1
|
Lopes MB, Coletti R, Duranton F, Glorieux G, Jaimes Campos MA, Klein J, Ley M, Perco P, Sampri A, Tur-Sinai A. The Omics-Driven Machine Learning Path to Cost-Effective Precision Medicine in Chronic Kidney Disease. Proteomics 2025:e202400108. [PMID: 39790049 DOI: 10.1002/pmic.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Chronic kidney disease (CKD) poses a significant and growing global health challenge, making early detection and slowing disease progression essential for improving patient outcomes. Traditional diagnostic methods such as glomerular filtration rate and proteinuria are insufficient to capture the complexity of CKD. In contrast, omics technologies have shed light on the molecular mechanisms of CKD, helping to identify biomarkers for disease assessment and management. Artificial intelligence (AI) and machine learning (ML) could transform CKD care, enabling biomarker discovery for early diagnosis and risk prediction, and personalized treatment. By integrating multi-omics datasets, AI can provide real-time, patient-specific insights, improve decision support, and optimize cost efficiency by early detection and avoidance of unnecessary treatments. Multidisciplinary collaborations and sophisticated ML methods are essential to advance diagnostic and therapeutic strategies in CKD. This review presents a comprehensive overview of the pipeline for translating CKD omics data into personalized treatment, covering recent advances in omics research, the role of ML in CKD, and the critical need for clinical validation of AI-driven discoveries to ensure their efficacy, relevance, and cost-effectiveness in patient care.
Collapse
Affiliation(s)
- Marta B Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, Portugal
- UNIDEMI, Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology (NOVA FCT), Caparica, Portugal
| | - Roberta Coletti
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology (NOVA FCT), Caparica, Portugal
| | | | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Unit, Ghent University Hospital, Gent, Belgium
| | - Mayra Alejandra Jaimes Campos
- Department of Biomarker Research, Mosaiques Diagnostics GmbH, Hannover, Germany
- Institute for Molecular Cardiovascular Research, University Hospital RWTH Aachen, Aachen, Germany
| | - Julie Klein
- Institut National de la Santé et de la Recherche Médicale (INSERM), Institute of Cardiovascular and Metabolic Disease, Toulouse, France
- Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Matthias Ley
- Delta4 GmbH, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Vienna, Austria
| | - Paul Perco
- Delta4 GmbH, Vienna, Austria
- Department of Internal Medicine IV, Medical University Innsbruck, Innsbruck, Austria
| | - Alexia Sampri
- Department of Public Health and Primary Care, British Heart Foundation Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
2
|
Ma J, Sun S, Cheng X, Meng C, Zhao H, Fu W, Gao Y, Ma L, Yang Z, Yao H, Su J. Unraveling the role of gut microbiome in predicting adverse events in neoadjuvant therapy for rectal cancer. Hum Vaccin Immunother 2024; 20:2430087. [PMID: 39623529 PMCID: PMC11622589 DOI: 10.1080/21645515.2024.2430087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/28/2024] [Accepted: 11/13/2024] [Indexed: 12/08/2024] Open
Abstract
Some patients may develop adverse events during neoadjuvant chemoradiotherapy combined with immunotherapy, influencing response rates. The roles of intestinal microbiome and its metabolites in therapeutic adverse events remain unclear. We collected baseline fecal samples from 21 patients with adverse events (AE group) and 11 patients without adverse events (Non-AE group). Their microbiota and metabolome were characterized using metagenomic shotgun sequencing and untargeted metabolomics. At the species level, the gut microbiota in the Non-AE group exhibits significantly higher abundance of Clostridium sp. Alistipes sp. and lower abundance of Lachnoclostridium sp. Weissella cibaria, Weissella confusa, compared to the AE group (p < .05). A total of 58 discriminative metabolites were identified between groups. Beta-alanine metabolism was scattered. Boc-beta-cyano-L-alanine and CoQ9 were significantly increased in patients without adverse events, while linoleic acid increased in patients with adverse events. The increased Alistipes sp. in the Non-AE group was positively correlated with Boc-beta-cyano-L-alanine and negatively correlated with linoleic acid (p < .05). We constructed a combined microbiome-metabolite model to distinguish Non-AE and AE patients with an AUC of 0.963 via the random forest algorithm. Our findings provided a novel insight into the interplay of multispecies microbial cluster and metabolites of rectal patients with adverse events in neoadjuvant chemoradiotherapy combined with immunotherapy. These microbiota and metabolites deserve further investigations to reveal their roles in adverse events, providing clues for better treatment scenarios.Trial registration number: ClinicalTrials.gov identifier: NCT05368051.
Collapse
Affiliation(s)
- Jingxin Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Shengbo Sun
- School of Basic Medical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Xin Cheng
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Cong Meng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Hanzheng Zhao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Wentao Fu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Yan Gao
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Liyan Ma
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center of Digestive Diseases, Beijing, People’s Republic of China
| | - Jianrong Su
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Yan X, Li P, Liu C, Yin F, Han J, Sun H, Zheng Y, Chen X, Guan S, Wang X. Exploring the molecular mechanisms for renoprotective effects of Huangkui capsule on diabetic nephropathy mice by comprehensive serum metabolomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119223. [PMID: 39706356 DOI: 10.1016/j.jep.2024.119223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huangkui capsule (HKC), a patent traditional Chinese medicine, has shown significant efficacy in managing chronic kidney disease (CKD), particularly diabetic nephropathy (DN). Previous studies have shown that HKC can alleviate kidney damage in DN. However, the exact mechanisms through which it exerts its effects remain unclear. AIM OF THE STUDY This study aimed to elucidate the potential molecular mechanisms of HKC in treating kidney injury in type 1 diabetic nephropathy (T1DN) models through serum metabolomics, Chinmedomics, and molecular docking techniques. MATERIALS AND METHODS T1DN mouse models were induced by intraperitoneal injection of streptozotocin (STZ), resulting in the ACR value ten times that of the control group. The efficacy of HKC on T1DN was comprehensively evaluated in general conditions, renal coefficient, histopathology, and related biochemical indicators. UPLC-Q-TOF-MS/MS based serum metabolomics was employed to identify biomarkers of T1DN and evaluate the effects of HKC. Relevant pathways were analyzed, and followed by Protein-Protein Interaction network analysis to screen for key enzymes. By integrating the Chinmedomics strategy and molecular docking the relationship between these targets and active components was elucitaed. RESULTS HKC resulted in a significant reduction in renal inflammation and fibrosis, as evidenced by the decreased levels of urinary ACR, blood TG, T-CHO, BUN, and renal TNF-α and VEGF-A, along with a reduction in the positive area of COL-1. Palmitic acid, stearic acid, arachidonic acid, pantothenic acid, and sphingosine-1-phosphate serve as key serum metabolite biomarkers for T1DN, involved in the biosynthesis of unsaturated fatty acids, arachidonic acid metabolism, pantothenate and CoA biosynthesis, and sphingolipid metabolism. FASN, Cyp2e1, and Cyp4a32 are the key enzymes in the treatment of T1DN with HKC. Additionally, 8 key active components were identified in the serum of HKC-H, including quercetin, myricetin, isoquercitrin, hyperoside, hibifolin, gentisic acid 5-O-β-glucoside, floramanoside F, and quercetin-4'-O-glucoside, which are believed to interact with key enzymes. CONCLUSIONS The active components of HKC influence Fasn, Cyp2e1, and Cy4a32, improving renal injury in T1DN. These findings provide new molecular insights for the future clinical application and research of HKC in treating T1DN.
Collapse
Affiliation(s)
- Xiaotong Yan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Chang Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Fengting Yin
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Jinwei Han
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Hui Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Ying Zheng
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| | - Shihan Guan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China
| | - Xijun Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin, 150040, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, 100853, China.
| |
Collapse
|
4
|
Cheng W, Feng W, Tian G, Liu J, Ba Z, Yu M, Yan R, Liu L, He Y, Li X, Zhang J. Study of Serum Metabolic Biomarkers and Prediction Models of Cantharidin-Induced Nephrotoxicity in Rats Based on Dynamic Metabolomics. J Appl Toxicol 2024. [PMID: 39676217 DOI: 10.1002/jat.4743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 11/24/2024] [Indexed: 12/17/2024]
Abstract
The clinical application of cantharidin (CTD) is seriously limited due to its nephrotoxicity. Therefore, this study aims to investigate sensitive biomarkers for the evaluation and prediction of nephrotoxicity induced by CTD in rat. A total of 80 rats were randomly divided into four groups: control group and three doses of CTD groups. After 0, 1, 5, 15, and 28 days of intragastric administration, rat serum and urine were collected for biochemical indexes, then serum was used for metabolomic analyses, and rat kidney was collected for pathological and ultrastructural observation. The levels of serum crea (Scr), blood urea nitrogen (BUN), urea, urine crea (Ucrea), and urinary microalbumin (UmALB) were significantly increased after administration of different doses of CTD (p < 0.05). Additionally, histopathology and cell ultrastructure observation of kidney showed significant cell inflammatory infiltration and glomerular edema. Seven metabolic biomarkers including 6-hydroxymelatonin were significantly disturbed by CTD. The CatBoost Classifier prediction model was used to establish the CTD nephrotoxicity prediction model, and the prediction accuracy and precision were 0.645 and 0.640, respectively. Moreover, 6-hydroxymelatonin was found to be most useful biomarkers for evaluating the CTD nephrotoxicity. Finally, the seven metabolic biomarkers were found mainly involved in pyruvate metabolism, pantothenate and CoA biosynthesis.
Collapse
Affiliation(s)
- Weina Cheng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Wenzhong Feng
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Guanghuan Tian
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jingxian Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Zhixun Ba
- Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ming Yu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Rong Yan
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Liu Liu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Yanmei He
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaofei Li
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi, China
| | - Jianyong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
5
|
Wang Q, Wang M, Chen J, Zhang W, Lv X. Ameliorative effects of Bacillus subtilis C10 on alcoholic liver injury in mice. J Food Sci 2024; 89:10018-10034. [PMID: 39581583 DOI: 10.1111/1750-3841.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/18/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Bacillus subtilis has been reported to maintain the homeostasis of intestinal flora. In this study, a mouse model of alcoholic liver injury (ALI) was constructed to study the ameliorative effect of B. subtilis C10 on ALI and to further clarify its mechanism of action. Significant correlations between intestinal flora and biochemical indicators of ALI were found by statistical correlation analysis. Supplementation with B. subtilis C10 modulated the equilibrium of gut flora by reducing the population of detrimental bacteria while enhancing the numbers of beneficial microorganisms, which resulted in an improvement in lipid metabolism and oxidative stress in the liver. The results of RT-qPCR showed that B. subtilis C10 intervention regulated the main regulatory factors of liver lipid metabolism (PPAR-α, SREBP-1c) and interfered with Nrf-2/Ho-1 signal pathway, which in turn ameliorated alcohol-induced lipid metabolism disorder and liver peroxidation stress. In addition, liver metabonomic analysis showed that B. subtilis C10 intervention reduced the production of harmful metabolites and increased beneficial metabolites in the liver, thereby reversing the metabolic disturbances caused by excessive alcohol consumption. KEGG analysis showed that B. subtilis C10 intervention modulated liver metabolic disorders and accelerated lipid metabolism by regulating glutathione metabolic pathway, purine metabolic pathway, pantothenic acid and CoA biosynthesis pathway, ABC transporter protein pathway, and HIF-1 signaling pathway. Taken together, these findings suggest that B. subtilis C10 ameliorates ALI by modifying the structure of intestinal flora and liver metabolic pathways to attenuate alcohol-exposure-induced liver oxidative damage and lipid metabolism abnormalities. PRACTICAL APPLICATION: Bacillus subtilis C10 is an effective probiotic intervention that significantly ameliorated alcoholic liver injury in mice through the gut-liver axis. B. subtilis C10 can be used as a dietary probiotic to develop functional foods with beneficial effects for the population of excessive alcohol consumption.
Collapse
Affiliation(s)
- Qingyun Wang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Meiting Wang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Jihong Chen
- College of Marine and Biochemical Engineering, Fujian Normal University, Fuzhou, Fujian, China
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| | - Xucong Lv
- Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
6
|
Wang J, Wang X, Xiu W, Li C, Yu S, Zhu H, Shi X, Zhou K, Ma Y. Selenium polysaccharide form sweet corn cob mediated hypoglycemic effects in vitro and untargeted metabolomics study on type 2 diabetes. Int J Biol Macromol 2024; 281:136388. [PMID: 39389509 DOI: 10.1016/j.ijbiomac.2024.136388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/12/2024]
Abstract
Type 2 diabetes mellitus (T2D) causes complications due to metabolic disorders besides increasing blood glucose. Sweet corn cob selenium polysaccharide (SeSCP) is a complex of Se with Sweet corn cob polysaccharide that has good hypoglycemic efficacy, but its effect on T2D metabolism has not been determined. In this study, the hypoglycemic effect of SeSCP was investigated by in vitro and in vivo experiments, and the levels of metabolites in feces were analyzed in a high-fat diet and STZ-induced T2D mouse model by Liquid chromatography-mass spectrometry (LC-MS). The results indicated that SeSCP regulates α-amylase and α-glucosidase through competitive reversible inhibition, and the reaction is spontaneous, driven by van der Waals forces and hydrogen bonding. In vivo, SeSCP modulates glucose transport decreasing glucose entry into the bloodstream. The metabolites mainly affected by SeSCP-MC were adenine, LysoPA (0:0/18:2(9Z, 12Z)), cysteine-S-sulfate, and demeclocycline (hydrochloride) metabolites. SeSCP interfered with β-alanine metabolism, starch and sucrose metabolism, ether lipid metabolism, glycerophospholipid metabolism, glyoxylate and dicarboxylate metabolism, pantothenate and CoA biosynthesis, etc. Additionally, SeSCP exhibited more effective metabolic interventions than metformin and SCP. Therefore, SeSCP can reduce complications while improving T2D blood glucose.
Collapse
Affiliation(s)
- Jingyang Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xin Wang
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Weiye Xiu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Chenchen Li
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Shiyou Yu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Haobin Zhu
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Xinhong Shi
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Kechi Zhou
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Keshan 161601, Heilongjiang, China
| | - Yongqiang Ma
- Key Laboratory of Cereal Food and Cereal Resources in Heilongjiang Province, School of Food Engineering, Harbin University of Commerce, Harbin 150028, China
| |
Collapse
|
7
|
Ruan LL, Lv XY, Hu YL, Chen MX, Jing-Tang, Zhong ZH, Bao MH, Fu LJ, Luo X, Yu SM, Wan Q, Ding YB. Metabolic landscape and pathogenic insights: a comprehensive analysis of high ovarian response in infertile women undergoing in vitro fertilization. J Ovarian Res 2024; 17:105. [PMID: 38760835 PMCID: PMC11102248 DOI: 10.1186/s13048-024-01411-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the realm of assisted reproduction, a subset of infertile patients demonstrates high ovarian response following controlled ovarian stimulation (COS), with approximately 29.7% facing the risk of Ovarian Hyperstimulation Syndrome (OHSS). Management of OHSS risk often necessitates embryo transfer cancellation, leading to delayed prospects of successful pregnancy and significant psychological distress. Regrettably, these patients have received limited research attention, particularly regarding their metabolic profile. In this study, we aim to utilize gas chromatography-mass spectrometry (GC-MS) to reveal these patients' unique serum metabolic profiles and provide insights into the disease's pathogenesis. METHODS We categorized 145 infertile women into two main groups: the CON infertility group from tubal infertility patients and the Polycystic Ovary Syndrome (PCOS) infertility group. Within these groups, we further subdivided them into four categories: patients with normal ovarian response (CON-NOR group), patients with high ovarian response and at risk for OHSS (CON-HOR group) within the CON group, as well as patients with normal ovarian response (PCOS-NOR group) and patients with high ovarian response and at risk for OHSS (PCOS-HOR group) within the PCOS group. Serum metabolic profiles were analyzed using GC-MS. The risk criteria for OHSS were: the number of developing follicles > 20, peak Estradiol (E2) > 4000pg/mL, and Anti-Müllerian Hormone (AMH) levels > 4.5ng/mL. RESULTS The serum metabolomics analysis revealed four different metabolites within the CON group and 14 within the PCOS group. Remarkably, 10-pentadecenoic acid emerged as a discernible risk metabolite for the CON-HOR, also found to be a differential metabolite between CON-NOR and PCOS groups. cysteine and 5-methoxytryptamine were also identified as risk metabolites for the PCOS-HOR. Furthermore, KEGG analysis unveiled significant enrichment of the aminoacyl-tRNA biosynthesis pathway among the metabolites differing between PCOS-NOR and PCOS-HOR. CONCLUSION Our study highlights significant metabolite differences between patients with normal ovarian response and those with high ovarian response and at risk for OHSS within both the tubal infertility control group and PCOS infertility group. Importantly, we observe metabolic similarities between patients with PCOS and those with a high ovarian response but without PCOS, suggesting potential parallels in their underlying causes.
Collapse
Affiliation(s)
- Ling-Ling Ruan
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 23 Central Park North Road, Yubei District, Chongqing, 401147, PR China
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Xing-Yu Lv
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China
| | - Yu-Lin Hu
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China
| | - Ming-Xing Chen
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Jing-Tang
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhao-Hui Zhong
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Mei-Hua Bao
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Fu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Shao-Min Yu
- Department of Obstetrics and Gynecology, the People's Hospital of Yubei District, No. 23 Central Park North Road, Chongqing, 401120, China.
| | - Qi Wan
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
- The Reproductive Center, Sichuan Jinxin Xinan Women & Children's Hospital, Chengdu, Sichuan, 610011, China.
| | - Yu-Bin Ding
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 23 Central Park North Road, Yubei District, Chongqing, 401147, PR China.
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
8
|
Chen P, Pang C, Bai L, Zhang Y, Dong P, Han H. Integrated metabolomics and network pharmacology study on the mechanism of herbal pair of danggui-kushen for treating ischemia heart disease. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1239:124121. [PMID: 38642410 DOI: 10.1016/j.jchromb.2024.124121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 04/08/2024] [Indexed: 04/22/2024]
Abstract
DangGui-KuShen (DK) is a well-known classic traditional Chinese medicine recipe that improves blood circulation, eliminates moisture, and detoxifies, and is frequently used in the treatment of cardiovascular problems. Some protective effects of DK on cardiovascular disease have previously been identified, but its precise mechanism remains unknown. The goal of this study is to combine metabolomics and network pharmacology to investigate DK's protective mechanism in Ischemic Heart Disease(IHD) rat models. A combination of metabolomics and network pharmacology based on UPLC-Q-TOF/MS technology was used in this study to verify the effect of DK on IHD through enzyme-linked immunosorbent assay, HE staining, and electrocardiogram, and it was determined that DK improves the synergistic mechanism of IHD. In total, 22 serum differential metabolites and 26 urine differential metabolites were discovered, with the majority of them involved in phenylalanine, tyrosine, and tryptophan biosynthesis, glycine, serine, and threonine metabolism, arginine and proline metabolism, aminoacyl-tRNA biosynthesis, purine metabolism, and other metabolic pathways. Furthermore, using network pharmacology, a composite target pathway network of DangGui and KuShen for treating IHD was created, which is primarily associated to the tumor necrosis factor (TNF) signaling pathway, P53 signaling, and HIF-1 signaling pathways. The combined research indicated that the NF-B signaling pathway and the HIF-1 signaling pathway are critical in DK treatment of IHD. This study clearly confirms and expands on current knowledge of the synergistic effects of DG and KS in IHD.
Collapse
Affiliation(s)
- Pengyi Chen
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Chengguo Pang
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Lincheng Bai
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Yulong Zhang
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China
| | - Peiliang Dong
- Institute of traditional Chinese medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China.
| | - Hua Han
- College of medicine, Heilongjiang University of traditional Chinese Medicine, Harbin, China.
| |
Collapse
|
9
|
Ma X, Qiu Y, Mao M, Lu B, Zhao H, Pang Z, Li S. PuRenDan alleviates type 2 diabetes mellitus symptoms by modulating the gut microbiota and its metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117627. [PMID: 38147943 DOI: 10.1016/j.jep.2023.117627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/06/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE PuRenDan (PRD) is a traditional Chinese medicine formula comprising five herbs that have been traditionally used to treat type 2 diabetes mellitus (T2DM). While PRD has been shown to be effective in treating T2DM in clinical and animal studies, the mechanisms by which it works on the gut microbiome and metabolites related to T2DM are not well understood. AIM OF THE STUDY The objective of this study was to partially elucidate the mechanism of PRD in treating T2DM through analyses of the gut microbiota metagenome and metabolome. MATERIALS AND METHODS Sprague-Dawley rats were fed high-fat diets (HFDs) and injected with low-dose streptozotocin (STZ) to replicate T2DM models. Then the therapeutic effects of PRD were evaluated by measuring clinical markers such as blood glucose, insulin resistance (IR), lipid metabolism biomarkers (total cholesterol, low-density lipoprotein, non-esterified fatty acids, and triglycerides), and inflammatory factors (tumor necrosis factor alpha, interleukin-6 [IL-6], interferon gamma, and IL-1β). Colon contents were collected, and metagenomics, combined with ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry metabolic profiling, was performed to evaluate the effects of T2DM and PRD on gut microbiota and its metabolites in rats. Spearman analysis was used to calculate the correlation coefficient among different microbiota, clinical indices, and metabolites. RESULTS PRD exhibited significant improvement in blood glucose and IR, and reduced serum levels of lipid metabolism biomarkers and inflammatory factors. Moreover, the diversity and abundance of gut microbiota undergo significant changes in rats with T2DM that PRD was able to reverse. The gut microbiota associated with T2DM including Rickettsiaceae bacterium 4572_127, Psychrobacter pasteurii, Parabacteroides sp. CAG409, and Paludibacter propionicigenes were identified. The gut microbiota most closely related to PRD were Prevotella sp. 10(H), Parabacteroides sp. SN4, Flavobacteriales bacterium, Bacteroides massiliensis, Alistipes indistinctus, and Ruminococcus flavefaciens. Additionally, PRD regulated the levels of gut microbiota metabolites including pantothenic acid, 1-Methylhistamine, and 1-Methylhistidine; these affected metabolites were involved in pantothenate and coenzyme A biosynthesis, histidine metabolism, and secondary bile acid biosynthesis. Correlation analysis illustrated a close relationship among gut microbiota, its metabolites, and T2DM-related indexes. CONCLUSION Our study provides insights into the gut microbiota and its metabolites of PRD therapy for T2DM. It clarifies the role of gut microbiota and the metabolites in the pathogenesis of T2DM, highlighting the potential of PRD for the treatment of this disease.
Collapse
Affiliation(s)
- Xiaoqin Ma
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Yuqing Qiu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Minghui Mao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Binan Lu
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Huanhu Zhao
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| | - Shuchun Li
- School of Pharmacy, Minzu University of China, Key Laboratory of Ethnomedicine (Minzu University of China), Minority of Education, Beijing, 100081, PR China.
| |
Collapse
|
10
|
Wang AYM, Elsurer Afsar R, Sussman-Dabach EJ, White JA, MacLaughlin H, Ikizler TA. Vitamin Supplement Use in Patients With CKD: Worth the Pill Burden? Am J Kidney Dis 2024; 83:370-385. [PMID: 37879527 DOI: 10.1053/j.ajkd.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 08/29/2023] [Accepted: 09/03/2023] [Indexed: 10/27/2023]
Abstract
All vitamins play essential roles in various aspects of body function and systems. Patients with chronic kidney disease (CKD), including those receiving dialysis, may be at increased risk of developing vitamin deficiencies due to anorexia, poor dietary intake, protein energy wasting, restricted diet, dialysis loss, or inadequate sun exposure for vitamin D. However, clinical manifestations of most vitamin deficiencies are usually subtle or undetected in this population. Testing for circulating levels is not undertaken for most vitamins except folate, B12, and 25-hydroxyvitamin D because assays may not be available or may be costly to perform and do not always correlate with body stores. The last systematic review through 2016 was performed for the Kidney Disease Outcome Quality Initiative (KDOQI) 2020 Nutrition Guideline update, so this article summarizes the more recent evidence. We review the use of vitamins supplementation in the CKD population. To date there have been no randomized trials to support the benefits of any vitamin supplementation for kidney, cardiovascular, or patient-centered outcomes. The decision to supplement water-soluble vitamins should be individualized, taking account the patient's dietary intake, nutritional status, risk of vitamins deficiency/insufficiency, CKD stage, comorbid status, and dialysis loss. Nutritional vitamin D deficiency should be corrected, but the supplementation dose and formulation need to be personalized, taking into consideration the degree of 25-hydroxyvitamin D deficiency, parathyroid hormone levels, CKD stage, and local formulation. Routine supplementation of vitamins A and E is not supported due to potential toxicity. Although more trial data are required to elucidate the roles of vitamin supplementation, all patients with CKD should undergo periodic assessment of dietary intake and aim to receive various vitamins through natural food sources and a healthy eating pattern that includes vitamin-dense foods.
Collapse
Affiliation(s)
- Angela Yee-Moon Wang
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, People's Republic of China.
| | - Rengin Elsurer Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey; Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Jennifer A White
- California State University at Northridge, Northridge, California
| | - Helen MacLaughlin
- School of Exercise and Nutrition Sciences, Queensland University of Technology, Brisbane, Australia; Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - T Alp Ikizler
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt O'Brien Kidney Center, Nashville, Tennessee; Tennessee Valley Healthcare System, Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
11
|
Ma L, Dong Y, Li Z, Meng J, Zhao B, Wang Q. Relationship between circulating metabolites and diabetic retinopathy: a two-sample Mendelian randomization analysis. Sci Rep 2024; 14:4964. [PMID: 38424453 PMCID: PMC10904376 DOI: 10.1038/s41598-024-55704-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus, however, its underlying biological mechanisms remain poorly understood. We examined single nucleotide polymorphisms linked to 486 blood metabolites through extensive genome-wide association studies conducted on individuals of European ancestry. The FinnGen Biobank database served as a reference to define DR. Two-sample MR analysis was conducted to reveal the association between the levels of genetically predicted circulating metabolites and the susceptibility to DR. To validate the robustness of the obtained findings, sensitivity analyses with weighted median, weighted mode, and MR-Egger were conducted. 1-oleoylglycerophosphoethanolamine (odds ratio [OR] (OR per one standard deviation [SD] increase) = 0.414; 95% confidence interval [CI] 0.292-0.587; P = 7.613E-07, PFDR = 6.849E-06), pyroglutamine (OR per one SD increase = 0.414; 95% confidence interval [CI] 0.292-0.587; P = 8.31E-04, PFDR = 0.007), phenyllactate (PLA) (OR per one SD increase = 0.591; 95% confidence interval [CI] 0.418-0.836; P = 0.003, PFDR = 0.026), metoprolol acid metabolite (OR per one SD increase = 0.978; 95% confidence interval [CI] 0.962-0.993; P = 0.005, PFDR = 0.042), 10-undecenoate (OR per one SD increase = 0.788; 95% confidence interval [CI] 0.667-0.932; P = 0.005, PFDR = 0.049), erythritol (OR per one SD increase = 0.691; 95% confidence interval [CI] 0.513-0.932; P = 0.015, PFDR = 0.034), 1-stearoylglycerophosphoethanolamine (OR per one SD increase = 0.636; 95% confidence interval [CI] 0.431-0.937; P = 0.022, PFDR = 0.099), 1-arachidonoylglycerophosphoethanolamine (OR per one SD increase = 0.636; 95% confidence interval [CI] 0.431-0.937; P = 0.030, PFDR = 0.099) showed a significant causal relationship with DR and could have protective effects. stachydrine (OR per one SD increase = 1.146; 95% confidence interval [CI] 1.066-1.233; P = 2.270E-04, PFDR = 0.002), butyrylcarnitine (OR per one SD increase = 1.117; 95% confidence interval [CI] 1.023-1.219; P = 0.014, PFDR = 0.062), 5-oxoproline (OR per one SD increase = 1.569; 95% confidence interval [CI] 1.056-2.335; P = 0.026, PFDR = 0.082), and kynurenine (OR = 1.623; 95% CI 1.042-2.526; P = 0.041, PFDR = 0.097) were significantly associated with an increased risk of DR. This study identified metabolites have the potential to be considered prospective compounds for investigating the underlying mechanisms of DR and for selecting appropriate drug targets.
Collapse
Affiliation(s)
- Lingli Ma
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, 126 Sendai Avenue, Changchun City, Jilin Province, China
| | - Ying Dong
- Department of Radiotherapy, Jilin Cancer Hospital, Changchun, China
| | - Zimeng Li
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, 126 Sendai Avenue, Changchun City, Jilin Province, China
| | - Jian Meng
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, 126 Sendai Avenue, Changchun City, Jilin Province, China
| | - Bingqi Zhao
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, 126 Sendai Avenue, Changchun City, Jilin Province, China
| | - Qing Wang
- Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University, 126 Sendai Avenue, Changchun City, Jilin Province, China.
| |
Collapse
|
12
|
Qu Y, Wang Y, Hu Z, Su C, Qian C, Pan J, Zhu Y, Shi A. Role of metabolomic profile as a potential marker to discriminate membranous nephropathy from IgA nephropathy. Int Urol Nephrol 2024; 56:635-651. [PMID: 37452988 PMCID: PMC10808257 DOI: 10.1007/s11255-023-03691-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Membranous nephropathy (MN) and IgA nephropathy (IgAN) are the most common primary glomerulopathies worldwide. The systemic metabolic changes in the progression of MN and IgAN are not fully understood. METHODS A total of 87 and 70 patients with MN and IgAN, respectively, and 30 healthy controls were enrolled in this study. Untargeted metabolomics was performed to explore the differential metabolites and metabolic pathways in the early stage of MN and IgAN. To judge the diagnostic ability of biomarkers, receiver operating characteristic curve analysis (ROC) were performed. RESULTS Principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) suggested that patients with MN and IgAN showed an obvious separation trend from the healthy controls. In addition, 155 and 148 metabolites were identified to be significantly altered in the MN and IgAN groups, respectively. Of these, 70 metabolites were markedly altered in both disease groups; six metabolites, including L-tryptophan, L-kynurenine, gamma-aminobutyric acid (GABA), indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine, showed the opposite tendency. The most affected metabolic pathways included the amino acid metabolic pathways, citrate cycle, pantothenate and CoA biosynthesis, and hormone signaling pathways. CONCLUSIONS Substantial metabolic disorders occurred during the progression of MN and IgAN. L-tryptophan, L-kynurenine, GABA, indoleacetaldehyde, 5-hydroxyindoleacetylglycine, and N-alpha-acetyllysine may show potential as biomarkers for the identification of MN and IgAN.
Collapse
Affiliation(s)
- Yuchen Qu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yueyuan Wang
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhanhong Hu
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cunjin Su
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Chenyue Qian
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jie Pan
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ye Zhu
- Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Aiming Shi
- Department of Pharmacy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
13
|
Li J, Zhu N, Wang Y, Bao Y, Xu F, Liu F, Zhou X. Application of Metabolomics and Traditional Chinese Medicine for Type 2 Diabetes Mellitus Treatment. Diabetes Metab Syndr Obes 2023; 16:4269-4282. [PMID: 38164418 PMCID: PMC10758184 DOI: 10.2147/dmso.s441399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Diabetes is a major global public health problem with high incidence and case fatality rates. Traditional Chinese medicine (TCM) is used to help manage Type 2 Diabetes Mellitus (T2DM) and has steadily gained international acceptance. Despite being generally accepted in daily practice, the TCM methods and hypotheses for understanding diseases lack applicability in the current scientific characterization systems. To date, there is no systematic evaluation system for TCM in preventing and treating T2DM. Metabonomics is a powerful tool to predict the level of metabolites in vivo, reveal the potential mechanism, and diagnose the physiological state of patients in time to guide the follow-up intervention of T2DM. Notably, metabolomics is also effective in promoting TCM modernization and advancement in personalized medicine. This review provides updated knowledge on applying metabolomics to TCM syndrome differentiation, diagnosis, biomarker discovery, and treatment of T2DM by TCM. Its application in diabetic complications is discussed. The combination of multi-omics and microbiome to fully elucidate the use of TCM to treat T2DM is further envisioned.
Collapse
Affiliation(s)
- Jing Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Na Zhu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yaqiong Wang
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Yanlei Bao
- Department of Pharmacy, Liaoyuan People’s Hospital, Liaoyuan, People’s Republic of China
| | - Feng Xu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Fengjuan Liu
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| | - Xuefeng Zhou
- Clinical Trial Research Center, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Central Hospital, Qingdao, People’s Republic of China
| |
Collapse
|
14
|
He K, Gao Q, Su J, Shang H, Meng X, Jiang S, Liu D, Huang B. Gut Microbiome and Metabolomics Study of Selenium-Enriched Kiwifruit Regulating Hyperlipidemia in Mice Induced by a High-Fat Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:20386-20401. [PMID: 38055355 DOI: 10.1021/acs.jafc.3c00108] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Our previous study showed that as a substitute for statins, selenium-enriched kiwifruit (Se-Kiwi) might reduce blood lipids and protect the liver in Kunming mice, but the underlying mechanism remains unclear. Metabolic regulation of mammalian intestinal microflora plays an important role in obesity and related diseases induced by a high-fat diet (HFD). Here, samples of serum, liver, colon, and fresh feces from the Se-Kiwi-treated hyperlipidemia C57BL/6J mouse model were collected. Based on metabolome (UHPLC-Q-TOF MS) and gut microbiome (16S rDNA) analyses as well as the integrative analysis of physiological and biochemical indices and pathological data of mice, we aimed to systematically illustrate the gut microbiome and metabolomics mechanism of Se-Kiwi in HFD-induced hyperlipidemic mice. As a result, Se-Kiwi can significantly increase the abundance of potentially beneficial gut bacteria such as Parabacteroides, Bacteroides, and Allobaculum in the colon and improve hyperlipidemia by regulating the digestion and absorption of vitamins, pyrimidine metabolism, purine metabolism, and other metabolic pathways, which have been confirmed by the following fecal microbiota transplantation experiment. This process was significantly regulated by the Ada, Gda, Pank1, Ppara, Pparg, and Cd36 genes. These findings may provide a theoretical basis for the research and development of selenium-enriched functional foods in the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Kan He
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Qian Gao
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Jinxing Su
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Hai Shang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Xia Meng
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Shangquan Jiang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| | - Dahai Liu
- School of Medicine, Foshan University, Foshan, Guangdong 528000, China
| | - Bei Huang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Traditional Chinese Medicine Research Center, School of Life Sciences, Anhui University, Hefei Anhui, 230601, China
| |
Collapse
|
15
|
Li Y, Zhang L, Liu J, Wu M, Li C, Yang J, Wang L. Environmental concentrations of cadmium and zinc and associating metabolomics profile alternations in urine of pregnant women in the first trimester: A prospective cohort study in Taiyuan, North China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115611. [PMID: 37897977 DOI: 10.1016/j.ecoenv.2023.115611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
especially to pregnant women. In recent years, zinc (Zn) supplementation has attracted increasing attention among pregnant women. Thus, understanding the effects and interactions of Cd and Zn in pregnant women is critical. This study aimed to assess the urinary levels of Cd and Zn in pregnant women during early pregnancy, examine associated alterations in urine metabolomics, and identify potential metabolic biomarkers among distinct Cd and Zn groups. Urine samples from 185 pregnant women were collected, and inductively coupled plasma mass spectrometry (ICP-MS) was used to detect Cd and Zn contents. The women were then divided into four groups according to median contents of Cd and Zn. Alterations in the metabolite profile were assessed using a liquid chromatograph mass spectrometer (LC-MS). The results showed that the gravidity of pregnant women was closely related to urinary Cd levels and that the urinary Zn contents of pregnant women with morning sickness in the first trimester were lower than that of non-morning-sick pregnant women. A total of 51 metabolites exhibited significant differential expression in the high level of Cd and Zn (HCdHZn) compared with low level of Cd and Zn (LCdLZn), the diagnostic performance of these 51 metabolites were assessed using receiver operating characteristic curve analysis and revealed that octadecylamine was a promising diagnostic indicator for evaluating the combined effects of Zn and Cd. Metabolomics analysis showed that the arginine and proline pathways were upregulated in HCdHZn compared with that in LCdLZn, suggesting a potential risk of obesity. Although higer levels of bovinic acid in HCdHZn vs. HCdLZn (high level of Cd and low level of Zn) indicated that Zn has antioxidant and anti-inflammatory properties, excessive Zn may still cause harmful effect to the human health and should be supplemented with caution. The study findings may be valuable for potential risk ahissessment of the combined effects of Cd-Zn and their interactions in pregnant women.
Collapse
Affiliation(s)
- Yingjun Li
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Liuyuan Zhang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jin Liu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Meiqiong Wu
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Changqing Li
- Taiyuan Center for Disease Control and Prevention, Taiyuan 030000, China
| | - Jia Yang
- Department of prevention and health care, Shanxi Provincial Children's Hospital, Taiyuan 030013, China
| | - Li Wang
- Department of Child and Adolescent Health, School of Public Health, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
16
|
Zhang Y, Wang J, Ge W, Song Y, He R, Wang Z, Zhao L. Camel milk peptides alleviate hyperglycemia by regulating gut microbiota and metabolites in type 2 diabetic mice. Food Res Int 2023; 173:113278. [PMID: 37803591 DOI: 10.1016/j.foodres.2023.113278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to investigate the hypoglycemic effect of Camel milk peptides (CMPs) on Type 2 diabetes mellitus (T2DM) mice and reveal its related mechanism from the aspect of gut microbiota and metabolites. The administering CMPs significantly alleviated the weight loss, polydipsia and polyphagia, reduced fasting blood glucose (FBG), improved insulin resistance and sensitivity, and restored the level of serum hormones, lipopolysaccharide (LPS), lipid metabolic and tissue damage. Furthermore, CMPs intervention remarkably reversed gut microbiota dysbiosis in T2DM mice by reducing the relative abundance of Proteobacteria, Allobaculum, Clostridium, Shigella and the Firmicutes/Bacteroidetes ratio, while increasing the relative abundance of Bacteroidetes and Blautia. Metabolomic analysis identified 84 different metabolites between T2DM and CMPs-treated groups, participating in three pathways of Pantothenate and CoA biosynthesis, Phenylalanine metabolism and Linoleic acid metabolism. Ureidopropionic acid, pantothenic acid, hippuric acid, hydrocinnamic acid and linoleic acid were identified as key acidic metabolites closely related to hypoglycemic effect. Correlation analysis indicated that CMPs might have a hypoglycemic effect through their impact on gut microbiota, leading to variations in short-chain fatty acids (SCFAs), acidic metabolites and metabolic pathways. These findings suggest that CMPs could be a beneficial nutritional supplement for intervention T2DM.
Collapse
Affiliation(s)
- Yongjin Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ju Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxuan Song
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Northwest A&F University, Yangling 712100, China
| | - Rui He
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Zhi Wang
- Shaanxi Baiyue Youlishi Dairy Industry Co. Ltd., Xianyang 712000, China
| | - Lili Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
17
|
Tang X, Yang L, Miao Y, Ha W, Li Z, Mi D. Angelica polysaccharides relieve blood glucose levels in diabetic KKAy mice possibly by modulating gut microbiota: an integrated gut microbiota and metabolism analysis. BMC Microbiol 2023; 23:281. [PMID: 37784018 PMCID: PMC10546737 DOI: 10.1186/s12866-023-03029-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/22/2023] [Indexed: 10/04/2023] Open
Abstract
BACKGROUND Angelica polysaccharides (AP) have numerous benefits in relieving type 2 diabetes (T2D). However, the underlying mechanisms have yet to be fully understood. Recent many reports have suggested that altering gut microbiota can have adverse effects on the host metabolism and contribute to the development of T2D. Here, we successfully established the T2D model using the male KKAy mice with high-fat and high-sugar feed. Meanwhile, the male C57BL/6 mice were fed with a normal feed. T2D KKAy mice were fed either with or without AP supplementation. In each group, we measured the mice's fasting blood glucose, weight, and fasting serum insulin levels. We collected the cecum content of mice, the gut microbiota was analyzed by targeted full-length 16S rRNA metagenomic sequencing and metabolites were analyzed by untargeted-metabolomics. RESULTS We found AP effectively alleviated glycemic disorders of T2D KKAy mice, with the changes in gut microbiota composition and function. Many bacteria species and metabolites were markedly changed in T2D KKAy mice and reversed by AP. Additionally, 16 altered metabolic pathways affected by AP were figured out by combining metagenomic pathway enrichment analysis and metabolic pathway enrichment analysis. The key metabolites in 16 metabolic pathways were significantly associated with the gut microbial alteration. Together, our findings showed that AP supplementation could attenuate the diabetic phenotype. Significant gut microbiota and gut metabolite changes were observed in the T2D KKAy mice and AP intervention. CONCLUSIONS Administration of AP has been shown to improve the composition of intestinal microbiota in T2D KKAy mice, thus providing further evidence for the potential therapeutic application of AP in the treatment of T2D.
Collapse
Affiliation(s)
- Xiaolong Tang
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- The Second Department of Gastrointestinal Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan Province, Nanchong City, China
| | - Lixia Yang
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China
| | - Yandong Miao
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
- Department of Oncology, Yantai Affiliated Hospital of Binzhou Medical University, The Second Clinical Medical College of Binzhou Medical University, Yantai City, Shandong Province, China
| | - Wuhua Ha
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China
| | - Zheng Li
- Department of Radiotherapy, Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Denghai Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou City, Gansu Province, China.
- Gansu Academy of Traditional Chinese Medicine, Lanzhou City, Gansu Province, China.
| |
Collapse
|
18
|
Lee Q, Han X, Zheng M, Lv F, Liu B, Zeng F. Preparation of low molecular weight polysaccharides from Tremella fuciformis by ultrasonic-assisted H 2O 2-Vc method: Structural characteristics, in vivo antioxidant activity and stress resistance. ULTRASONICS SONOCHEMISTRY 2023; 99:106555. [PMID: 37582309 PMCID: PMC10448212 DOI: 10.1016/j.ultsonch.2023.106555] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/27/2023] [Accepted: 08/05/2023] [Indexed: 08/17/2023]
Abstract
Different methods were used to degrade Tremella fuciformis polysaccharides (TFP) and prepare low molecular weight polysaccharides of Tremella fuciformis (TFLP) to improve their bioavailability. It was found that the TFLP prepared by ultrasonic-assisted H2O2-Vc method showed the highest level of antioxidant activity and stress resistance in C. elegans. The structural characteristics, in vivo antioxidant and stress resistance of TFLP-1 were evaluated after isolation and purification of TFLP, it was found that TFLP-1 was an acid polysaccharide with a molecular weight of 75770 Da, which mainly composed of mannose. Meanwhile, it could regulate the antioxidant activity and stress resistance in C. elegans by upregulating the transcription of fat-5, fat-7, acs-2, glp-1, hsf-1, hsp-1, mtl-1, nhr-49, skn-1 and sod-3 mRNA. The improvement effects were closely related to the significant regulation of galactose metabolism, alpha linolenic acid metabolism, and pantothenate and CoA biosynthesis metabolic pathways. These results provided insights into the high value application of Tremella fuciformis in the food industry and the development of antioxidant related functional foods.
Collapse
Affiliation(s)
- Quancen Lee
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xianjing Han
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingfeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Lv
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bin Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Engineering Research Center of Fujian Subtropical Fruit and Vegetable Processing, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
19
|
Wang G, Song J, Wang C, Chen X, Suo H. Metabolomics reveals the role of Lactobacillus plantarum SHY130 in hepatic metabolic regulation in a mouse model of type 2 diabetes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6406-6415. [PMID: 37209399 DOI: 10.1002/jsfa.12716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Among type 2 diabetes (T2D) patients, the incidence rate of liver metabolic disorders is much higher than that in healthy subjects. It was observed in our previous research that diabetic symptoms were improved by Lactobacillus plantarum SHY130 (LPSHY130) isolated from yak yogurt in a murine model of T2D. This study sought to investigate the LPSHY130-mediated hepatic metabolic regulation in a murine model of T2D. RESULTS Treatment with LPSHY130 improved liver function and pathological damage in diabetic mice. Untargeted metabolome analysis revealed that T2D-induced changes in 11 metabolites were regulated after LPSHY130 treatment, mainly involving purine metabolism, amino acid metabolism, and choline metabolism and pantothenate and coenzyme A biosynthesis pathways. In addition, correlation analysis indicated that hepatic metabolic changes can be adjusted by the intestinal microbiota. CONCLUSION Overall, this study suggests that treatment with LPSHY130 relieves liver injury and regulates liver metabolism in a murine model of T2D, thus providing a theoretical basis for the use of probiotics as dietary supplements to regulate hepatic metabolic disorders associated with T2D. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guangqi Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Southwest University, Chongqing, China
- National Citrus Engineering Research Center, Southwest University, Chongqing, China
| |
Collapse
|
20
|
Qian F, Zhao L, Zhang D, Yu M, Zhou W, Jin J. Serum metabolomics detected by LDI-TOF-MS can be used to distinguish between diabetic patients with and without diabetic kidney disease. FEBS Open Bio 2023; 13:1844-1858. [PMID: 37525631 PMCID: PMC10549217 DOI: 10.1002/2211-5463.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/02/2023] Open
Abstract
Diabetic kidney disease (DKD) is an important cause of end-stage renal disease with changes in metabolic characteristics. The objective of this study was to study changes in serum metabolic characteristics in patients with DKD and to examine metabolite panels to distinguish DKD from diabetes with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). We recruited 40 type II diabetes mellitus (T2DM) patients with or without DKD from a single center for a cross-sectional study. Serum metabolic profiling was performed with MALDI-TOF-MS using a vertical silicon nanowire array. Differential metabolites between DKD and diabetes patients were selected, and their relevance to the clinical parameters of DKD was analyzed. We applied machine learning methods to the differential metabolite panels to distinguish DKD patients from diabetes patients. Twenty-four differential serum metabolites between DKD patients and diabetes patients were identified, which were mainly enriched in butyrate metabolism, TCA cycle, and alanine, aspartate, and glutamate metabolism. Among the metabolites, l-kynurenine was positively correlated with urinary microalbumin, urinary microalbumin/creatinine ratio (UACR), creatinine, and urea nitrogen content. l-Serine, pimelic acid, 5-methylfuran-2-carboxylic acid, 4-methylbenzaldehyde, and dihydrouracil were associated with the estimated glomerular filtration rate (eGFR). The panel of differential metabolites could be used to distinguish between DKD and diabetes patients with an AUC value reaching 0.9899-0.9949. Among the differential metabolites, l-kynurenine was related to the progression of DKD. The differential metabolites exhibited excellent performance at distinguishing between DKD and diabetes. This study provides a novel direction for metabolomics-based clinical detection of DKD.
Collapse
Affiliation(s)
- Fengmei Qian
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Li Zhao
- Department of Nephrology, Urology & Nephrology CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Di Zhang
- Department of Nephrology, Urology & Nephrology CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Mengjie Yu
- Department of Nephrology, Urology & Nephrology CenterZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)China
| | - Wei Zhou
- Department of NephrologyThe First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical CollegeChina
| | - Juan Jin
- Department of NephrologyThe First People's Hospital of Hangzhou Lin'an District, Affiliated Lin'an People's Hospital, Hangzhou Medical CollegeChina
| |
Collapse
|
21
|
Wang S, Chen S, Gao Y, Zhou H. Bioinformatics led discovery of biomarkers related to immune infiltration in diabetes nephropathy. Medicine (Baltimore) 2023; 102:e34992. [PMID: 37656997 PMCID: PMC10476789 DOI: 10.1097/md.0000000000034992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND The leading cause of end-stage renal disease is diabetic nephropathy (DN). A key factor in DN is immune cell infiltration (ICI). It has been shown that immune-related genes play a significant role in inflammation and immune cell recruitment. However, neither the underlying mechanisms nor immune-related biomarkers have been identified in DNs. Using bioinformatics, this study investigated biomarkers associated with immunity in DN. METHODS Using bioinformatic methods, this study aimed to identify biomarkers and immune infiltration associated with DN. Gene expression profiles (GSE30528, GSE47183, and GSE104948) were selected from the Gene Expression Omnibus database. First, we identified 23 differentially expressed immune-related genes and 7 signature genes, LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2, and RBP4. Subsequently, protein-protein interaction networks were created, and functional enrichment analysis and genome enrichment analysis were performed using the gene ontology and Kyoto Encyclopedia of Genes and Genome databases. In the R software, the ConsensusClusterPlus package identified 2 different immune modes (cluster A and cluster B) following the consistent clustering method. The infiltration of immune cells between the 2 clusters was analyzed by applying the CIBERSORT method. And preliminarily verified the characteristic genes through in vitro experiments. RESULTS In this study, the samples of diabetes nephropathy were classified based on immune related genes, and the Hub genes LYZ, CCL5, ALB, IGF1, CXCL2, NR4A2 and RBP4 related to immune infiltration of diabetes nephropathy were obtained through the analysis of gene expression differences between different subtypes. CONCLUSIONS This study was based on bioinformatics technology to analyze the biomarkers of immune related genes in diabetes nephropathy. To analyze the pathogenesis of diabetes nephropathy at the RNA level, and ultimately provide guidance for disease diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Shuo Wang
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Shengwu Chen
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Yixuan Gao
- Department of Orthopaedics, Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| | - Hongli Zhou
- The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, People’s Republic of China
- Department of Nephrology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People’s Republic of China
| |
Collapse
|
22
|
Gao W, Yang Y, Shi L. Seasonal dietary shifts alter the gut microbiota of a frugivorous lizard Teratoscincus roborowskii (Squamata, Sphaerodactylidae). Ecol Evol 2023; 13:e10363. [PMID: 37546566 PMCID: PMC10396791 DOI: 10.1002/ece3.10363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/03/2023] [Accepted: 07/14/2023] [Indexed: 08/08/2023] Open
Abstract
Seasonal dietary shifts in animals are important strategies for ecological adaptation. An increasing number of studies have shown that seasonal dietary shifts can influence or even determine the composition of gut microbiota. The Turpan wonder gecko, Teratoscincus roborowskii, lives in extreme desert environments and has a flexible dietary shift to fruit-eating in warm seasons. However, the effect of such shifts on the gut microbiota is poorly understood. In this study, 16S rRNA sequencing and LC-MS metabolomics were used to examine changes in the gut microbiota composition and metabolic patterns of T. roborowskii. The results demonstrated that the gut microbes of T. roborowskii underwent significant seasonal changes, and the abundance of phylum level in autumn was significantly higher than spring, but meanwhile, the diversity was lower. At the family level, the abundance and diversity of the gut microbiota were both higher in autumn. Firmicutes, Bacteroidetes, and Proteobacteria were the dominant gut microbes of T. roborowskii. Verrucomicrobia and Proteobacteria exhibited dynamic ebb and flow patterns between spring and autumn. Metabolomic profiling also revealed differences mainly related to the formation of secondary bile acids. The pantothenate and CoA biosynthesis, and lysine degradation pathways identified by KEGG enrichment symbolize the exuberant metabolic capacity of T. roborowskii. Furthermore, strong correlations were detected between metabolite types and bacteria, and this correlation may be an important adaptation of T. roborowskii to cope with dietary shifts and improve energy acquisition. Our study provides a theoretical basis for exploring the adaptive evolution of the special frugivorous behavior of T. roborowskii, which is an important progress in the study of gut microbes in desert lizards.
Collapse
Affiliation(s)
- Wei‐Zhen Gao
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Yi Yang
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| | - Lei Shi
- College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| |
Collapse
|
23
|
Luo D, Li X, Geng M, Zhang Y, Lan H, Li J, Qi C, Bai Z, Huang J. Effect of Arabinoxylan from Wastewater Generated during Vital Wheat Gluten Production on Liver Metabolism in Type 2 Diabetic Mice. Foods 2023; 12:2640. [PMID: 37509732 PMCID: PMC10378226 DOI: 10.3390/foods12142640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Arabinoxylan (AX) is a dietary fiber that has been proven to have a significant antidiabetic effect. Liver metabolic disorders frequently coincide with the development of type 2 diabetes, but research on the hepatoprotective effects of AX in type 2 diabetic mice is lacking. As AX is abundant in the wastewater produced during vital wheat gluten protein production, this study used it as a raw material to evaluate its protective effect on liver function. The study employed an AX intervention in type 2 diabetic mice induced by a high-fat diet combined with streptozotocin and collected serum and liver tissue samples after 4 weeks. Serum and liver function indicators were measured using an automatic biochemistry analysis apparatus, and liver fat accumulation was observed using oil red O staining. Nontargeted metabolomics analysis of liver tissues was conducted using UHPLC-MS/MS. The results showed that AX significantly improved liver function indicators and histopathological damage, and regulated liver metabolic disorders by improving the differential metabolites of pantothenate and CoA biosynthesis, as well as purine metabolism. This study demonstrated that AX may exert a significant hepatoprotective effect by regulating metabolic disorders.
Collapse
Affiliation(s)
- Denglin Luo
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Xingguo Li
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyuan Geng
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yunhui Zhang
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Honglin Lan
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiale Li
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Caili Qi
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhouya Bai
- Henan Engineering Research Center of Food Material, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jihong Huang
- Food and Pharmacy College, Xuchang University, Xuchang 461000, China
| |
Collapse
|
24
|
Kim H, Appel LJ, Lichtenstein AH, Wong KE, Chatterjee N, Rhee EP, Rebholz CM. Metabolomic Profiles Associated With Blood Pressure Reduction in Response to the DASH and DASH-Sodium Dietary Interventions. Hypertension 2023; 80:1494-1506. [PMID: 37161796 PMCID: PMC10262995 DOI: 10.1161/hypertensionaha.123.20901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/10/2023] [Indexed: 05/11/2023]
Abstract
BACKGROUND The DASH (Dietary Approaches to Stop Hypertension) diets reduced blood pressure (BP) in the DASH and DASH-Sodium trials, but the underlying mechanisms are unclear. We identified metabolites associated with systolic BP or diastolic BP (DBP) changes induced by dietary interventions (DASH versus control arms) in 2 randomized controlled feeding studies-the DASH and DASH-Sodium trials. METHODS Metabolomic profiling was conducted in serum and urine samples collected at the end of diet interventions: DASH (n=219) and DASH-Sodium (n=395). Using multivariable linear regression models, associations were examined between metabolites and change in systolic BP and DBP. Tested for interactions between diet interventions and metabolites were the following comparisons: (1) DASH versus control diets in the DASH trial (serum), (2) DASH high-sodium versus control high-sodium diets in the DASH-Sodium trial (urine), and (3) DASH low-sodium versus control high-sodium diets in the DASH-Sodium trial (urine). RESULTS Sixty-five significant interactions were identified (DASH trial [serum], 12; DASH high sodium [urine], 35; DASH low sodium [urine], 18) between metabolites and systolic BP or DBP. In the DASH trial, serum tryptophan betaine was associated with reductions in DBP in participants consuming the DASH diets but not control diets (P interaction, 0.023). In the DASH-Sodium trial, urine levels of N-methylglutamate and proline derivatives (eg, stachydrine, 3-hydroxystachydrine, N-methylproline, and N-methylhydroxyproline) were associated with reductions in systolic BP or DBP in participants consuming the DASH diets but not control diets (P interaction, <0.05 for all tests). CONCLUSIONS We identified metabolites that were associated with BP lowering in response to dietary interventions. REGISTRATION URL: https://www. CLINICALTRIALS gov/ct2/show/NCT03403166; Unique identifier: NCT03403166 (DASH trial). URL: https://www. CLINICALTRIALS gov/ct2/show/NCT00000608; Unique identifier: NCT00000608 (DASH-Sodium trial).
Collapse
Affiliation(s)
- Hyunju Kim
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
| | - Lawrence J. Appel
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (L.J.A., C.M.R.)
| | - Alice H. Lichtenstein
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA (A.H.L.)
| | - Kari E. Wong
- Metabolon, Research Triangle Park, Morrisville, NC (K.E.W.)
| | - Nilanjan Chatterjee
- Department of Biostatistics (N.C.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Eugene P. Rhee
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Boston, MA (E.P.R.)
| | - Casey M. Rebholz
- Department of Epidemiology (H.K., L.J.A., C.M.R.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD (H.K., L.J.A., C.M.R.)
| |
Collapse
|
25
|
Cui M, Yu P, Liu TC, Liu J, Li K, Zhou P, Liu X. Dose-dependent effects of xylooligosaccharides on glycemic regulation with L. rhamnosus CCFM1060 in diabetic mice. Food Funct 2023. [PMID: 37325857 DOI: 10.1039/d3fo00162h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dietary intervention with the probiotic Lactobacillus rhamnosus CCFM1060 has been proved to be effective on glycemic regulation in diabetic mice. Therefore characterization of the potential symbiotic effect of prebiotic xylooligosaccharides (XOS) with L. rhamnosus CCFM1060 would be desirable. In this study, we evaluated any dose-dependent relationship between XOS and L. rhamnosus CCFM1060, and the potential impact on glycemic regulation. Diabetic mice were randomly assigned to receive 5 × 109 CFU mL-1L. rhamnosus CCFM1060, 5 × 109 CFU mL-1L. rhamnosus CCFM1060 with 250 mg kg-1 XOS (L-LXOS), or 5 × 109 CFU mL-1L. rhamnosus CCFM1060 with 500 mg kg-1 XOS (L-HXOS) for 7 weeks. In addition to characterization of the host metabolism, the intestinal microbiota were analyzed using 16S rRNA gene sequencing. The results showed that L. rhamnosus alone and L-LXOS intervention significantly alleviated diabetes symptoms and increased the populations of short-chain fatty acid (SCFA)-producing bacteria. The intake of L-HXOS had an adverse effect on glucose metabolism, causing increased insulin resistance and inflammation. Although a significant increase in the relative abundance of Bifidobacterium was observed in the L-HXOS group, the abundance of SCFA-producing bacteria, such as Romboutsia and Clostrudium sensu stricto 1, decreased. KEGG pathway analysis revealed that the adverse effects of L-HXOS intervention might be attributed to the metabolic pathways involved in amino acid, cofactor, and vitamin metabolism. This study revealed that L. rhamnosus CCFM1060 combined with different doses of XOS exerted dose-dependent effects on glucose metabolism. Therefore, the type and dose of prebiotics should be carefully evaluated when developing individualized symbiotic formula.
Collapse
Affiliation(s)
- Mengjun Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Peng Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Tristan C Liu
- Taicang Port Economic and Technological Development Zone New Zone, Standard Foods (China) Co., Ltd, No. 88 Dalian West Road, Suzhou, Jiangsu, P. R. China
| | - Jianguo Liu
- Taicang Port Economic and Technological Development Zone New Zone, Standard Foods (China) Co., Ltd, No. 88 Dalian West Road, Suzhou, Jiangsu, P. R. China
| | - Kexin Li
- Le Bonta Wellness Co., Ltd, Room 5, 4th Floor, Building 1, No. 39, Jiatai Road, Pilot Free Trade Zone, Shanghai, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaoming Liu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
26
|
Liu J, Zhu F, Yang J, Wang Y, Ma X, Lou Y, Li Y. Effects of high-voltage electrostatic field (HVEF) on frozen shrimp (Solenocera melantho) based on UPLC-MS untargeted metabolism. Food Chem 2023; 411:135499. [PMID: 36696717 DOI: 10.1016/j.foodchem.2023.135499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Shrimp meat is prone to autolysis and decay due to the abundance of endogenous enzymes and contamination from microorganisms. HVEF freezing can slow the spoilage of shrimp, producing small and uniform ice crystals, resulting in less damage to muscle tissue. In this study, HVEF technique was used to freeze the shrimp (Solenocera melantho), and the UPLC-MS metabolic technique was used to investigate the metabolites of frozen shrimp meat. Compared with the control group, 367 differential metabolites were identified in the HVEF group. Mapping them to the KEGG database, there were 108 with KEGG ID. Purine metabolism and pyrimidine metabolism were the most enriched pathways. In addition, phosphatidylcholines (PCs), inosine (HxR), and l-valine were identified as potential biomarkers associated with lipid, nucleotide, and organic acid metabolism, respectively. Overall, HVEF can improve freezing quality of shrimp meat by slowing down the metabolism of substances in the muscle of S. melantho.
Collapse
Affiliation(s)
- Jiao Liu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Feixia Zhu
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Jing Yang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yue Wang
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Xiaohan Ma
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yongjiang Lou
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China
| | - Yongyong Li
- Key Laboratory of Food Deep Processing Technology of Animal Protein of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang 315800, PR China.
| |
Collapse
|
27
|
de Souza Nogueira J, Santos-Rebouças CB, Piergiorge RM, Valente AP, Gama-Almeida MC, El-Bacha T, Lopes Moreira ML, Baptista Marques BS, de Siqueira JR, de Carvalho EM, da Costa Ferreira O, Porto LC, Kelly da Silva Fidalgo T, Costa Dos Santos G. Metabolic Adaptations Correlated with Antibody Response after Immunization with Inactivated SARS-CoV-2 in Brazilian Subjects. J Proteome Res 2023. [PMID: 37167433 DOI: 10.1021/acs.jproteome.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adsorbed vaccine SARS-CoV-2 (inactivated) produced by Sinovac (SV) was the first vaccine against COVID-19 to be used in Brazil. To understand the metabolic effects of SV in Brazilian subjects, NMR-based metabolomics was used, and the immune response was studied in Brazilian subjects. Forty adults without (group-, n = 23) and with previous COVID-19 infection (group+, n = 17) were followed-up for 90 days postcompletion of the vaccine regimen. After 90 days, our results showed that subjects had increased levels of lipoproteins, lipids, and N-acetylation of glycoproteins (NAG) as well as decreased levels of amino acids, lactate, citrate, and 3-hydroxypropionate. NAG and threonine were the highest correlated metabolites with N and S proteins, and neutralizing Ab levels. This study sheds light on the immunometabolism associated with the use of SV in Brazilian subjects from Rio de Janeiro and identifies potential metabolic markers associated with the immune status.
Collapse
Affiliation(s)
- Jeane de Souza Nogueira
- Histocompatibility and Cryopreservation Laboratory, IBRAG, Rio de Janeiro State University, CEP 20950-003 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, IBRAG, Rio de Janeiro State University, CEP 20550-013 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, IBRAG, Rio de Janeiro State University, CEP 20550-013 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- CENABIO I, Institute of Medical Biochemistry, CNRMN, BioNMR, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos C Gama-Almeida
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana El-Bacha
- LeBioME-Bioactives, Mitochondria and Placental Metabolism Core, Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | - Orlando da Costa Ferreira
- Molecular Virology Laboratory, Federal University of Rio de Janeiro, CEP 21941-902 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luís Cristóvão Porto
- Histocompatibility and Cryopreservation Laboratory, IBRAG, Rio de Janeiro State University, CEP 20950-003 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Kelly da Silva Fidalgo
- Department of Preventive and Community Dentistry, Dental School, Rio de Janeiro State University, CEP 20551-030 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilson Costa Dos Santos
- Department of Genetics, IBRAG, Rio de Janeiro State University, CEP 20550-013 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Wang Y, Jiang S, Chen X, Liu X, Li N, Nie Y, Lu G. Comparison of developmental toxicity of benzophenone-3 and its metabolite benzophenone-8 in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106515. [PMID: 37011548 DOI: 10.1016/j.aquatox.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Benzophenone-3 (BP-3) as one of frequently used organic UV filters has been considered an emerging pollutant due to its toxicities. Benzophenone-8 (BP-8) is one of the main metabolites of BP-3 in organisms. Current reports show that BP-8 may be more toxic than BP-3. However, difference of their toxicities on embryonic development has rarely been reported. In this study, zebrafish embryos were chosen as the target organism to explore the developmental toxicities of BP-3 and BP-8. Non-targeted metabolomic analysis was performed to compare their modes of action. Results showed that BP-8 exposures led to higher bioaccumulation and lower hatching rate of zebrafish larvae than BP-3. Both BP-8 and BP-3 exposures caused behavioral abnormalities of zebrafish larvae, but no significant difference was found between them. At the metabolome level, 1 μg/L BP-3 and 1 μg/L BP-8 exposures altered neuroactive ligand-receptor interaction pathway and FoxO signaling pathway, respectively, which might be involved in the abnormal behaviors in zebrafish larvae. For higher exposure groups (30 and 300 μg/L), both BP-3 and BP-8 exposures changed metabolism of cofactors and vitamins of zebrafish larvae. Exposure of BP-3 altered the metabolism by pantothenate and CoA biosynthesis pathway, while BP-8 exposure changed riboflavin metabolism and folate biosynthesis. The above results indicated different modes of action of BP-3 and BP-8 in zebrafish embryonic development. This study sheds new light to biological hazards of BP-3 due to its metabolism in aquatic organisms.
Collapse
Affiliation(s)
- Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Shengnan Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xi Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xiaodan Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Na Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yang Nie
- Hangzhou Hydrology and Water Resources Monitoring Center, Hangzhou 310016, PR China.
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
29
|
Lu L, Lu J, Chen J, Wang B, Peng H, Peng J, Liu X, Lin F, Xiong G. Biomarker identification and pathway analysis of Astragalus membranaceus and Curcuma zedoaria couplet medicines on adenine-induced chronic kidney disease in rats based on metabolomics. Front Pharmacol 2023; 14:1103527. [PMID: 37089928 PMCID: PMC10116179 DOI: 10.3389/fphar.2023.1103527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Chronic kidney disease (CKD) is usually insidious, and most affected individuals are asymptomatic until the disease becomes advanced. The effective treatment of CKD would rely on the incorporation of multidisciplinary approaches. Astragalus membranaceus (AM) and Curcuma zedoaria (CZ) have been widely used in the treatment of CKD. However, the mechanism of AM and CZ in the treatment of CKD is still unclear.Methods: This study was designed to evaluate the effects of AM and CZ on adenine-induced rats and to investigate the underlying mechanism by using metabolomic analysis. Addition of 0.75% adenine to the diet of rats for 3 weeks induced the animal model of CKD. The rats in the treatment group were treated with AM and CZ (2.1 g/kg/day) for 4 weeks. Blood and kidney samples were collected for biochemical and histological examination. Ultra-high-performance liquid chromatography/Q Exactive HFX mass spectrometer (UHPLC-QE-MS) was applied to analyze metabolic profiling variations in the kidney.Results: The results showed that AM and CZ could significantly reduce serum creatinine (Scr) and blood urea nitrogen (BUN) levels in CKD rats and alleviate renal pathological injury. By comparing the endogenous components of the normal group and the model group in positive ion mode and negative ion mode, a total of 365 and 155 different metabolites were screened, respectively. A total of 117 and 73 metabolites with significantly different expressions were identified between model group and AM and CZ group in positive ion mode and negative ion mode, respectively. The pivotal pathways affected by AM and CZ included nicotinate and nicotinamide metabolism, and glycine, serine and threonine metabolism. Furthermore, significant changes in metabolites in CKD rats after AM and CZ therapies were observed, including L-Threonine, D-pantothenic acid, and nicotinamide. Moreover, we found that AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway.Conclusion: In conclusion, AM and CZ significantly reduced renal fibrosis and inflammation in CKD rats, which may be related to the regulation of SIRT1/JNK signaling pathway. Furthermore, L-Threonine, D-pantothenic acid, and nicotinamide may be potential biomarkers for the progression and treatment of CKD.
Collapse
Affiliation(s)
- Lingfei Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Nanjing University of Chinese Medicine, Shenzhen, China
| | - Jiwei Chen
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bing Wang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital Nanjing University of Chinese Medicine, Shenzhen, China
| | - Hongcheng Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Jinting Peng
- Department of Gynecology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Feng Lin
- Department of Urology, Shenzhen Traditional Chinese Medicine Hospital Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Feng Lin, ; Guoliang Xiong,
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, China
- *Correspondence: Feng Lin, ; Guoliang Xiong,
| |
Collapse
|
30
|
Wang G, Xu J, Ma H, Mu Y, Xu W, Yan N, Liu W, Zheng D, Huang X, Li L. Phenolipid JE improves metabolic profile and inhibits gluconeogenesis via modulating AKT-mediated insulin signaling in STZ-induced diabetic mice. Pharmacol Res 2023; 187:106569. [PMID: 36427798 DOI: 10.1016/j.phrs.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Phenolipids are characteristic phytochemicals of Syzygium genus. However, the antidiabetic potential and underlying molecular mechanism of these components are not fully elucidated. Herein, we studied the anti-diabetic effects of jambone E (JE), a phenolipid from S. cumini, with in vitro and in vivo models. Data from current study showed that JE enhanced glucose consumption and uptake, promoted glycogen synthesis, and suppressed gluconeogenesis in insulin resistant (IR)-HepG2 cells and primary mouse hepatocytes. JE also attenuated streptozotocin-induced hyperglycemia and hyperlipidemia in type 1 diabetic (T1D) mice. Eleven metabolites (e.g. trimethylamine n-oxide, 4-pyridoxic acid, phosphatidylinositol 39:4, phenaceturic acid, and hippuric acid) were identified as potential serum biomarkers for JE's antidiabetic effects by an untargeted metabolomics approach. The further molecular mechanistic study revealed that JE up-regulated phosphorylation levels of protein kinase B (AKT), glycogen synthase kinase 3 beta, and forkhead box O1 (FoxO1), promoted nuclear exclusion of FoxO1 whilst decreased gene expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase in IR-HepG2 cells and T1D mice. Our data suggested that JE might be a potent activator for AKT-mediated insulin signaling pathway, which was confirmed by the usage of AKT inhibitor and AKT-target siRNA interference, as well as the cellular thermal shift assay. Findings from the current study shed light on the anti-diabetic effects of phenolipids in the Syzygium species, which supports the use of medicinal plants in the Syzygium genus for potential pharmaceutical applications.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, PR China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Na Yan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
31
|
Song Y, Qu X, Tao L, Gao H, Zhang Y, Zhai J, Gong J, Hu T. Exploration of the underlying mechanisms of isoniazid/rifampicin-induced liver injury in mice using an integrated proteomics and metabolomics approach. J Biochem Mol Toxicol 2022; 36:e23217. [PMID: 36111668 DOI: 10.1002/jbt.23217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2023]
Abstract
The hepatotoxic mechanism resulting from coadministration of isoniazid (INH) and rifampicin (RIF) are complex and studies remain inconclusive. To systematically explore the underlying mechanisms, an integrated mass-based untargeted metabolomics and label-free quantitative proteomics approach was used to clarify the mechanism of INH/RIF-induced liver injury. Thirty male mice were randomly divided into three groups: control (receiving orally administered vehicle solution), INH (150 mg/kg) + RIF (300 mg/kg) orally administered for either 7 or 14 days, respectively. Serum was collected for the analysis of biochemical parameters and liver samples were obtained for mass spectrum-based proteomics, metabolomics, and lipidomics analysis. Overall, 511 proteins, 31 metabolites, and 23 lipids were dysregulated and identified, and disordered biological pathways were identified. The network of integrated multiomics showed that glucose, lipid, and amino acid metabolism as well as energy metabolism were mainly dysregulated and led to oxidative stress, inflammation, liver steatosis, and cell death induced by INH and RIF. Coadministration of INH and RIF can induce liver injury by oxidative stress, inflammation, liver steatosis, and cell death, and the reduction in glutathione levels may play a critical role in these systematic changes and warrants further study.
Collapse
Affiliation(s)
- Yanqing Song
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyu Qu
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Lina Tao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Yueming Zhang
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jinghui Zhai
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Jiawei Gong
- Department of Pharmacy, The First Hospital of Jilin University, Changchun, China
| | - Tingting Hu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
32
|
The Protective Effect of Zebularine, an Inhibitor of DNA Methyltransferase, on Renal Tubulointerstitial Inflammation and Fibrosis. Int J Mol Sci 2022; 23:ijms232214045. [PMID: 36430531 PMCID: PMC9697081 DOI: 10.3390/ijms232214045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.
Collapse
|
33
|
Longitudinal metabolomic profiles reveal sex-specific adjustments to long-duration spaceflight and return to Earth. Cell Mol Life Sci 2022; 79:578. [DOI: 10.1007/s00018-022-04566-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/05/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022]
|
34
|
Li S, Lyu G, Li S, Yang H, Yang Y. Metabolic characterization of amniotic fluid of fetuses with isolated choroid plexus cyst. J Perinat Med 2022; 50:1100-1106. [PMID: 35607760 DOI: 10.1515/jpm-2022-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To investigate the amino acid (AA)-related metabolic characteristics of amniotic fluid (AF) obtained by ultrasound-guided amniocentesis from fetuses with isolated choroid plexus cysts of the central nervous system. METHODS Ultrasound-guided amniocentesis was performed on 17 fetuses with isolated choroid plexus cysts (ICPCs) and 17 normal fetuses. The AF samples from normal pregnancies were matched with the case samples in a 1:1 ratio based upon gestational age. The AF samples from the 34 fetuses were analyzed by liquid chromatography-mass spectrometry (LC-MS). Then, the peak areas of the metabolites were analyzed by principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and univariate statistical analysis. RESULTS This study ultimately identified 31 AAs. Seven differentially abundant AAs were screened out, including citrulline, ethanolamine, aspartic acid, valine, 5-hydroxylysine, proline, and isoleucine (p-value<0.05). A total of 4 metabolic pathways were significantly altered in the ICPC group: valine, leucine and isoleucine biosynthesis; valine, leucine and isoleucine degradation; pantothenate and coenzyme A (CoA) biosynthesis; and arginine biosynthesis. CONCLUSIONS The results of this study indicate that fetuses with ICPC have disrupted levels of citrulline, ethanolamine, aspartic acid, valine, 5-hydroxylysine, proline, and isoleucine, which may ultimately affect fetal glucose and lipid metabolism.
Collapse
Affiliation(s)
- Shangqing Li
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Guorong Lyu
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
- Quanzhou Medical College, Quanzhou, Fujian, P.R. China
| | - Shaohui Li
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Hainan Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| | - Yiru Yang
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
| |
Collapse
|
35
|
Jian Q, Wu Y, Zhang F. Metabolomics in Diabetic Retinopathy: From Potential Biomarkers to Molecular Basis of Oxidative Stress. Cells 2022; 11:cells11193005. [PMID: 36230967 PMCID: PMC9563658 DOI: 10.3390/cells11193005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Diabetic retinopathy (DR), the leading cause of blindness in working-age adults, is one of the most common complications of diabetes mellitus (DM) featured by metabolic disorders. With the global prevalence of diabetes, the incidence of DR is expected to increase. Prompt detection and the targeting of anti-oxidative stress intervention could effectively reduce visual impairment caused by DR. However, the diagnosis and treatment of DR is often delayed due to the absence of obvious signs of retina imaging. Research progress supports that metabolomics is a powerful tool to discover potential diagnostic biomarkers and therapeutic targets for the causes of oxidative stress through profiling metabolites in diseases, which provides great opportunities for DR with metabolic heterogeneity. Thus, this review summarizes the latest advances in metabolomics in DR, as well as potential diagnostic biomarkers, and predicts molecular targets through the integration of genome-wide association studies (GWAS) with metabolomics. Metabolomics provides potential biomarkers, molecular targets and therapeutic strategies for controlling the progress of DR, especially the interventions at early stages and precise treatments based on individual patient variations.
Collapse
Affiliation(s)
- Qizhi Jian
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
| | - Yingjie Wu
- Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Liaoning Provence Key Laboratory of Genome Engineered Animal Models, Dalian Medical University, Dalian 116000, China
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY 10010, USA
- Correspondence: (Y.W.); (F.Z.)
| | - Fang Zhang
- National Clinical Research Center for Eye Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200080, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai 200080, China
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai 200080, China
- Correspondence: (Y.W.); (F.Z.)
| |
Collapse
|
36
|
Labine LM, Oliveira Pereira EA, Kleywegt S, Jobst KJ, Simpson AJ, Simpson MJ. Comparison of sub-lethal metabolic perturbations of select legacy and novel perfluorinated alkyl substances (PFAS) in Daphnia magna. ENVIRONMENTAL RESEARCH 2022; 212:113582. [PMID: 35661729 DOI: 10.1016/j.envres.2022.113582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of pollutants of concern due to their ubiquitous presence, persistence, and toxicity in aquatic environments. Legacy PFAS pollutants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) have been more widely studied in aquatic environments. However, replacement PFAS, such as ammonium perfluoro (2-methyl-3-oxahexanoate; GenX) are increasingly being detected with little known information surrounding their toxicity. Here, Daphnia magna, a model organism for freshwater ecotoxicology was used to compare the acute sub-lethal toxicity of PFOS, PFOA, GenX, and PFAS mixtures. Using liquid chromatography with tandem mass spectrometry (LC-MS/MS), the targeted polar metabolic profile extracted from single Daphnia was quantified to investigate perturbations in the exposure groups versus the unexposed organisms. Multivariate statistical analyses demonstrated significant non-monotonic separation in PFOA, GenX, and PFAS mixture exposures. Sub-lethal exposure to concentrations of PFOS did not lead to significant separation in multivariate analyses. Univariate statistics and pathway analyses were used to elucidate the mode of action of PFAS exposure. Exposure to all individual PFAS led to significant perturbations in many amino acids including cysteine, histidine, tryptophan, glycine, and serine. These perturbations are consistent with biochemical pathway disruptions in the pantothenate and Coenzyme A (CoA) biosynthesis, thiamine metabolism, histidine metabolism, and aminoacyl-tRNA biosynthesis pathways. Overall, the collected metabolomic data is consistent with disruptions in energy metabolism and protein synthesis as the primary mode of action of sub-lethal PFAS exposure. Secondary modes of action among individual pollutant exposures demonstrated that the structural properties (carboxylic acid vs. sulfonic acid group) may play a role in the metabolic perturbations observed. Sub-lethal exposure to PFAS mixtures highlighted a mixed response when compared to the individual pollutants (PFOS, PFOA, and GenX). Overall, this study emphasizes the niche capability of environmental metabolomics to differentiate secondary modes of action from metabolic perturbations in both single pollutant and pollutant mixtures within the same chemical class.
Collapse
Affiliation(s)
- Lisa M Labine
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Erico A Oliveira Pereira
- Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Sonya Kleywegt
- Technical Assessment and Standards Development Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada, M4V 1M2
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X7
| | - Andre J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
37
|
Boullaud L, Blasco H, Caillaud E, Emond P, Bakhos D. Immediate-Early Modifications to the Metabolomic Profile of the Perilymph Following an Acoustic Trauma in a Sheep Model. J Clin Med 2022; 11:jcm11164668. [PMID: 36012907 PMCID: PMC9409969 DOI: 10.3390/jcm11164668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The pathophysiological mechanisms of noise-induced hearing loss remain unknown. Identifying biomarkers of noise-induced hearing loss may increase the understanding of pathophysiological mechanisms of deafness, allow for a more precise diagnosis, and inform personalized treatment. Emerging techniques such as metabolomics can help to identify these biomarkers. The objective of the present study was to investigate immediate-early changes in the perilymph metabolome following acoustic trauma. Metabolomic analysis was performed using liquid chromatography coupled to mass spectrophotometry to analyze metabolic changes in perilymph associated with noise-induced hearing loss. Sheep (n = 6) were exposed to a noise designed to induce substantial hearing loss. Perilymph was collected before and after acoustic trauma. Data were analyzed using univariate analysis and a supervised multivariate analysis based on partial least squares discriminant analysis. A metabolomic analysis showed an abundance of 213 metabolites. Four metabolites were significantly changed following acoustic trauma (Urocanate (p = 0.004, FC = 0.48), S-(5’-Adenosyl)-L-Homocysteine (p = 0.06, FC = 2.32), Trigonelline (p = 0.06, FC = 0.46) and N-Acetyl-L-Leucine (p = 0.09, FC = 2.02)). The approach allowed for the identification of new metabolites and metabolic pathways involved with acoustic trauma that were associated with auditory impairment (nerve damage, mechanical destruction, and oxidative stress). The results suggest that metabolomics provides a powerful approach to characterize inner ear metabolites which may lead to identification of new therapies and therapeutic targets.
Collapse
Affiliation(s)
- Luc Boullaud
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Correspondence: ; Tel.: +33-02-4747-4747
| | - Hélène Blasco
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Department of Biochemistry and Molecular Biology, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - Eliott Caillaud
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Patrick Emond
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
| | - David Bakhos
- ENT Department and Cervico-Facial Surgery, CHU de Tours, 2 Boulevard Tonnellé, 37044 Tours, France
- INSERM U1253, iBrain, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- Faculty of Medecine, University of Tours, 10 Boulevard Tonnellé, 37000 Tours, France
- House Institute Foundation, Los Angeles, CA 90089, USA
| |
Collapse
|
38
|
Hong Y, Zhou Z, Zhang N, He Q, Guo Z, Liu L, Song Y, Chen P, Wei Y, Xu Q, Li Y, Wang B, Qin X, Xu X, Duan Y. Association between plasma Vitamin B5 levels and all-cause mortality: A nested case-control study. J Clin Hypertens (Greenwich) 2022; 24:945-954. [PMID: 35699663 PMCID: PMC9278592 DOI: 10.1111/jch.14516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/29/2022] [Accepted: 05/15/2022] [Indexed: 11/28/2022]
Abstract
We aimed to evaluate the prospective association of vitamin B5 with all‐cause mortality and explore its potential modifiers in Chinese adults with hypertension. A nested, case‐control study was conducted in the China Stroke Primary Prevention Trial, including 505 deaths of all causes and 505 matched controls. The median follow‐up duration was 4.5 years. The primary outcome measure in this investigation was all‐cause mortality, which encompassed deaths for any reason. The mean plasma vitamin B5 concentration for cases (43.7 ng/mL) was higher than that in controls (40.9 ng/mL) (p = .001). When vitamin B5 was further assessed as quintiles, compared with the reference group (Q1: < 33.0 ng/mL), the risk of all‐cause mortality increased by 29% (OR = 1.29, 95% CI: 0.83‐2.01) in Q2, 22% (OR = 1.22, 95% CI: 0.77‐1.94) in Q3, 62% (OR = 1.62, 95% CI: 1.00‐2.62) in Q4, and 77% (OR = 1.77, 95% CI: 1.06‐2.95) in Q5. The trend test was significant (p = .022). When Q4‐Q5 were combined, a significant 41% increment (OR = 1.41, 95% CI: 1.03‐1.95) in all‐cause death risk was found compared with Q1‐Q3. The adverse effects were more pronounced in those with normal folate levels (p‐interaction = .019) and older people (p‐interaction = .037). This study suggests that higher baseline levels of plasma vitamin B5 are a risk factor for all‐cause mortality among Chinese patients with hypertension, especially among older adults and those with adequate folate levels. The findings, if confirmed, may inform novel clinical and nutritional guidelines and interventions to optimize vitamin B5 levels.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ziyi Zhou
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Nan Zhang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Qiangqiang He
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Zhangyou Guo
- The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Yunnan Cancer Center, Kunming, People's Republic of China
| | - Lishun Liu
- Graduate School at Shenzhen, Tsinghua University, Shenzhen, China.,Shenzhen Evergreen Medical Institute, Shenzhen, China
| | - Yun Song
- Institute of Biomedicine, Anhui Medical University, Hefei, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yaping Wei
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiuyue Xu
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Ya Li
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Binyan Wang
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xianhui Qin
- Institute of Biomedicine, Anhui Medical University, Hefei, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiping Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, China.,National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Duan
- Department of Clinical Laboratory, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunnan Province Clinical Research Center for Laboratory Medicine, Kunming, China.,Yunnan Key Laboratory of Laboratory Medicine, Kunming, China
| |
Collapse
|
39
|
Gao J, Ma L, Ma J, Xia S, Gong S, Yin Y, Chen Y. Camellia ( Camellia oleifera Abel.) Seed Oil Regulating of Metabolic Phenotype and Alleviates Dyslipidemia in High Fat-Fed Mice through Serum Branch-Chain Amino Acids. Nutrients 2022; 14:nu14122424. [PMID: 35745155 PMCID: PMC9228151 DOI: 10.3390/nu14122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Camellia (Camellia oleifera Abel.) seed oil (CO) has been shown to effectively reduce the blood lipid level of its host due to its fatty acid content, but the specific molecular mechanism associated with the metabolic phenotype after digestion is not clear. Here, we further investigated the relationship between branched-chain amino acids (BCAA) and the metabolic phenotype that may exhibit the anti-dyslipidemia effect of CO on mice fed a high-fat diet for 30 day C57BL/6J male mice were allocated to three groups: the control group (Cont), the high-fat feed group (HFD), and a high-fat feed group with CO treatment (CO). A serum sample was collected to detect lipid biomarkers and BCAA concentration. Notably, Low-density lipoprotein (LDL), Total Cholesterol (TC), and Triglycerides (TG) showed a significant decrease, whereas High-density lipoprotein (HDL) increased in CO mice but not in the HFD group. The concentration of Isoleucine (Ile), leucine (Leu), and valine (Val) was similar between the Cont and CO groups compared with the HFD group, exhibiting an inhibition induced by CO in mice fed with a high-fat diet. A metabolic phenotype from serum examined by non-targeted metabolite analysis using UHPLC/MS showed most metabolites exhibited lipid and BCAA metabolism. The results indicated that CO treatment notably regulated the metabolism of arachidonic acid and steroid biosynthesis in response to HFD-induced dyslipidemia. In addition, the expression of PPARγ genes that correlated with the BCAA and serum lipid biomarkers were compared, and significant inhibition was noticed, which might lead to the potential exposure of the anti-dyslipidemia mechanism of CO in HFD-fed mice. In conclusion, the expression of PPARγ genes, serum lipid level, BCAA concentration, and the metabolic phenotype was significantly positive in correlation with a high-fat diet, whereas oral CO improved the biomarkers and metabolism of some specific serum metabolites in HFD-fed mice.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Siting Xia
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
- Correspondence: (Y.Y.); (Y.C.)
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Correspondence: (Y.Y.); (Y.C.)
| |
Collapse
|
40
|
Zhang J, Wang P, Tan C, Zhao Y, Zhu Y, Bai J, Xiao X. Integrated transcriptomics and metabolomics unravel the metabolic pathway variations for barley β-glucan before and after fermentation with L. plantarum DY-1. Food Funct 2022; 13:4302-4314. [PMID: 35302565 DOI: 10.1039/d1fo02450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results of our previous study showed that the structure and function of β-glucan in barley were changed after fermentation by L. plantarum DY-1. In this study, the antioxidant activities of RBG (regular barley β-glucan, unfermented) and FBG (barley β-glucan, fermented with L. plantarum DY-1) were evaluated by adopting an in vivo animal model, Caenorhabditis elegans (C. elegans). We also carried out an integrated transcriptomic and metabolomic profiling for RBG and FBG to delineate their signature pathways. RBG treatment has better effects on SOD enzyme activity and ROS levels than FBG, while FBG treatment has better effects on the CAT enzyme activity and MDA content than RBG in C. elegans. Transcription group analysis showed that FBG mainly decreases the expression of the Cyp-D gene to inhibit the calcium signaling pathway, promotes the Wnt signaling pathway by up-regulating the GSK-3β gene and improving the oxidative damage of C. elegans; RBG mainly inhibits calcium signal pathways by reducing the expression of ANT-solute carrier family 25 genes, promoting life adjustment pathways by reducing the expression of the HSP-12.6 gene to improve the oxidative stress of C. elegans. Joint analysis showed that the difference between FBG and RBG in the regulation of oxidative stress is mainly reflected in the metabolism pathway of arachidonic acid. Under the regulation of FBG, the expression of the C03H5.4 gene was decreased, the expression of leukotriene A4, prostaglandin G2, arachidonic acid and phosphatidylcholine was decreased, and the expression of 14,15-DiHETrE was increased. Under the regulation of RBG, the expression of gene C03H5.4 was up-regulated, the expression of metabolites such as leukotriene B4 was up-regulated, and the expression of arachidonic acid and phosphatidylcholine was down-regulated.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ping Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Cui Tan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
41
|
Keshet U, Kind T, Lu X, Devi S, Fiehn O. Acyl-CoA Identification in Mouse Liver Samples Using the In Silico CoA-Blast Tandem Mass Spectral Library. Anal Chem 2022; 94:2732-2739. [PMID: 35119811 PMCID: PMC11492806 DOI: 10.1021/acs.analchem.1c03272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acyl-coenzyme A derivatives (acyl-CoAs) are core molecules in the fatty acid and energy metabolism across all species. However, in vivo, many other carboxylic acids can form xenobiotic acyl-CoA esters, including drugs. More than 2467 acyl-CoAs are known from the published literature. In addition, more than 300 acyl-CoAs are covered in pathway databases, but as of October 2020, only 53 experimental acyl-CoA tandem mass spectra are present in NIST20 and MoNA libraries to enable annotation of the mass spectra in untargeted metabolomics studies. The experimental spectra originated from low-resolution ion trap and triple quadrupole mass spectrometers as well as high-resolution quadrupole-time of flight and orbital ion trap instruments at various collision energies. We used MassFrontier software and the literature to annotate fragment ions to generate fragmentation rules and intensities for the different instruments and collision energies. These rules were then applied to 1562 unique species based on [M+H]+ and [M-H]- precursor ions to generate two mass spectra per instrument platform and collision energy, amassing an in silico library of 10,934 accurate mass MS/MS spectra that are freely available at github.com/urikeshet/CoA-Blast. The spectra can be imported into a commercial or freely available mass spectral search tool. We used the libraries to annotate 23 acyl-CoA esters in mouse liver, including 8 novel species.
Collapse
Affiliation(s)
- Uri Keshet
- University of California Davis, Genome Center-Metabolomics, Davis, California 95616, United States
| | - Tobias Kind
- University of California Davis, Genome Center-Metabolomics, Davis, California 95616, United States
| | - Xinchen Lu
- University of California Davis, Genome Center-Metabolomics, Davis, California 95616, United States
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Sarita Devi
- University of California Davis, Genome Center-Metabolomics, Davis, California 95616, United States
- St. John's Research Institute, St. John's National Academy of Health Sciences, Bangalore 560034, India
| | - Oliver Fiehn
- University of California Davis, Genome Center-Metabolomics, Davis, California 95616, United States
| |
Collapse
|
42
|
Wang H, Li S, Wang C, Wang Y, Fang J, Liu K. Plasma and Vitreous Metabolomics Profiling of Proliferative Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2022; 63:17. [PMID: 35133401 PMCID: PMC8842420 DOI: 10.1167/iovs.63.2.17] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose To determine the differences of metabolites and metabolic pathways between patients with proliferative diabetic retinopathy (PDR) and without diabetes (nondiabetic controls) in plasma and vitreous, respectively, and to characterize the relationship between plasma and vitreous metabolic profiles. Methods Liquid chromatography/tandem mass spectrometry technology was performed to distinct metabolite profiles of plasma and vitreous. A total of 139 plasma samples from 88 patients with PDR and 51 nondiabetic controls, as well as 74 vitreous samples from 51 patients with PDR and 23 nondiabetic controls, were screened. Pathway analysis was performed using MetaboAnalyst 5.0. Pearson correlation analysis was used to investigate the correlation of metabolites in vitreous and plasma. Results After adjusting for age, fasting blood glucose, and urea, in vitreous metabolomes, a total of 76 features distinguished patients with PDR from controls. Fifteen differential metabolites were found in plasma metabolites. Pantothenate and CoA biosynthesis was the common metabolic pathway altered in both plasma and vitreous. Aromatic amino acid metabolism pathways were dysregulated in vitreous of PDR. For four metabolic features, there were positive correlations between vitreous and plasma. Conclusions Despite great differences between the metabolic profiles of plasma and vitreous in PDR cases, there are also similarities in the change of metabolites and metabolic pathways. Exploring the relationship of metabolomics between vitreous and plasma may help provide new understanding of the mechanism of PDR.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Shu Li
- Department of Nursing, Shanghai General Hospital, Shanghai, China
| | - Chingyi Wang
- Shanghai Runer Ophthalmology Clinic Co., Ltd., Shanghai, China
| | - Yihan Wang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital and Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, and Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
43
|
Yu F, Li X, Feng X, Wei M, Luo Y, Zhao T, Xiao B, Xia J. Phenylacetylglutamine, a Novel Biomarker in Acute Ischemic Stroke. Front Cardiovasc Med 2022; 8:798765. [PMID: 35004911 PMCID: PMC8733610 DOI: 10.3389/fcvm.2021.798765] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023] Open
Abstract
Background: To discover novel metabolic biomarkers of ischemic stroke (IS), we carried out a two-stage metabolomic profiling of IS patients and healthy controls using untargeted and targeted metabolomic approaches. Methods: We applied untargeted liquid chromatography-mass spectrometry (LC-MS) to detect the plasma metabolomic profiles of 150 acute IS patients and 50 healthy controls. The candidate differential microbiota-derived metabolite phenylacetylglutamine (PAGln) was validated in 751 patients with IS and 200 healthy controls. We evaluated the associations between PAGln levels and the severity and functional outcomes of patients with IS. Clinical mild stroke was defined as the National Institutes of Health Stroke Scale (NIHSS) score 0–5, and moderate-severe stroke as NIHSS score >5. A favorable outcome at 3 months after IS was defined as the modified Rankin Scale (mRS) score 0–2, and unfavorable outcome as mRS score 3–6. Results: In untargeted metabolomic analysis, we detected 120 differential metabolites between patients with IS and healthy controls. Significantly altered metabolic pathways were purine metabolism, TCA cycle, steroid hormone biosynthesis, and pantothenate and CoA biosynthesis. Elevated plasma PAGln levels in IS patients, compared with healthy controls, were observed in untargeted LC-MS analysis and confirmed by targeted quantification (median 2.0 vs. 1.0 μmol/L; p < 0.001). Patients with moderate-severe stroke symptoms and unfavorable short-term outcomes also had higher levels of PAGln both in discovery and validation stage. After adjusting for potential confounders, high PAGln levels were independently associated with IS (OR = 3.183, 95% CI 1.671–6.066 for the middle tertile and OR = 9.362, 95% CI 3.797–23.083 for the highest tertile, compared with the lowest tertile) and the risk of unfavorable short-term outcomes (OR = 2.286, 95% CI 1.188–4.401 for the highest tertile). Conclusions: IS patients had higher plasma levels of PAGln than healthy controls. PAGln might be a potential biomarker for IS and unfavorable functional outcomes in patients with IS.
Collapse
Affiliation(s)
- Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
44
|
Xiong X, Chen X, Ma H, Zheng Z, Yang Y, Chen Z, Zhou Z, Pu J, Chen Q, Zheng M. Metabolite Changes in the Aqueous Humor of Patients With Retinal Vein Occlusion Macular Edema: A Metabolomics Analysis. Front Cell Dev Biol 2022; 9:762500. [PMID: 34993196 PMCID: PMC8724431 DOI: 10.3389/fcell.2021.762500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Macular edema (ME) is the main cause of visual impairment in patients with retinal vein occlusion (RVO). The degree of ME affects the prognosis of RVO patients, while it lacks objective laboratory biomarkers. We aimed to compare aqueous humor samples from 28 patients with retinal vein occlusion macular edema (RVO-ME) to 27 age- and sex-matched controls by ultra-high-performance liquid chromatography equipped with quadrupole time-of-flight mass spectrometry, so as to identify the key biomarkers and to increase the understanding of the mechanism of RVO-ME at the molecular level. Through univariate and multivariate statistical analyses, we identified 60 metabolites between RVO-ME patients and controls and 40 differential metabolites in mild RVO-ME [300 μm ≤ central retinal thickness (CRT) < 400 μm] patients compared with severe RVO-ME (CRT ≥ 400 μm). Pathway enrichment analysis showed that valine, leucine, and isoleucine biosynthesis; ascorbate and aldarate metabolism; and pantothenate and coenzyme A biosynthesis were significantly altered in RVO-ME in comparison with controls. Compared with mild RVO-ME, degradation and biosynthesis of valine, leucine, and isoleucine; histidine metabolism; beta-alanine metabolism; and pantothenate and coenzyme A biosynthesis were significantly changed in severe RVO-ME. Furthermore, the receiver operating characteristic (ROC) curve analysis revealed that adenosine, threonic acid, pyruvic acid, and pyro-L-glutaminyl-l-glutamine could differentiate RVO-ME from controls with an area under the curve (AUC) of >0.813. Urocanic acid, diethanolamine, 8-butanoylneosolaniol, niacinamide, paraldehyde, phytosphingosine, 4-aminobutyraldehyde, dihydrolipoate, and 1-(beta-D-ribofuranosyl)-1,4-dihydronicotinamide had an AUC of >0.848 for distinguishing mild RVO-ME from severe RVO-ME. Our study expanded the understanding of metabolomic changes in RVO-ME, which could help us to have a good understanding of the pathogenesis of RVO-ME.
Collapse
Affiliation(s)
- Xiaojing Xiong
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Chen
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huafeng Ma
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zheng Zheng
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yazhu Yang
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhu Chen
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zixi Zhou
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Pu
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingwei Chen
- Department of general practice, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Minming Zheng
- Department of Ophthalmology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Huang G, Li M, Li Y, Mao Y. OUP accepted manuscript. Lab Med 2022; 53:545-551. [PMID: 35748329 DOI: 10.1093/labmed/lmac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Guoqing Huang
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo, China
| | - Yan Li
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- School of Medicine, Ningbo University, Ningbo, China
| | - Yushan Mao
- Department of Endocrinology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Sun D, Yang N, Zhang Q, Wang Z, Luo G, Pang J. The discovery of combined toxicity effects and mechanisms of hexaconazole and arsenic to mice based on untargeted metabolomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112859. [PMID: 34624535 DOI: 10.1016/j.ecoenv.2021.112859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The high detected frequencies of hexaconazole (Hex) and arsenic (As) increased the probabilities of their co-existence in agricultural products. However, the combined toxicity effect and mechanism of action for these two pollutants were still unclear. In this study, an untargeted metabolomics method with ultra high performance liquid chromatography and tandem mass spectrometry (UPLC-MS/MS) was developed to monitor the changes of endogenous metabolites and metabolism pathways in mice liver. Our study revealed that significant differences in metabolomics profiles were observed after Hex, As, and Hex+As exposure for 90 d. Hex exposure altered 54 metabolites and 11 pathways significantly which were mainly lipid-related. For As exposure, 63 metabolites and 9 pathways were affected most of which were amino acid-related. Hex+As induced 93 metabolites changes with 34% was lipids and lipid-like molecules and 22% was organic acids and derivatives. Hex+As exposure shared the pathways that altered by Hex and As indicated that the interaction of Hex and As might be independent action. The results of this study could provide an important insight for understanding the mechanism of combined toxicity for Hex and As and be helpful for evaluating their health risk to human.
Collapse
Affiliation(s)
- Dali Sun
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Na Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Zelan Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Guofei Luo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China
| | - Junxiao Pang
- Key Laboratory of Critical Technology for Degradation of Pesticide Residues in Agro-products in Guizhou Ecological Environment, Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang 550005, China.
| |
Collapse
|
47
|
Zhang R, Wu J, Lei Y, Bai Y, Jia L, Li Z, Liu T, Xu Y, Sun J, Wang Y, Zhang K, Lei Z. Oregano Essential Oils Promote Rumen Digestive Ability by Modulating Epithelial Development and Microbiota Composition in Beef Cattle. Front Nutr 2021; 8:722557. [PMID: 34859026 PMCID: PMC8631176 DOI: 10.3389/fnut.2021.722557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/07/2021] [Indexed: 12/12/2022] Open
Abstract
This study aimed to explore the effects of oregano essential oils (OEO) on the rumen digestive ability using multi-omics sequencing techniques. Twenty-seven castrated Pingliang red cattle were randomly separated into three groups (3 cattle/pen; n = 9) and fed on a daily basal diet supplemented with 0 (Con group), 130 mg (L group), and 260 mg (H group) OEO. The finishing trial lasted for 390 days, and all cattle were slaughtered to collect rumen tissue and content samples. We found that the rumen papillae length in the H group was higher than in the Con group. Amylase concentrations were decreased in the H group than the Con group, whereas the β-glucosidase and cellulase concentrations increased. Compared to the Con group, the relative abundance of propionate and butyrate in the H group was significantly higher. Higher relative abundance of Parabacteroides distasonis and Bacteroides thetaiotaomicron were observed with increasing OEO concentration. The function of rumen microbiota was enriched in the GH43_17 family, mainly encoding xylanase. Besides, metabolites, including heparin, pantetheine, sorbic acid, aspirin, and farnesene concentrations increased with increasing OEO dose. A positive correlation was observed between Parabacteroides distasonis, Bacteroides thetaiotaomicron, and β-glucosidase, cellulase and propionate. The abundance of Parabacteroides distasonis and Parabacteroides_sp._CAG:409 were positively correlated with sorbic acid and farnesene. In summary, OEO supplementation increased the rumen digestive ability by modulating epithelial development and microbiota composition in beef cattle. This study provides a comprehensive insight into the OEO application as an alternative strategy to improve ruminant health production.
Collapse
Affiliation(s)
- Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yunpeng Bai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ting Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yangbin Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianxiang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
48
|
Govender MA, Brandenburg JT, Fabian J, Ramsay M. The Use of 'Omics for Diagnosing and Predicting Progression of Chronic Kidney Disease: A Scoping Review. Front Genet 2021; 12:682929. [PMID: 34819944 PMCID: PMC8606569 DOI: 10.3389/fgene.2021.682929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Globally, chronic kidney disease (CKD) contributes substantial morbidity and mortality. Recently, various 'omics platforms have provided insight into the molecular basis of kidney dysfunction. This scoping review is a synthesis of the current literature on the use of different 'omics platforms to identify biomarkers that could be used to detect early-stage CKD, predict disease progression, and identify pathways leading to CKD. This review includes 123 articles published from January 2007 to May 2021, following a structured selection process. The most common type of 'omic platform was proteomics, appearing in 55 of the studies and two of these included a metabolomics component. Most studies (n = 91) reported on CKD associated with diabetes mellitus. Thirteen studies that provided information on the biomarkers associated with CKD and explored potential pathways involved in CKD are discussed. The biomarkers that are associated with risk or early detection of CKD are SNPs in the MYH9/APOL1 and UMOD genes, the proteomic CKD273 biomarker panel and metabolite pantothenic acid. Pantothenic acid and the CKD273 biomarker panel were also involved in predicting CKD progression. Retinoic acid pathway genes, UMOD, and pantothenic acid provided insight into potential pathways leading to CKD. The biomarkers were mainly used to detect CKD and predict progression in high-income, European ancestry populations, highlighting the need for representative 'omics research in other populations with disparate socio-economic strata, including Africans, since disease etiologies may differ across ethnic groups. To assess the transferability of findings, it is essential to do research in diverse populations.
Collapse
Affiliation(s)
- Melanie A. Govender
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jean-Tristan Brandenburg
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - June Fabian
- Wits Donald Gordon Medical Centre, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
49
|
Tong Y, Zhao X, Wang R, Li R, Zou W, Zhao Y. Therapeutic effect of berberine on chronic atrophic gastritis based on plasma and urine metabolisms. Eur J Pharmacol 2021; 908:174335. [PMID: 34265298 DOI: 10.1016/j.ejphar.2021.174335] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/19/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to investigate the therapeutic effect of berberine (BBR) on chronic atrophic gastritis (CAG) and its potential mechanism. The effects of BBR on gastric histopathology, serum biochemical indexes and inflammatory factors in CAG rats were assessed. Moreover, plasma and urine metabolomics based on ultra high performance liquid chromatography-quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF/MS) were used to identify potential metabolic markers and possible pathways of BBR in the treatment of CAG. The results showed that BBR could significantly improve the pathological characteristics of gastric tissue, alleviate the serum biochemical indexes and reduce the mRNA expression of nuclear factor-κB, tumor necrosis factor-α, Cyclooxygenase-2, monocyte chemoattractant protein-1, Interleukin-17A and I interferon-γ. The results of metabolomic analysis show that the therapeutic effect of BBR on CAG may be related to the regulation of 15 metabolic markers and 12 metabolic pathways, which may be the potential mechanism for the treatment of CAG. This study provides new insights for elucidating the mechanism of BBR improving CAG.
Collapse
Affiliation(s)
- Yuling Tong
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Xu Zhao
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruilin Wang
- Integrative Medical Center, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center of PLA General Hospital of Chinese, Beijing, China
| | - Wenjun Zou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
50
|
Zhang Q, Lai LY, Cai YY, Wang MJ, Ma G, Qi LW, Xue J, Huang FQ. Serum-Urine Matched Metabolomics for Predicting Progression of Henoch-Schonlein Purpura Nephritis. Front Med (Lausanne) 2021; 8:657073. [PMID: 34055834 PMCID: PMC8149729 DOI: 10.3389/fmed.2021.657073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/15/2021] [Indexed: 01/15/2023] Open
Abstract
Henoch-Schonlein purpura nephritis (HSPN) is a common glomerulonephritis secondary to Henoch-Schonlein purpura (HSP) that affects systemic metabolism. Currently, there is a rarity of biomarkers to predict the progression of HSPN. This work sought to screen metabolic markers to predict the progression of HSPN via serum-urine matched metabolomics. A total of 90 HSPN patients were enrolled, including 46 HSPN (+) patients with severe kidney damage (persistent proteinuria >0.3 g/day) and 44 HSPN (–) patients without obvious symptoms (proteinuria < 0.3 g/day). Untargeted metabolomics was determined by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q/TOF-MS). A total of 38 and 50 differential metabolites were, respectively, identified in serum and urine from the comparison between HSPN (+) and HSPN (–) patients. Altered metabolic pathways in HSPN (+) mainly included glycerophospholipid metabolism, pyruvate metabolism, and citrate cycle. A panel of choline and cis-vaccenic acid gave areas under the curve of 92.69% in serum and 72.43% in urine for differential diagnosis between HSPN (+) and HSPN (–). In addition, the two metabolites showed a significant association with clinical indices of HSPN. These results suggest that serum-urine matched metabolomics comprehensively characterized the metabolic differences between HSPN (+) and HSPN (–), and choline and cis-vaccenic acid could serve as biomarkers to predict HSPN progression.
Collapse
Affiliation(s)
- Qian Zhang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Ling-Yun Lai
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan-Yuan Cai
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Ma-Jie Wang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Gaoxiang Ma
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Jun Xue
- Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, China
| | - Feng-Qing Huang
- The Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|