1
|
Maher A, Miśkiewicz K, Rosicka-Kaczmarek J, Nowak A. Detoxification of Acrylamide by Potentially Probiotic Strains of Lactic Acid Bacteria and Yeast. Molecules 2024; 29:4922. [PMID: 39459290 PMCID: PMC11510321 DOI: 10.3390/molecules29204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Some potentially probiotic strains of lactic acid bacteria (LAB) and yeast that inhabit the digestive tract of humans are known to detoxify xenobiotics, including acrylamide (AA). The objective of the subsequent research was to evaluate the AA-detoxification capability of LAB and yeast isolated from various sources. Namely, the effect of AA was tested on the growth of LAB and yeast strains, as well in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Subsequently, the AA-binding ability of LAB and yeast was investigated in various environments, including the pH, incubation temperature, cell density, and with inanimate cells. The ability of selected LAB and yeast to reduce the genotoxicity of AA was tested on Caco-2 and Hep-G2 cell lines. The results showed that all tested strains exhibited strong resistance to AA at concentrations of 5, 10, and 50 µg/mL. Also, AA was detected in the intracellular and membrane extracts of tested strains. The most effective binding strain was Pediococcus acidilactici 16 at pH = 5, cell density = 109 CFU/mL, and incubation temperature = 37 °C (87.6% of AA removed). Additionally, all tested strains reduced the genotoxicity of AA, with the greatest reduction observed at the highest concentration of 50 µg/mL. The phenomena of detoxification by potentially probiotic strains could reduce the toxic and harmful effects of AA exposure to humans every day.
Collapse
Affiliation(s)
- Agnieszka Maher
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| | - Karolina Miśkiewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland; (K.M.); (J.R.-K.)
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171/173, 90-530 Lodz, Poland;
| |
Collapse
|
2
|
Zahir A, Khan IA, Nasim M, Azizi MN, Azi F. Food process contaminants: formation, occurrence, risk assessment and mitigation strategies - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1242-1274. [PMID: 39038046 DOI: 10.1080/19440049.2024.2381210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Thermal treatment of food can lead to the formation of potentially harmful chemicals, known as process contaminants. These are adventitious contaminants that are formed in food during processing and preparation. Various food processing techniques, such as heating, drying, grilling, and fermentation, can generate hazardous chemicals such as acrylamide (AA), advanced glycation end products (AGEs), heterocyclic aromatic amines (HAAs), furan, polycyclic aromatic hydrocarbons (PAHs), N-nitroso compounds (NOCs), monochloropropane diols (MCPD) and their esters (MCPDE) which can be detrimental to human health. Despite efforts to prevent the formation of these compounds during processing, eliminating them is often challenging due to their unknown formation mechanisms. It is critical to identify the potential harm to human health in processed food and understand the mechanisms by which harmful compounds form during processing, as prolonged exposure to these toxic compounds can lead to health problems. Various mitigation strategies, such as the use of diverse pre- and post-processing treatments, product reformulation, additives, variable process conditions, and novel integrated processing techniques, have been proposed to control these food hazards. In this review, we summarize the formation and occurrence, the potential for harm to human health produced by process contaminants in food, and potential mitigation strategies to minimize their impact.
Collapse
Affiliation(s)
- Ahmadullah Zahir
- Faculty of Veterinary Sciences, Department of Food Science and Technology, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Iftikhar Ali Khan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Maazullah Nasim
- Faculty of Agriculture, Department of Horticulture, Kabul University, Kabul, Afghanistan
| | - Mohammad Naeem Azizi
- Faculty of Veterinary Sciences, Department of Pre-Clinic, Afghanistan National Agricultural Sciences & Technology University, Kandahar, Afghanistan
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong, China
| |
Collapse
|
3
|
Bisht V, Ghosh T, Kumar P, Sharma R, Chamoli S, Patodia H, Mohanty AK, Navani NK. Mitigation of acrylamide in fried food systems using a combination of zein-pectin hydrocolloid complex and a food-grade l-asparaginase. Int J Biol Macromol 2024; 276:133745. [PMID: 38986991 DOI: 10.1016/j.ijbiomac.2024.133745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Acrylamide, a Maillard reaction product, formed in fried food poses a serious concern to food safety due to its neurotoxic and carcinogenic nature. A "Green Approach" using L-Asparaginase enzyme from GRAS-status bacteria synergized with hydrocolloid protective coating could be effective in inhibiting acrylamide formation. To fill this void, the present study reports a new variant of type-II L-asparaginase (AsnLb) from Levilactobacillus brevis NKN55, a food-grade bacterium isolated using a unique metabolite profiling approach. The recombinant AsnLb enzyme was characterized to study acrylamide inhibition ability and showed excellent specificity towards L-asparagine (157.2 U/mg) with Km, Vmax of 0.833 mM, 4.12 mM/min respectively. Pretreatment of potato slices with AsnLb (60 IU/mL) followed by zein-pectin nanocomplex led to >70% reduction of acrylamide formation suggesting synergistic effect of this dual component system. The developed strategy can be employed as a sustainable treatment method by food industries for alleviating acrylamide formation and associated health hazard in fried foods.
Collapse
Affiliation(s)
- Vishakha Bisht
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| | - Tamoghna Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Piyush Kumar
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.
| | - Rekha Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Shivangi Chamoli
- Department of Life sciences, Graphic Era Deemed to be University, Dehradun, Uttarakhand, India
| | - Harsh Patodia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ashok Kumar Mohanty
- ICAR-Central Institute for Research on Cattle (ICAR-CIRC), Meerut Cantt, Uttar Pradesh, India.
| | - Naveen Kumar Navani
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India.
| |
Collapse
|
4
|
Ameur H, Tlais AZA, Paganoni C, Cozzi S, Suman M, Di Cagno R, Gobbetti M, Polo A. Tailor-made fermentation of sourdough reduces the acrylamide content in rye crispbread and improves its sensory and nutritional characteristics. Int J Food Microbiol 2024; 410:110513. [PMID: 38043376 DOI: 10.1016/j.ijfoodmicro.2023.110513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/13/2023] [Accepted: 11/29/2023] [Indexed: 12/05/2023]
Abstract
Thirty strains of lactic acid bacteria (LAB) and Saccharomyces cerevisiae E8.9 (wild type) were used to formulate fifteen combinations of starters by mixing two or three LAB with the yeast (ratio LAB: yeast, 10: 1). Such combinations were used to prepare rye sourdough and their performance in term of acidification and biochemical characteristics during fermentation at two temperatures (30 and 37 °C) and duration (4 and 8 h) were screened. The best thirteen sourdough formulations were selected and used for rye crispbread making. The analysis of acrylamide concentration demonstrated that 11 out 13 formulations resulted in significant decreases of concentration compared to the baker's yeast (control), with reductions up to 79.6 %. The rye sourdough crispbreads showed also higher amount of volatile organic compounds (VOCs) compared to the baker's yeast control. Two rye sourdough crispbreads, selected to represent the opposite extremes within the thirteen formulations in term of VOC profiles and fermentation performances, demonstrated better sensory and nutritional features, such as phytic acid reduction (up to 47.3 %), and enhanced total free amino acid compared to the control. These evidences suggest the potential of tailored sourdough fermentations as alternative and suitable biotechnological strategy for lowering acrylamide levels in rye crispbread.
Collapse
Affiliation(s)
- Hana Ameur
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Ali Zein Alabiden Tlais
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | | | - Serena Cozzi
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy
| | - Michele Suman
- Barilla G. e R. Fratelli S.p.A., via Mantova, 166, 43122 Parma, Italy; Department for Sustainable Food Process, Catholic University Sacred Heart, via Emilia Parmense, 84, 29122 Piacenza, Italy
| | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Libera Universitá di Bolzano, Piazza Universitá, 5, 39100 Bolzano, Italy.
| |
Collapse
|
5
|
Zhang Z, Chen Y, Deng P, He Z, Qin F, Chen Q, Wang Z, Pan H, Chen J, Zeng M. Research progress on generation, detection and inhibition of multiple hazards - acrylamide, 5-hydroxymethylfurfural, advanced glycation end products, methylimidazole - in baked goods. Food Chem 2024; 431:137152. [PMID: 37603996 DOI: 10.1016/j.foodchem.2023.137152] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023]
Abstract
While baking produces attractive flavors for foods, it also generates various endogenous by-products, including acrylamide (AA), 5-hydroxymethylfurfural (5-HMF), advanced glycation end products (AGEs) and methylimidazole (MI). This review briefly presents the recent studies on the above hazards, and research progress on the formation and control of the above substances in detail. There have been more detailed studies on a single category of hazards. However, few studies and reports have considered the integrated prevention and control of multiple hazards, which is related to the difficulty of analyzing the reaction mechanisms of multiple hazards at multiple scales and under multiple phases in complex food matrices. In this regard, the sample pretreatment methods are a crucial step in achieving simultaneous detection. The coordinated implementation of various methods, including reducing precursor levels, modifying baking conditions and equipment, and incorporating exogenous additives, is necessary to achieve a synchronized reduction in multiple hazardous substances.
Collapse
Affiliation(s)
- Zening Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Yang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Peng Deng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhiyong He
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Fang Qin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Qiuming Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhaojun Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Hongyang Pan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Jie Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Maomao Zeng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Naiel MAE, Negm SS, Ghazanfar S, Farid A, Shukry M. Acrylamide toxicity in aquatic animals and its mitigation approaches: an updated overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113297-113312. [PMID: 37867167 PMCID: PMC10721689 DOI: 10.1007/s11356-023-30437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
Acrylamide (ACR) is widely applied in various industrial activities, as well as in the water purification process. Furthermore, ACR is synthesized naturally in some starchy grains exposed to high temperatures for an extended time during the cooking process. Because of its widespread industrial usage, ACR might be released into water stream sources. Also, ACR poses a high risk of contaminated surface and ground-water resources due to its high solubility and mobility in water. Furthermore, animal studies have indicated that ACR exposure may cause cancer (in many organs such as lung, prostate, uterus, and pancreas), genetic damage (in both somatic and germ cells), and severe effects on reproduction and development. Recently, numerous studies have shown that ACR has a mild acute cytotoxic impact on aquatic species, particularly during early life stages. Besides, wide-spectrum usage of ACR in many industrial activities presented higher environmental risks as well as major hazards to consumer health. This literature was designed to include all potential and accessible reports on ACR toxicity related with aquatic species. The Preferred Reporting Items for Systematic Reviews were applied to evaluate the risk effects of ACR on aquatic organisms, the ACR sub-lethal concentration in the ecosystem, and the possible protective benefits of various feed additives against ACR toxicity in fish. The major findings are summarized in Tables 2 and 3. The primary aim of this literature was to specify the hazards of ACR toxicity related with fish welfare and possible suggested strategies to reduce its risks.
Collapse
Affiliation(s)
- Mohammed A E Naiel
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt.
| | - Samar S Negm
- Fish Biology and Ecology Department, Central Laboratory for Aquaculture Research (CLAR), Abbassa 44661, Agriculture Research Center, Giza, Egypt
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced and Biotechnology (NIGAB), National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D. I. Khan, 29050, Pakistan
| | - Mustafa Shukry
- Physiology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| |
Collapse
|
7
|
Abedi E, Mohammad Bagher Hashemi S, Ghiasi F. Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Res Int 2023; 172:113177. [PMID: 37689930 DOI: 10.1016/j.foodres.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
Acrylamide (AA), as a food-borne toxicant, is created at some stages of thermal processing in the starchy food through Maillard reaction, fatty food via acrolein route, and proteinous food using free amino acids pathway. Maillard reaction obviously takes place in thermal-based products, being responsible for specific sensory attributes; AA formation, thereby, is unavoidable during the thermal processing. Additionally, AA can naturally occur in soil and water supply. In order to reduce the levels of acrylamide in cooked foods, mitigation techniques can be separated into three different types. Firstly, starting materials low in acrylamide precursors can be used to reduce the acrylamide in the final product. Secondly, process conditions may be modified in order to decrease the amount of acrylamide formation. Thirdly, post-process intervention could be used to reduce acrylamide. Conventional or emerging mitigation techniques might negatively influence the pleasant features of heated foods. The current study summarizes the effect of enzymatic reaction induced by asparaginase, glucose oxidase, acrylamidase, phytase, amylase, and protease to possibly inhibit AA formation or progressively hydrolyze formed AA. Not only enzyme-assisted AA reduction could dramatically maintain bio-active compounds, but also no damaging impact has been reported on the sensorial and rheological properties of the final heated products. The enzyme engineering can be applied to ameliorate enzyme functionality through altering the amino acid sequence like site-specific mutagenesis and directed evolution, chemical modifications by covalent conjugation of L-asparaginase onto soluble/insoluble biocompatible polymers and immobilization. Moreover, it would be possible to improve the enzyme's physical, chemical, and thermal stability, recyclability and prevent enzyme overuse by applying engineered ones. In spite of enzymes' cost-effective and eco-friendly, promoting their large-scale usages for AA reduction in food application and AA bioremediation in wastewater and soil resources.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | | - Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
8
|
Boyaci Gunduz CP. Formulation and Processing Strategies to Reduce Acrylamide in Thermally Processed Cereal-Based Foods. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6272. [PMID: 37444119 PMCID: PMC10341540 DOI: 10.3390/ijerph20136272] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/06/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Acrylamide, a thermal process contaminant, is generated in carbohydrate-rich foods processed at high temperatures (above 120 °C). Since acrylamide indicates a human health concern, the acrylamide contents of various foods and the dietary exposure of the population to acrylamide are very well investigated. Commonly consumed foods in the daily diet of individuals such as bakery products, potato products and coffee are major dietary sources of acrylamide. In recent years, dietary exposure levels of the population and mitigation measures for reducing acrylamide in different food products have gained importance to decrease the public's exposure to acrylamide. Since the complete elimination of acrylamide in foods is not possible, various mitigation measures to reduce acrylamide to levels as low as reasonably achievable have been developed and applied in the food industry. Mitigation strategies should be applied according to the different product categories during agricultural production, formulation, processing and final consumer preparation stages. The aim of this review is to evaluate formulation and processing strategies to reduce acrylamide in various cereal-based food products and to discuss the applicability of mitigation measures in the food industry by taking into consideration the organoleptic properties, nutritional value, cost and regulations in the light of current knowledge.
Collapse
Affiliation(s)
- Cennet Pelin Boyaci Gunduz
- Department of Food Engineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| |
Collapse
|
9
|
Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2164896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Francesco Pesce
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Mazzitelli
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Paolo Varetto
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Simona Bo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - I. Sam Saguy
- Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
10
|
Albedwawi AS, Al Sakkaf R, Osaili TM, Yusuf A, Al Nabulsi A, Liu SQ, Palmisano G, Ayyash MM. Acrylamide adsorption by Enterococcus durans and Enterococcus faecalis: In vitro optimization, simulated digestive system and binding mechanism. Front Microbiol 2022; 13:925174. [PMID: 36425028 PMCID: PMC9679154 DOI: 10.3389/fmicb.2022.925174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022] Open
Abstract
Acrylamide is an unsaturated amide that forms in heated, starchy food products. This study was conducted to (1) examine the ability of 38 LAB to remove acrylamide; (2) optimize acrylamide removal of selected LAB under various conditions (pH, temperature, time and salt) using the Box-Behnken design (BBD); (3) the behavior of the selected LAB under the simulated gastrointestinal conditions; and (4) investigate the mechanism of adsorption. Out of the 38 LAB, Enterococcus durans and Enterococcus faecalis had the highest results in removing acrylamide, with 33 and 30% removal, respectively. Those two LAB were further examined for their binding abilities under optimized conditions of pH (4.5-6.5), temperature (32°C - 42°C), time (14-22 h), and NaCl (0-3% w/v) using BBD. pH was the main factor influenced the acrylamide removal compared to other factors. E. durans and E. faecalis exhibited acrylamide removal of 44 and 53%, respectively, after the in vitro digestion. Zeta potential results indicated that the changes in the charges were not the main cause of acrylamide removal. Transmission electron microscopes (TEM) results indicated that the cell walls of the bacteria increased when cultured in media supplemented with acrylamide.
Collapse
Affiliation(s)
- Amal S. Albedwawi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| | - Reem Al Sakkaf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmed Yusuf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Anas Al Nabulsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Giovanni Palmisano
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain, United Arab Emirates
| |
Collapse
|
11
|
Lu WC, Cheng YT, Chan YJ, Li PH. Food safety assessments of acrylamide formation and characterizations of flaky rolls enriched with black rice (Oryza sativa). Front Nutr 2022; 9:1027800. [PMID: 36337666 PMCID: PMC9633999 DOI: 10.3389/fnut.2022.1027800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
This study aims to investigate the physicochemical composition, textural parameters, and chemical constituent of flaky rolls incorporated with different proportions of black rice flour. According to farinographic characteristics, the addition of black rice flour could reduce the stability and increase the dough development time and water absorption (%). While for the extensographic properties, addition of black rice flour resulted in significantly different maximum resistance to extension (BU) and extensibility (cm) vs. the control. With the addition of black rice flour in flaky rolls, the crude protein, total dietary fiber (TDF), soluble dietary fiber (SDF), and insoluble dietary fiber (IDF) were significantly improved. Glucose released was much lower with 10 and 20% black rice than the control and 5% black rice because of the higher black rice inclusion. With increasing black rice incorporation, total anthocyanin content, and antioxidant capacity was also improved. The content of asparagine, acrylamide, hydroxymethylfurfural (HMF), furfural, methylglyoxal, and glyoxal in flaky rolls was also increased. The proper content of black rice flour (5%) could significantly enhance the stability of the dough properties; control the final volume, texture, and appearance; and retain good protein and fiber composition, antioxidant capacity, and overall acceptance of the flaky roll.
Collapse
Affiliation(s)
- Wen-Chien Lu
- Department of Food and Beverage Management, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi City, Taiwan
| | - Yu-Tsung Cheng
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yung-Jia Chan
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan
| | - Po-Hsien Li
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
- *Correspondence: Po-Hsien Li
| |
Collapse
|
12
|
González-Mulero L, Mesías M, Morales F, Delgado-Andrade C. Assessment of the acrylamide bioaccessibility in cereal and potato-based foods after in vitro digestion. Food Res Int 2022; 161:111820. [DOI: 10.1016/j.foodres.2022.111820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022]
|
13
|
Investigating acrylamide mitigation by potential probiotics Bifidobacterium breve and Lactiplantibacillus plantarum: Optimization, in vitro gastrointestinal conditions, and mechanism. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
14
|
Pietropaoli F, Pantalone S, Cichelli A, d'Alessandro N. Acrylamide in widely consumed foods - a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:853-887. [PMID: 35286246 DOI: 10.1080/19440049.2022.2046292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acrylamide (AA) is considered genotoxic, neurotoxic and a 'probable human carcinogen'. It is included in group 2 A of the International Agency for Research on Cancer (IARC). The formation of AA occurs when starch-based foods are subjected to temperatures higher than 120 °C in an atmosphere with very low water content. The aim of this review is to shed light on the toxicological aspects of AA, showing its regulatory evolution, and describing the most interesting mitigation techniques for each food category involved, with a focus on compliance with EU legislation in the various classes of consumer products of industrial origin in Europe.
Collapse
Affiliation(s)
- Francesca Pietropaoli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Sara Pantalone
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| | - Angelo Cichelli
- Department of Innovative Technology in Medicine and Dentistry, University "G. d'Annunzio", Chieti, Italy
| | - Nicola d'Alessandro
- Department of Engineering and Geology, University "G. d'Annunzio", Chieti, Italy
| |
Collapse
|
15
|
Bachir N, Haddarah A, Sepulcre F, Pujola M. Formation, Mitigation, and Detection of Acrylamide in Foods. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02239-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Albedwawi AS, Al Sakkaf R, Yusuf A, Osaili TM, Al-Nabulsi A, Liu SQ, Palmisano G, Ayyash MM. Acrylamide Elimination by Lactic Acid Bacteria: Screening, Optimization, In Vitro Digestion, and Mechanism. Microorganisms 2022; 10:557. [PMID: 35336133 PMCID: PMC8953158 DOI: 10.3390/microorganisms10030557] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 01/30/2023] Open
Abstract
Acrylamide is a toxic compound that is formed in cooked carbohydrate-rich food. Baking, roasting, frying, and grilling are cooking methods that cause its formation in the presence of reducing sugar and asparagine. To prevent acrylamide formation or to remove it after its formation, scientists have been trying to understand acrylamide formation pathways, and methods of prevention and removal. Therefore, this study aimed to: (1) screen newly isolated LAB for acrylamide removal, (2) optimize conditions (pH, temperature, time, salt) of the acrylamide removal for selected LAB isolates using Box-Behnken design (BBD), (3) investigate the acrylamide removal abilities of selected LAB isolates under the in vitro digestion conditions using INFO-GEST2.0 model, and (4) explore the mechanism of the acrylamide removal using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS), zeta potential, transmission electron microscopy (TEM) measurement, and Fourier transform infrared spectroscopy (FTIR). Forty strains were tested in MRS broth, where Streptococcus lutetiensis and Lactiplantibacillus plantarum had the highest capability of acrylamide removal by 39% and 26%, respectively. To enhance the binding ability, both strains were tested under controlled conditions of pH (4.5, 5.5 and 6.5), temperature (32 °C, 37 °C and 42 °C), time (14, 18 and 22 h), and NaCl (0%, 1.5% and 3% w/v) using Box-Behnken design (BBD). Both strains removed more acrylamide in the range of 35-46% for S. lutetiensis and 45-55% for L. plantarum. After testing the bacterial binding ability, both strains were exposed to a simulated gastrointestinal tract environment, removing more than 30% of acrylamide at the gastric stage and around 40% at the intestinal stage. To understand the mechanism of removal, LAB cells were characterized via scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM) techniques. Cell charges were characterized by zeta potential and functional groups analyzed by Fourier transform infrared spectroscopy (FTIR). Results indicated that increasing cell wall thickness improved acrylamide adsorption capacity. Both FTIR and EDS indicated that functional groups C=O, C-O, and N-H were associated with acrylamide adsorption.
Collapse
Affiliation(s)
- Amal S. Albedwawi
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| | - Reem Al Sakkaf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Ahmed Yusuf
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Tareq M. Osaili
- Department Clinical Nutrition and Dietetics, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Anas Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid 22110, Jordan;
| | - Shao-Quan Liu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore 117542, Singapore;
| | - Giovanni Palmisano
- Department of Chemical Engineering, Center for Membrane and Advanced Water Technology (CMAT), Research and Innovation on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates; (R.A.S.); (A.Y.); (G.P.)
| | - Mutamed M. Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al Ain P.O. Box 15551, United Arab Emirates;
| |
Collapse
|
17
|
Sourdough improves the quality of whole-wheat flour products: Mechanisms and challenges-A review. Food Chem 2021; 360:130038. [PMID: 34020364 DOI: 10.1016/j.foodchem.2021.130038] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 12/11/2022]
Abstract
Increasing the intake of whole-wheat flour (WWF) products is one of the methods to promote health. Sourdough fermentation is increasingly being used in improving the quality of WWF products. This review aims to analyze the effect of sourdough fermentation on WWF products. The effects of sourdough on bran particles, starch, and gluten, as well as the rheology, antinutritional factors, and flavor components in WWF dough/products are comprehensively reviewed. Meanwhile, sourdough fermentation technology has a promising future in reducing anti-nutritional factors and toxic and harmful substances in WFF products. Finally, researchers are encouraged to focus on the efficient strain screening and metabolic pathway control of sourdough for WWF products, as well as the use of bran pre-fermentation and integrated biotechnology to improve the quality of whole-wheat products. This review provides a comprehensive understanding of the effect of sourdough fermentation technology on wholemeal products to promote WWF production.
Collapse
|
18
|
Sarion C, Codină GG, Dabija A. Acrylamide in Bakery Products: A Review on Health Risks, Legal Regulations and Strategies to Reduce Its Formation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4332. [PMID: 33921874 PMCID: PMC8073677 DOI: 10.3390/ijerph18084332] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022]
Abstract
Acrylamide is a contaminant as defined in Council Regulation (EEC) No 315/93 and as such, it is considered a chemical hazard in the food chain. The toxicity of acrylamide has been acknowledged since 2002, among its toxicological effects on humans being neurotoxicity, genotoxicity, carcinogenicity, and reproductive toxicity. Acrylamide has been classified as carcinogenic in the 2A group, with human exposure leading to progressive degeneration of the peripheral and central nervous systems characterized by cognitive and motor abnormalities. Bakery products (bread, crispbread, cakes, batter, breakfast cereals, biscuits, pies, etc.) are some of the major sources of dietary acrylamide. The review focuses on the levels of acrylamide in foods products, in particular bakery ones, and the risk that resulting dietary intake of acrylamide has on human health. The evolving legislative situation regarding the acrylamide content from foodstuffs, especially bakery ones, in the European Union is discussed underlining different measures that food producers must take in order to comply with the current regulations regarding the acrylamide levels in their products. Different approaches to reduce the acrylamide level in bakery products such as the use of asparginase, calcium salts, antioxidants, acids and their salts, etc., are described in detail.
Collapse
Affiliation(s)
| | - Georgiana Gabriela Codină
- Faculty of Food Engineering, Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (C.S.); (A.D.)
| | | |
Collapse
|