1
|
Muir J, Anguiano M, Kim CK. Neuromodulator and neuropeptide sensors and probes for precise circuit interrogation in vivo. Science 2024; 385:eadn6671. [PMID: 39325905 PMCID: PMC11488521 DOI: 10.1126/science.adn6671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 09/28/2024]
Abstract
To determine how neuronal circuits encode and drive behavior, it is often necessary to measure and manipulate different aspects of neurochemical signaling in awake animals. Optogenetics and calcium sensors have paved the way for these types of studies, allowing for the perturbation and readout of spiking activity within genetically defined cell types. However, these methods lack the ability to further disentangle the roles of individual neuromodulator and neuropeptides on circuits and behavior. We review recent advances in chemical biology tools that enable precise spatiotemporal monitoring and control over individual neuroeffectors and their receptors in vivo. We also highlight discoveries enabled by such tools, revealing how these molecules signal across different timescales to drive learning, orchestrate behavioral changes, and modulate circuit activity.
Collapse
Affiliation(s)
- J. Muir
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - M. Anguiano
- Neuroscience Graduate Group, University of California, Davis, Davis, CA 95616, USA
| | - C. K. Kim
- Center for Neuroscience, University of California, Davis, Davis, CA 95618, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Sayar-Atasoy N, Yavuz Y, Laule C, Dong C, Kim H, Rysted J, Flippo K, Davis D, Aklan I, Yilmaz B, Tian L, Atasoy D. Opioidergic signaling contributes to food-mediated suppression of AgRP neurons. Cell Rep 2024; 43:113630. [PMID: 38165803 PMCID: PMC10865729 DOI: 10.1016/j.celrep.2023.113630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2023] [Accepted: 12/13/2023] [Indexed: 01/04/2024] Open
Abstract
Opioids are generally known to promote hedonic food consumption. Although much of the existing evidence is primarily based on studies of the mesolimbic pathway, endogenous opioids and their receptors are widely expressed in hypothalamic appetite circuits as well; however, their role in homeostatic feeding remains unclear. Using a fluorescent opioid sensor, deltaLight, here we report that mediobasal hypothalamic opioid levels increase by feeding, which directly and indirectly inhibits agouti-related protein (AgRP)-expressing neurons through the μ-opioid receptor (MOR). AgRP-specific MOR expression increases by energy surfeit and contributes to opioid-induced suppression of appetite. Conversely, its antagonists diminish suppression of AgRP neuron activity by food and satiety hormones. Mice with AgRP neuron-specific ablation of MOR expression have increased fat preference without increased motivation. These results suggest that post-ingestion release of endogenous opioids contributes to AgRP neuron inhibition to shape food choice through MOR signaling.
Collapse
Affiliation(s)
- Nilufer Sayar-Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yavuz Yavuz
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Connor Laule
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Chunyang Dong
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Hyojin Kim
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob Rysted
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kyle Flippo
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Debbie Davis
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Iltan Aklan
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Bayram Yilmaz
- Department of Physiology, School of Medicine, Yeditepe University, Istanbul 34755, Turkey
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
3
|
Georgakouli K, Manthou E, Fatouros IG, Deli CK, Koutedakis Y, Theodorakis Y, Jamurtas AZ. HPA-Axis Activity and Nutritional Status Correlation in Individuals with Alcohol Use Disorder. Nutrients 2022; 14:nu14234978. [PMID: 36501008 PMCID: PMC9739565 DOI: 10.3390/nu14234978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Impaired activity of the hypothalamic-pituitary-adrenal axis (HPA-axis) is evident in alcohol use disorder (AUD), and may be implicated in various nutritional and metabolic alterations often seen in individuals with this disorder. The present study examined a possible correlation between HPA-axis activity and nutritional status components in individuals with AUD. Fourteen AUD and fourteen non-AUD males participated; anthropometric and body composition measurements were made, and fasting blood samples were analysed for plasma adrenal corticotropic hormone (ACTH), catecholamines, cortisol and beta-endorphin. Nutrient intake was estimated via a three-day diet record. Waist circumference and waist-to-hip ratio were increased in the AUD group. Thiamine and folic intake were lower in AUD group, although only folic acid intake was insufficient in both AUD and non-AUD groups. Increased epinephrine and norepinephrine were also observed in AUD group compared to non-AUD group. No clear correlation between HPA-axis activity and nutritional status components was found. This study showed that nutrient intake, body composition, and HPA-axis activity were different among AUD and non-AUD individuals. More research on the correlation between nutritional status and HPA-axis activity in AUD individuals should be conducted.
Collapse
Affiliation(s)
- Kalliopi Georgakouli
- Department of Nutrition and Dietetics, University of Thessaly, 42132 Trikala, Greece
| | - Eirini Manthou
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Ioannis G. Fatouros
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Chariklia K. Deli
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Yiannis Koutedakis
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Yannis Theodorakis
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Athanasios Z. Jamurtas
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
- Correspondence: ; Tel.: +30−24310−47054
| |
Collapse
|
4
|
Matsumura S, Ishikawa F, Sasaki T, Terkelsen MK, Ravnskjaer K, Jinno T, Tanaka J, Goto T, Inoue K. Loss of CREB Coactivator CRTC1 in SF1 Cells Leads to Hyperphagia and Obesity by High-fat Diet But Not Normal Chow Diet. Endocrinology 2021; 162:6224280. [PMID: 33846709 PMCID: PMC8682520 DOI: 10.1210/endocr/bqab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/19/2022]
Abstract
Cyclic adenosine monophosphate responsive element-binding protein-1-regulated transcription coactivator-1 (CRTC1) is a cytoplasmic coactivator that translocates to the nucleus in response to cyclic adenosine monophosphate. Whole-body knockdown of Crtc1 causes obesity, resulting in increased food intake and reduced energy expenditure. CRTC1 is highly expressed in the brain; therefore, it might play an important role in energy metabolism via the neuronal pathway. However, the precise mechanism by which CRTC1 regulates energy metabolism remains unknown. Here, we showed that mice lacking CRTC1, specifically in steroidogenic factor-1 expressing cells (SF1 cells), were sensitive to high-fat diet (HFD)-induced obesity, exhibiting hyperphagia and increased body weight gain. The loss of CRTC1 in SF1 cells impaired glucose metabolism. Unlike whole-body CRTC1 knockout mice, SF1 cell-specific CRTC1 deletion did not affect body weight gain or food intake in normal chow feeding. Thus, CRTC1 in SF1 cells is required for normal appetite regulation in HFD-fed mice. CRTC1 is primarily expressed in the brain. Within the hypothalamus, which plays an important role for appetite regulation, SF1 cells are only found in ventromedial hypothalamus. RNA sequencing analysis of microdissected ventromedial hypothalamus samples revealed that the loss of CRTC1 significantly changed the expression levels of certain genes. Our results revealed the important protective role of CRTC1 in SF1 cells against dietary metabolic imbalance.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, 583-8555, Japan
- Correspondence: Shigenobu Matsumura, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Habikino, Osaka, 583-8555, Japan. E-mail:
| | - Fuka Ishikawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mike Krogh Terkelsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Kim Ravnskjaer
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Tomoki Jinno
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Jin Tanaka
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Tsuyoshi Goto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| | - Kazuo Inoue
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Gokasho, Kyoto, 611-0011, Japan
| |
Collapse
|
5
|
Pilozzi A, Carro C, Huang X. Roles of β-Endorphin in Stress, Behavior, Neuroinflammation, and Brain Energy Metabolism. Int J Mol Sci 2020; 22:E338. [PMID: 33396962 PMCID: PMC7796446 DOI: 10.3390/ijms22010338] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/23/2020] [Accepted: 12/26/2020] [Indexed: 12/25/2022] Open
Abstract
β-Endorphins are peptides that exert a wide variety of effects throughout the body. Produced through the cleavage pro-opiomelanocortin (POMC), β-endorphins are the primarily agonist of mu opioid receptors, which can be found throughout the body, brain, and cells of the immune system that regulate a diverse set of systems. As an agonist of the body's opioid receptors, β-endorphins are most noted for their potent analgesic effects, but they also have their involvement in reward-centric and homeostasis-restoring behaviors, among other effects. These effects have implicated the peptide in psychiatric and neurodegenerative disorders, making it a research target of interest. This review briefly summarizes the basics of endorphin function, goes over the behaviors and regulatory pathways it governs, and examines the variability of β-endorphin levels observed between normal and disease/disorder affected individuals.
Collapse
Affiliation(s)
| | | | - Xudong Huang
- Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; (A.P.); (C.C.)
| |
Collapse
|
6
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
7
|
Matsumura S, Odanaka M, Ishikawa F, Sasaki T, Manio MCC, Fushiki T, Inoue K. Chronic high corticosterone with voluntary corn oil ingestion induces significant body weight gain in mice. Physiol Behav 2019; 204:112-120. [DOI: 10.1016/j.physbeh.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/28/2022]
|
8
|
Jaremka LM, Sunami N, Nadzan MA. Eating moderates the link between body mass index and perceived social connection. Appetite 2017; 112:124-132. [PMID: 28109731 DOI: 10.1016/j.appet.2017.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 10/20/2022]
Abstract
Some studies have demonstrated that heavier people perceive themselves as lacking social connections, whereas others have not. The current study investigated whether eating alters the link between body mass index (BMI) and perceived social connection, providing one explanation for inconsistencies across previous studies. Participants were instructed to refrain from eating or drinking anything except water after 9 p.m. the prior night. Upon arrival at the lab, participants were assigned to the food (n = 63) or no food (n = 110) condition. They also provided a saliva sample that was assayed for ghrelin (an appetite-relevant hormone), and completed a series of questionnaires about their relationships. Participants with a higher BMI felt more socially disconnected than people with a lower BMI, but only among those who had not recently eaten. BMI and perceived social disconnection were unrelated among people who had recently eaten. These results were consistent across multiple measures of perceived social disconnection, and also across the experimental manipulation and continuously measured ghrelin.
Collapse
Affiliation(s)
- Lisa M Jaremka
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Naoyuki Sunami
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Megan A Nadzan
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
9
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Lee S, Adachi SI, Fujitani M, Tsuzuki S, Inoue K, Fushiki T. Mechanisms Involved in Guiding the Preference for Fat Emulsion Differ Depending on the Concentration. J Nutr Sci Vitaminol (Tokyo) 2016; 61:247-54. [PMID: 26226962 DOI: 10.3177/jnsv.61.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
High-fat foods tend to be palatable and can cause addiction in mice via a reinforcing effect. However, mice showed preference for low fat concentrations that do not elicit a reinforcing effect in a two-bottle choice test with water as the alternative. This behavior indicates the possibility that the mechanism underlying fat palatability may differ depending on the dietary fat content. To address this issue, we examined the influences of the opioid system and olfactory and gustatory transductions on the intake and reinforcing effects of various concentrations of a dietary fat emulsion (Intralipid). We found that the intake and reinforcing effects of fat emulsion were reduced by the administration of an opioid receptor antagonist (naltrexone). Furthermore, the action of naltrexone was only observed at higher concentrations of fat emulsion. The intake and the reinforcing effects of fat emulsion were also reduced by olfactory and glossopharyngeal nerve transections (designated ONX and GLX, respectively). In contrast to naltrexone, the effects of ONX and GLX were mainly observed at lower concentrations of fat emulsion. These results imply that the opioid system seems to have a greater role in determining the palatability of high-fat foods unlike the contribution of olfactory and glossopharyngeal nerves.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Bodnar RJ. Endogenous opioids and feeding behavior: A decade of further progress (2004-2014). A Festschrift to Dr. Abba Kastin. Peptides 2015; 72:20-33. [PMID: 25843025 DOI: 10.1016/j.peptides.2015.03.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 12/13/2022]
Abstract
Functional elucidation of the endogenous opioid system temporally paralleled the creation and growth of the journal, Peptides, under the leadership of its founding editor, Dr. Abba Kastin. He was prescient in publishing annual and uninterrupted reviews on Endogenous Opiates and Behavior that served as a microcosm for the journal under his stewardship. This author published a 2004 review, "Endogenous opioids and feeding behavior: a thirty-year historical perspective", summarizing research in this field between 1974 and 2003. The present review "closes the circle" by reviewing the last 10 years (2004-2014) of research examining the role of endogenous opioids and feeding behavior. The review summarizes effects upon ingestive behavior following administration of opioid receptor agonists, in opioid receptor knockout animals, following administration of general opioid receptor antagonists, following administration of selective mu, delta, kappa and ORL-1 receptor antagonists, and evaluating opioid peptide and opioid receptor changes in different food intake models.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Behavioral and Cognitive Neuroscience Doctoral Program Cluster, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
11
|
Sakamoto K, Matsumura S, Okafuji Y, Eguchi A, Yoneda T, Mizushige T, Tsuzuki S, Inoue K, Fushiki T. The opioid system contributes to the acquisition of reinforcement for dietary fat but is not required for its maintenance. Physiol Behav 2015; 138:227-35. [DOI: 10.1016/j.physbeh.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/31/2014] [Accepted: 11/02/2014] [Indexed: 10/24/2022]
|
12
|
Sakamoto K, Okahashi T, Matsumura S, Okafuji Y, Adachi SI, Tsuzuki S, Inoue K, Fushiki T. The opioid system majorly contributes to preference for fat emulsions but not sucrose solutions in mice. Biosci Biotechnol Biochem 2014; 79:658-63. [PMID: 25516200 DOI: 10.1080/09168451.2014.991688] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Rodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion. Administration of non-selective and mu-selective opioid receptor antagonists more strongly inhibited the preference of fat than sucrose. While the preference of fat was reduced to the same level as water by the antagonist administration that of sucrose was still greater than water. Our results suggest that the preference of fat relies strongly on the opioid system, while that of sucrose is regulated by other mechanisms in addition to the opioid system.
Collapse
Affiliation(s)
- Kazuhiro Sakamoto
- a Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Increased Levels of Extracellular Dopamine in the Nucleus Accumbens and Amygdala of Rats by Ingesting a Low Concentration of a Long-Chain Fatty Acid. Biosci Biotechnol Biochem 2014; 77:2175-80. [DOI: 10.1271/bbb.130234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Giordano C, Marchiò M, Timofeeva E, Biagini G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front Neurol 2014; 5:63. [PMID: 24808888 PMCID: PMC4010764 DOI: 10.3389/fneur.2014.00063] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022] Open
Abstract
Various ketogenic diet (KD) therapies, including classic KD, medium chain triglyceride administration, low glycemic index treatment, and a modified Atkins diet, have been suggested as useful in patients affected by pharmacoresistant epilepsy. A common goal of these approaches is to achieve an adequate decrease in the plasma glucose level combined with ketogenesis, in order to mimic the metabolic state of fasting. Although several metabolic hypotheses have been advanced to explain the anticonvulsant effect of KDs, including changes in the plasma levels of ketone bodies, polyunsaturated fatty acids, and brain pH, direct modulation of neurotransmitter release, especially purinergic (i.e., adenosine) and γ-aminobutyric acidergic neurotransmission, was also postulated. Neuropeptides and peptide hormones are potent modulators of synaptic activity, and their levels are regulated by metabolic states. This is the case for neuroactive peptides such as neuropeptide Y, galanin, cholecystokinin, and peptide hormones such as leptin, adiponectin, and growth hormone-releasing peptides (GHRPs). In particular, the GHRP ghrelin and its related peptide des-acyl ghrelin are well-known controllers of energy homeostasis, food intake, and lipid metabolism. Notably, ghrelin has also been shown to regulate the neuronal excitability and epileptic activation of neuronal networks. Several lines of evidence suggest that GHRPs are upregulated in response to starvation and, particularly, in patients affected by anorexia and cachexia, all conditions in which also ketone bodies are upregulated. Moreover, starvation and anorexia nervosa are accompanied by changes in other peptide hormones such as adiponectin, which has received less attention. Adipocytokines such as adiponectin have also been involved in modulating epileptic activity. Thus, neuroactive peptides whose plasma levels and activity change in the presence of ketogenesis might be potential candidates for elucidating the neurohormonal mechanisms involved in the beneficial effects of KDs. In this review, we summarize the current evidence for altered regulation of the synthesis of neuropeptides and peripheral hormones in response to KDs, and we try to define a possible role for specific neuroactive peptides in mediating the antiepileptic properties of diet-induced ketogenesis.
Collapse
Affiliation(s)
- Carmela Giordano
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maddalena Marchiò
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neuropediatric Unit, Department of Medical and Surgical Sciences for Children and Adults, Policlinico Hospital, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| | - Elena Timofeeva
- Département Psychiatrie et Neurosciences, Faculté de Médecine, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Giuseppe Biagini
- Laboratory of Experimental Epileptology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, NOCSAE Hospital, Modena, Italy
| |
Collapse
|
15
|
Fushiki T. Why fat is so preferable: from oral fat detection to inducing reward in the brain. Biosci Biotechnol Biochem 2014; 78:363-9. [DOI: 10.1080/09168451.2014.905186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Abstract
Potential mechanisms underlying the high palatability of fat can be assessed by reviewing animal studies on fat detection and brain patterns during reward behavior. Fatty acids are likely recognized by receptors on taste buds, with the signals transmitted to the brain through taste nerves. Ingested oil is broken down and absorbed in the gastrointestinal tract, which also sends signals to the brain through unknown mechanisms. Information from both sensory receptors and peripheral tissue is integrated by the brain, resulting in a strong appetite for fatty foods via a reward system. Understanding mechanisms of fat recognition will prove valuable in the development of strategies to manage the high palatability of foods.
Collapse
Affiliation(s)
- Tohru Fushiki
- Division of Food Science & Biochemistry, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
16
|
Kraft TT, Yakubov Y, Huang D, Fitzgerald G, Acosta V, Natanova E, Touzani K, Sclafani A, Bodnar RJ. Dopamine D1 and opioid receptor antagonism effects on the acquisition and expression of fat-conditioned flavor preferences in BALB/c and SWR mice. Pharmacol Biochem Behav 2013; 110:127-36. [DOI: 10.1016/j.pbb.2013.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 06/19/2013] [Accepted: 06/22/2013] [Indexed: 11/25/2022]
|
17
|
Nishinaka T, Matsumoto K, Nakamoto K, Anbo A, Mankura M, Koyama Y, Tokuyama S. Elucidation of Mechanisms Underlying Docosahexaenoic Acid-induced Antinociception. YAKUGAKU ZASSHI 2013; 133:493-9. [DOI: 10.1248/yakushi.12-00278-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takashi Nishinaka
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Kengo Matsumoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Akihiro Anbo
- Department of Biochemistry, Tohoku Pharmaceutical University
| | | | - Yutaka Koyama
- Laboratory of Pharmacology, Faculty of Pharmacy, Osaka Ohtani University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
18
|
Belivani M, Dimitroula C, Katsiki N, Apostolopoulou M, Cummings M, Hatzitolios AI. Acupuncture in the treatment of obesity: a narrative review of the literature. Acupunct Med 2012; 31:88-97. [PMID: 23153472 DOI: 10.1136/acupmed-2012-010247] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Obesity is one of the leading health risk factors worldwide and is associated with several other risk factors and health problems including type 2 diabetes mellitus, cardiovascular disease and malignancies. Current conventional therapeutic strategies for obesity cannot achieve adequate weight control in all patients, so complementary types of treatment are also performed. Acupuncture, one of the oldest healing practices, represents the most rapidly growing complementary therapy which is recognised by both the National Institutes of Health and the WHO. A previous review concluded that acupuncture was superior to lifestyle advice, to sham acupuncture and to conventional medication. In this narrative review, the possible mechanisms of actions and the results of recent experimental and clinical studies with different forms of acupuncture (eg, body, auricular, manual and electroacupuncture) are presented. In particular, the effects of acupuncture on anorexigenic and orexigenic peptides, insulin resistance, lipid metabolism and inflammatory markers are discussed. Both experimental and clinical current data suggest that acupuncture exerts beneficial effects on the mechanisms of obesity. Some data suggest that electroacupuncture may be more effective than manual acupuncture; however, the most effective frequency remains controversial. Combination of different forms of acupuncture with diet and exercise seems to be necessary for achieving and maintaining weight loss. Further prospective clinical trials are needed to establish the effectiveness of this complementary method for obesity treatment.
Collapse
Affiliation(s)
- Maria Belivani
- First Propedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 1 Stilponos Kyriakidi Street, 54646, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
19
|
Higuchi S, Irie K, Yamaguchi R, Katsuki M, Araki M, Ohji M, Hayakawa K, Mishima S, Akitake Y, Matsuyama K, Mishima K, Mishima K, Iwasaki K, Fujiwara M. Hypothalamic 2-arachidonoylglycerol regulates multistage process of high-fat diet preferences. PLoS One 2012; 7:e38609. [PMID: 22737214 PMCID: PMC3380864 DOI: 10.1371/journal.pone.0038609] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/08/2012] [Indexed: 11/19/2022] Open
Abstract
Background In this study, we examined alterations in the hypothalamic reward system related to high-fat diet (HFD) preferences. We previously reported that hypothalamic 2-arachidonoylglycerol (2-AG) and glial fibrillary acid protein (GFAP) were increased after conditioning to the rewarding properties of a HFD. Here, we hypothesized that increased 2-AG influences the hypothalamic reward system. Methods The conditioned place preference test (CPP test) was used to evaluate HFD preferences. Hypothalamic 2-AG was quantified by gas chromatography-mass spectrometry. The expression of GFAP was examined by immunostaining and western blotting. Results Consumption of a HFD over either 3 or 7 days increased HFD preferences and transiently increased hypothalamic 2-AG levels. HFD consumption over 14 days similarly increased HFD preferences but elicited a long-lasting increase in hypothalamic 2-AG and GFAP levels. The cannabinoid 1 receptor antagonist O-2050 reduced preferences for HFDs after 3, 7, or 14 days of HFD consumption and reduced expression of GFAP after 14 days of HFD consumption. The astrocyte metabolic inhibitor Fluorocitrate blocked HFD preferences after 14 days of HFD consumption. Conclusions High levels of 2-AG appear to induce HFD preferences, and activate hypothalamic astrocytes via the cannabinoid system. We propose that there may be two distinct stages in the development of HFD preferences. The induction stage involves a transient increase in 2-AG, whereas the maintenance stage involves a long lasting increase in 2-AG levels and activation of astrocytes. Accordingly, hypothalamic 2-AG may influence the development of HFD preferences.
Collapse
Affiliation(s)
- Sei Higuchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Ryuji Yamaguchi
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Mai Katsuki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Maiko Araki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Makiko Ohji
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazuhide Hayakawa
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Shohei Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshiharu Akitake
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Kiyoshi Matsuyama
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenji Mishima
- Department of Chemical Engineering, Faculty of Engineering, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
- * E-mail:
| | - Katsunori Iwasaki
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Institute for Aging and Brain Sciences, Fukuoka University, Fukuoka, Japan
| | - Michihiro Fujiwara
- Department of Neuropharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
20
|
Matsumura S, Eguchi A, Okafuji Y, Tatsu S, Mizushige T, Tsuzuki S, Inoue K, Fushiki T. Dietary fat ingestion activates β-endorphin neurons in the hypothalamus. FEBS Lett 2012; 586:1231-5. [PMID: 22575661 DOI: 10.1016/j.febslet.2012.03.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/12/2012] [Accepted: 03/12/2012] [Indexed: 12/17/2022]
Abstract
The opioid system regulates food choice, consumption, and reinforcement processes, especially for palatable meals such as fatty food. β-Endorphin is known as an endogenous opioid peptide produced in neurons of the hypothalamus. In this study, we found that Intralipid (fat emulsion) ingestion increased c-fos expression in β-endorphin neurons. However, intragastric infusion of Intralipid only slightly increased c-fos expression 2h after infusion. Further, dissection of glossopharyngeal nerve, innervating posterior tongue taste buds, partially but significantly decreased the Intralipid-induced c-fos expression. These results indicate that mainly the orosensory stimulation from fat may activate β-endorphin neurons, thereby promoting β-endorphin release.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Increment of hypothalamic 2-arachidonoylglycerol induces the preference for a high-fat diet via activation of cannabinoid 1 receptors. Behav Brain Res 2011; 216:477-80. [DOI: 10.1016/j.bbr.2010.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 08/26/2010] [Accepted: 08/26/2010] [Indexed: 12/12/2022]
|
22
|
Abstract
This paper is the 32nd consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2009 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
23
|
Matsumura S, Yoneda T, Aki S, Eguchi A, Manabe Y, Tsuzuki S, Inoue K, Fushiki T. Intragastric infusion of glucose enhances the rewarding effect of sorbitol fatty acid ester ingestion as measured by conditioned place preference in mice. Physiol Behav 2010; 99:509-14. [PMID: 20045421 DOI: 10.1016/j.physbeh.2009.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/18/2009] [Accepted: 12/22/2009] [Indexed: 11/28/2022]
Abstract
We investigated substances that induce a rewarding effect during the postingestive process using the conditioned place preference (CPP) test. Although mice showed high affinity for a low-energy fat substitute--sorbitol fatty acid esters and low-concentration linoleic acid solution--they did not exhibit a place preference toward a voluntary intake of fat substitute in the CPP test. However, during a conditioning session of CPP that involved intragastric administration of corn oil immediately before the intake of the fat substitute, the test mice displayed a place preference. Similarly, intragastric administration of glucose, galactose, and dextrin also induced CPP; however, fructose, mannose, and a nonmetabolized carbohydrate did not. These results suggest that administration of corn oil and glucose has the same postingestive effect with regard to inducing CPP and that the structural specificity of carbohydrates influences the postingestive effect.
Collapse
Affiliation(s)
- Shigenobu Matsumura
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto City, 606-8502, Japan.
| | | | | | | | | | | | | | | |
Collapse
|