia increased intracellular glutathione (GSH) in cells pre-adapted to 18 but not 5 kPa O2, reoxygenation had negligible effects on GSH or total Zn content. Reoxygenation-induced superoxide generation in cells under 18 kPa O2 was abrogated by PEG-superoxide dismutase but not by PEG-catalase, and Zn supplementation, but not Zn chelation, attenuated reoxygenation-induced superoxide generation in cells under 18 but not 5kPaO2, consistent with a lower redox stress under physiological normoxia. Our findings highlight that culture of HCASMC under physiological normoxia recapitulates an in vivo contractile phenotype and that effects of Zn on NRF2 signaling are altered by oxygen tension.
Collapse
Affiliation(s)
- Fan Yang
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| | - Matthew J Smith
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Alexander Griffiths
- London Metallomics Facility, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Alexander Morrell
- London Metallomics Facility, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Sarah J Chapple
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Richard C M Siow
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | - Theodora Stewart
- Research Management & Innovation Directorate (RMID), King's College London, UK
| | - Wolfgang Maret
- Departments of Biochemistry and Nutritional Sciences, School of Life Course & Population Sciences, Faculty of Life Sciences & Medicine, King's College London, UK
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK.
| |
Collapse
|
3
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
4
|
Xu X, Liu XQ, Liu XL, Wang X, Zhang WD, Huang XF, Jia FY, Kong P, Han M. SM22α Deletion Contributes to Neurocognitive Impairment in Mice through Modulating Vascular Smooth Muscle Cell Phenotypes. Int J Mol Sci 2023; 24:ijms24087117. [PMID: 37108281 PMCID: PMC10138350 DOI: 10.3390/ijms24087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Considerable evidence now indicates that cognitive impairment is primarily a vascular disorder. The depletion of smooth muscle 22 alpha (SM22α) contributes to vascular smooth muscle cells (VSMCs) switching from contractile to synthetic and proinflammatory phenotypes in the context of inflammation. However, the role of VSMCs in the pathogenesis of cognitive impairment remains undetermined. Herein, we showed a possible link between VSMC phenotypic switching and neurodegenerative diseases via the integration of multi-omics data. SM22α knockout (Sm22α-/-) mice exhibited obvious cognitive impairment and cerebral pathological changes, which were visibly ameliorated by the administration of AAV-SM22α. Finally, we confirmed that SM22α disruption promotes the expression of SRY-related HMG-box gene 10 (Sox10) in VSMCs, thereby aggravating the systemic vascular inflammatory response and ultimately leading to cognitive impairment in the brain. Therefore, this study supports the idea of VSMCs and SM22α as promising therapeutic targets in cognitive impairment to improve memory and cognitive decline.
Collapse
Affiliation(s)
- Xin Xu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Qin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xin-Long Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xu Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Wen-Di Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Fang-Yue Jia
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Key Laboratory of Neural and Vascular Biology of Ministry of Education, Shijiazhuang 050017, China
- Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
5
|
Khrunin AV, Khvorykh GV, Arapova AS, Kulinskaya AE, Koltsova EA, Petrova EA, Kimelfeld EI, Limborska SA. The Study of the Association of Polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 Genes with the Risk and Outcome of Ischemic Stroke in the Russian Population. Int J Mol Sci 2023; 24:ijms24076831. [PMID: 37047799 PMCID: PMC10095190 DOI: 10.3390/ijms24076831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
To date, there has been great progress in understanding the genetic basis of ischemic stroke (IS); however, several aspects of the condition remain underexplored, including the influence of genetic factors on post-stroke outcomes and the identification of causative loci. We proposed that an analysis of the results obtained from animal models of brain ischemia could be helpful. To this end, we developed a bioinformatic approach for exploring single-nucleotide polymorphisms (SNPs) in human orthologs of rat genes expressed differentially after induced brain ischemia. Using this approach, we identified and analyzed 11 SNPs from 6 genes in 553 Russian individuals (331 patients with IS and 222 controls). We assessed the association of SNPs with the risk of IS and IS outcomes. We found that the SNPs rs858239 (GPNMB), rs907611 (LSP1), and rs494356 (TAGLN) were associated with different parameters of IS functional outcomes. In addition, the SNP rs1261025 (PDPN) was associated significantly with IS itself (p = 0.0188, recessive model). All these associations were demonstrated for the first time. Analysis of the literature suggests that they should be characterized as being inflammation related. This supports the pivotal role of inflammation in both the incidence of stroke and post-stroke outcomes. We believe the findings reported here will help with stroke prognosis in the future.
Collapse
Affiliation(s)
- Andrey V. Khrunin
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Gennady V. Khvorykh
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| | - Anna S. Arapova
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna E. Kulinskaya
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
- Faculty of Biotechnology and Industrial Ecology, Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Evgeniya A. Koltsova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Elizaveta A. Petrova
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Ekaterina I. Kimelfeld
- Department of Neurology, Neurosurgery and Medical Genetics of Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Svetlana A. Limborska
- National Research Centre “Kurchatov Institute”, Kurchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
6
|
Wu J, Wang W, Huang Y, Wu H, Wang J, Han M. Deletion of SM22α disrupts the structure and function of caveolae and T-tubules in cardiomyocytes, contributing to heart failure. PLoS One 2022; 17:e0271578. [PMID: 35849583 PMCID: PMC9292107 DOI: 10.1371/journal.pone.0271578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 07/04/2022] [Indexed: 11/28/2022] Open
Abstract
Aims Smooth muscle 22-alpha (SM22α) is an actin-binding protein that plays critical roles in mediating polymerization of actin filaments and stretch sensitivity of cytoskeleton in vascular smooth muscle cells (VSMCs). Multiple lines of evidence indicate the existence of SM22α in cardiomyocytes. Here, we investigated the effect of cardiac SM22α on the membrane architecture and functions of cardiomyocytes to pressure overload. Methods SM22α knock-out (KO) mice were utilized to assess the role of SM22α in the heart. Echocardiography was used to evaluate cardiac function, transverse aortic constriction (TAC) was used to induce heart failure, cell shortening properties were measured by IonOptix devices in intact cardiomyocytes, Ca2+ sensitivity of myofilaments was measured in permeabilized cardiomyocytes. Confocal microscopy, electron microscopy, western blotting, co-immunoprecipitation (co-IP), Real-Time Quantitative Reverse Transcription PCR (qRT-PCR) techniques were used to perform functional and structural analysis. Results SM22α ablation did not alter cardiac function at baseline, but mRNA levels of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) were increased significantly compared with wild type (WT) controls. The membrane architecture was severely disrupted in SM22α KO cardiomyocytes, with disassembly and flattening of caveolae and disrupted T-tubules. Furthermore, SM22α was co-immunoprecipitated with caveolin-3 (Cav3), and the interaction between Cav3 and actin was significantly reduced in SM22α KO cells. SM22α KO cardiomyocytes displayed asynchronized SR Ca2+ release, significantly increased Ca2+ spark frequency. Additionally, the kinetics of sarcomere shortening was abnormal, accompanied with increased sensitivity and reduced maximum response of myofilaments to Ca2+ in SM22α KO cardiomyocytes. SM22α KO mice were more prone to heart failure after TAC. Conclusions Our findings identified that SM22α may be required for the architecture and function of caveolae and T-tubules in cardiomyocytes.
Collapse
Affiliation(s)
- Jun Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Physiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yaomeng Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Haochen Wu
- Department of Physiology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jiabin Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
- * E-mail:
| |
Collapse
|
7
|
Du J, Guo W, Häckel S, Hoppe S, Garcia JP, Alini M, Tryfonidou MA, Creemers LB, Grad S, Li Z. The function of CD146 in human annulus fibrosus cells and mechanism of the regulation by TGF-β. J Orthop Res 2022; 40:1661-1671. [PMID: 34662464 DOI: 10.1002/jor.25190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 02/04/2023]
Abstract
The mouse outer annulus fibrosus (AF) was previously shown to contain CD146+ AF cells, while in vitro culture and exposure to transforming growth factor-beta (TGF-β) further increased the expression of CD146. However, neither the specific function of CD146 nor the underlying mechanism of TGF-β upregulation of CD146+ AF cells have been elucidated yet. In the current study, CD146 expression and its role in cultured human AF cells was investigated studying the cells' capacity for matrix contraction and gene expression of functional AF markers. In addition, TGF-β pathways were blocked by several pathway inhibitors and short hairpin RNAs (shRNAs) targeting SMAD and non-SMAD pathways to investigate their involvement in TGF-β-induced CD146 upregulation. Results showed that knockdown of CD146 led to reduction in AF cell-mediated collagen gel contraction, downregulation of versican and smooth muscle protein 22α (SM22α), and upregulation of scleraxis. TGF-β-induced CD146 upregulation was significantly blocked by inhibition of TGF-β receptor ALK5, and partially inhibited by shRNA against SMAD2 and SMAD4 and by an Protein Kinase B (AKT) inhibitor. Interestingly, the inhibition of extracellular signal-regulated kinases (ERK) pathway induced CD146 upregulation. In conclusion, CD146 was shown to be crucial to maintain the cell contractility of human AF cells in vitro. Furthermore, TGF-β upregulated CD146 via ALK5 signaling cascade, partially through SMAD2, SMAD4, and AKT pathway, whereas, ERK was shown to be a potential negative modulator. Our findings suggest that CD146 can potentially be used as a functional marker in AF repair strategies.
Collapse
Affiliation(s)
- Jie Du
- AO Research Institute Davos, Davos, Switzerland.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wei Guo
- AO Research Institute Davos, Davos, Switzerland.,Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sven Hoppe
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - João P Garcia
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | - Laura B Creemers
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| |
Collapse
|
8
|
Kong P, Cui ZY, Huang XF, Zhang DD, Guo RJ, Han M. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct Target Ther 2022; 7:131. [PMID: 35459215 PMCID: PMC9033871 DOI: 10.1038/s41392-022-00955-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/08/2023] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease driven by traditional and nontraditional risk factors. Genome-wide association combined with clonal lineage tracing and clinical trials have demonstrated that innate and adaptive immune responses can promote or quell atherosclerosis. Several signaling pathways, that are associated with the inflammatory response, have been implicated within atherosclerosis such as NLRP3 inflammasome, toll-like receptors, proprotein convertase subtilisin/kexin type 9, Notch and Wnt signaling pathways, which are of importance for atherosclerosis development and regression. Targeting inflammatory pathways, especially the NLRP3 inflammasome pathway and its regulated inflammatory cytokine interleukin-1β, could represent an attractive new route for the treatment of atherosclerotic diseases. Herein, we summarize the knowledge on cellular participants and key inflammatory signaling pathways in atherosclerosis, and discuss the preclinical studies targeting these key pathways for atherosclerosis, the clinical trials that are going to target some of these processes, and the effects of quelling inflammation and atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zi-Yang Cui
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Xiao-Fu Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Dan-Dan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Rui-Juan Guo
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, PR China.
| |
Collapse
|
9
|
Pandit A, Begum Y, Saha P, Srivastava AK, Swarnakar S. Approaches Toward Targeting Matrix Metalloproteases for Prognosis and Therapies in Gynecological Cancer: MicroRNAs as a Molecular Driver. Front Oncol 2022; 11:720622. [PMID: 35145899 PMCID: PMC8821656 DOI: 10.3389/fonc.2021.720622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
Gene expression can be regulated by small non-coding RNA molecules like microRNAs (miRNAs) which act as cellular mediators necessary for growth, differentiation, proliferation, apoptosis, and metabolism. miRNA deregulation is often observed in many human malignancies, acting both as tumor-promoting and suppressing, and their abnormal expression is linked to unrestrained cellular proliferation, metastasis, and perturbation in DNA damage as well as cell cycle. Matrix Metalloproteases (MMPs) have crucial roles in both growth, and tissue remodeling in normal conditions, as well as in promoting cancer development and metastasis. Herein, we outline an integrated interactive study involving various MMPs and miRNAs and also feature a way in which these communications impact malignant growth, movement, and metastasis. The present review emphasizes on important miRNAs that might impact gynecological cancer progression directly or indirectly via regulating MMPs. Additionally, we address the likely use of miRNA-mediated MMP regulation and their downstream signaling pathways towards the development of a potential treatment of gynecological cancers.
Collapse
Affiliation(s)
- Anuradha Pandit
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Yasmin Begum
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Snehasikta Swarnakar
- Infectious Diseases & Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- *Correspondence: Snehasikta Swarnakar,
| |
Collapse
|
10
|
Zhang BF, Wu ZH, Deng J, Jin HJ, Chen WB, Zhang S, Liu XJ, Wang WT, Zheng XT. M 6A methylation-mediated elevation of SM22α inhibits the proliferation and migration of vascular smooth muscle cells and ameliorates intimal hyperplasia in type 2 diabetes mellitus. Biol Chem 2021; 403:317-329. [PMID: 34882999 DOI: 10.1515/hsz-2021-0296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023]
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) induced by insulin resistance facilitates intimal hyperplasia of type 2 diabetes mellitus (T2DM) and N6-methyladenosine (m6A) methylation modification mediates the VSMC proliferation. This study aimed to reveal the m6A methylation modification regulatory mechanism. In this study, m6A demethylase FTO was elevated in insulin-treated VSMCs and T2DM mice with intimal injury. Functionally, FTO knockdown elevated m6A methylation level and further restrained VSMC proliferation and migration induced by insulin. Mechanistically, FTO knockdown elevated Smooth muscle 22 alpha (SM22α) expression and m6A-binding protein IGF2BP2 enhanced SM22α mRNA stability by recognizing and binding to m6A methylation modified mRNA. In vivo studies confirmed that the elevated m6A modification level of SM22α mRNA mitigated intimal hyperplasia in T2DM mice. Conclusively, m6A methylation-mediated elevation of SM22α restrained VSMC proliferation and migration and ameliorated intimal hyperplasia in T2DM.
Collapse
Affiliation(s)
- Bao-Fu Zhang
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zi-Heng Wu
- Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jie Deng
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Hao-Jie Jin
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Wei-Biao Chen
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Sai Zhang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiu-Jie Liu
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wan-Tie Wang
- Institute of Ischemia-Reperfusion Injury, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiang-Tao Zheng
- Department of Vascular Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| |
Collapse
|
11
|
Smooth muscle 22 alpha protein inhibits VSMC foam cell formation by supporting normal LXRα signaling, ameliorating atherosclerosis. Cell Death Dis 2021; 12:982. [PMID: 34686657 PMCID: PMC8536684 DOI: 10.1038/s41419-021-04239-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/11/2021] [Accepted: 09/29/2021] [Indexed: 12/31/2022]
Abstract
Vascular smooth muscle cells (VSMCs) are indispensable components in foam cell formation in atherosclerosis. However, the mechanism behind foam cell formation of VSMCs has not been addressed. We found a potential association between deletion of smooth muscle (SM) 22α and deregulated nuclear receptors liver X receptors (LXRs)/retinoid X receptor (RXR) signaling in mice. Here, we investigated the roles of SM22α in LXRα-modulated cholesterol homeostasis, and explore possible mechanisms underlying this process. We identified that the depletion of SM22α was a primary event driving VSMC cholesterol accumulation and the development of atherosclerosis in mice. Proteomic and lipidomic analysis validated that downregulation of SM22α was correlated with reduced expression of LXRα and ATP-binding cassette transporter (ABCA) 1 and increased cholesteryl ester in phenotypically modulated VSMCs induced by platelets-derived growth factor (PDGF)-BB. Notably, LXRα was mainly distributed in the cytoplasm rather than the nucleus in the neointimal and Sm22α-/- VSMCs. Loss of SM22α inhibited the nuclear import of LXRα and reduced ABCA1-mediated cholesterol efflux via promoting depolymerization of actin stress fibers. Affinity purification and mass spectrometry (AP-MS) analysis, co-immunoprecipitation and GST pull-down assays, confocal microscopy, and stochastic optical reconstruction microscopy (STORM) revealed that globular-actin (G-actin), monomeric actin, interacted with and retained LXRα in the cytoplasm in PDGF-BB-treated and Sm22α-/- VSMCs. This interaction blocked LXRα binding to Importin α, a karyopherin that mediates the trafficking of macromolecules across the nuclear envelope, and the resulting reduction of LXRα transcriptional activity. Increasing SM22α expression restored nuclear localization of LXRα and removed cholesterol accumulation via inducing actin polymerization, ameliorating atherosclerosis. Our findings highlight that LXRα is a mechanosensitive nuclear receptor and that the nuclear import of LXRα maintained by the SM22α-actin axis is a potential target for blockade of VSMC foam cell formation and development of anti-atherosclerosis.
Collapse
|
12
|
Lin JJ, Chen W, Gong M, Xu X, Du MY, Wang SF, Yang LY, Wang Y, Liu KX, Kong P, Li B, Liu K, Li YM, Dong LH, Sun SG. Expression and Functional Analysis of lncRNAs Involved in Platelet-Derived Growth Factor-BB-Induced Proliferation of Human Aortic Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:702718. [PMID: 34557530 PMCID: PMC8452921 DOI: 10.3389/fcvm.2021.702718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/16/2021] [Indexed: 12/23/2022] Open
Abstract
Abnormal proliferation of vascular smooth muscle cells (VSMCs) is a common feature of many vascular remodeling diseases. Because long non-coding RNAs (lncRNAs) play a critical role in cardiovascular diseases, we analyzed the key lncRNAs that regulate VSMC proliferation. Microarray analysis identified 2,643 differentially expressed lncRNAs (DELs) and 3,720 differentially expressed coding genes (DEGs) between fetal bovine serum (FBS) starvation-induced quiescent human aortic smooth muscle cells (HASMCs) and platelet-derived growth factor-BB (PDGF-BB)-stimulated proliferative HASMCs. Gene Ontology and pathway analyses of the identified DEGs and DELs demonstrated that many lncRNAs were enriched in pathways related to cell proliferation. One of the upregulated lncRNAs in proliferative HASMC was HIF1A anti-sense RNA 2 (HIF1A-AS2). HIF1A-AS2 suppression decreased HASMC proliferation via the miR-30e-5p/CCND2 mRNA axis. We have thus identified key DELs and DEGs involved in the regulation of PDGF-BB induced HASMC proliferation. Moreover, HIF1A-AS2 promotes HASMC proliferation, suggesting its potential involvement in VSMC proliferative vascular diseases.
Collapse
Affiliation(s)
- Jia-Jie Lin
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Wei Chen
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China.,Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Gong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Mei-Yang Du
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Si-Fan Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Yun Yang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Ke-Xin Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Kun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Yi-Ming Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Li-Hua Dong
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| | - Shao-Guang Sun
- Department of Biochemistry and Molecular Biology, Key Laboratory of Medical Biotechnology of Hebei Province, Cardiovascular Medical Science Center, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Chen Y, Wei X, Zhang Z, He Y, Huo B, Guo X, Feng X, Fang ZM, Jiang DS, Zhu XH. Downregulation of Filamin a Expression in the Aorta Is Correlated With Aortic Dissection. Front Cardiovasc Med 2021; 8:690846. [PMID: 34485398 PMCID: PMC8414519 DOI: 10.3389/fcvm.2021.690846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 07/13/2021] [Indexed: 12/23/2022] Open
Abstract
Filamins (FLNs) are actin cross-linking proteins, and as scaffolding proteins, FLNs are closely associated with the stabilization of the cytoskeleton. Nevertheless, the biological importance of FLNs in aortic dissection (AD) has not been well-elucidated. In this study, we first reanalyzed datasets downloaded from the Gene Expression Omnibus (GEO) database, and we found that in addition to the extracellular matrix, the actin cytoskeleton is a key structure associated with AD. Given that FLNs are involved in remodeling the cytoskeleton to affect cellular functions, we measured their expression levels in the aortas of patients with Stanford type A AD (TAAD). Our results showed that the mRNA and protein levels of FLNA were consistently decreased in dissected aortas of both humans and mice, while the FLNB protein level was upregulated despite decreased FLNB mRNA levels, and comparable expression levels of FLNC were observed between groups. Furthermore, the immunohistochemistry results demonstrated that FLNA was highly expressed in smooth muscle cells (SMCs) of aorta in non-AD samples, and downregulated in the medial layer of the dissected aortas of humans and mice. Moreover, we revealed that FOS and JUN, forming a dimeric transcription factor called AP-1 (activating protein-1), were positively correlated with the expression of FLNA in aorta. Either overexpression of FOS or JUN alone, or overexpression of FOS and JUN together, facilitated the expression of FLNA in primary cultured human aortic SMCs. In the present study, we not only detected the expression pattern of FLNs in aortas of humans and mice with or without AD, but we also found that the expression of FLNA in the AD samples was significantly reduced and that AP-1 might regulate the expression of FLNA. Our findings will contribute to the elucidation of the pathological mechanisms of AD and provide potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Yue Chen
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Wei
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Zihao Zhang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi He
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xian Guo
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Feng
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ze-Min Fang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding-Sheng Jiang
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Xue-Hai Zhu
- Division of Cardiothoracic and Vascular Surgery, Sino-Swiss Heart-Lung Transplantation Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
14
|
Vakaloglou KM, Mouratidou M, Keramidioti A, Zervas CG. Differential Expression of Drosophila Transgelins Throughout Development. Front Cell Dev Biol 2021; 9:648568. [PMID: 34322481 PMCID: PMC8311604 DOI: 10.3389/fcell.2021.648568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022] Open
Abstract
Transgelins are a conserved family of actin-binding proteins involved in cytoskeletal remodeling, cell contractility, and cell shape. In both mammals and Drosophila, three genes encode transgelin proteins. Transgelins exhibit a broad and overlapping expression pattern, which has obscured the precise identification of their role in development. Here, we report the first systematic developmental analysis of all Drosophila transgelin proteins, namely, Mp20, CG5023, and Chd64 in the living organism. Drosophila transgelins display overall higher sequence identity with mammalian TAGLN-3 and TAGLN-2 than with TAGLN. Detailed examination in different developmental stages revealed that Mp20 and CG5023 are predominantly expressed in mesodermal tissues with the onset of myogenesis and accumulate in the cytoplasm of all somatic muscles and heart in the late embryo. Notably, at postembryonic developmental stages, Mp20 and CG5023 are detected in the gut's circumferential muscles with distinct subcellular localization: Z-lines for Mp20 and sarcomere and nucleus for CG5023. Only CG5023 is strongly detected in the adult fly in the abdominal, leg, and synchronous thoracic muscles. Chd64 protein is primarily expressed in endodermal and ectodermal tissues and has a dual subcellular localization in the cytoplasm and the nucleus. During the larval-pupae transition, Chd64 is expressed in the brain, eye, legs, halteres, and wings. In contrast, in the adult fly, Chd64 is expressed in epithelia, including the alimentary tract and genitalia. Based on the non-overlapping tissue expression, we predict that Mp20 and CG5023 mostly cooperate to modulate muscle function, whereas Chd64 has distinct roles in epithelial, neuronal, and endodermal tissues.
Collapse
Affiliation(s)
- Katerina M. Vakaloglou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Maria Mouratidou
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Athina Keramidioti
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Christos G. Zervas
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| |
Collapse
|
15
|
Feng Y, Wang L, Wang T, Li Y, Xun Q, Zhang R, Liu L, Li L, Wang W, Tian Y, Yang L, Zhi X, Zhou B, Chen X, Sun T, Liu Y. RETRACTED: Tumor cell-secreted exosomal miR-22-3p inhibits transgelin and induces vascular abnormalization to promote tumor budding. Mol Ther 2021; 29:2151-2166. [PMID: 33578038 PMCID: PMC8178443 DOI: 10.1016/j.ymthe.2021.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/12/2020] [Accepted: 02/04/2021] [Indexed: 02/08/2023] Open
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the editor-in-chief. The editor-in-chief was informed of evidence for image duplication in identical or altered fashion in Figures 3A and 8D, as well as undisclosed reuse of an image in Figure 5B from a previous article in Cell Death & Disease (https://doi.org/10.1038/s41419-018-0902-5), in a PubPeer thread: https://pubpeer.com/publications/F5B591481C516F4CE42C7925AC48E9. Image analysis performed by the journal's editorial office confirmed these findings. This reuse (and in part misrepresentation) of data without appropriate attribution represents a severe abuse of the scientific publishing system.
Collapse
Affiliation(s)
- Yaju Feng
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Lumeng Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Ting Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Ying Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Qingqing Xun
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China; School of Clinical Medicine, Jining Medical University, Jining 272029, Shangdong, China
| | - Renya Zhang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Lin Liu
- Health Management Center, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Lei Li
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Wei Wang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Yixuan Tian
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Lili Yang
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Xiao Zhi
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China
| | - Bijiao Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Xin Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Early Druggability Evaluation of Innovative Drugs and Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300457, China.
| | - Yanrong Liu
- Department of Pathology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining 272029, Shandong, China.
| |
Collapse
|
16
|
Wendt TS, Li YJ, Gonzales RJ. Ozanimod, an S1PR 1 ligand, attenuates hypoxia plus glucose deprivation-induced autophagic flux and phenotypic switching in human brain VSM cells. Am J Physiol Cell Physiol 2021; 320:C1055-C1073. [PMID: 33788630 DOI: 10.1152/ajpcell.00044.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vascular smooth muscle (VSM) cell phenotypic expression and autophagic state are dynamic responses to stress. Vascular pathologies, such as hypoxemia and ischemic injury, induce a synthetic VSM phenotype and autophagic flux resulting in a loss of vascular integrity and VSM cell death respectfully. Both clinical pilot and experimental stroke studies demonstrate that sphingosine-1-phosphate receptor (S1PR) modulation improves stroke outcome; however, specific mechanisms associated with a beneficial outcome at the level of the cerebrovasculature have not been clearly elucidated. We hypothesized that ozanimod, a selective S1PR type 1 ligand, will attenuate VSM synthetic phenotypic expression and autophagic flux in primary human brain VSM cells following acute hypoxia plus glucose deprivation (HGD; in vitro ischemic-like injury) exposure. Cells were treated with ozanimod and exposed to normoxia or HGD. Crystal violet staining, standard immunoblotting, and immunocytochemical labeling techniques assessed cellular morphology, vacuolization, phenotype, and autophagic state. We observed that HGD temporally decreased VSM cell viability and concomitantly increased vacuolization, both of which ozanimod reversed. HGD induced a simultaneous elevation and reduction in levels of pro- and antiautophagic proteins respectfully, and ozanimod attenuated this response. Protein levels of VSM phenotypic biomarkers, smoothelin and SM22, were decreased following HGD. Furthermore, we observed an HGD-induced epithelioid and synthetic morphological appearance accompanied by disorganized cytoskeletal filaments, which was rescued by ozanimod. Thus, we conclude that ozanimod, a selective S1PR1 ligand, protects against acute HGD-induced phenotypic switching and promotes cell survival, in part, by attenuating HGD-induced autophagic flux thus improving vascular patency in response to acute ischemia-like injury.
Collapse
Affiliation(s)
- Trevor S Wendt
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Yu Jing Li
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| | - Rayna J Gonzales
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona
| |
Collapse
|
17
|
SM22 α Loss Contributes to Apoptosis of Vascular Smooth Muscle Cells via Macrophage-Derived circRasGEF1B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5564884. [PMID: 33859778 PMCID: PMC8026322 DOI: 10.1155/2021/5564884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022]
Abstract
Vascular smooth muscle cell (VSMC) apoptosis is a major defining feature of abdominal aortic aneurysm (AAA) and mainly caused by inflammatory cell infiltration. Smooth muscle (SM) 22α prevents AAA formation through suppressing NF-κB activation. However, the role of SM22α in VSMC apoptosis is controversial. Here, we identified that SM22α loss contributed to apoptosis of VSMCs via activation of macrophages. Firstly, deficiency of SM22α enhanced the interaction of VSMCs with macrophages. Macrophages were retained and activated by Sm22α−/− VSMCs via upregulating VCAM-1 expression. The ratio of apoptosis was increased by 1.62-fold in VSMCs treated with the conditional media (CM) from activated RAW264.7 cells, compared to that of the control CM (P < 0.01), and apoptosis of Sm22α−/− VSMCs was higher than that of WT VSMCs (P < 0.001). Next, circRasGEF1B from activated macrophages was delivered into VSMCs promoting ZFP36 expression via stabilization of ZFP36 mRNA. Importantly, circRasGEF1B, as a scaffold, guided ZFP36 to preferentially bind to and decay Bcl-2 mRNA in a sequence-specific manner and triggered apoptosis of VSMCs, especially in Sm22α−/− VSMCs. These findings reveal a novel mechanism by which the circRasGEF1B-ZFP36 axis mediates macrophage-induced VSMC apoptosis via decay of Bcl-2 mRNA, whereas Sm22α−/− VSMCs have a higher sensitivity to apoptosis.
Collapse
|
18
|
Xu MS, Yin LM, Cheng AF, Zhang YJ, Zhang D, Tao MM, Deng YY, Ge LB, Shan CL. Cerebral Ischemia-Reperfusion Is Associated With Upregulation of Cofilin-1 in the Motor Cortex. Front Cell Dev Biol 2021; 9:634347. [PMID: 33777942 PMCID: PMC7991082 DOI: 10.3389/fcell.2021.634347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemia is one of the leading causes of death. Reperfusion is a critical stage after thrombolysis or thrombectomy, accompanied by oxidative stress, excitotoxicity, neuroinflammation, and defects in synapse structure. The process is closely related to the dephosphorylation of actin-binding proteins (e.g., cofilin-1) by specific phosphatases. Although studies of the molecular mechanisms of the actin cytoskeleton have been ongoing for decades, limited studies have directly investigated reperfusion-induced reorganization of actin-binding protein, and little is known about the gene expression of actin-binding proteins. The exact mechanism is still uncertain. The motor cortex is very important to save nerve function; therefore, we chose the penumbra to study the relationship between cerebral ischemia-reperfusion and actin-binding protein. After transient middle cerebral artery occlusion (MCAO) and reperfusion, we confirmed reperfusion and motor function deficit by cerebral blood flow and gait analysis. PCR was used to screen the high expression mRNAs in penumbra of the motor cortex. The high expression of cofilin in this region was confirmed by immunohistochemistry (IHC) and Western blot (WB). The change in cofilin-1 expression appears at the same time as gait imbalance, especially maximum variation and left front swing. It is suggested that cofilin-1 may partially affect motor cortex function. This result provides a potential mechanism for understanding cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Ming-Shu Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei-Miao Yin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ai-Fang Cheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying-Jie Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Di Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao-Miao Tao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun-Yi Deng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Bao Ge
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Zhao Y, Zang G, Yin T, Ma X, Zhou L, Wu L, Daniel R, Wang Y, Qiu J, Wang G. A novel mechanism of inhibiting in-stent restenosis with arsenic trioxide drug-eluting stent: Enhancing contractile phenotype of vascular smooth muscle cells via YAP pathway. Bioact Mater 2021; 6:375-385. [PMID: 32954055 PMCID: PMC7484501 DOI: 10.1016/j.bioactmat.2020.08.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/13/2020] [Accepted: 08/23/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Arsenic trioxide (ATO or As2O3) has beneficial effects on suppressing neointimal hyperplasia and restenosis, but the mechanism is still unclear. The goal of this study is to further understand the mechanism of ATO's inhibitory effect on vascular smooth muscle cells (VSMCs). METHODS AND RESULTS Through in vitro cell culture and in vivo stent implanting into the carotid arteries of rabbit, a synthetic-to-contractile phenotypic transition was induced and the proliferation of VSMCs was inhibited by ATO. F-actin filaments were clustered and the elasticity modulus was increased within the phenotypic modulation of VSMCs induced by ATO in vitro. Meanwhile, Yes-associated protein (YAP) nuclear translocation was inhibited by ATO both in vivo and in vitro. It was found that ROCK inhibitor or YAP inactivator could partially mask the phenotype modulation of ATO on VSMCs. CONCLUSIONS The interaction of YAP with the ROCK pathway through ATO seems to mediate the contractile phenotype of VSMCs. This provides an indication of the clinical therapeutic mechanism for the beneficial bioactive effect of ATO-drug eluting stent (AES) on in-stent restenosis (ISR).
Collapse
Affiliation(s)
- Yinping Zhao
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guangchao Zang
- Laboratory of Tissue and Cell Biology, Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016, China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Xiaoyi Ma
- Beijing Amsinomed Medical Co., Ltd, Beijing, 100021, China
| | - Lifeng Zhou
- Beijing Amsinomed Medical Co., Ltd, Beijing, 100021, China
| | - Lingjuan Wu
- Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Richard Daniel
- Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610065, China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, China
| |
Collapse
|
20
|
Bruijn LE, van den Akker BEWM, van Rhijn CM, Hamming JF, Lindeman JHN. Extreme Diversity of the Human Vascular Mesenchymal Cell Landscape. J Am Heart Assoc 2020; 9:e017094. [PMID: 33190596 PMCID: PMC7763765 DOI: 10.1161/jaha.120.017094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
Background Human mesenchymal cells are culprit factors in vascular (patho)physiology and are hallmarked by phenotypic and functional heterogeneity. At present, they are subdivided by classic umbrella terms, such as "fibroblasts," "myofibroblasts," "smooth muscle cells," "fibrocytes," "mesangial cells," and "pericytes." However, a discriminative marker-based subclassification has to date not been established. Methods and Results As a first effort toward a classification scheme, a systematic literature search was performed to identify the most commonly used phenotypical and functional protein markers for characterizing and classifying vascular mesenchymal cell subpopulation(s). We next applied immunohistochemistry and immunofluorescence to inventory the expression pattern of identified markers on human aorta specimens representing early, intermediate, and end stages of human atherosclerotic disease. Included markers comprise markers for mesenchymal lineage (vimentin, FSP-1 [fibroblast-specific protein-1]/S100A4, cluster of differentiation (CD) 90/thymocyte differentiation antigen 1, and FAP [fibroblast activation protein]), contractile/non-contractile phenotype (α-smooth muscle actin, smooth muscle myosin heavy chain, and nonmuscle myosin heavy chain), and auxiliary contractile markers (h1-Calponin, h-Caldesmon, Desmin, SM22α [smooth muscle protein 22α], non-muscle myosin heavy chain, smooth muscle myosin heavy chain, Smoothelin-B, α-Tropomyosin, and Telokin) or adhesion proteins (Paxillin and Vinculin). Vimentin classified as the most inclusive lineage marker. Subset markers did not separate along classic lines of smooth muscle cell, myofibroblast, or fibroblast, but showed clear temporal and spatial diversity. Strong indications were found for presence of stem cells/Endothelial-to-Mesenchymal cell Transition and fibrocytes in specific aspects of the human atherosclerotic process. Conclusions This systematic evaluation shows a highly diverse and dynamic landscape for the human vascular mesenchymal cell population that is not captured by the classic nomenclature. Our observations stress the need for a consensus multiparameter subclass designation along the lines of the cluster of differentiation classification for leucocytes.
Collapse
Affiliation(s)
- Laura E. Bruijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | | | - Connie M. van Rhijn
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jaap F. Hamming
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| | - Jan H. N. Lindeman
- Division of Vascular SurgeryDepartment of SurgeryLeiden University Medical CenterLeidenthe Netherlands
| |
Collapse
|
21
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Hunt NJ, Lockwood GP, Kang SWS, Pulpitel T, Clark X, Mao H, McCourt PAG, Cooney GJ, Wali JA, Le Couteur FH, Le Couteur DG, Cogger VC. The Effects of Metformin on Age-Related Changes in the Liver Sinusoidal Endothelial Cell. J Gerontol A Biol Sci Med Sci 2020; 75:278-285. [PMID: 31198956 DOI: 10.1093/gerona/glz153] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Age-related changes in the liver sinusoidal endothelium, particularly the reduction in fenestrations, contribute to insulin resistance in old age. Metformin impacts on the aging process and improves insulin resistance. Therefore, the effects of metformin on the liver sinusoidal endothelium were studied. Metformin increased fenestrations in liver sinusoidal endothelial cells isolated from both young and old mice. Mice administered metformin in the diet for 12 months had increased fenestrations and this was associated with lower insulin levels. The effect of metformin on fenestrations was blocked by inhibitors of AMP-activated protein kinase (AMPK), endothelial nitric oxide synthase, and myosin light chain kinase phosphorylation. Metformin led to increased transgelin expression and structural changes in the actin cytoskeleton but had no effect on lactate production. Metformin also generated fenestration-like structures in SK-Hep1 cells, a liver endothelial cell line, and this was associated with increased ATP, cGMP, and mitochondrial activity. In conclusion, metformin ameliorates age-related changes in the liver sinusoidal endothelial cell via AMPK and endothelial nitric oxide pathways, which might promote insulin sensitivity in the liver, particularly in old age.
Collapse
Affiliation(s)
- Nicholas J Hunt
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Glen P Lockwood
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Sun Woo Sophie Kang
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Tamara Pulpitel
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Ximonie Clark
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Hong Mao
- Department of Medical Biology, University of Tromsø - The Arctic University of Norway
| | - Peter A G McCourt
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia.,Department of Medical Biology, University of Tromsø - The Arctic University of Norway
| | - Gregory J Cooney
- Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Jibran A Wali
- Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia.,Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, New South Wales, Australia
| | - Frank H Le Couteur
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia
| | - David G Le Couteur
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| | - Victoria C Cogger
- ANZAC Research Institute, Biogerontology Laboratory, Concord Repatriation General Hospital, New South Wales, Australia.,Aging and Alzheimer's Institute and Centre for Education and Research on Ageing, Concord Repatriation General Hospital, New South Wales, Australia.,Concord Clinical School, Sydney Medical School, New South Wales, Australia.,Charles Perkins Centre, Nutritional Ecology and Physiology Laboratory, The University of Sydney, New South Wales, Australia
| |
Collapse
|
23
|
Farrerol maintains the contractile phenotype of VSMCs via inactivating the extracellular signal-regulated protein kinase 1/2 and p38 mitogen-activated protein kinase signaling. Mol Cell Biochem 2020; 475:249-260. [PMID: 32840737 DOI: 10.1007/s11010-020-03878-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Farrerol, a dihydroflavone isolated from Rhododendron dauricum L., can inhibit vascular smooth muscle cell (VSMC) proliferation and exert a protective effect on H2O2-induced vascular endothelial cells injury. In this study, we investigated the effects of farrerol on VSMC phenotypic modulation and balloon injury-induced vascular neointimal formation and explored the underlying mechanisms. Serum-starved rat thoracic aorta SMCs (RASMCs) were first pretreated with farrerol (3, 10, and 30 μM, respectively), U0126 (a MEK kinase inhibitor), and SB203580 (a p38 kinase inhibitor), and followed by treatment with serum (10% FBS). The expression of several VSMC-specific markers, including α-SMA, SM22α, and OPN, were analyzed by western blot. Phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) and p38 mitogen-activated protein kinase (MAPK) was also investigated. Farrerol inhibited the serum-induced transition of RASMCs from the contractile to the synthetic phenotype, and this was associated with a decrease in α-SMA and SM22α expression, and an increase in OPN expression. Farrerol also inhibited serum-induced phosphorylation of ERK1/2 and p38MAPK in RASMCs. Moreover, U0126 and SB203580 both inhibited the serum-induced phenotypic transition of RASMCs. These findings indicate that farrerol can maintain the contractile phenotype of VSMCs partly via inactivating the ERK1/2 and p38 MAPK signaling pathways. Using a rat model of carotid artery balloon injury, inhibition of VSMC phenotypic transition and suppression of neointimal formation were confirmed in vivo following the perivascular application of farrerol. Our results suggested that farrerol could be a promising lead compound for the treatment of vascular proliferative diseases.
Collapse
|
24
|
Ono S, Ono K. Two Caenorhabditis elegans calponin-related proteins have overlapping functions that maintain cytoskeletal integrity and are essential for reproduction. J Biol Chem 2020; 295:12014-12027. [PMID: 32554465 PMCID: PMC7443509 DOI: 10.1074/jbc.ra120.014133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Multicellular organisms have multiple genes encoding calponins and calponin-related proteins, some of which are known to regulate actin cytoskeletal dynamics and contractility. However, the functional similarities and differences among these proteins are largely unknown. In the nematode Caenorhabditis elegans, UNC-87 is a calponin-related protein with seven calponin-like (CLIK) motifs and is required for maintenance of contractile apparatuses in muscle cells. Here, we report that CLIK-1, another calponin-related protein that also contains seven CLIK motifs, functionally overlaps with UNC-87 in maintaining actin cytoskeletal integrity in vivo and has both common and different actin-regulatory activities in vitro We found that CLIK-1 is predominantly expressed in the body wall muscle and somatic gonad in which UNC-87 is also expressed. unc-87 mutation caused cytoskeletal defects in the body wall muscle and somatic gonad, whereas clik-1 depletion alone caused no detectable phenotypes. However, simultaneous clik-1 and unc-87 depletion caused sterility because of ovulation failure by severely affecting the contractile actin networks in the myoepithelial sheath of the somatic gonad. In vitro, UNC-87 bundled actin filaments, whereas CLIK-1 bound to actin filaments without bundling them and antagonized UNC-87-mediated filament bundling. We noticed that UNC-87 and CLIK-1 share common functions that inhibit cofilin binding and allow tropomyosin binding to actin filaments, suggesting that both proteins stabilize actin filaments. In conclusion, partially redundant functions of UNC-87 and CLIK-1 in ovulation are likely mediated by their common actin-regulatory activities, but their distinct actin-bundling activities suggest that they also have different biological functions.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA.
| | - Kanako Ono
- Department of Pathology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA; Department of Cell Biology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Gao Y, Liu G, Kong P, Song Y, Zhang D, Yin Y, Han M. Smooth muscle 22α deficiency impairs oxytocin-induced uterine contractility in mice at full-term pregnancy. Biochem Biophys Res Commun 2020; 529:884-889. [PMID: 32819594 DOI: 10.1016/j.bbrc.2020.05.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 11/18/2022]
Abstract
Smooth muscle 22α (SM22α, namely Transgelin), as an actin-binding protein, regulates the contractility of vascular smooth muscle cells (VSMCs) by modulation of the stress fiber formation. However, little is known about the roles of SM22α in the regulation of uterine contraction during parturition. Here, we showed that contraction in response to oxytocin (OT) was significantly decreased in the uterine muscle strips from SM22α knockout (Sm22α-KO) mice, especially at full-term pregnancy, which may be resulted from impaired formation of stress fibers. Furthermore, serious mitochondrial damage such as the mitochondrial swelling, cristae disruption and even disappearance were observed in the myometrium of Sm22α-KO mice at full-term pregnancy, eventually resulting in the collapse of mitochondrial membrane potential and impairment in ATP synthesis. Our data indicate that SM22α is necessary to maintain uterine contractility at delivery in mice, and acts as a novel target for preventive or therapeutic manipulation of uterine atony during parturition.
Collapse
MESH Headings
- Adenosine Triphosphate/deficiency
- Animals
- Female
- Gene Expression Regulation
- Mice
- Mice, Knockout
- Microfilament Proteins/deficiency
- Microfilament Proteins/genetics
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondrial Swelling/genetics
- Muscle Proteins/deficiency
- Muscle Proteins/genetics
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Myometrium/drug effects
- Myometrium/metabolism
- Myometrium/pathology
- Oxytocin/pharmacology
- Parturition
- Pregnancy
- Primary Cell Culture
- Stress Fibers/drug effects
- Stress Fibers/metabolism
- Stress Fibers/pathology
- Tissue Culture Techniques
- Uterine Contraction/drug effects
- Uterine Inertia/genetics
- Uterine Inertia/metabolism
- Uterine Inertia/pathology
Collapse
Affiliation(s)
- Yakun Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guixia Liu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, China
| | - Peng Kong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yu Song
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yajuan Yin
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
26
|
Uray K, Major E, Lontay B. MicroRNA Regulatory Pathways in the Control of the Actin-Myosin Cytoskeleton. Cells 2020; 9:E1649. [PMID: 32660059 PMCID: PMC7408560 DOI: 10.3390/cells9071649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are key modulators of post-transcriptional gene regulation in a plethora of processes, including actin-myosin cytoskeleton dynamics. Recent evidence points to the widespread effects of miRNAs on actin-myosin cytoskeleton dynamics, either directly on the expression of actin and myosin genes or indirectly on the diverse signaling cascades modulating cytoskeletal arrangement. Furthermore, studies from various human models indicate that miRNAs contribute to the development of various human disorders. The potentially huge impact of miRNA-based mechanisms on cytoskeletal elements is just starting to be recognized. In this review, we summarize recent knowledge about the importance of microRNA modulation of the actin-myosin cytoskeleton affecting physiological processes, including cardiovascular function, hematopoiesis, podocyte physiology, and osteogenesis.
Collapse
Affiliation(s)
- Karen Uray
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| | | | - Beata Lontay
- Correspondence: (K.U.); (B.L.); Tel.: +36-52-412345 (K.U. & B.L.)
| |
Collapse
|
27
|
SM22α + vascular mural cells are essential for vessel stability in tumors and undergo phenotype transition regulated by Notch signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:124. [PMID: 32616053 PMCID: PMC7331127 DOI: 10.1186/s13046-020-01630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022]
Abstract
Background Malformation of blood vessels represents a hallmark of cancers, but the role and regulation of vascular mural cells (vMCs), including vascular smooth muscle cells (vSMCs) and pericytes, in tumors has not been fully understood. SM22α has been identified as a marker of vSMCs. This study aims at elucidating the function and regulation of SM22α+ mural cells (SM22-MCs) in tumor stroma. Methods Gene-modified mice with a SM22α-CreERT2 transgene were employed to deplete SM22-MCs or activate/block Notch signaling in these cells. vSMCs from mouse dorsal aorta (vSMCs-DA) were cultured in vitro. RNA-seq was used to compare gene expression profiles. qRT-PCR and western blotting were used to determine gene expression level. Immunofluorescence was used to observe morphological alterations in tumors. Results SM22-MCs are essential for stabilizing tumor vasculature. Notch signaling was downregulated in tumor-derived SM22-MCs and vSMCs-DA treated with cancer cell-derived conditioned medium. Notch activation in SM22-MCs normalized tumor vasculature and repressed tumor growth. On the other hand, Notch disruption aggravated abnormal tumor vasculature and promoted growth and metastasis. Gene expression profiling of vSMCs-DA showed that Notch activation enhances their contractile phenotype and suppresses their secretory phenotype, further attenuating the invasion and proliferation of tumor cells. In contrast, Notch blockade in vSMCs-DA mitigated their contractile phenotype while strengthened the secretory phenotype. Conclusion SM22-MCs facilitate vessel stability in tumors, and they gain a secretory phenotype and promote tumor malignancy in the absence of Notch signaling.
Collapse
|
28
|
Lourenssen SR, Blennerhassett MG. M2 Macrophages and Phenotypic Modulation of Intestinal Smooth Muscle Cells Characterize Inflammatory Stricture Formation in Rats. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1843-1858. [PMID: 32479820 DOI: 10.1016/j.ajpath.2020.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
The progression of Crohn disease to intestinal stricture formation is poorly controlled, and the pathogenesis is unclear, although increased smooth muscle mass is present. A previously described rat model of trinitrobenzenesulfonic acid-induced colitis is re-examined here. Although inflammation of the mid-descending colon typically resolved, a subset showed characteristic stricturing by day 16, with an inflammatory infiltrate in the neuromuscular layers including eosinophils, CD3-positive T cells, and CD68-positive macrophages. Closer study identified CD163-positive, CD206-positive, and arginase-positive cells, indicating a M2 macrophage phenotype. Stricturing involved ongoing proliferation of intestinal smooth muscle cells (ISMC) with expression of platelet-derived growth factor receptor beta and progressive loss of phenotypic markers, and stable expression of hypoxia inducible factor 1 subunit alpha. In parallel, collagen I and III showed a selective and progressive increase over time. A culture model of the stricture phenotype of ISMC showed stable hypoxia inducible factor 1 subunit alpha expression that promoted growth and improved both survival and growth in models of experimental ischemia. This phenotype was hyperproliferative to serum and platelet-derived growth factor BB, and unresponsive to transforming growth factor beta, a prominent cytokine of M2 macrophages, compared with control ISMC. We identified a hyperplastic phenotype of ISMC, uniquely adapted to an ischemic environment to drive smooth muscle layer expansion, which may reveal new targets for treating intestinal fibrosis.
Collapse
Affiliation(s)
- Sandra R Lourenssen
- Gastrointestinal Diseases Research Unit and Queen's University, Kingston, Ontario, Canada
| | | |
Collapse
|
29
|
Dvorakova M, Lapcik P, Bouchalova P, Bouchal P. Transgelin Silencing Induces Different Processes in Different Breast Cancer Cell Lines. Proteomics 2020; 20:e1900383. [PMID: 32061197 DOI: 10.1002/pmic.201900383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up- and down-regulation of transgelin in tumors when compared with non-tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context-dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.
Collapse
Affiliation(s)
- Monika Dvorakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
30
|
Loss of the serine protease HTRA1 impairs smooth muscle cells maturation. Sci Rep 2019; 9:18224. [PMID: 31796853 PMCID: PMC6890777 DOI: 10.1038/s41598-019-54807-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/13/2019] [Indexed: 01/29/2023] Open
Abstract
Vascular smooth muscle cell (VSMC) dysfunction is a hallmark of small vessel disease, a common cause of stroke and dementia. Two of the most frequently mutated genes in familial small vessel disease are HTRA1 and NOTCH3. The protease HTRA1 cleaves the NOTCH3 ligand JAG1 implying a mechanistic link between HTRA1 and Notch signaling. Here we report that HTRA1 is essential for VSMC differentiation into the contractile phenotype. Mechanistically, loss of HTRA1 increased JAG1 protein levels and NOTCH3 signaling activity in VSMC. In addition, the loss of HTRA1 enhanced TGFβ-SMAD2/3 signaling activity. Activation of either NOTCH3 or TGFβ signaling resulted in increased transcription of the HES and HEY transcriptional repressors and promoted the contractile VSMC phenotype. However, their combined over-activation led to an additive accumulation of HES and HEY proteins, which repressed the expression of contractile VSMC marker genes. As a result, VSMC adopted an immature phenotype with impaired arterial vasoconstriction in Htra1-deficient mice. These data demonstrate an essential role of HTRA1 in vascular maturation and homeostasis by controlling Notch and TGFβ signaling.
Collapse
|
31
|
Strela FB, Brun BF, Berger RCM, Melo S, de Oliveira EM, Barauna VG, Vassallo PF. Lipopolysaccharide exposure modulates the contractile and migratory phenotypes of vascular smooth muscle cells. Life Sci 2019; 241:117098. [PMID: 31794773 DOI: 10.1016/j.lfs.2019.117098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/12/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Sepsis survivors are at higher risk for cardiovascular events. Lipopolysaccharide (LPS) activates Toll-like receptor 4 (TLR4) in sepsis. Activation of TLR4 modulates vascular smooth muscle cells (VSMCs) phenotype and contributes to cardiovascular changes after sepsis. AIM Investigate changes in VSMCs phenotype caused by LPS-induced TLR4 activation. METHODS Rat VSMCs were incubated with LPS. Two incubation conditions were used in cell contraction and migration assays: acute stimulation - LPS stimulus was initiated at the beginning of the assay and maintained throughout; and preconditioning - LPS stimulation was applied prior to the assay then discontinued. Nitric oxide (NO) production, mRNA expression of cytokines and phenotype markers, and interleukin (IL)-6 production were evaluated. KEY FINDINGS LPS increased gene expression of IL-1β, IL-6, TNFα and MCP-1 (p < .001), of secretory phenotype markers collagen and vimentin (p < .0479) and of the contractile marker smooth muscle 22α (SM22α) (p = .0067). LPS exposure increased IL-6 secretion after 24 and 48 h (p < .0001), and NO at 8 and 24 h (p < .0249) via inducible nitric oxide synthase (iNOS), as demonstrated by a decrease in NO after incubation with aminoguanidine. Acute stimulation with LPS reduced migration and contraction in a NO-dependent manner, while preconditioning with LPS increased both in an IL-6-dependent manner. SIGNIFICANCE LPS affects VSMCs by modulating their secretory, contractile and migratory phenotypes. LPS acute stimulation of VSMCs promoted a NO-dependent reduction in migration and contraction, while preconditioning with LPS promoted IL-6-dependent increases in migration and contraction, evidencing that VSMCs can present phenotype modifications that persist after sepsis, thereby contributing to postsepsis cardiovascular events.
Collapse
Affiliation(s)
- Felipe Bichi Strela
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bruna Ferro Brun
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil
| | | | - Stephano Melo
- Department of Biodynamics of the Human Body's Movement, University of São Paulo, SP, São Paulo, Brazil
| | | | - Valério Garrone Barauna
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Exercise Molecular Physiology Laboratory, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Paula Frizera Vassallo
- Post Graduation Program in Physiological Sciences, Federal University of Espírito Santo, Vitória, ES, Brazil; Clinical Hospital, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
32
|
Adventitial Collagen Crosslink Reduces Intimal Hyperplasia in a Rabbit Arteriovenous Graft Model. J Surg Res 2019; 246:550-559. [PMID: 31668608 DOI: 10.1016/j.jss.2019.09.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Intimal hyperplasia (IH) is the initial lesion of vein graft failure after coronary artery bypass grafting. The weak venous wall is likely one of the primary reasons for IH after exposure to the arterial environment. We investigate whether adventitial collagen cross-link by glutaraldehyde (GA) reinforces the venous wall and then reduces IH. MATERIALS AND METHODS Adventitial collagen cross-link by 0.3% GA was performed on the rabbit jugular veins. The degree of cross-link was accessed by tensile test. The jugular vein with or without cross-link was implanted into the carotid artery of rabbit. Vein dilatation at the immediate anastomosis and pathological remodeling of vein graft after 4 wk was assessed. RESULTS Tensile test indicated that the mechanical property of 3-min cross-linked veins more closely resembled that of the carotid artery. In rabbit arteriovenous graft models, 3-min adventitial collagen cross-link limited overdistension (diameter: 3.24 mm versus 4.65 mm, P < 0.01) at the immediate anastomosis and reduced IH (intima thickness: 78.83 μm versus 140.19 μm, P < 0.01) of vein grafts 4 wk after implantation in the cross-link group as compared with the graft group (without cross-link). Compared with the cross-link group, the expression of proliferating cell nuclear antigen and vascular cell adhesion molecule-1 increased significantly at both the mRNA and protein levels within the graft group (P < 0.01), but the expression of smooth muscle-22α decreased significantly (P < 0.01). CONCLUSIONS Adventitial collagen cross-link by GA increased the vessel stiffness and remarkably reduced IH in a rabbit arteriovenous graft model.
Collapse
|
33
|
Chen Z, He S, Zhan Y, He A, Fang D, Gong Y, Li X, Zhou L. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine 2019; 47:208-220. [PMID: 31420300 PMCID: PMC6796540 DOI: 10.1016/j.ebiom.2019.08.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Metastatic bladder cancer (BLCA) is a lethal disease with an unmet need for study. Transgelin (TAGLN) is an actin-binding protein that affects the dynamics of the actin cytoskeleton indicating its robust potential as a metastasis initiator. Here, we sought to explore the expression pattern of TAGLN and elucidate its specific functioning and mechanisms in BLCA. Methods A comprehensive assessment of TAGLN expression in BLCA was performed in three cohorts with a total of 847 patients. The potential effects of TAGLN on BLCA were further determined using clinical genomic analyses that guided the subsequent functional and mechanistic studies. In vitro migration, invasion assays and in vivo metastatic mouse model were performed to explore the biological functions of TAGLN in BLCA cells. Immunofluorescence, western blot and correlation analysis were used to investigate the molecular mechanisms of TAGLN. Findings TAGLN was highly expressed in BLCA and correlated with advanced prognostic features. TAGLN promoted cell colony formation and cell migration and invasion both in vitro and in vivo by inducing invadopodia formation and epithelial-mesenchymal transition, during which a significant correlation between TAGLN and Slug was observed. The progression-dependent correlation between TGF-β and TAGLN was analysed at both the cellular and tissue levels, while TGF-β-mediated migration was abolished by the suppression of TAGLN. Interpretation Overall, TAGLN is a promising novel prognosis biomarker of BLCA, and its metastatic mechanisms indicate that TAGLN may represent a novel target agent that can be utilized for the clinical management of invasive and metastatic BLCA. Fund This work was supported by the National Natural Science Foundation of China [81772703, 81672546, 81602253]; the Natural Science Foundation of Beijing [71772219, 7152146]. and Innovative Fund for Doctoral Students of Peking University Health Science Center (BUM2018BSS002). Funders had no role in the design of the study, data collection, data analysis, interpretation, or the writing of this report.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yonghao Zhan
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China; Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 45000, China
| | - Anbang He
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Dong Fang
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China
| | - Yanqing Gong
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, China; Institute of Urology, Peking University, Beijing 100034, China; National Urological Cancer Center, Beijing 100034, China; Beijing Key Laboratory of Urogenital Diseases (male) Molecular Diagnosis and Treatment Center, Beijing 100034, China.
| |
Collapse
|
34
|
Matsui TS, Ishikawa A, Deguchi S. Transgelin-1 (SM22α) interacts with actin stress fibers and podosomes in smooth muscle cells without using its actin binding site. Biochem Biophys Res Commun 2018; 505:879-884. [PMID: 30301526 DOI: 10.1016/j.bbrc.2018.09.176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022]
Abstract
Transgelin-1 (SM22α) has been recognized as a smooth muscle marker and a tumor suppressor, but many details of the working mechanisms remain unclear. Transgelin-1 belongs to the calponin family of actin-binding proteins with an N-terminal calponin homology domain (CH-domain) and a C-terminal calponin-like module (CLIK23). Here, we demonstrate that transgelin-1 interacts with actin stress fibers and podosomes in smooth muscle cells via its type-3 CH-domain, while CLIK23 is dispensable for the binding to the actin structures. We further suggest that the EF-hand motif in transgelin-1 contributes to proper folding of the CH-domain and in turn to the interaction with the actin structures. These results are in contrast to the ones reported in in vitro studies that demonstrated CLIK23 was necessary for the transgelin-1-actin binding, while the CH-domain was not. Besides, within cells, transgelin-1 phosphorylation at Ser181 in CLIK23 did not affect its colocalization with the actin structures, while the same phosphorylation was reported in in vitro studies to negatively regulate actin binding. Thus, our results suggest the molecular basis of intracellular interaction between transgelin-1 and actin, distinct from that in vitro. The actin binding capability intrinsic to CLIK23 may not appear within cells probably because of the weaker competition for actin binding compared to other actin binding molecules.
Collapse
Affiliation(s)
- Tsubasa S Matsui
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Akihiro Ishikawa
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan
| | - Shinji Deguchi
- Department of Nanopharmaceutical Science, Nagoya Institute of Technology, Japan; Division of Bioengineering, Graduate School of Engineering Science, Osaka University, Japan.
| |
Collapse
|
35
|
Zhong W, Sun B, Gao W, Qin Y, Zhang H, Huai L, Tang Y, Liang Y, He L, Zhang X, Tao H, Chen S, Yang W, Yang L, Liu Y, Liu H, Zhou H, Sun T, Yang C. Salvianolic acid A targeting the transgelin-actin complex to enhance vasoconstriction. EBioMedicine 2018; 37:246-258. [PMID: 30361065 PMCID: PMC6286650 DOI: 10.1016/j.ebiom.2018.10.041] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Salvia miltiorrhiza is used extensively to treat cardiovascular diseases. SAA is a major bioactive component in Salvia miltiorrhiza and mediates myocardial ischemia (MI). However, the industrial production of SAA is limited due to low yields. In addition, the direct targets of SAA are unknown. Here we explore cardioprotective mechanisms and targets of SAA in the cardiovascular system. METHODS Transgelin and actin were identified as targets of SAA using a chemical biology method and were validated by Biacore analysis, microscale thermophoresis and single-molecule imaging. Studies of transgelin (-/-) knockout mice further verify the target. Cardioprotective mechanisms and targets of SAA were studied in cultured vascular smooth muscle cells and transgenic mice. FINDINGS In WT mice, SAA targeted transgelin and had a protective effect on myocardium but did not have the same protective effect on transgelin (-/-) mice. SAA stabilizes the transgelin-actin complex, modulates the reorganization of the actin cytoskeleton, facilitates F-actin bundling, further enhances the contractility and blood flows of coronary arteries, and improves outcomes of myocardial ischemia. Based on the target, a more active SAA derivative offering myocardial protection, SAA-30, was obtained. INTERPRETATION We report on the direct targets of SAA and mechanisms of myocardial ischemia treatment. We also find that transgelin may act as a novel therapeutic target of myocardial ischemia. Furthermore, a more effective derivative of SAA provides the basis for further clinical translational research.
Collapse
Affiliation(s)
- Weilong Zhong
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Bo Sun
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wenqing Gao
- Heart Center, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Yuan Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Longcong Huai
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuanhao Tang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Yuan Liang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Lingfei He
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Xiaoyun Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Honglian Tao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China
| | - Shuang Chen
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Wei Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Lan Yang
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Yanrong Liu
- Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China
| | - Honggang Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300000, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin 300000, China.
| |
Collapse
|
36
|
Varberg KM, Garretson RO, Blue EK, Chu C, Gohn CR, Tu W, Haneline LS. Transgelin induces dysfunction of fetal endothelial colony-forming cells from gestational diabetic pregnancies. Am J Physiol Cell Physiol 2018; 315:C502-C515. [PMID: 29949406 PMCID: PMC6230685 DOI: 10.1152/ajpcell.00137.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Fetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including hypertension and cardiovascular disease. A key mechanism by which these complications occur is through the functional impairment of vascular progenitor cells, including endothelial colony-forming cells (ECFCs). Previously, we showed that fetal ECFCs exposed to GDM have decreased vasculogenic potential and altered gene expression. In this study, we evaluate whether transgelin (TAGLN), which is increased in GDM-exposed ECFCs, contributes to vasculogenic dysfunction. TAGLN is an actin-binding protein involved in the regulation of cytoskeletal rearrangement. We hypothesized that increased TAGLN expression in GDM-exposed fetal ECFCs decreases network formation by impairing cytoskeletal rearrangement resulting in reduced cell migration. To determine if TAGLN is required and/or sufficient to impair ECFC network formation, TAGLN was reduced and overexpressed in ECFCs from GDM and uncomplicated pregnancies, respectively. Decreasing TAGLN expression in GDM-exposed ECFCs improved network formation and stability as well as increased migration. In contrast, overexpressing TAGLN in ECFCs from uncomplicated pregnancies decreased network formation, network stability, migration, and alignment to laminar flow. Overall, these data suggest that increased TAGLN likely contributes to the vasculogenic dysfunction observed in GDM-exposed ECFCs, as it impairs ECFC migration, cell alignment, and network formation. Identifying the molecular mechanisms underlying fetal ECFC dysfunction following GDM exposure is key to ascertain mechanistically the basis for cardiovascular disease predisposition later in life.
Collapse
Affiliation(s)
- Kaela M Varberg
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
| | - Rashell O Garretson
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Emily K Blue
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Chenghao Chu
- Department of Biostatistics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Cassandra R Gohn
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
| | - Wanzhu Tu
- Department of Biostatistics, Indiana University School of Medicine , Indianapolis, Indiana
| | - Laura S Haneline
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine , Indianapolis, Indiana
- Herman B. Wells Center for Pediatric Research , Indianapolis, Indiana
- Department of Pediatrics, Indiana University School of Medicine , Indianapolis, Indiana
- Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
- Indiana University Simon Cancer Center, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
37
|
Jaslove JM, Nelson CM. Smooth muscle: a stiff sculptor of epithelial shapes. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170318. [PMID: 30249770 PMCID: PMC6158200 DOI: 10.1098/rstb.2017.0318] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2018] [Indexed: 12/11/2022] Open
Abstract
Smooth muscle is increasingly recognized as a key mechanical sculptor of epithelia during embryonic development. Smooth muscle is a mesenchymal tissue that surrounds the epithelia of organs including the gut, blood vessels, lungs, bladder, ureter, uterus, oviduct and epididymis. Smooth muscle is stiffer than its adjacent epithelium and often serves its morphogenetic function by physically constraining the growth of a proliferating epithelial layer. This constraint leads to mechanical instabilities and epithelial morphogenesis through buckling. Smooth muscle stiffness alone, without smooth muscle cell shortening, seems to be sufficient to drive epithelial morphogenesis. Fully understanding the development of organs that use smooth muscle stiffness as a driver of morphogenesis requires investigating how smooth muscle develops, a key aspect of which is distinguishing smooth muscle-like tissues from one another in vivo and in culture. This necessitates a comprehensive appreciation of the genetic, anatomical and functional markers that are used to distinguish the different subtypes of smooth muscle (for example, vascular versus visceral) from similar cell types (including myofibroblasts and myoepithelial cells). Here, we review how smooth muscle acts as a mechanical driver of morphogenesis and discuss ways of identifying smooth muscle, which is critical for understanding these morphogenetic events.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.
Collapse
Affiliation(s)
- Jacob M Jaslove
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Celeste M Nelson
- Department of Molecular Biology, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, 303 Hoyt Laboratory, William Street, Princeton, NJ 08544, USA
| |
Collapse
|
38
|
DeLalio LJ, Keller AS, Chen J, Boyce AK, Artamonov M, Askew-Page HR, Keller TS, Johnstone SR, Weaver RB, Good ME, Murphy S, Best AK, Mintz EL, Penuela S, Greenwood I, Machado RF, Somlyo AV, Swayne LA, Minshall R, Isakson BE. Interaction Between Pannexin 1 and Caveolin-1 in Smooth Muscle Can Regulate Blood Pressure. Arterioscler Thromb Vasc Biol 2018; 38:2065-2078. [PMID: 30026274 PMCID: PMC6202122 DOI: 10.1161/atvbaha.118.311290] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 06/19/2018] [Indexed: 12/31/2022]
Abstract
Objective- Sympathetic nerve innervation of vascular smooth muscle cells (VSMCs) is a major regulator of arteriolar vasoconstriction, vascular resistance, and blood pressure. Importantly, α-adrenergic receptor stimulation, which uniquely couples with Panx1 (pannexin 1) channel-mediated ATP release in resistance arteries, also requires localization to membrane caveolae. Here, we test whether localization of Panx1 to Cav1 (caveolin-1) promotes channel function (stimulus-dependent ATP release and adrenergic vasoconstriction) and is important for blood pressure homeostasis. Approach and Results- We use in vitro VSMC culture models, ex vivo resistance arteries, and a novel inducible VSMC-specific Cav1 knockout mouse to probe interactions between Panx1 and Cav1. We report that Panx1 and Cav1 colocalized on the VSMC plasma membrane of resistance arteries near sympathetic nerves in an adrenergic stimulus-dependent manner. Genetic deletion of Cav1 significantly blunts adrenergic-stimulated ATP release and vasoconstriction, with no direct influence on endothelium-dependent vasodilation or cardiac function. A significant reduction in mean arterial pressure (total=4 mm Hg; night=7 mm Hg) occurred in mice deficient for VSMC Cav1. These animals were resistant to further blood pressure lowering using a Panx1 peptide inhibitor Px1IL2P, which targets an intracellular loop region necessary for channel function. Conclusions- Translocalization of Panx1 to Cav1-enriched caveolae in VSMCs augments the release of purinergic stimuli necessary for proper adrenergic-mediated vasoconstriction and blood pressure homeostasis.
Collapse
Affiliation(s)
- Leon J. DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Alexander S. Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA
| | - Jiwang Chen
- Department of Medicine, The University of Illinois at Chicago, Chicago, IL
| | - Andrew K.J. Boyce
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Mykhaylo Artamonov
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Henry R. Askew-Page
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - T.C. Stevenson Keller
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Rachel B. Weaver
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Miranda E. Good
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Sara Murphy
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Angela K. Best
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
| | - Ellen L. Mintz
- Department of Biomedical Engineering, University of Virginia School of Engineering, Charlottesville, VA
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich Scholl of Medicine and Dentistry, University of Western Ontario, London ON, Canada
| | - Iain Greenwood
- Molecular and Clinical Sciences Research Institute, St. George’s University London UK
| | - Roberto F. Machado
- Division of Pulmonary, Critical Care, Sleep, & Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Avril V. Somlyo
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| | - Leigh Anne Swayne
- Division of Medical Sciences, Centre for Biomedical Research, University of Victoria, Victoria, BC Canada
| | - Richard Minshall
- Department of Pharmacology and Department of Anesthesiology, The University of Illinois at Chicago, Chicago, IL
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA
- Department of Molecular Physiology and Biophysics, University of Virginia, Charlottesville, VA
| |
Collapse
|
39
|
Jo S, Kim HR, Mun Y, Jun CD. Transgelin-2 in immunity: Its implication in cell therapy. J Leukoc Biol 2018; 104:903-910. [PMID: 29749649 DOI: 10.1002/jlb.mr1117-470r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 12/31/2022] Open
Abstract
Transgelin-2 is a small 22-kDa actin-binding protein implicated in actin dynamics, which stabilizes actin structures and participates in actin-associated signaling pathways. Much curiosity regarding transgelin-2 has centered around its dysregulation in tumor development and associated diseases. However, recent studies have shed new light on the functions of transgelin-2, the only transgelin family member present in leukocytes, in the context of various immune responses. In this review, we outlined the biochemical properties of transgelin-2 and its physiological functions in T cells, B cells, and macrophages. Transgelin-2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. Transgelin-2 in B cells also participates in the stabilization of T cell-B cell conjugates. While transgelin-2 is expressed at trace levels in macrophages, its expression is highly upregulated upon lipopolysaccharide stimulation and plays an essential role in macrophage phagocytosis. Since transgelin-2 increases T cell adhesion to target cells via boosting the "inside-out" costimulatory activation of leukocyte function-associated antigen 1, transgelin-2 could be a suitable candidate to potentiate the antitumor response of cytotoxic T cells by compensating for the lack of costimulation in tumor microenvironment. We discussed the feasibility of using native or engineered transgelin-2 as a synergistic molecule in cell-based immunotherapies, without inducing off-target disturbance in actin dynamics in other cells.
Collapse
Affiliation(s)
- Suin Jo
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Hye-Ran Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - YeVin Mun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Chang-Duk Jun
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea.,Immune Synapse and Cell Therapy Research Center, Gwangju Institute of Science and Technology, Gwangju, Korea
| |
Collapse
|
40
|
Zhang L, Xu Z, Wu Y, Liao J, Zeng F, Shi L. Akt/eNOS and MAPK signaling pathways mediated the phenotypic switching of thoracic aorta vascular smooth muscle cells in aging/hypertensive rats. Physiol Res 2018; 67:543-553. [PMID: 29750880 DOI: 10.33549/physiolres.933779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Considerable evidence demonstrates that phenotypic switching of vascular smooth muscle cells (VSMCs) is influenced by aging and hypertension. During phenotypic switching, VSMCs undergo a switch to a proliferative and migratory phenotype, with this switch being a common pathology in cardiovascular diseases. The aim of this study was to explore the joint influence of age and hypertension on thoracic aortic smooth muscle phenotypic switching and the balance of Akt and mitogen-activated protein kinase (MAPK) signaling during this switch. Different ages of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were used to establish hypertension and aging models. The phenotypic state was determined by detecting the marker proteins alpha-SM-actin, calponin, and osteopontin (OPN) via immunohistochemical staining and Western blot. Signaling proteins associated with the Akt and MAPK pathways were detected in rat thoracic aorta using Western blot. Both aging and hypertension caused a decrease in contractile (differentiated) phenotype markers (alpha-SM-actin and calponin), while the synthetic (proliferative or de-differentiated) phenotype maker was elevated (OPN). When combining hypertension and aging, this effect was enhanced, with Akt signaling decreased, while MAPK signaling was increased. These results suggested that VSMCs phenotype switching is modulated by a balance between Akt and MAPK signaling in the process of aging and hypertension.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Exercise Physiology, Beijing Sport University, Beijing, P. R. China.
| | | | | | | | | | | |
Collapse
|
41
|
TAGLN2 polymerizes G-actin in a low ionic state but blocks Arp2/3-nucleated actin branching in physiological conditions. Sci Rep 2018; 8:5503. [PMID: 29615809 PMCID: PMC5883021 DOI: 10.1038/s41598-018-23816-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/20/2018] [Indexed: 11/12/2022] Open
Abstract
TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2—G-actin polymerization and Arp2/3 complex inhibition—may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types.
Collapse
|
42
|
Miao SB, Xie XL, Yin YJ, Zhao LL, Zhang F, Shu YN, Chen R, Chen P, Dong LH, Lin YL, Lv P, Zhang DD, Nie X, Xue ZY, Han M. Accumulation of Smooth Muscle 22α Protein Accelerates Senescence of Vascular Smooth Muscle Cells via Stabilization of p53 In Vitro and In Vivo. Arterioscler Thromb Vasc Biol 2017; 37:1849-1859. [DOI: 10.1161/atvbaha.117.309378] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 08/01/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Sui-Bing Miao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xiao-Li Xie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Juan Yin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Li Zhao
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Fan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ya-Nan Shu
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Rong Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Peng Chen
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Li-Hua Dong
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Yan-Ling Lin
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Pin Lv
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Dan-Dan Zhang
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Xi Nie
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Zhen-Ying Xue
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| | - Mei Han
- From the Department of Biochemistry and Molecular Biology, College of Basic Medicine, Key Laboratory of Medical Biotechnology of Hebei Province, and Key Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
43
|
Belcastro E, Wu W, Fries-Raeth I, Corti A, Pompella A, Leroy P, Lartaud I, Gaucher C. Oxidative stress enhances and modulates protein S -nitrosation in smooth muscle cells exposed to S -nitrosoglutathione. Nitric Oxide 2017; 69:10-21. [DOI: 10.1016/j.niox.2017.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 12/23/2022]
|
44
|
An Essential Role for TAGLN2 in Phagocytosis of Lipopolysaccharide-activated Macrophages. Sci Rep 2017; 7:8731. [PMID: 28821818 PMCID: PMC5562783 DOI: 10.1038/s41598-017-09144-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/28/2017] [Indexed: 01/27/2023] Open
Abstract
Activated macrophages have a greater ability of phagocytosis against pathogens that is mediated by large-scale actin rearrangement. However, molecular machineries that conduct this task have not been fully identified. Here, we demonstrate an unanticipated role of TAGLN2, a 22-kDa actin-binding protein, in Toll-like receptor (TLR)-stimulated phagocytosis. TAGLN2 was greatly induced in macrophages in response to lipopolysaccharide (LPS), a ligand for TLR4, partly via the NF-κB pathway. TAGLN2-deficient macrophages (TAGLN2−/−) showed defective phagocytic functions of IgM- and IgG-coated sheep red blood cells as well as bacteria. Cell signaling pathways involved in actin rearrangement—PI3 kinase/AKT and Ras-ERK—were also down-regulated in LPS-stimulated TAGLN2-deficient macrophages. Moreover, TAGLN2−/− mice showed higher mortality after bacterial infection than wild-type littermates. Thus, our results revealed a novel function of TAGLN2 as a molecular armament required for host defense.
Collapse
|
45
|
Liu X, Wang J, Dong F, Li H, Hou Y. Induced differentiation of human gingival fibroblasts into VSMC-like cells. Differentiation 2017; 95:1-9. [PMID: 28107746 DOI: 10.1016/j.diff.2017.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/31/2016] [Accepted: 01/05/2017] [Indexed: 01/08/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are major component of the vascular wall, and they play an essential role in maintaining the basic physiological function and stable structure of the vascular wall. In the present study, human gingival fibroblasts (HGFs) were cultured and induced into VSMC-like cells in vitro to confirm that HGFs with properties of stem cells have the potential for differentiation. The epithelium isolated from patients was extracted from normal human gingiva consisting of epithelium and connective tissue. HGFs were first identified by morphological examination, as well as specific gene and protein expression, and then induced by 10ng/mL PDGF-BB combined with 2ng/mL of TGF-β1 for 28 days. After induction, ICS data indicated that induced VSMC-like cells were positive for α-SMA and SM-MHC, and IFA data showed that induced cells were positive for SM22α and Cnn1. RT-PCR results demonstrated that α-SMA and SM-MHC mRNA were specifically expressed, and myofilament-like structures also appeared in induced cells. In conclusion, the data indicated that HGFs could differentiate to VSMC-like cells with typical VSMC morphologic, ultrastructural, and immunological characteristics via induction with PDGF-BB and TGF-β1.
Collapse
Affiliation(s)
- Xuqian Liu
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jie Wang
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China.
| | - Fusheng Dong
- Department of Oral and Maxillofacial Surgery, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, China
| | - Hexiang Li
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yali Hou
- Department of Oral Pathology, The Key Laboratory of Stomatology, College of Stomatology, Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
46
|
MRTF-A signaling regulates the acquisition of the contractile phenotype in dedifferentiated chondrocytes. Matrix Biol 2016; 62:3-14. [PMID: 27751947 DOI: 10.1016/j.matbio.2016.10.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022]
Abstract
Chondrocyte culture as a monolayer for cell number expansion results in dedifferentiation whereby expanded cells acquire contractile features and increased actin polymerization status. This study determined whether the actin polymerization based signaling pathway, myocardin-related transcription factor-a (MRTF-A) is involved in regulating this contractile phenotype. Serial passaging of chondrocytes in monolayer culture to passage 2 resulted in increased gene and protein expression of the contractile molecules alpha-smooth muscle actin, transgelin and vinculin compared to non-passaged, primary cells. This resulted in a functional change as passaged 2, but not primary, chondrocytes were capable of contracting type I collagen gels in a stress-relaxed contraction assay. These changes were associated with increased actin polymerization and MRTF-A nuclear localization. The involvement of actin was demonstrated by latrunculin B depolymerization of actin which reversed these changes. Alternatively cytochalasin D which activates MRTF-A increased gene and protein expression of α-smooth muscle actin, transgelin and vinculin, whereas CCG1423 which deactivates MRTF-A decreased these molecules. The involvement of MRTF-A signaling was confirmed by gene silencing of MRTF or its co-factor serum response factor. Knockdown experiments revealed downregulation of α-smooth muscle actin and transgelin gene and protein expression, and inhibition of gel contraction. These findings demonstrate that passaged chondrocytes acquire a contractile phenotype and that this change is modulated by the actin-MRTF-A-serum response factor signaling pathway.
Collapse
|
47
|
Lv P, Zhang F, Yin YJ, Wang YC, Gao M, Xie XL, Zhao LL, Dong LH, Lin YL, Shu YN, Zhang DD, Liu GX, Han M. SM22α inhibits lamellipodium formation and migration via Ras-Arp2/3 signaling in synthetic VSMCs. Am J Physiol Cell Physiol 2016; 311:C758-C767. [PMID: 27629412 DOI: 10.1152/ajpcell.00033.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 09/07/2016] [Indexed: 02/03/2023]
Abstract
We previously demonstrated that smooth muscle (SM) 22α promotes the migration activity in contractile vascular smooth muscle cells (VSMCs). Based on the varied functions exhibited by SM22α in different VSMC phenotypes, we investigated the effect of SM22α on VSMC migration under pathological conditions. The results demonstrated that SM22α overexpression in synthetic VSMCs inhibited platelet-derived growth factor (PDGF)-BB-induced cell lamellipodium formation and migration, which was different from its action in contractile cells. The results indicated two distinct mechanisms underlying inhibition of lamellipodium formation by SM22α, increased actin dynamic stability and decreased Ras activity via interference with interactions between Ras and guanine nucleotide exchange factor. The former inhibited actin cytoskeleton rearrangement in the cell cortex, while the latter significantly disrupted actin nucleation activation of the Arp2/3 complex. Baicalin, a herb-derived flavonoid compound, inhibited VSMC migration via upregulation of SM22α expression in vitro and in vivo. These data suggest that SM22α regulates lamellipodium formation and cell migration in a phenotype-dependent manner in VSMCs, which may be a new therapeutic target for vascular lesion formation.
Collapse
Affiliation(s)
- Pin Lv
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Fan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Juan Yin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yu-Can Wang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Min Gao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Li Xie
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Li Zhao
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Li-Hua Dong
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yan-Ling Lin
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ya-Nan Shu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Zhang
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Gui-Xia Liu
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Mei Han
- Key Laboratory of Medical Biotechnology of Hebei Province, Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
48
|
Insulin-independent GLUT4 translocation in proliferative vascular smooth muscle cells involves SM22α. J Mol Med (Berl) 2016; 95:181-192. [DOI: 10.1007/s00109-016-1468-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/30/2023]
|
49
|
Nakai T, Sakai D, Nakamura Y, Nukaga T, Grad S, Li Z, Alini M, Chan D, Masuda K, Ando K, Mochida J, Watanabe M. CD146 defines commitment of cultured annulus fibrosus cells to express a contractile phenotype. J Orthop Res 2016; 34:1361-72. [PMID: 27273299 DOI: 10.1002/jor.23326] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/27/2016] [Indexed: 02/04/2023]
Abstract
Characterization of cells is important for facilitating cell-based therapies for degenerative diseases of intervertebral discs. For this purpose, we analyzed mouse annulus fibrosus cells by flowcytometory to detect phenotypic change in their primary cultures. After examination of sixteen cell surface proteins, we focused on CD146 that solely increased during culture expansion. CD146 is known to be a marker for mesenchymal stem cells and for their vascular smooth muscle commitment with expression of contractile phenotype enhanced by SM22α. We sorted CD146+ cells to elucidate their characteristics and the key factors that play a role in this change. Whole cell cultures showed the ability for tripotent differentiation toward mesenchymal lineages, whereas sorted CD146+ cells did not. Expression of CD146 was elevated by addition of transforming growth factor β1, and sorted CD146+ cells expressed higher levels of mRNA for SM22α and Elastin than did CD146- cells. Morphologically, CD146+ cells more broadly deposited extracellular type I collagen than CD146- cells and showed filamentous actin bundles traversing their cytoplasm and cell-cell junctions. Moreover, CD146+ cells demonstrated significantly higher gel contraction properties than CD146- cells when they were embedded in collagen gels. Human annulus fibrosus CD146+ cells also showed higher contractility. Immunohistochemistry determined CD146+ cells localized to the outermost annulus layers of mouse intervertebral disc tissue with co-expression of SM22α. These results suggest that increment of CD146 expression indicates gradual change of cultured annulus fibrosus cells to express a contractile phenotype and that transforming growth factor β1 enhances this cellular commitment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1361-1372, 2016.
Collapse
Affiliation(s)
- Tomoko Nakai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| | - Daisuke Sakai
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan.,Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan.,AO Spine Research Network, AO Spine International, Davos, Switzerland
| | - Yoshihiko Nakamura
- Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Tadashi Nukaga
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| | - Sibylle Grad
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Zhen Li
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,AO Research Institute Davos, Davos, Switzerland
| | - Danny Chan
- AO Spine Research Network, AO Spine International, Davos, Switzerland.,School of Biomedical Sciences, The University of Hong Kong, Hong Kong, China
| | - Koichi Masuda
- Department of Orthopedic Surgery, University of California, San Diego, La Jolla, California, 90293-0863
| | - Kiyoshi Ando
- Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Joji Mochida
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan.,Research Center for Regenerative Medicine and Cancer Stem Cell, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193, Japan
| | - Masahiko Watanabe
- Department of Orthopedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1143, Japan
| |
Collapse
|
50
|
Hong F, Brizendine RK, Carter MS, Alcala DB, Brown AE, Chattin AM, Haldeman BD, Walsh MP, Facemyer KC, Baker JE, Cremo CR. Diffusion of myosin light chain kinase on actin: A mechanism to enhance myosin phosphorylation rates in smooth muscle. ACTA ACUST UNITED AC 2016; 146:267-80. [PMID: 26415568 PMCID: PMC4586593 DOI: 10.1085/jgp.201511483] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Smooth muscle myosin (SMM) light chain kinase (MLCK) phosphorylates SMM, thereby activating the ATPase activity required for muscle contraction. The abundance of active MLCK, which is tightly associated with the contractile apparatus, is low relative to that of SMM. SMM phosphorylation is rapid despite the low ratio of MLCK to SMM, raising the question of how one MLCK rapidly phosphorylates many SMM molecules. We used total internal reflection fluorescence microscopy to monitor single molecules of streptavidin-coated quantum dot-labeled MLCK interacting with purified actin, actin bundles, and stress fibers of smooth muscle cells. Surprisingly, MLCK and the N-terminal 75 residues of MLCK (N75) moved on actin bundles and stress fibers of smooth muscle cell cytoskeletons by a random one-dimensional (1-D) diffusion mechanism. Although diffusion of proteins along microtubules and oligonucleotides has been observed previously, this is the first characterization to our knowledge of a protein diffusing in a sustained manner along actin. By measuring the frequency of motion, we found that MLCK motion is permitted only if acto-myosin and MLCK-myosin interactions are weak. From these data, diffusion coefficients, and other kinetic and geometric considerations relating to the contractile apparatus, we suggest that 1-D diffusion of MLCK along actin (a) ensures that diffusion is not rate limiting for phosphorylation, (b) allows MLCK to locate to areas in which myosin is not yet phosphorylated, and (c) allows MLCK to avoid getting "stuck" on myosins that have already been phosphorylated. Diffusion of MLCK along actin filaments may be an important mechanism for enhancing the rate of SMM phosphorylation in smooth muscle.
Collapse
Affiliation(s)
- Feng Hong
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Richard K Brizendine
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael S Carter
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Diego B Alcala
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Avery E Brown
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Amy M Chattin
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Brian D Haldeman
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Michael P Walsh
- Department of Biochemistry and Molecular Biology, University of Calgary Faculty of Medicine, Calgary, Alberta T2N 4N1, Canada
| | - Kevin C Facemyer
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Josh E Baker
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| | - Christine R Cremo
- Department of Biochemistry and Molecular Biology, University of Nevada School of Medicine, Reno, NV 99557
| |
Collapse
|