1
|
Semprasert N, Maneethorn P, Kooptiwut S. The protective effect of imatinib against pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Sci Rep 2024; 14:17691. [PMID: 39085384 PMCID: PMC11291718 DOI: 10.1038/s41598-024-68429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Glucocorticoids (GCs) are known to stimulate pancreatic beta (β)-cell apoptosis via several mechanisms, including oxidative stress. Our previous study suggested an increase in dexamethasone-induced pancreatic β-cell apoptosis via a reduction of glutathione S-transferase P1 (GSTP1), which is an antioxidant enzyme. Imatinib, which is a tyrosine kinase inhibitor, also exerts antioxidant effect. This study aims to test our hypothesis that imatinib would prevent pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Our results revealed that dexamethasone significantly increased apoptosis in INS-1 cells when compared to the control, and that imatinib significantly decreased INS-1 cell apoptosis induced by dexamethasone. Moreover, dexamethasone significantly increased superoxide production in INS-1 cells when compared to the control; however, imatinib, when combined with dexamethasone, significantly reduced superoxide production in INS-1 cells. Dexamethasone significantly decreased GSTP1, p-ERK1/2, and BCL2 protein expression, but significantly increased p-JNK, p-p38, and BAX protein expression in INS-1 cells-all compared to control. Importantly, imatinib significantly ameliorated the effect of dexamethasone on the expression of GSTP1, p-ERK1/2, p-JNK, p-p38 MAPK, BAX, and BCL2. Furthermore-6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), which is a GSTP1 inhibitor, neutralized the protective effect of imatinib against pancreatic β-cell apoptosis induced by dexamethasone. In conclusion, imatinib decreases pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress.
Collapse
Affiliation(s)
- Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Liang LL, He MF, Zhou PP, Pan SK, Liu DW, Liu ZS. GSK3β: A ray of hope for the treatment of diabetic kidney disease. FASEB J 2024; 38:e23458. [PMID: 38315453 DOI: 10.1096/fj.202302160r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/09/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
Diabetic kidney disease (DKD), a major microvascular complication of diabetes, is characterized by its complex pathogenesis, high risk of chronic renal failure, and lack of effective diagnosis and treatment methods. GSK3β (glycogen synthase kinase 3β), a highly conserved threonine/serine kinase, was found to activate glycogen synthase. As a key molecule of the glucose metabolism pathway, GSK3β participates in a variety of cellular activities and plays a pivotal role in multiple diseases. However, these effects are not only mediated by affecting glucose metabolism. This review elaborates on the role of GSK3β in DKD and its damage mechanism in different intrinsic renal cells. GSK3β is also a biomarker indicating the progression of DKD. Finally, the protective effects of GSK3β inhibitors on DKD are also discussed.
Collapse
Affiliation(s)
- Lu-Lu Liang
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Meng-Fei He
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Pan-Pan Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, P.R. China
- Henan Province Research Center For Kidney Disease, Zhengzhou, P.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, P.R. China
| |
Collapse
|
3
|
Geng H, Li R, Feng D, Zhu Y, Deng L. Role of the p38/AKT Pathway in the Promotion of Cell Proliferation by Serum Heat Inactivation. Int J Mol Sci 2023; 24:16538. [PMID: 38003726 PMCID: PMC10671805 DOI: 10.3390/ijms242216538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023] Open
Abstract
Serum is a common biomaterial in cell culture that provides nutrients and essential growth factors for cell growth. Serum heat inactivation is a common treatment method whose main purpose is to remove complement factors and viruses. As serum contains many heat-labile factors, heat inactivation may affect cell proliferation, migration, differentiation, and other functions. However, the specific mechanism of its effect on cell function has not been studied. Thus, we investigate the exact effects of heat-inactivated FBS on the viability of various cells and explore the possible molecular mechanisms. We treated HCT116, HT-29, and HepG2 cell lines with heat-inactivated (56 °C for 30 min) medium, DMEM, or fetal bovine serum (FBS) for different times (0, 10, 15, 30, 60, or 90 min); we found that heat-inactivated FBS significantly promoted the viability of these cells, whereas DMEM did not have this effect. Moreover, heat-inactivated FBS stimulated cells to produce a small amount of ROS and activated intracellular signaling pathways, mainly the p38/AKT signaling pathway. These results indicate that heat-inactivated FBS may regulate the p38/AKT signaling pathway by promoting the production of appropriate amounts of ROS, thereby regulating cell viability.
Collapse
Affiliation(s)
| | | | | | | | - Lu Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China; (H.G.); (R.L.); (D.F.); (Y.Z.)
| |
Collapse
|
4
|
Yan H, Feng L, Li M. The Role of Traditional Chinese Medicine Natural Products in β-Amyloid Deposition and Tau Protein Hyperphosphorylation in Alzheimer's Disease. Drug Des Devel Ther 2023; 17:3295-3323. [PMID: 38024535 PMCID: PMC10655607 DOI: 10.2147/dddt.s380612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease is a prevalent form of dementia among elderly individuals and is characterized by irreversible neurodegeneration. Despite extensive research, the exact causes of this complex disease remain unclear. Currently available drugs for Alzheimer's disease treatment are limited in their effectiveness, often targeting a single aspect of the disease and causing significant adverse effects. Moreover, these medications are expensive, placing a heavy burden on patients' families and society as a whole. Natural compounds and extracts offer several advantages, including the ability to target multiple pathways and exhibit high efficiency with minimal toxicity. These attributes make them promising candidates for the prevention and treatment of Alzheimer's disease. In this paper, we provide a summary of the common natural products used in Chinese medicine for different pathogeneses of AD. Our aim is to offer new insights and ideas for the further development of natural products in Chinese medicine and the treatment of AD.
Collapse
Affiliation(s)
- Huiying Yan
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Lina Feng
- Shandong Key Laboratory of TCM Multi-Targets Intervention and Disease Control, the Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, People’s Republic of China
| | - Mingquan Li
- Department of Neurology, the Third Affiliated Clinical Hospital of the Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
5
|
Udagawa H, Funahashi N, Nishimura W, Uebanso T, Kawaguchi M, Asahi R, Nakajima S, Nammo T, Hiramoto M, Yasuda K. Glucocorticoid receptor-NECAB1 axis can negatively regulate insulin secretion in pancreatic β-cells. Sci Rep 2023; 13:17958. [PMID: 37863964 PMCID: PMC10589354 DOI: 10.1038/s41598-023-44324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 10/06/2023] [Indexed: 10/22/2023] Open
Abstract
The mechanisms of impaired glucose-induced insulin secretion from the pancreatic β-cells in obesity have not yet been completely elucidated. Here, we aimed to assess the effects of adipocyte-derived factors on the functioning of pancreatic β-cells. We prepared a conditioned medium using 3T3-L1 cell culture supernatant collected at day eight (D8CM) and then exposed the rat pancreatic β-cell line, INS-1D. We found that D8CM suppressed insulin secretion in INS-1D cells due to reduced intracellular calcium levels. This was mediated by the induction of a negative regulator of insulin secretion-NECAB1. LC-MS/MS analysis results revealed that D8CM possessed steroid hormones (cortisol, corticosterone, and cortisone). INS-1D cell exposure to cortisol or corticosterone increased Necab1 mRNA expression and significantly reduced insulin secretion. The increased expression of Necab1 and reduced insulin secretion effects from exposure to these hormones were completely abolished by inhibition of the glucocorticoid receptor (GR). NECAB1 expression was also increased in the pancreatic islets of db/db mice. We demonstrated that the upregulation of NECAB1 was dependent on GR activation, and that binding of the GR to the upstream regions of Necab1 was essential for this effect. NECAB1 may play a novel role in the adipoinsular axis and could be potentially involved in the pathophysiology of obesity-related diabetes mellitus.
Collapse
Affiliation(s)
- Haruhide Udagawa
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Nobuaki Funahashi
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Wataru Nishimura
- Department of Molecular Biology, International University of Health and Welfare School of Medicine, Narita, Chiba, 286-8686, Japan
- Division of Anatomy, Bio-Imaging and Neuro-Cell Science, Jichi Medical University, Shimotsuke, Tochigi, 329-0498, Japan
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Miho Kawaguchi
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Riku Asahi
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Shigeru Nakajima
- Department of Registered Dietitians, Faculty of Health and Nutrition, Bunkyo University, 1100 Namegaya, Chigasaki, Kanagawa, 253-8550, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Kazuki Yasuda
- Department of Metabolic Disorder, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, 162-8655, Japan.
- Department of Diabetes, Endocrinology and Metabolism, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo, 181-8611, Japan.
| |
Collapse
|
6
|
Inceu AI, Neag MA, Catinean A, Bocsan CI, Craciun CI, Melincovici CS, Muntean DM, Onofrei MM, Pop RM, Buzoianu AD. The Effects of Probiotic Bacillus Spores on Dexamethasone-Treated Rats. Int J Mol Sci 2023; 24:15111. [PMID: 37894792 PMCID: PMC10606902 DOI: 10.3390/ijms242015111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Glucocorticoids are effective anti-inflammatory and immunosuppressive agents. Long-term exposure is associated with multiple metabolic side effects. Spore-forming probiotic bacteria have shown modulatory properties regarding glycolipid metabolism and inflammation. The aim of this study was to evaluate, for the first time, the effects of Bacillus species spores (B. licheniformis, B. indicus, B. subtilis, B. clausii, and B. coagulans) alone and in combination with metformin against dexamethasone-induced systemic disturbances. A total of 30 rats were randomly divided into 5 groups: group 1 served as control (CONTROL), group 2 received dexamethasone (DEXA), group 3 received DEXA and MegaSporeBiotic (MSB), group 4 received DEXA and metformin (MET), and group 5 received DEXA, MSB, and MET. On the last day of the experiment, blood samples and liver tissue samples for histopathological examination were collected. We determined serum glucose, total cholesterol, triglycerides, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), catalase, total antioxidant capacity (TAC), and metformin concentration. DEXA administration caused hyperglycemia and hyperlipidemia, increased inflammation cytokines, and decreased antioxidant markers. Treatment with MSB reduced total cholesterol, suggesting that the administration of Bacillus spores-based probiotics to DEXA-treated rats could ameliorate metabolic parameters.
Collapse
Affiliation(s)
- Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Maria Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Adrian Catinean
- Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania;
| | - Corina Ioana Bocsan
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Cristian Ioan Craciun
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Carmen Stanca Melincovici
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.S.M.); (M.M.O.)
| | - Dana Maria Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu Hatieganu University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Mădălin Mihai Onofrei
- Department of Histology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (C.S.M.); (M.M.O.)
| | - Raluca Maria Pop
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| | - Anca Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania; (A.I.I.); (C.I.B.); (C.I.C.); (R.M.P.); (A.D.B.)
| |
Collapse
|
7
|
Zhu L, Fan X, Cao C, Li K, Hou W, Ci X. Xanthohumol protect against acetaminophen-induced hepatotoxicity via Nrf2 activation through the AMPK/Akt/GSK3β pathway. Biomed Pharmacother 2023; 165:115097. [PMID: 37406514 DOI: 10.1016/j.biopha.2023.115097] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023] Open
Abstract
OBJECTIVE Acetaminophen (APAP) is one of the world's popular and safe painkillers, and overdose can cause severe liver damage and even acute liver failure. The effect and mechanism of the xanthohumol on acetaminophen-induced hepatotoxicity remains unclear. METHODS The hepatoprotective effects of xanthohumol were studied using APAP-induced HepG2 cells and acute liver injury of mouse, seperately. RESULTS In vitro, xanthohumol inhibited H2O2- and acetaminophen-induced cytotoxicity and oxidative stress. Xanthohumol up-regulated the expression of Nrf2. Further mechanistic studies showed that xanthohumol triggered Nrf2 activation via the AMPK/Akt/GSK3β pathway to exert a cytoprotective effect. In vivo, xanthohumol significantly ameliorated acetaminophen-induced mortality, the elevation of ALT and AST, GSH depletion, MDA formation and histopathological changes. Xanthohumol effectively suppressed the phosphorylation and mitochondrial translocation of JNK, mitochondrial translocation of Bax, the activation o cytochrome c, AIF secretion and Caspase-3. In vivo, xanthohumol increased Nrf2 nuclear transcription and AMPK, Akt and GSK3β phosphorylation in vivo. In addition, whether xanthohumol protected against acetaminophen-induced liver injury in Nrf2 knockout mice has not been illustated. CONCLUSION Thus, xanthohumol exerted a hepatoprotective effect by inhibiting oxidative stress and mitochondrial dysfunction through the AMPK/Akt/GSK3β/Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Laiyu Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China
| | - Chunyuan Cao
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province People's Hospital, Changzhun, China
| | - Kailiang Li
- Department of Hepatobiliary Pancreatic Surgery, Jilin Province People's Hospital, Changzhun, China
| | - Wenli Hou
- Department of Cadre Ward, the First Hospital of Jilin University, 71 Xinmin Street, Chaoyang, Changchun, Jilin 130021, China.
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin 130001, China.
| |
Collapse
|
8
|
Kutpruek S, Suksri K, Maneethorn P, Semprasert N, Yenchitsomanus PT, Kooptiwut S. Imatinib prevents dexamethasone-induced pancreatic β-cell apoptosis via decreased TRAIL and DR5. J Cell Biochem 2023; 124:1309-1323. [PMID: 37555250 DOI: 10.1002/jcb.30450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023]
Abstract
Prolonged administration of dexamethasone, a potent anti-inflammatory drug, can lead to steroid-induced diabetes. Imatinib, a medication commonly prescribed for chronic myeloid leukemia (CML), has been shown to improve diabetes in CML patients. Our recent study demonstrated that dexamethasone induces pancreatic β-cell apoptosis by upregulating the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its receptor, death receptor 5 (DR5). We hypothesized that imatinib may protect against dexamethasone-induced pancreatic β-cell apoptosis by reducing the expression of TRAIL and DR5, thereby favorably modulating downstream effectors in apoptotic pathways. We test this hypothesis by assessing the effects of imatinib on dexamethasone-induced apoptosis in rat insulinoma cell line cells. As anticipated, dexamethasone treatment led to increased TRAIL and DR5 expression, as well as an elevation in superoxide production. Conversely, expression of the TRAIL decoy receptor (DcR1) was decreased. Moreover, key effectors in the extrinsic and intrinsic apoptosis pathways, such as B-cell lymphoma 2 (BCL-2) associated X (BAX), nuclear factor kappa B (NF-κb), P73, caspase 8, and caspase 9, were upregulated, while the antiapoptotic protein BCL-2 was downregulated. Interestingly and importantly, imatinib at a concentration of 10 µM reversed the effect of dexamethasone on TRAIL, DR5, DcR1, superoxide production, BAX, BCL-2, NF-κB, P73, caspase 3, caspase 8, and caspase 9. Similar effects of imatinib on dexamethasone-induced TRAIL and DR5 expression were also observed in isolated mouse islets. Taken together, our findings suggest that imatinib protects against dexamethasone-induced pancreatic β-cell apoptosis by reducing TRAIL and DR5 expression and modulating downstream effectors in the extrinsic and intrinsic apoptosis pathways.
Collapse
Affiliation(s)
- Suchanoot Kutpruek
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kanchana Suksri
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Research Department, Division of Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Mohamed OS, Abdel Baky NA, Sayed-Ahmed MM, Al-Najjar AH. Lactoferrin alleviates cyclophosphamide induced-nephropathy through suppressing the orchestration between Wnt4/β-catenin and ERK1/2/NF-κB signaling and modulating klotho and Nrf2/HO-1 pathway. Life Sci 2023; 319:121528. [PMID: 36828132 DOI: 10.1016/j.lfs.2023.121528] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
AIMS Cyclophosphamide is an alkylating agent with vast arrays of therapeutic activity. Currently, its medical use is limited due to its numerous adverse events, including nephrotoxicity. This study aimed to follow the molecular mechanisms behind the potential renoprotective action of lactoferrin (LF) against cyclophosphamide (CP)-induced renal injury. MATERIALS AND METHODS For fulfillment of our aim, Spragw-Dwaly rats were orally administrated LF (300 mg/kg) for seven consecutive days, followed by a single intraperitoneal injection of CP (150 mg/kg). KEY FINDINGS Treatment of CP-injured rats with LF significantly reduced the elevated creatinine and blood urea nitrogen (BUN), markedly upregulated Nrf2/HO-1 signaling with consequent increase in renal total antioxidant capacity (TAC) and decrease in renal malondialdehyde (MDA) level. Furthermore, LF treatment significantly reduced the elevated renal p-ERK1/2 expression, tumor necrosis factor-α (TNFα), interleukin-6 (IL-6), nuclear factor-kappa B (NF-κB) levels in CP-treated animals. Interestingly, LF treatment downregulated Wnt4/β-catenin signaling and increased both renal klotho gene expression and serum klotho level. Furthermore, LF treatment reduced apoptosis in kidney tissue via suppressing GSK-3β expression and modulating caspase-3 and Bcl2 levels. Histopathological examination of kidney tissue confirmed the protective effect of LF against CP-induced renal injury. SIGNIFICANCE The present findings document the renoprotective effect of LF against CP-induced nephropathy, which may be mediated via suppressing ERK1/2/ NF-κB and Wnt4/β-catenin trajectories and enhancing klotho expression and Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Ola S Mohamed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Nayira A Abdel Baky
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya H Al-Najjar
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Mao X, Zhou J, Kong L, Zhu L, Yang D, Zhang Z. A peptide encoded by lncRNA MIR7-3 host gene (MIR7-3HG) alleviates dexamethasone-induced dysfunction in pancreatic β-cells through the PI3K/AKT signaling pathway. Biochem Biophys Res Commun 2023; 647:62-71. [PMID: 36731335 DOI: 10.1016/j.bbrc.2023.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 11/26/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND Dysfunction of pancreatic β-cells induced by glucocorticoids contributes to diabetes mellitus development. Long noncoding RNAs (lncRNAs) have been recognized to contain short open reading frames (ORFs) that can be translated into functional small peptides. Here, we investigated whether the short peptide encoded by the lncRNA MIR7-3 host gene (MIR7-3HG) can affect dexamethasone (DEX)-induced β-cell dysfunction. METHODS Bioinformatics analysis was used for selection of MIR7-3HG and prediction of its protein encoding potential. The small peptide was identified by a western blot method. The cell-permeable TAT was fused into MIR7-3HG ORF to produce the cell-permeable fusion peptide (TAT-MIR7-3HG-ORF). The effects of TAT-MIR7-3HG-ORF on DEX-induced β-cell dysfunction were evaluated by examining cell viability, apoptosis, insulin secretion, and reactive oxygen species (ROS) generation. RESULTS DEX induced β-TC6 cell dysfunction by impairing cell viability, insulin secretion and promoting cell apoptosis and ROS generation. The MIR7-3HG ORF could encode a 125-amino-acid-long short peptide. TAT-MIR7-3HG-ORF effectively transduced into β-TC6 cells and attenuated DEX-induced dysfunction in β-TC6 cells. Moreover, transduced TAT-MIR7-3HG-ORF reversed DEX-mediated inhibition of the activation of the PI3K/AKT signaling pathway. The inhibitor of the PI3K/AKT pathway partially abolished the alleviative effect of transduced TAT-MIR7-3HG-ORF on DEX-induced β-TC6 cell dysfunction. CONCLUSION The lncRNA MIR7-3HG encodes a short peptide, which can protect pancreatic β-cells from DEX-induced dysfunction by activating the PI3K/AKT pathway. Our study broadens the diversity and breadth of lncRNAs in human disorders.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China
| | - Jinliang Zhou
- Department of Hip Surgery, Luoyang Orthopedic Hospital of Henan Province, Luoyang, Henan, 471000, China
| | - Limin Kong
- Xinxiang Medical University, Xinxiang, Henan, 453003, China; The Sixth People's Hospital of Zhengzhou, Zhengzhou, Henan, 450000, China
| | - Li Zhu
- Department of Thoracic Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan, 450003, China
| | - Desheng Yang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| | - Zhiyu Zhang
- Department of Geriatrics, Henan Key Laboratory for Geriatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
11
|
Mehlich A, Bolanowski M, Mehlich D, Witek P. Medical treatment of Cushing's disease with concurrent diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1174119. [PMID: 37139336 PMCID: PMC10150952 DOI: 10.3389/fendo.2023.1174119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/05/2023] Open
Abstract
Cushing's disease (CD) is a severe endocrine disorder characterized by chronic hypercortisolaemia secondary to an overproduction of adrenocorticotropic hormone (ACTH) by a pituitary adenoma. Cortisol excess impairs normal glucose homeostasis through many pathophysiological mechanisms. The varying degrees of glucose intolerance, including impaired fasting glucose, impaired glucose tolerance, and Diabetes Mellitus (DM) are commonly observed in patients with CD and contribute to significant morbidity and mortality. Although definitive surgical treatment of ACTH-secreting tumors remains the most effective therapy to control both cortisol levels and glucose metabolism, nearly one-third of patients present with persistent or recurrent disease and require additional treatments. In recent years, several medical therapies demonstrated prominent clinical efficacy in the management of patients with CD for whom surgery was non-curative or for those who are ineligible to undergo surgical treatment. Cortisol-lowering medications may have different effects on glucose metabolism, partially independent of their role in normalizing hypercortisolaemia. The expanding therapeutic landscape offers new opportunities for the tailored therapy of patients with CD who present with glucose intolerance or DM, however, additional clinical studies are needed to determine the optimal management strategies. In this article, we discuss the pathophysiology of impaired glucose metabolism caused by cortisol excess and review the clinical efficacy of medical therapies of CD, with particular emphasis on their effects on glucose homeostasis.
Collapse
Affiliation(s)
- Anna Mehlich
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Marek Bolanowski
- Chair and Department of Endocrinology, Diabetes, and Isotope Treatment, Wroclaw Medical University, Wroclaw, Poland
| | - Dawid Mehlich
- Laboratory of Molecular OncoSignalling, International Institute of Molecular Mechanisms and Machines (IMol) Polish Academy of Sciences, Warsaw, Poland
- Doctoral School of Medical University of Warsaw, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Przemysław Witek
- Department of Internal Medicine, Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Przemysław Witek,
| |
Collapse
|
12
|
Mahmoud MF, Elmaghraby AM, Ali N, Mostafa I, El-Shazly AM, Abdelfattah MA, Sobeh M. Black pepper oil (Piper nigrum L.) mitigates dexamethasone induced pancreatic damage via modulation of oxidative and nitrosative stress. Biomed Pharmacother 2022; 153:113456. [PMID: 36076569 PMCID: PMC9350854 DOI: 10.1016/j.biopha.2022.113456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/06/2022] Open
Abstract
Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.
Collapse
|
13
|
Suksri K, Semprasert N, Limjindaporn T, Yenchitsomanus PT, Kooptiwoot S, Kooptiwut S. Cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis. Sci Rep 2022; 12:12950. [PMID: 35902739 PMCID: PMC9334585 DOI: 10.1038/s41598-022-17372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Steroid-induced diabetes is a well-known metabolic side effect of long-term use of glucocorticoid (GC). Our group recently demonstrated dexamethasone-induced pancreatic β-cell apoptosis via upregulation of TRAIL and TRAIL death receptor (DR5). Genistein protects against pancreatic β-cell apoptosis induced by toxic agents. This study aimed to investigate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in cultured rat insulinoma (INS-1) cell line and in isolated mouse islets. In the absence of genistein, dexamethasone-induced pancreatic β-cell apoptosis was associated with upregulation of TRAIL, DR5, and superoxide production, but downregulation of TRAIL decoy receptor (DcR1). Dexamethasone also activated the expression of extrinsic and intrinsic apoptotic proteins, including Bax, NF-κB, caspase-8, and caspase-3, but suppressed the expression of the anti-apoptotic Bcl-2 protein. Combination treatment with dexamethasone and genistein protected against pancreatic β-cell apoptosis, and reduced the effects of dexamethasone on the expressions of TRAIL, DR5, DcR1, superoxide production, Bax, Bcl-2, NF-κB, caspase-8, and caspase-3. Moreover, combination treatment with dexamethasone and genistein reduced the expressions of TRAIL and DR5 in isolated mouse islets. The results of this study demonstrate the cytoprotective effect of genistein against dexamethasone-induced pancreatic β-cell apoptosis in both cell line and islets via reduced TRAIL and DR5 protein expression.
Collapse
Affiliation(s)
- Kanchana Suksri
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Namoiy Semprasert
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sirirat Kooptiwoot
- Department of Psychiatry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Suwattanee Kooptiwut
- Division of Endocrinology, Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
14
|
Miller L, Berber E, Sumbria D, Rouse BT. Controlling the Burden of COVID-19 by Manipulating Host Metabolism. Viral Immunol 2022; 35:24-32. [PMID: 34905407 PMCID: PMC8863913 DOI: 10.1089/vim.2021.0150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the coronavirus-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to cause global health problems, but its impact would be minimized if the many effective vaccines that have been developed were available and in widespread use by all societies. This ideal situation is not occurring so other means of controlling COVID-19 are needed. In this short review, we make the case that manipulating host metabolic pathways could be a therapeutic approach worth exploring. The rationale for such an approach comes from the fact that viruses cause metabolic changes in cells they infect, effective host defense mechanisms against viruses requires the activity of one or more metabolic pathways, and that hosts with metabolic defects such as diabetes are more susceptible to severe consequences after COVID-19. We describe the types of approaches that could be used to redirect various aspects of host metabolism and the success that some of these maneuvers have had at controlling other virus infections. Manipulating metabolic activities to control the outcome of COVID-19 has to date received minimal attention. Manipulating host metabolism will never replace vaccines to control COVID-19 but could be used as an adjunct therapy to the extent of ongoing infection.
Collapse
Affiliation(s)
- Logan Miller
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Engin Berber
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Deepak Sumbria
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Barry T. Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
15
|
Delangre E, Liu J, Tolu S, Maouche K, Armanet M, Cattan P, Pommier G, Bailbé D, Movassat J. Underlying mechanisms of glucocorticoid-induced β-cell death and dysfunction: a new role for glycogen synthase kinase 3. Cell Death Dis 2021; 12:1136. [PMID: 34876563 PMCID: PMC8651641 DOI: 10.1038/s41419-021-04419-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022]
Abstract
Glucocorticoids (GCs) are widely prescribed for their anti-inflammatory and immunosuppressive properties as a treatment for a variety of diseases. The use of GCs is associated with important side effects, including diabetogenic effects. However, the underlying mechanisms of GC-mediated diabetogenic effects in β-cells are not well understood. In this study we investigated the role of glycogen synthase kinase 3 (GSK3) in the mediation of β-cell death and dysfunction induced by GCs. Using genetic and pharmacological approaches we showed that GSK3 is involved in GC-induced β-cell death and impaired insulin secretion. Further, we unraveled the underlying mechanisms of GC-GSK3 crosstalk. We showed that GSK3 is marginally implicated in the nuclear localization of GC receptor (GR) upon ligand binding. Furthermore, we showed that GSK3 regulates the expression of GR at mRNA and protein levels. Finally, we dissected the proper contribution of each GSK3 isoform and showed that GSK3β isoform is sufficient to mediate the pro-apoptotic effects of GCs in β-cells. Collectively, in this work we identified GSK3 as a viable target to mitigate GC deleterious effects in pancreatic β-cells.
Collapse
Affiliation(s)
- Etienne Delangre
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Junjun Liu
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
- Shandong Institute of Endocrine & Metabolic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Stefania Tolu
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Kamel Maouche
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Mathieu Armanet
- Cell Therapy Unit, Saint-Louis hospital, AP-HP, and Université de Paris, Paris, France
| | - Pierre Cattan
- Cell Therapy Unit, Saint-Louis hospital, AP-HP, and Université de Paris, Paris, France
| | - Gaëlle Pommier
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Danielle Bailbé
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France
| | - Jamileh Movassat
- Université de Paris, BFA, UMR 8251, CNRS, Team « Biologie et Pathologie du Pancréas Endocrine », Paris, France.
| |
Collapse
|
16
|
Wu CT, Lidsky PV, Xiao Y, Lee IT, Cheng R, Nakayama T, Jiang S, Demeter J, Bevacqua RJ, Chang CA, Whitener RL, Stalder AK, Zhu B, Chen H, Goltsev Y, Tzankov A, Nayak JV, Nolan GP, Matter MS, Andino R, Jackson PK. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab 2021; 33:1565-1576.e5. [PMID: 34081912 PMCID: PMC8130512 DOI: 10.1016/j.cmet.2021.05.013] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 04/01/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Emerging evidence points toward an intricate relationship between the pandemic of coronavirus disease 2019 (COVID-19) and diabetes. While preexisting diabetes is associated with severe COVID-19, it is unclear whether COVID-19 severity is a cause or consequence of diabetes. To mechanistically link COVID-19 to diabetes, we tested whether insulin-producing pancreatic β cells can be infected by SARS-CoV-2 and cause β cell depletion. We found that the SARS-CoV-2 receptor, ACE2, and related entry factors (TMPRSS2, NRP1, and TRFC) are expressed in β cells, with selectively high expression of NRP1. We discovered that SARS-CoV-2 infects human pancreatic β cells in patients who succumbed to COVID-19 and selectively infects human islet β cells in vitro. We demonstrated that SARS-CoV-2 infection attenuates pancreatic insulin levels and secretion and induces β cell apoptosis, each rescued by NRP1 inhibition. Phosphoproteomic pathway analysis of infected islets indicates apoptotic β cell signaling, similar to that observed in type 1 diabetes (T1D). In summary, our study shows SARS-CoV-2 can directly induce β cell killing.
Collapse
Affiliation(s)
- Chien-Ting Wu
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Peter V Lidsky
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yinghong Xiao
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ivan T Lee
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Ran Cheng
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA, USA
| | - Tsuguhisa Nakayama
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA; Department of Otorhinolaryngology, Jikei University School of Medicine, Tokyo, Japan
| | - Sizun Jiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Janos Demeter
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Romina J Bevacqua
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Charles A Chang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Robert L Whitener
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna K Stalder
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland
| | - Bokai Zhu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Han Chen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yury Goltsev
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandar Tzankov
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthias S Matter
- Institute of Pathology, University of Basel, Schönbeinstrasse 40, 4003 Basel, Switzerland.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Chen F, Hao L, Zhu S, Yang X, Shi W, Zheng K, Wang T, Chen H. Potential Adverse Effects of Dexamethasone Therapy on COVID-19 Patients: Review and Recommendations. Infect Dis Ther 2021; 10:1907-1931. [PMID: 34296386 PMCID: PMC8298044 DOI: 10.1007/s40121-021-00500-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic, the global healthcare community has raced to find effective therapeutic agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, dexamethasone is the first and an important therapeutic to significantly reduce the risk of death in COVID-19 patients with severe disease. Due to powerful anti-inflammatory and immunosuppressive effects, dexamethasone could attenuate SARS-CoV-2-induced uncontrolled cytokine storm, severe acute respiratory distress syndrome and lung injury. Nevertheless, dexamethasone treatment is a double-edged sword, as numerous studies have revealed that it has significant adverse impacts later in life. In this article, we reviewed the literature regarding the adverse effects of dexamethasone administration on different organ systems as well as related disease pathogenesis in an attempt to clarify the potential harms that may arise in COVID-19 patients receiving dexamethasone treatment. Overall, taking the threat of COVID19 pandemic into account, we think it is necessary to apply dexamethasone as a pharmaceutical therapy in critical patients. However, its adverse side effects cannot be ignored. Our review will help medical professionals in the prognosis and follow-up of patients treated with dexamethasone. In addition, given that a considerable amount of uncertainty, confusion and even controversy still exist, further studies and more clinical trials are urgently needed to improve our understanding of the parameters and the effects of dexamethasone on patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China.
| | - Lanting Hao
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Shiheng Zhu
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Xinyuan Yang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Wenhao Shi
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Kai Zheng
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Tenger Wang
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| | - Huiran Chen
- Department of Physiology, Jining Medical University, 133 Hehua Rd, Jining, 272067, China
| |
Collapse
|
18
|
Zhou X, Xu Y, Gu Y, Sun M. 4-Phenylbutyric acid protects islet β cell against cellular damage induced by glucocorticoids. Mol Biol Rep 2021; 48:1659-1665. [PMID: 33566227 PMCID: PMC7925466 DOI: 10.1007/s11033-021-06211-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
This study, using the MIN6 cell line, examines the effect of glucocorticoids (GCs) on the expression and protein levels of endoplasmic reticulum stress (ERS) related genes. Furthermore, we evaluated the protective role of 4-phenylbutyric acid (4-PBA) on the aforesaid GCs induced changes. Pancreatic islet MIN6 cells were treated with dexamethasone (DEX) at distinct concentrations (0.1 μmol/L and 0.5 μmol/L) for different periods (1 h, 4 h, 12 h, and 24 h). The mRNA and protein levels of ERS related genes were measured using real-time qPCR (qRT-PCR) and western blotting. Similar evaluations were also carried out for the cells treated with 4-PBA combined with DEX. Upon DEX intervention which induces the unfolded protein response (UPR), the expression levels of BIP, ATF6, IRE1, and PERK increased in the MIN6 cells, both in concentration and time-dependent manner. Similarly, ERS associated gene CHOP, which is involved in the apoptotic pathway, also showed increased levels both in concentration and time-dependent manner. However, treatment with 4-PBA decreased the expression levels of ERS related proteins. Quantitative analysis found that all these results were statistically significant (P < 0.05). GCs markedly activates the ERS in the MIN6 cell line in vitro, however, this effect can be significantly alleviated upon treatment with 4-PBA.
Collapse
Affiliation(s)
- Xueling Zhou
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Endocrinology, Maanshan People's Hospital, Maanshan, 243000, China
| | - Yilin Xu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.,Department of Nephrology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215008, China
| | - Yong Gu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
19
|
Molecular Mechanisms of Glucocorticoid-Induced Insulin Resistance. Int J Mol Sci 2021; 22:ijms22020623. [PMID: 33435513 PMCID: PMC7827500 DOI: 10.3390/ijms22020623] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/29/2020] [Accepted: 01/02/2021] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids (GCs) are steroids secreted by the adrenal cortex under the hypothalamic-pituitary-adrenal axis control, one of the major neuro-endocrine systems of the organism. These hormones are involved in tissue repair, immune stability, and metabolic processes, such as the regulation of carbohydrate, lipid, and protein metabolism. Globally, GCs are presented as ‘flight and fight’ hormones and, in that purpose, they are catabolic hormones required to mobilize storage to provide energy for the organism. If acute GC secretion allows fast metabolic adaptations to respond to danger, stress, or metabolic imbalance, long-term GC exposure arising from treatment or Cushing’s syndrome, progressively leads to insulin resistance and, in fine, cardiometabolic disorders. In this review, we briefly summarize the pharmacological actions of GC and metabolic dysregulations observed in patients exposed to an excess of GCs. Next, we describe in detail the molecular mechanisms underlying GC-induced insulin resistance in adipose tissue, liver, muscle, and to a lesser extent in gut, bone, and brain, mainly identified by numerous studies performed in animal models. Finally, we present the paradoxical effects of GCs on beta cell mass and insulin secretion by the pancreas with a specific focus on the direct and indirect (through insulin-sensitive organs) effects of GCs. Overall, a better knowledge of the specific action of GCs on several organs and their molecular targets may help foster the understanding of GCs’ side effects and design new drugs that possess therapeutic benefits without metabolic adverse effects.
Collapse
|
20
|
Quattrocelli M, Zelikovich AS, Salamone IM, Fischer JA, McNally EM. Mechanisms and Clinical Applications of Glucocorticoid Steroids in Muscular Dystrophy. J Neuromuscul Dis 2021; 8:39-52. [PMID: 33104035 PMCID: PMC7902991 DOI: 10.3233/jnd-200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Glucocorticoid steroids are widely used as immunomodulatory agents in acute and chronic conditions. Glucocorticoid steroids such as prednisone and deflazacort are recommended for treating Duchenne Muscular Dystrophy where their use prolongs ambulation and life expectancy. Despite this benefit, glucocorticoid use in Duchenne Muscular Dystrophy is also associated with significant adverse consequences including adrenal suppression, growth impairment, poor bone health and metabolic syndrome. For other forms of muscular dystrophy like the limb girdle dystrophies, glucocorticoids are not typically used. Here we review the experimental evidence supporting multiple mechanisms of glucocorticoid action in dystrophic muscle including their role in dampening inflammation and myofiber injury. We also discuss alternative dosing strategies as well as novel steroid agents that are in development and testing, with the goal to reduce adverse consequences of prolonged glucocorticoid exposure while maximizing beneficial outcomes.
Collapse
Affiliation(s)
- Mattia Quattrocelli
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Molecular Cardiovascular Biology Division, Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Aaron S Zelikovich
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabella M Salamone
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Julie A Fischer
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
21
|
Sung JY, Kim SG, Kim JR, Choi HC. Prednisolone suppresses adriamycin-induced vascular smooth muscle cell senescence and inflammatory response via the SIRT1-AMPK signaling pathway. PLoS One 2020; 15:e0239976. [PMID: 32997729 PMCID: PMC7526920 DOI: 10.1371/journal.pone.0239976] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular senescence is associated with inflammation and the senescence-associated secretory phenotype (SASP) of secreted proteins. Vascular smooth muscle cell (VSMC) expressing the SASP contributes to chronic vascular inflammation, loss of vascular function, and the developments of age-related diseases. Although VSMC senescence is well recognized, the mechanism of VSMC senescence and inflammation has not been established. In this study, we aimed to determine whether prednisolone (PD) attenuates adriamycin (ADR)-induced VSMC senescence and inflammation through the SIRT1-AMPK signaling pathway. We found that PD inhibited ADR-induced VSMC senescence and inflammation response by decreasing p-NF-κB expression through the SIRT1-AMPK signaling pathway. In addition, Western blotting revealed PD not only increased SIRT1 expression but also increased the phosphorylation of AMPK at Ser485 in ADR-treated VSMC. Furthermore, siRNA-mediated downregulation or pharmacological inhibitions of SIRT1 or AMPK significantly augmented ADR-induced inflammatory response and senescence in VSMC despite PD treatment. In contrast, the overexpression of SIRT1 or constitutively active AMPKα (CA-AMPKα) attenuated cellular senescence and p-NF-κB expression. Taken together, the inhibition of p-NF-κB by PD through the SIRT1 and p-AMPK (Ser485) pathway suppressed VSMC senescence and inflammation. Collectively, our results suggest that anti-aging effects of PD are caused by reduced VSMC senescence and inflammation due to reciprocal regulation of the SIRT1/p-AMPK (Ser485) signaling pathway.
Collapse
Affiliation(s)
- Jin Young Sung
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Seul Gi Kim
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hyoung Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- Smart-aging Convergence Research Center, College of Medicine, Yeungnam University, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
22
|
Xie WJ, Hou G, Wang L, Wang SS, Xiong XX. Astaxanthin suppresses lipopolysaccharide‑induced myocardial injury by regulating MAPK and PI3K/AKT/mTOR/GSK3β signaling. Mol Med Rep 2020; 22:3338-3346. [PMID: 32945516 PMCID: PMC7453592 DOI: 10.3892/mmr.2020.11443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac dysfunction is a significant manifestation of sepsis and it is associated with the prognosis of the disease. Astaxanthin (ATX) has been discovered to serve a variety of pharmacological effects, including anti‑inflammatory, antioxidant and antiapoptotic properties. The present study aimed to investigate the role and mechanisms of ATX in sepsis‑induced myocardial injury. Male C57BL/6 mice were divided into three groups (15 mice per group): Control group, lipopolysaccharide (LPS) group and LPS + ATX group. The cardiac dysfunction model was induced through an intraperitoneal injection of LPS (10 mg/kg) and ATX (40 mg/kg) was administered to the LPS + ATX group by intraperitoneal injection 30 min following the administration of LPS. All animals were sacrificed after 24 h. Inflammatory cytokine levels in the serum were detected using ELISAs, and cardiac B‑type natriuretic peptide (BNP) levels were analyzed using western blot analysis and reverse transcription‑quantitative PCR. Furthermore, the extent of myocardial injury was evaluated using pathological analysis, and cardiomyocyte apoptosis was analyzed using a TUNEL assay, in addition to determining the expression levels of Bcl‑2 and Bax. The expression levels of proteins involved in the mitogen activated protein kinase (MAPK) and PI3K/AKT signaling pathways were also analyzed using western blot analysis. ATX significantly suppressed the LPS‑induced increased production of TNF‑α and IL‑6 and suppressed the protein expression levels of BNP, Bax and Bcl‑2 to normal levels. ATX also prevented the histopathological changes to the myocardial tissue and reduced the extent of necrosis. Furthermore, the treatment with ATX suppressed the LPS‑activated MAPK and PI3K/AKT signaling. ATX additionally exerted a protective effect on cardiac dysfunction caused by sepsis by inhibiting MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Wen-Jie Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guo Hou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha-Sha Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Xing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Xu W, Cui J, Zhou F, Bai M, Deng R, Wang W. Leonurine protects against dexamethasone-induced cytotoxicity in pancreatic β-cells via PI3K/Akt signaling pathway. Biochem Biophys Res Commun 2020; 529:652-658. [DOI: 10.1016/j.bbrc.2020.05.184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023]
|
24
|
Kračun D, Klop M, Knirsch A, Petry A, Kanchev I, Chalupsky K, Wolf CM, Görlach A. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol 2020; 34:101536. [PMID: 32413743 PMCID: PMC7226895 DOI: 10.1016/j.redox.2020.101536] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/22/2022] Open
Abstract
Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.
Collapse
Affiliation(s)
- Damir Kračun
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Mathieu Klop
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Anna Knirsch
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Andreas Petry
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Ivan Kanchev
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany
| | - Karel Chalupsky
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Cordula M Wolf
- Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Agnes Görlach
- Experimental and Molecular Pediatric Cardiology, Department of Pediatric Cardiology and Congenital Heart Diseases, German Heart Center Munich at the Technical University Munich, Munich, 80636, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
25
|
Zhang R, Zheng Y, Hu F, Meng X, Lv B, Lao K, Gao X, Zhang X, Gou X. Effect of (m)VD-hemopressin against Aβ1-42-induced oxidative stress and apoptosis in mouse hippocampal neurons. Peptides 2020; 124:170185. [PMID: 31730791 DOI: 10.1016/j.peptides.2019.170185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is a serious neurodegenerative disease. Senile plaques (SPs) composed of amyloid-β (Aβ) are typical features of AD. Aβ plays a key role in the disease and has the ability to induce other pathological characteristics of AD, including oxidative stress injury. (m)VD-hemopressin (VD), a peptide derived from mouse brain extracts, can bind cannabinoid 1 receptor (CB1R) as an agonist. Our previous report indicated that VD reverses memory impairment induced by Aβ1-42 in mice. This study aimed to clarify the mechanism by which VD protects hippocampal neurons against Aβ1-42-induced impairment. Our results showed that VD inhibited oxidative stress injury induced by Aβ1-42, as demonstrated by the VD-induced reversal of the upregulation of reactive oxygen species (ROS) and the intracellular lipid peroxidation product malondialdehyde (MDA) and the downregulation of the activities of the antioxidative enzymes catalase (CAT) and glutathione peroxidase (GSH-PX) in mouse hippocampal neurons. We also found that VD restored the decrease in cell growth and viability induced by Aβ1-42 and reversed Aβ1-42-induced apoptosis mediated by the apoptosis-associated proteins Bcl-2 and Bax. However, cotreatment with AM251 (an antagonist of CB1R) blocked the effects of VD. In brief, this study suggested that through CB1R, VD reversed the impairment of cell growth and viability, oxidative stress injury and apoptosis induced by Aβ1-42. Therefore, VD may be a promising agent for the treatment of diseases that involve oxidative stress injury and apoptosis induced by Aβ1-42, such as AD.
Collapse
Affiliation(s)
- Ruisan Zhang
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Yongcai Zheng
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Fengrui Hu
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Xin Meng
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Bosen Lv
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Kejing Lao
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gao
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Xiaohua Zhang
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Institute of Basic Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
26
|
Ala M, Jafari RM, Dehpour AR. Diabetes Mellitus and Osteoporosis Correlation: Challenges and Hopes. Curr Diabetes Rev 2020; 16:984-1001. [PMID: 32208120 DOI: 10.2174/1573399816666200324152517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/24/2020] [Indexed: 01/14/2023]
Abstract
Diabetes and osteoporosis are two common diseases with different complications. Despite different therapeutic strategies, managing these diseases and reducing their burden have not been satisfactory, especially when they appear one after the other. In this review, we aimed to clarify the similarity, common etiology and possible common adjunctive therapies of these two major diseases and designate the known molecular pattern observed in them. Based on different experimental findings, we want to illuminate that interestingly similar pathways lead to diabetes and osteoporosis. Meanwhile, there are a few drugs involved in the treatment of both diseases, which most of the time act in the same line but sometimes with opposing results. Considering the correlation between diabetes and osteoporosis, more efficient management of both diseases, in conditions of concomitant incidence or cause and effect condition, is required.
Collapse
Affiliation(s)
- Moein Ala
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Razieh Mohammad Jafari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| |
Collapse
|
27
|
Badmus OO, Olatunji LA. Glucocorticoid exposure causes disrupted glucoregulation, cardiac inflammation and elevated dipeptidyl peptidase-4 activity independent of glycogen synthase kinase-3 in female rats. Arch Physiol Biochem 2019; 125:414-422. [PMID: 29912577 DOI: 10.1080/13813455.2018.1479426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: We tested the hypothesis that glucocorticoid (GC) exposure in female rats would lead to glucose dysregulation and elevated cardiac inflammatory biomarkers, which are dipeptidyl peptidase-4 (DPP-4)- and glycogen synthase kinase-3 (GSK-3)-dependent. Methods: Female Wistar rats received vehicle (control; n = 6) or GC (dexamethasone; n = 6; 0.2 mg/kg; p.o.) for six days. Insulin resistance was determined by HOMA-IR. DPP-4 activity was determined by fluorescence method, whereas vascular cell adhesion molecule-1 (VCAM-1), uric acid, malondialdehyde (MDA), lactate dehydrogenase (LDH) and nitric oxide (NO) from plasma and cardiac homogenate were estimated as cardiac pro-inflammatory biomarkers. Results: Results showed that GC exposure resulted in glucose dysregulation and increased plasma and cardiac pro-inflammatory markers which are associated with elevated DPP-4 activity but reduced GSK-3. Conclusions: The present results demonstrate that GC exposure would cause glucose dysregulation, increased DPP-4 activity and cardiac inflammation that is independent of GSK-3.
Collapse
Affiliation(s)
- Olufunto O Badmus
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin , Ilorin , Nigeria
- Department of Public Health, Kwara State University , Malete , Nigeria
| | - Lawrence A Olatunji
- HOPE Cardiometabolic Research Team and Department of Physiology, College of Health Sciences, University of Ilorin , Ilorin , Nigeria
| |
Collapse
|
28
|
Deng S, Nie ZG, Peng PJ, Liu Y, Xing S, Long LS, Peng H. Decrease of GSK3β Ser-9 Phosphorylation Induced Osteoblast Apoptosis in Rat Osteoarthritis Model. Curr Med Sci 2019; 39:75-80. [DOI: 10.1007/s11596-019-2002-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/30/2018] [Indexed: 12/16/2022]
|
29
|
Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomed Pharmacother 2018; 110:602-608. [PMID: 30537677 DOI: 10.1016/j.biopha.2018.11.103] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/08/2018] [Accepted: 11/25/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Osteoblasts play important roles in the process of osteogenesis and prevention of osteonecrosis. Dexamethasone (Dex), a type of glucocorticoids (GCs), induces apoptosis of osteoblasts and leads to the occurrence of non-traumatic osteonecrosis. This study aimed to explore the effects of phosphatidylinositol 3-kinase/Protein kinase 3 (PI3K/AKT) and glycogen synthase kinase 3β (GSK3β) on Dex-induced osteoblasts apoptosis. METHODS Viabilities, proliferation, and apoptosis of primary osteoblasts and pre-osteoblast MC3T3-E1 cells after Dex treatment were detected using cell counting kit-8 (CCK-8) assay, 5-bromo-2'-deoxyuridine (BrdU) incorporation assay, FITC-Annexin V/PI staining and western blotting, respectively. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure the intracellular reactive oxygen species (ROS) levels after Dex treatment. N-acetyl-l-cysteine (NAC) was used as ROS scavenger in this research. The expressions of PI3K/AKT and GSK3β in osteoblasts and MC3T3-E1 cells after Dex treatment were analyzed using western blotting and qRT-PCR, respectively. Then the effects of GSK3β knockdown on Dex-induced apoptosis of osteoblasts were explored. Alkaline phosphatase (ALP) activity assay was used to detect the role of Dex in regulating ALP activity. RESULTS Dex remarkably inhibited proliferation and induced apoptosis of osteoblasts and MC3T3-E1 cells. Dex potentially attenuated the osteoblast differentiation. The intracellular ROS levels were significantly increased after Dex treatment. Dex suppressed the activation of PI3K/AKT pathway in osteoblasts and MC3T3-E1 cells by down-regulating the expressions of p-PI3K and p-AKT. The expressions of GSK3β in osteoblasts and MC3T3-E1 cells were obviously up-regulated after Dex treatment. Knockdown of GSK3β alleviated Dex-induced osteoblast and MC3T3-E1 cell apoptosis by decreasing the expressions of Bax, cleaved-caspase 3, cleaved-caspase 9 and increasing the expression of Bcl-2. CONCLUSION Our research verified that Dex induced osteoblasts apoptosis by ROS-PI3K/AKT/GSK3β signaling pathway.
Collapse
|
30
|
Yang LJ, Zhou M, Huang LB, Yang WR, Yang ZB, Jiang SZ, Ge JS. Zearalenone-Promoted Follicle Growth through Modulation of Wnt-1/β-Catenin Signaling Pathway and Expression of Estrogen Receptor Genes in Ovaries of Postweaning Piglets. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7899-7906. [PMID: 29986586 DOI: 10.1021/acs.jafc.8b02101] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Feedstuffs are severely contaminated by zearalenone (ZEA) worldwide. A specific dietary level of ZEA could cause malformations of the reproductive organs of sows, false estrus, decreased litter size, and abortion. However, the underlying mechanisms are still not clear. The objectives of the present study were to assess the effects of ZEA on morphology, distribution, and expression of estrogen receptors (ERα and ERβ) in the ovaries of postweaning piglets. Furthermore, the relationship between ERs/glycogen synthase kinase (GSK)-3β-dependent pathways mediated by ZEA and the Wnt-1/β-catenin signaling pathway was examined. Forty healthy weaning piglets were allocated to the following four treatment groups: piglets fed with basal diet only (control), and ZEA0.5, ZEA1.0, and ZEA1.5, which were fed basal diets supplemented with ZEA at 0.5, 1.0, and 1.5 mg·kg-1, respectively. Then, the expression of GSK-3β, ERα, ERβ, and Wnt-1/β-catenin were examined histomorphologically and immunohistochemically. Results showed that the proportion of primordial follicles (PrF's) decreased ( p < 0.001) but that of atretic primordial follicles (APFs) increased ( p < 0.001) with increasing dietary ZEA levels. More interestingly, the immunopositivity of ERβ in the ovaries was stronger than that of ERα with the same treatment. The relative mRNA and protein expression levels of ERα, ERβ, Wnt-1, β-catenin, and GSK-3β in the ovaries of postweaning gilts increased linearly ( p < 0.05) as dietary ZEA concentrations increased. Moreover, the accumulation of Wnt-1 and β-catenin in the ovaries indicated that ZEA activated the Wnt-1/β-catenin pathway, mediated by ERs/GSK-3β. Our results strongly suggested that ovarian follicles in the ZEA (0.5-1.5 mg·kg-1)-treated groups were highly proliferative state, indicating that ZEA promoted ovarian development. The results also suggested that ZEA activates the ERs/GSK-3β-dependent Wnt-1/β-catenin signaling pathway, indicating its important role in accelerating development of the ovaries.
Collapse
Affiliation(s)
- Li-Jie Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Min Zhou
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Li-Bo Huang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Wei-Ren Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Zai-Bin Yang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Shu-Zhen Jiang
- Department of Animal Sciences and Technology and Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention , Shandong Agricultural University , No. 61 Daizong Street , Taian City , Shandong Province 271018 , P.R. China
| | - Jin-Shan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd. , No. 226 Gongye 2 Road , Feicheng City , Shandong Province 271600 , P.R. China
| |
Collapse
|
31
|
Huang Y, Cai GQ, Peng JP, Shen C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J Steroid Biochem Mol Biol 2018. [PMID: 29526705 DOI: 10.1016/j.jsbmb.2018.03.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the results from our previous study, dexamethasone (Dex) increases reactive oxygen species (ROS) levels and subsequently induces cell death and matrix catabolism in chondrocytes. Nevertheless, the mechanism underlying this phenomenon remains unclear. Nicotinamide adenine dinucleotide (phosphate) (NADPH) oxidase 4 (NOX4) is one of the major enzymes responsible for intracellular ROS production during the inflammatory process. The objective of the current study was to investigate the role of NOX4 in Dex-induced ROS over-production. Healthy chondrocytes were harvested from the cartilage debris from 6 female patients. NOX4 and p38 mitogen-activated protein kinase (MAPK) expression levels in these cells were evaluated in the presence of Dex. Changes in the number of apoptotic and viable Dex-treated chondrocytes were recorded after the cells were treated with NOX and p38 MAPK inhibitors. Changes in matrix metalloproteinase 13 (MMP-13) expression levels in Dex-treated chondrocytes were also investigated. The Dex treatment increased NOX4 expression via the glucocorticoid receptor (GR). Treatment of cells with apocynin, a NOX inhibitor, decreased intracellular ROS levels and inhibited p38 MAPK activation. Treatment of cells with a ROS scavenger also reduced p38 MAPK expression. Treatment of cells with a NOX inhibitor, ROS scavenger and p38 MAPK inhibitor rescued chondrocytes from Dex-induced apoptosis. Moreover, treatment of cells with these agents blocked MMP-13 expression in Dex-treated chondrocytes. NOX4 silencing also suppressed p38 MAPK and MMP-13 expression. Dex triggered apoptosis and MMP-13 expression through the NOX4/ROS/p38 MAPK signaling pathway. NOX4 may be a therapeutic target in the management of Dex-induced complications.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Gui-Quan Cai
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Jian-Ping Peng
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China
| | - Chao Shen
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, 200092, Shanghai, China.
| |
Collapse
|
32
|
Badmus OO, Michael OS, Rabiu S, Olatunji LA. Gestational glucocorticoid exposure disrupts glucose homeostasis that is accompanied by increased endoglin and DPP-4 activity instead of GSK-3 in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 60:66-75. [PMID: 29677638 DOI: 10.1016/j.etap.2018.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 05/27/2023]
Abstract
Gestational glucocorticoid (GC) treatment has been associated with cardiometabolic disorder (CMD) in offspring's in later life. Elevated dipeptidyl peptidase-4 (DPP-4) activity, endoglin and glycogen synthase kinase-3 (GSK-3) has also been implicated in the development of insulin resistance (IR) and/or vascular inflammation. We aimed to investigate the impact of GC exposure on glucose metabolism and the circulating levels of inflammatory biomarkers, DPP-4 activity and GSK-3 in pregnant rats. Pregnant Wistar rats received either vehicle or dexamethasone (DEX; 0.2 mg/kg; po) between gestational days 14 and 19. Gestational GC exposure resulted in impaired glucose homeostasis that is accompanied with elevated circulating levels of inflammatory biomarkers (endoglin, uric acid, and platelet/lymphocyte ratio), oxidative stress (malondialdehyde), blood viscosity, reduced NO level and increased DPP-4 activity. However, these effects were associated with atherogenic dyslipidemia and reduced GSK-3.We conclude that plasma endoglin, a marker of vascular inflammation, and plasma DPP-4 activity are increased in pregnant rats treated with GC during late gestation. Therefore, glucose deregulation associated with gestational GC exposure is through endoglin-/DPP-4-dependent but GSK-3-independent pathway.
Collapse
Affiliation(s)
- Olufunto O Badmus
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Public Health, Kwara State University, Malete, Nigeria
| | - Olugbenga S Michael
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria; Department of Physiology, Cardiometabolic Research Unit, College of Health and Medical sciences, Bowen University, Iwo, Nigeria
| | - Saheed Rabiu
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria
| | - Lawrence A Olatunji
- Department of Physiology & Hope Cardiometabolic Research Team, College of Health Sciences, University of Ilorin, Ilorin, Nigeria.
| |
Collapse
|
33
|
Michael OS, Olatunji LA. Ameliorative effect of nicotine exposure on insulin resistance is accompanied by decreased cardiac glycogen synthase kinase-3 and plasminogen activator inhibitor-1 during oral oestrogen-progestin therapy. Arch Physiol Biochem 2018; 124:139-148. [PMID: 28868937 DOI: 10.1080/13813455.2017.1369549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CONTEXT Cigarette smoking is considered to be a major risk factor for the development of diabetes and cardiovascular disease. Oestrogen-progestin combined oral contraceptive (COC) use has been associated with adverse cardiometabolic events. OBJECTIVE We hypothesized that nicotine would ameliorate insulin resistance (IR) that is accompanied by decreased cardiac glycogen synthase kinase-3 (GSK-3) and plasminogen activator inhibitor-1 (PAI-1). METHODS Female Wistar rats received (po) low-(0.1 mg/kg) or high-nicotine (1.0 mg/kg) with or without COC containing 5.0 µg levonorgestrel plus 1.0 µg ethinylestradiol daily for 8 weeks. RESULTS Data showed that COC treatment or nicotine exposure led to IR, glucose deregulation, atherogenic dyslipidemia, increased corticosterone, aldosterone, cardiac and circulating GSK-3 values and PAI-1. However, these effects with the exception of corticosterone and aldosterone were ameliorated in COC + nicotine-exposed rats. CONCLUSION Amelioration of IR induced by COC treatment is accompanied by decreased circulating PAI-1, cardiac PAI-1 and GSK-3 instead of circulating aldosterone and corticosterone.
Collapse
Affiliation(s)
- Olugbenga S Michael
- a Cardiovascular Research Laboratory, Department of Physiology , University of Ilorin, Ilorin, Nigeria
- b Hope Cardiometabolic Research Centre , Ilorin , Nigeria
- c Cardiometabolic Research Unit, Department of Physiology , College of Health sciences, Bowen University , Iwo , Nigeria
| | - Lawrence A Olatunji
- a Cardiovascular Research Laboratory, Department of Physiology , University of Ilorin, Ilorin, Nigeria
- b Hope Cardiometabolic Research Centre , Ilorin , Nigeria
| |
Collapse
|
34
|
Gu C, Zhang Y, Hu Q, Wu J, Ren H, Liu CF, Wang G. P7C3 inhibits GSK3β activation to protect dopaminergic neurons against neurotoxin-induced cell death in vitro and in vivo. Cell Death Dis 2017; 8:e2858. [PMID: 28569794 PMCID: PMC5520908 DOI: 10.1038/cddis.2017.250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/12/2017] [Accepted: 05/03/2017] [Indexed: 01/17/2023]
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. Although its pathogenesis remains unclear, mitochondrial dysfunction plays a vital role in the pathology of PD. P7C3, an aminopropyl carbazole, possesses a significant neuroprotective ability in several neurodegenerative disorders, including PD. Here, we showed that P7C3 stabilized mitochondrial membrane potential, reduced reactive oxygen species production, and inhibited cytochrome c release in MES23.5 cells (a dopaminergic (DA) cell line) exposed to 1-methyl-4-phenylpyridinium (MPP+). In MES23.5 cells, P7C3 inhibited glycogen synthase kinase-3 beta (GSK3β) activation induced by MPP+. P7C3 also inhibited p53 activity and repressed Bax upregulation to protect cells from MPP+ toxicity. In addition, the activation of p53 was significantly attenuated with the inhibition of GSK3β activity by P7C3. Furthermore, P7C3 blocked GSK3β and p53 activation in the midbrain, and prevented DA neuronal loss in the substantia nigra in 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine mice. Thus, our study demonstrates that P7C3 protects DA neurons from neurotoxin-induced cell death by repressing the GSK3β-p53-Bax pathway both in vitro and in vivo, thus providing a theoretical basis for P7C3 in the potential clinical treatment of PD.
Collapse
Affiliation(s)
- Chao Gu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Yan Zhang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Qingsong Hu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Jiayuan Wu
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Haigang Ren
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Chun-Feng Liu
- Department of Neurology and Suzhou Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Guanghui Wang
- Department of Pharmacology, Laboratory of Molecular Neuropathology, Jiangsu Key laboratory of Translational Research and Therapy for Neuropsychiatric disorders, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| |
Collapse
|
35
|
TRB3 mediates advanced glycation end product-induced apoptosis of pancreatic β-cells through the protein kinase C β pathway. Int J Mol Med 2017; 40:130-136. [PMID: 28534945 PMCID: PMC5466392 DOI: 10.3892/ijmm.2017.2991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/05/2017] [Indexed: 12/29/2022] Open
Abstract
Advanced glycation end products (AGEs), which accumulate in the body during the development of diabetes, may be one of the factors leading to pancreatic β-cell failure and reduced β-cell mass. However, the mechanisms responsible for AGE‑induced apoptosis remain unclear. This study identified the role and mechanisms of action of tribbles homolog 3 (TRB3) in AGE-induced β-cell oxidative damage and apoptosis. Rat insulinoma cells (INS-1) were treated with 200 µg/ml AGEs for 48 h, and cell apoptosis was then detected by TUNEL staining and flow cytometry. The level of intracellular reactive oxygen species (ROS) was measured by a fluorescence assay. The expression levels of receptor of AGEs (RAGE), TRB3, protein kinase C β2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) were evaluated by RT-qPCR and western blot analysis. siRNA was used to knockdown TRB3 expression through lipofection, followed by an analysis of the effects of TRB3 on PKCβ2 and NOX4. Furthermore, the PKCβ2-specific inhibitor, LY333531, was used to analyze the effects of PKCβ2 on ROS levels and apoptosis. We found that AGEs induced the apoptosis of INS-1 cells and upregulated RAGE and TRB3 expression. AGEs also increased ROS levels in β-cells. Following the knockdown of TRB3, the AGE-induced apoptosis and intracellular ROS levels were significantly decreased, suggesting that TRB3 mediated AGE-induced apoptosis. Further experiments demonstrated that the knockdown of TRB3 decreased the PKCβ2 and NOX4 expression levels. When TRB3 was knocked down, the cells expressed decreased levels of PKCβ2 and NOX4. The PKCβ2‑specific inhibitor, LY333531, also reduced AGE-induced apoptosis and intracellular ROS levels. Taken together, our data suggest that TRB3 mediates AGE-induced oxidative injury in β-cells through the PKCβ2 pathway.
Collapse
|
36
|
Guo S, Mao L, Ji F, Wang S, Xie Y, Fei H, Wang XD. Activating AMP-activated protein kinase by an α1 selective activator compound 13 attenuates dexamethasone-induced osteoblast cell death. Biochem Biophys Res Commun 2016; 471:545-52. [PMID: 26891866 DOI: 10.1016/j.bbrc.2016.02.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 02/10/2016] [Indexed: 12/25/2022]
Abstract
Excessive glucocorticoid (GC) usage may lead to non-traumatic femoral head osteonecrosis. Dexamethasone (Dex) exerts cytotoxic effect to cultured osteoblasts. Here, we investigated the potential activity of Compound 13 (C13), a novel α1 selective AMP-activated protein kinase (AMPK) activator, against the process. Our data revealed that C13 pretreatment significantly attenuated Dex-induced apoptosis and necrosis in both osteoblastic-like MC3T3-E1 cells and primary murine osteoblasts. AMPK activation mediated C13' cytoprotective effect in osteoblasts. The AMPK inhibitor Compound C, shRNA-mediated knockdown of AMPKα1, or dominant negative mutation of AMPKα1 (T172A) almost abolished C13-induced AMPK activation and its pro-survival effect in osteoblasts. On the other hand, forced AMPK activation by adding AMPK activator A-769662 or exogenous expression a constitutively-active (ca) AMPKα1 (T172D) mimicked C13's actions and inhibited Dex-induced osteoblast cell death. Meanwhile, A-769662 or ca-AMPKα1 almost nullified C13's activity in osteoblast. Further studies showed that C13 activated AMPK-dependent nicotinamide adenine dinucleotide phosphate (NADPH) pathway to inhibit Dex-induced reactive oxygen species (ROS) production in MC3T3-E1 cells and primary murine osteoblasts. Such effects by C13 were almost reversed by Compound C or AMPKα1 depletion/mutation. Together, these results suggest that C13 alleviates Dex-induced osteoblast cell death via activating AMPK signaling pathway.
Collapse
Affiliation(s)
- Shiguang Guo
- Department of Intensive Care Unit, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Li Mao
- Department of Endocrinology, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Feng Ji
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China.
| | - Shouguo Wang
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Yue Xie
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Haodong Fei
- Department of Orthopedics, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, China
| | - Xiao-dong Wang
- The Center of Diagnosis and Treatment for Children's Bone Diseases, The Children's Hospital Affiliated to Soochow University, Suzhou, China.
| |
Collapse
|