1
|
Park SC, Lee YS, Cho KA, Kim SY, Lee YI, Lee SR, Lim IK. What matters in aging is signaling for responsiveness. Pharmacol Ther 2023; 252:108560. [PMID: 37952903 DOI: 10.1016/j.pharmthera.2023.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Biological responsiveness refers to the capacity of living organisms to adapt to changes in both their internal and external environments through physiological and behavioral mechanisms. One of the prominent aspects of aging is the decline in this responsiveness, which can lead to a deterioration in the processes required for maintenance, survival, and growth. The vital link between physiological responsiveness and the essential life processes lies within the signaling systems. To devise effective strategies for controlling the aging process, a comprehensive reevaluation of this connecting loop is imperative. This review aims to explore the impact of aging on signaling systems responsible for responsiveness and introduce a novel perspective on intervening in the aging process by restoring the compromised responsiveness. These innovative mechanistic approaches for modulating altered responsiveness hold the potential to illuminate the development of action plans aimed at controlling the aging process and treating age-related disorders.
Collapse
Affiliation(s)
- Sang Chul Park
- The Future Life & Society Research Center, Advanced Institute of Aging Science, Chonnam National University, Gwangju 61469, Republic of Korea.
| | - Young-Sam Lee
- Department of New Biology, DGIST, Daegu 42988, Republic of Korea; Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea.
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea
| | - Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Seoul 05029, Republic of Korea
| | - Yun-Il Lee
- Well Aging Research Center, Division of Biotechnology, DGIST, Daegu 42988, Republic of Korea; Interdisciplinary Engineering Major, Department of Interdisciplinary Studies, DGIST, Daegu 42988, Republic of Korea
| | - Seung-Rock Lee
- Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do 58128, Republic of Korea; Department of Biomedical Sciences, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - In Kyoung Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Zhang S, Zhu N, Gu J, Li HF, Qiu Y, Liao DF, Qin L. Crosstalk between Lipid Rafts and Aging: New Frontiers for Delaying Aging. Aging Dis 2022; 13:1042-1055. [PMID: 35855333 PMCID: PMC9286918 DOI: 10.14336/ad.2022.0116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
With the rapid aging in the global population, delay of aging has become a hot research topic. Lipid rafts (LRs) are microdomains in the plasma membrane that contain sphingolipids and cholesterol. Emerging evidence indicates an interesting interplay between LRs and aging. LRs and their components are altered with aging. Further, the aging process is strongly influenced by LRs. In recent years, LRs and their component signaling molecules have been recognized to affect aging by interfering with its hallmarks. Therefore, targeting LRs is a promising strategy to delay aging.
Collapse
Affiliation(s)
- Shuo Zhang
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- 2Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yun Qiu
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- 1Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China.,3Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
3
|
Dudãu M, Codrici E, Tanase C, Gherghiceanu M, Enciu AM, Hinescu ME. Caveolae as Potential Hijackable Gates in Cell Communication. Front Cell Dev Biol 2020; 8:581732. [PMID: 33195223 PMCID: PMC7652756 DOI: 10.3389/fcell.2020.581732] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Caveolae are membrane microdomains described in many cell types involved in endocytocis, transcytosis, cell signaling, mechanotransduction, and aging. They are found at the interface with the extracellular environment and are structured by caveolin and cavin proteins. Caveolae and caveolins mediate transduction of chemical messages via signaling pathways, as well as non-chemical messages, such as stretching or shear stress. Various pathogens or signals can hijack these gates, leading to infectious, oncogenic and even caveolin-related diseases named caveolinopathies. By contrast, preclinical and clinical research have fallen behind in their attempts to hijack caveolae and caveolins for therapeutic purposes. Caveolae involvement in human disease is not yet fully explored or understood and, of all their scaffold proteins, only caveolin-1 is being considered in clinical trials as a possible biomarker of disease. This review briefly summarizes current knowledge about caveolae cell signaling and raises the hypothesis whether these microdomains could serve as hijackable “gatekeepers” or “gateways” in cell communication. Furthermore, because cell signaling is one of the most dynamic domains in translating data from basic to clinical research, we pay special attention to translation of caveolae, caveolin, and cavin research into clinical practice.
Collapse
Affiliation(s)
- Maria Dudãu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Elena Codrici
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania
| | - Cristiana Tanase
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Clinical Biochemistry Department, Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Enciu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihail E Hinescu
- Biochemistry-Proteomics Laboratory, Victor Babes National Institute of Pathology, Bucharest, Romania.,Cell Biology and Histology Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Sun S, Cai B, Li Y, Su W, Zhao X, Gong B, Li Z, Zhang X, Wu Y, Chen C, Tsang SH, Yang J, Li X. HMGB1 and Caveolin-1 related to RPE cell senescence in age-related macular degeneration. Aging (Albany NY) 2020; 11:4323-4337. [PMID: 31284269 PMCID: PMC6660032 DOI: 10.18632/aging.102039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 06/20/2019] [Indexed: 01/09/2023]
Abstract
Accumulation of lipofuscin in the retinal pigment epithelium (RPE) is considered a major cause of RPE dysfunction and senescence in age-related macular degeneration (AMD), and N-retinylidene-N-retinylethanolamine (A2E) is the main fluorophore identified in lipofuscin from aged human eyes. Here, human-induced pluripotent stem cell (iPSC)-RPE was generated from healthy individuals to reveal proteomic changes associated with A2E-related RPE cell senescence. A novel RPE cell senescence-related protein, high-mobility group box 1 (HMGB1), was identified based on proteomic mass spectrometry measurements on iPSC-RPE with A2E treatment. Furthermore, HMGB1 upregulated Caveolin-1, which also was related RPE cell senescence. To investigate whether changes in HMGB1 and Caveolin-1 expression under A2E exposure contribute to RPE cell senescence, human ARPE-19 cells were stimulated with A2E; expression of HMGB1, Caveolin-1, tight junction proteins and senescent phenotypes were verified. HMGB1 inhibition alleviated A2E induced cell senescence. Migration of RPE cells was evaluated. Notably, A2E less than or equal to 10μM induced both HMGB1 and Caveolin-1 protein upregulation and HMGB1 translocation, while Caveolin-1 expression was downregulated when there was more than 10μM A2E. Our data indicate that A2E-induced upregulation of HMGB1、Caveolin-1 and HMGB1 release may relate to RPE cell senescence and play a role in the pathogenesis of AMD.
Collapse
Affiliation(s)
- Shuo Sun
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Bincui Cai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yao Li
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Wenqi Su
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xuzheng Zhao
- Tangshan Eye Hospital, Tangshan, People's Republic of China
| | - Boteng Gong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Zhiqing Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Yalin Wu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Chao Chen
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, College of Medicine, Xiamen University, Xiamen City, People's Republic of China
| | - Stephen H Tsang
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY 10032, USA.,Departments of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Jin Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, People's Republic of China
| |
Collapse
|
5
|
Li N, Cui J, Wen C, Huang K. Different cellular properties and loss of nuclear signalling of porcine epidermal growth factor receptor with aging. Gen Comp Endocrinol 2020; 290:113415. [PMID: 32001323 DOI: 10.1016/j.ygcen.2020.113415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/19/2020] [Accepted: 01/25/2020] [Indexed: 11/16/2022]
Abstract
Epidermal growth factor (EGF) has important physiological functions that are mediated by the epidermal growth factor receptor (EGFR); however, to date, the changes in cellular behaviours and signalling properties of EGF/EGFR with aging remain unclear in the pig tissue models. Hence, the present study used porcine hepatocytes as a model to explore this issue. The study revealed the following results: 1) EGF could activate the intra-cellular signalling pathways in a time- and dose-dependent manner both in the young- and aged-pig hepatocytes, EGF induced tyrosine phosphorylation of EGFR, signal transducers and activators of transcription 3 (STAT3), protein kinase B (AKT) and extra-cellular signal-regulated kinase 1/2 (ERK1/2). Nevertheless, the EGF's signalling ability in the aged-pig hepatocytes was significantly reduced compared with that of the young-pig hepatocytes; 2) although EGF/EGFR can still be internalised into cells in a time-dependent manner with aging, the endocytic pathway differs between the young- and aged-pig hepatocytes. Furthermore, the results of the present study indicated that caveolin may play a pivotal role in the endocytosis of EGF/EGFR in the aged-pig hepatocytes, which is different from that of EGF/EGFR's endocytosis in young-pig hepatocytes; 3) It is well-known that EGFR carried out its biological effects via two signalling pathways, cytoplasmic pathway (traditional) and nuclear pathway; however, we found that the nuclear localisation of EGFR was significantly reduced in the aged-pig hepatocytes, which indicated that EGFR may lose its nuclear pathway with aging. Collectively, the present study lays the foundation for further study regarding the biological functional changes occurring in EGF/EGFR with aging.
Collapse
Affiliation(s)
- Nannan Li
- School of Stomatology, Jilin University, Changchun 130021, People's Republic of China
| | - Jiayue Cui
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Chunyan Wen
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun 130033, People's Republic of China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
6
|
Li S, Shi B, Huang K, Wang Y. Different intracellular signalling sensitivity and cell behaviour of porcine insulin with aging. Peptides 2020; 127:170278. [PMID: 32109654 DOI: 10.1016/j.peptides.2020.170278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/15/2020] [Indexed: 01/30/2023]
Abstract
Insulin has many important biological functions. Insulin interacts with the insulin receptor (IR) to play its physiological role and execute its functions. Here, we isolated porcine hepatocytes from young and aged pigs, which endogenously express the IR, as a model to study the intracellular signalling properties and cellular behaviour of insulin with aging. Firstly, we analysed the intracellular signal transduction that is triggered by insulin in porcine hepatocytes that were isolated from young and aged pigs and found that insulin can strongly activate insulin receptor subunit (IRS), protein kinase B (AKT), and GSK in a time- and dose-dependent manner in hepatocytes from young pigs. On the contrary, the signalling response to insulin in hepatocytes from aged pigs was significantly reduced compared to that of the young pig. Secondly, the different subcellular locations of insulin/insulin receptor (IR) may result in different biological activities, although nuclear-localized insulin/IR still could exhibit important functions and roles. We found that insulin can translocate into cell nuclei in the hepatocytes of the young pigs; however, insulin/insulin receptor fails to transports into the cell nucleus in hepatocytes from aged pigs, although insulin/insulin receptor could internalize into cell cytoplasm. In summary, in the current study, we explored and compared for the first time insulin's behaviour and signalling properties in the cells of young pig hepatocytes and aged pig hepatocytes. Furthermore, we found that the insulin signalling response in hepatocytes was significantly reduced with age; more importantly, we found that the cell behaviour of insulin was changed significantly in the hepatocytes from aged pigs compared to young pigs, and it is noteworthy that insulin/IR cannot translocate into the cell nuclei in the hepatocytes from the aged pig. This may be a potential new reason contributing to insulin resistance with aging, suggesting that we need to study the reason for insulin resistance from a new point of view.
Collapse
Affiliation(s)
- Shichun Li
- The Third Operating Room Of The First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China
| | - Bo Shi
- Experimental Center of Biochemistry and Molecular Biology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Kexin Huang
- Department of Histology and Embryology, College of Basic Medicine, Jilin University, Changchun 130021, People's Republic of China
| | - Ying Wang
- The First Operating Room of the First Hospital of Jilin University, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
7
|
Wang J, Bai Y, Zhao X, Ru J, Kang N, Tian T, Tang L, An Y, Li P. oxLDL-mediated cellular senescence is associated with increased NADPH oxidase p47phox recruitment to caveolae. Biosci Rep 2018; 38:BSR20180283. [PMID: 29695496 PMCID: PMC5997791 DOI: 10.1042/bsr20180283] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/05/2018] [Accepted: 04/24/2018] [Indexed: 01/26/2023] Open
Abstract
Atherosclerosis develops as a consequence of inflammation and cell senescence. In critical factors involved in the atherosclerotic changes, reactive oxygen species (ROS) generation is considered a leading cause. While NADPH oxidases, particularly NOX2, are the main sources of ROS, how they are regulated in the disease is incompletely understood. In addition, how caveolae, the membrane structure implicated in oxLDL deposition under vascular endothelia, is involved in the oxLDL-mediated ROS production remains mostly elusive. We report here that macrophages exposed to oxLDL up-regulate its caveolin-1 expression, and the latter in turn up-regulates NOX2 p47phox level. This combination effect results in increased cellular senescence. Interestingly, oxLDL treatment causes the p47phox residing in the cytosol to translocate to the caveolae. Immunoprecipitation assays confirms that cavelin-1 is in high degree association with p47phox. These results suggest caveolin-1 may serve as the membrane target for p47phox and as a switch for ROS production following oxLDL exposure. Our results reveal a previously unknown molecular event in oxLDL-mediated cellular ageing, and may provide a target for clinical intervention for atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yuzhi Bai
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Xia Zhao
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Jing Ru
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Ning Kang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Tian Tian
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Liying Tang
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Yun An
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| | - Pei Li
- Department of Geriatrics, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing 100043, China
| |
Collapse
|
8
|
Survive or thrive: tradeoff strategy for cellular senescence. Exp Mol Med 2017; 49:e342. [PMID: 28572574 PMCID: PMC5519021 DOI: 10.1038/emm.2017.94] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 02/16/2017] [Indexed: 12/12/2022] Open
Abstract
Aging-dependent cellular behaviors toward extrinsic stress are characterized by the confined localization of certain molecules to either nuclear or perinuclear regions. Although most growth factors can activate downstream signaling in aging cells, they do not in fact have any impact on the cells because the signals cannot reach their genetic targets in the nucleus. For the same reason, varying apoptotic stress factors cannot stimulate the apoptotic pathway in senescent cells. Thus, the operation of a functional nuclear barrier in an aging-dependent manner has been investigated. To elucidate the mechanism for this process, the housekeeping transcription factor Sp1 was identified as a general regulator of nucleocytoplasmic trafficking (NCT) genes, including various nucleoporins, importins, exportins and Ran GTPase cycle-related genes. Interestingly, the posttranslational modification of Sp1 is readily influenced by extrinsic stress, including oxidative and metabolic stress. The decrease in SP1 O-GlcNAcylation under oxidative stress or during replicative senescence makes it susceptible to proteosomal degradation, resulting in defective NCT functions and leading to nuclear barrier formation. The operation of the nuclear barrier in aging provides a fundamental mechanism for cellular protection against stress and promotes survival at the expense of growth via stress-sensitive transcriptional control.
Collapse
|
9
|
Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma. Pathol Res Pract 2017; 213:809-814. [PMID: 28554768 DOI: 10.1016/j.prp.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
Abstract
Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC.
Collapse
|
10
|
Ahn SH, Cho SH, Song JE, Kim S, Oh SS, Jung S, Cho KA, Lee TH. Caveolin-1 serves as a negative effector in senescent human gingival fibroblasts during Fusobacterium nucleatum infection. Mol Oral Microbiol 2016; 32:236-249. [PMID: 27315395 DOI: 10.1111/omi.12167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2016] [Indexed: 12/11/2022]
Abstract
It is well established that aging is associated with increased susceptibility to infectious diseases. Fusobacterium nucleatum is a well-known bacterial species that plays a central bridging role between early and late colonizers in the human oral cavity. Further, the ability of F. nucleatum to invade gingival fibroblasts (GFs) is critical to the development of periodontal diseases. However, the mechanisms underlying the age-related infection of GFs by F. nucleatum remain unknown. We used young (fourth passage) and senescent (22nd passage) GFs to investigate the mechanisms of F. nucleatum infection in aged GFs and first observed increased invasion of F. nucleatum in senescent GFs. We also found that the co-localization of caveolin-1 (Cav-1), a protein marker of aging, with F. nucleatum and the knockdown of Cav-1 in GFs reduced F. nucleatum invasion. Additionally, F. nucleatum infection triggered the production of reactive oxygen species (ROS) through activation of NADPH oxidase in GFs, but senescent GFs exhibited significantly lower levels of NADPH oxidase activity and ROS production compared with young GFs in both the uninfected and infected conditions. Also, senescent GFs exhibited a decline in proinflammatory cytokine production and extracellular signal regulated kinase (ERK) phosphorylation following F. nucleatum infection. Interestingly, the knockdown of Cav-1 in senescent GFs increased NADPH oxidase activity and caused the upregulation of interleukin-6 and interleukin-8 and the phosphorylation of ERK. Collectively, the increased expression of Cav-1 might play a critical role in F. nucleatum invasion and could hinder the host response in senescent GFs.
Collapse
Affiliation(s)
- S H Ahn
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S-H Cho
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - J-E Song
- Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S Kim
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| | - S S Oh
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - S Jung
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - K A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, Korea
| | - T-H Lee
- Department of Oral Biochemistry, Dental Science Research Institute, Medical Research Center for Biomineralization Disorders, School of Dentistry, Chonnam National University, Gwangju, Korea.,Department of Molecular Medicine (BK21plus), Chonnam National University Graduate School, Gwangju, Korea
| |
Collapse
|
11
|
Yang KE, Jang H, Hwang I, Chung Y, Choi J, Lee T, Chung Y, Lee M, Lee MY, Yeo E, Jang I. Phenyl 2-pyridyl ketoxime induces cellular senescence-like alterations via nitric oxide production in human diploid fibroblasts. Aging Cell 2016; 15:245-55. [PMID: 26696133 PMCID: PMC4783342 DOI: 10.1111/acel.12429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Phenyl-2-pyridyl ketoxime (PPKO) was found to be one of the small molecules enriched in the extracellular matrix of near-senescent human diploid fibroblasts (HDFs). Treatment of young HDFs with PPKO reduced the viability of young HDFs in a dose- and time-dependent manner and resulted in senescence-associated β-galactosidase (SA-β-gal) staining and G2/M cell cycle arrest. In addition, the levels of some senescence-associated proteins, such as phosphorylated ERK1/2, caveolin-1, p53, p16(ink4a), and p21(waf1), were elevated in PPKO-treated cells. To monitor the effect of PPKO on cell stress responses, reactive oxygen species (ROS) production was examined by flow cytometry. After PPKO treatment, ROS levels transiently increased at 30 min but then returned to baseline at 60 min. The levels of some antioxidant enzymes, such as catalase, peroxiredoxin II and glutathione peroxidase I, were transiently induced by PPKO treatment. SOD II levels increased gradually, whereas the SOD I and III levels were biphasic during the experimental periods after PPKO treatment. Cellular senescence induced by PPKO was suppressed by chemical antioxidants, such as N-acetylcysteine, 2,2,6,6-tetramethylpiperidinyloxy, and L-buthionine-(S,R)-sulfoximine. Furthermore, PPKO increased nitric oxide (NO) production via inducible NO synthase (iNOS) in HDFs. In the presence of NOS inhibitors, such as L-NG-nitroarginine methyl ester and L-NG-monomethylarginine, PPKO-induced transient NO production and SA-β-gal staining were abrogated. Taken together, these results suggest that PPKO induces cellular senescence in association with transient ROS and NO production and the subsequent induction of senescence-associated proteins.
Collapse
Affiliation(s)
- Kyeong Eun Yang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Hyun‐Jin Jang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - In‐Hu Hwang
- Department of Physiology Korea University College of Medicine Seoul 02841 Korea
| | - Young‐Ho Chung
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Jong‐Soon Choi
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| | - Tae‐Hoon Lee
- Department of Oral Biochemistry Dental Science Research Institute Chonnam National University Gwangju 500‐757 Korea
| | - Yun‐Jo Chung
- Center for University‐Wide Research Facilities Chonbuk National University Jeonju Korea
| | - Min‐Seung Lee
- Department of Biochemistry College of Medicine Gachon University Inchon 406‐799 Korea
| | - Mi Young Lee
- KM Convergence Research Division Korea Institute of Oriental Medicine Daejeon 305‐811 Korea
| | - Eui‐Ju Yeo
- Department of Biochemistry College of Medicine Gachon University Inchon 406‐799 Korea
| | - Ik‐Soon Jang
- Drug & Disease Target Group Division of Bioconvergence Analysis Korea Basic Science Institute Daejeon 305‐333 Korea
| |
Collapse
|
12
|
Lim JS, Nguyen KCT, Han JM, Jang IS, Fabian C, Cho KA. Direct Regulation of TLR5 Expression by Caveolin-1. Mol Cells 2015; 38:1111-7. [PMID: 26615831 PMCID: PMC4697003 DOI: 10.14348/molcells.2015.0213] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 02/02/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.
Collapse
Affiliation(s)
- Jae Sung Lim
- Department of Biochemistry, Chonnam National University Medical School, Gwangju 501-746,
Korea
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Hwasun 519-809,
Korea
| | - Kim Cuc Thi Nguyen
- Department of Biochemistry, Chonnam National University Medical School, Gwangju 501-746,
Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746,
Korea
| | - Jung Min Han
- Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 120-749,
Korea
- College of Pharmacy, Yonsei University, Incheon 406-840,
Korea
| | - Ik-Soon Jang
- Division of life Science, Korea Basic Science Institute, Daejeon 305-333,
Korea
| | - Claire Fabian
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology (IZI), 04103 Leipzig,
Germany
- Translational Center for Regenerative Medicine (TRM), University of Leipzig, 04103 Leipzig,
Germany
| | - Kyung A Cho
- Department of Biochemistry, Chonnam National University Medical School, Gwangju 501-746,
Korea
- Center for Creative Biomedical Scientists, Chonnam National University Medical School, Gwangju 501-746,
Korea
- Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 501-746,
Korea
- Clinical Vaccine R&D Center, Chonnam National University Hwasun Hospital, Hwasun 519-809,
Korea
| |
Collapse
|
13
|
Cha SH, Choi YR, Heo CH, Kang SJ, Joe EH, Jou I, Kim HM, Park SM. Loss of parkin promotes lipid rafts-dependent endocytosis through accumulating caveolin-1: implications for Parkinson's disease. Mol Neurodegener 2015; 10:63. [PMID: 26627850 PMCID: PMC4666086 DOI: 10.1186/s13024-015-0060-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by progressive loss of midbrain dopaminergic neurons, resulting in motor dysfunctions. While most PD is sporadic in nature, a significant subset can be linked to either autosomal dominant or recessive mutations. PARK2, encoding the E3 ubiquitin ligase, parkin, is the most frequently mutated gene in autosomal recessive early onset PD. It has recently been reported that PD-associated gene products such as PINK1, α-synuclein, LRRK2, and DJ-1, as well as parkin associate with lipid rafts, suggesting that the dysfunction of these proteins in lipid rafts may be a causal factor of PD. Therefore here, we examined the relationship between lipid rafts-related proteins and parkin. Results We identified caveolin-1 (cav-1), which is one of the major constituents of lipid rafts at the plasma membrane, as a substrate of parkin. Loss of parkin function was found to disrupt the ubiquitination and degradation of cav-1, resulting in elevated cav-1 protein level in cells. Moreover, the total cholesterol level and membrane fluidity was altered by parkin deficiency, causing dysregulation of lipid rafts-dependent endocytosis. Further, cell-to-cell transmission of α-synuclein was facilitated by parkin deficiency. Conclusions Our results demonstrate that alterations in lipid rafts by the loss of parkin via cav-1 may be a causal factor of PD, and cav-1 may be a novel therapeutic target for PD.
Collapse
Affiliation(s)
- Seon-Heui Cha
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea
| | - Yu Ree Choi
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Cheol-Ho Heo
- Department of Chemistry, Ajou University, Suwon, Korea
| | - Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Eun-Hye Joe
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | - Ilo Jou
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea.,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea
| | | | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, 164, Worldcup-ro, Yeongtong-gu, Suwon, 16499, Korea. .,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, Korea. .,Neuroscience Graduate Program, Ajou University School of Medicine, Suwon, Korea.
| |
Collapse
|
14
|
Schilling JM, Patel HH. Non-canonical roles for caveolin in regulation of membrane repair and mitochondria: implications for stress adaptation with age. J Physiol 2015; 594:4581-9. [PMID: 26333003 DOI: 10.1113/jp270591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/04/2015] [Indexed: 12/22/2022] Open
Abstract
Many different theories of ageing have been proposed but none has served the unifying purpose of defining a molecular target that can limit the structural and functional decline associated with age that ultimately leads to the demise of the organism. We propose that the search for a molecule with these unique properties must account for regulation of the signalling efficiency of multiple cellular functions that degrade with age due to a loss of a particular protein. We suggest caveolin as one such molecule that serves as a regulator of key processes in signal transduction. We define a particular distinction between cellular senescence and ageing and propose that caveolin plays a distinct role in each of these processes. Caveolin is traditionally thought of as a membrane-localized protein regulating signal transduction via membrane enrichment of specific signalling molecules. Ultimately we focus on two non-canonical roles for caveolin - membrane repair and regulation of mitochondrial function - which may be novel features of stress adaptation, especially in the setting of ageing. The end result of preserving membrane structure and mitochondrial function is maintenance of homeostatic signalling, preserving barrier function, and regulating energy production for cell survival and resilient ageing.
Collapse
Affiliation(s)
- Jan M Schilling
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hemal H Patel
- VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92161, USA.,Department of Anesthesiology, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
15
|
Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev 2015; 146-148:81-7. [PMID: 25959712 DOI: 10.1016/j.mad.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
Abstract
Ageing is a cellular process with many facets, some of which are currently undergoing a paradigm change. It is the case of "mitochondrial theory of ageing", which, interestingly, has been found lately to cross paths with another ageing dysfunctional process - intracellular signalling - in an unexpected point (or place) - caveolae. The latter represent membrane microdomains altered in senescent cells, scaffolded by proteins modified (posttranslational or as expression) with ageing. An important determinant of these alterations is oxidative stress, through increased production of reactive oxygen species that originate at mitochondrial site. Spanning from physical contact points, to shared structural proteins and similar function domains, caveolae and mitochondria might have more in common than originally thought. By reviewing recent data on oxidative stress impact on caveolae and caveolins, as well as possible interactions between caveolae and mitochondria, we propose a hypothesis for senescence-related involvement of caveolins.
Collapse
|
16
|
Catita J, López-Luppo M, Ramos D, Nacher V, Navarro M, Carretero A, Sánchez-Chardi A, Mendes-Jorge L, Rodriguez-Baeza A, Ruberte J. Imaging of cellular aging in human retinal blood vessels. Exp Eye Res 2015; 135:14-25. [PMID: 25818511 DOI: 10.1016/j.exer.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/10/2023]
Abstract
To date two main aging vascular lesions have been reported in elderly human retinas: acellular capillaries and microaneurysms. However, their exact mechanism of formation remains unclear. Using high resolution microscopy techniques we revise cellular alterations observed in aged human retinal vessels, such as lipofuscin accumulation, caveolae malfunction, blood basement membrane disruption and enhanced apoptosis that could trigger the development of these aging vascular lesions. Moreover, we have generated a set of original images comparing retinal vasculature between middle and old aged healthy humans to show in a comprehensive manner the main structural and ultrastructural alterations occurred during age in retinal blood vessels.
Collapse
Affiliation(s)
- J Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M López-Luppo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - D Ramos
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - V Nacher
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - M Navarro
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Carretero
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Sánchez-Chardi
- Microscopy Facility, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Mendes-Jorge
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Morphology and Function, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Rodriguez-Baeza
- Department of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - J Ruberte
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
17
|
Schilling JM, Roth DM, Patel HH. Caveolins in cardioprotection - translatability and mechanisms. Br J Pharmacol 2015; 172:2114-25. [PMID: 25377989 DOI: 10.1111/bph.13009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 12/24/2022] Open
Abstract
Translation of preclinical treatments for ischaemia-reperfusion injury into clinical therapies has been limited by a number of factors. This review will focus on a single mode of cardiac protection related to a membrane scaffolding protein, caveolin, which regulates protective signalling as well as myocyte ultrastructure in the setting of ischaemic stress. Factors that have limited the clinical translation of protection will be considered specifically in terms of signalling and structural defects. The potential of caveolin to overcome barriers to protection with the ultimate hope of clinical translation will be discussed.
Collapse
Affiliation(s)
- Jan M Schilling
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
18
|
Liu Y, Liang Z, Liu J, Zou W, Li X, Wang Y, An L. Downregulation of caveolin-1 contributes to the synaptic plasticity deficit in the hippocampus of aged rats. Neural Regen Res 2014; 8:2725-33. [PMID: 25206583 PMCID: PMC4145999 DOI: 10.3969/j.issn.1673-5374.2013.29.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 08/26/2013] [Indexed: 12/11/2022] Open
Abstract
Caveolin-1 is involved in the regulation of synaptic plasticity, but the relationship between its pression and cognitive function during aging remains controversial. To explore the relationship be-tween synaptic plasticity in the aging process and changes in learning and memory, we examined caveolin-1 expression in the hippocampus, cortex and cerebellum of rats at different ages. We also examined the relationship between the expression of caveolin-1 and synaptophysin, a marker of synaptic plasticity. Hippocampal caveolin-1 and synaptophysin expression in aged (22–24 month old) rats was significantly lower than that in young (1 month old) and adult (4 months old) rats. pression levels of both proteins were significantly greater in the cortex of aged rats than in that of young or adult rats, and levels were similar between the three age groups in the cerebellum. Linear regression analysis revealed that hippocampal expression of synaptophysin was associated with memory and learning abilities. Moreover, synaptophysin expression correlated positively with caveolin-1 expression in the hippocampus, cortex and cerebellum. These results confirm that caveolin-1 has a regulatory effect on synaptic plasticity, and suggest that the downregulation of hippocampal caveolin-1 expression causes a decrease in synaptic plasticity during physiological aging.
Collapse
Affiliation(s)
- Yang Liu
- Regenerative Medicine Center, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Zhanhua Liang
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Jing Liu
- Regenerative Medicine Center, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Wei Zou
- Department of Biology, Liaoning Normal University, Dalian 116023, Liaoning Province, China
| | - Xiaoyan Li
- Regenerative Medicine Center, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Yachen Wang
- Department of Neurology, the First Affiliated Hospital, Dalian Medical University, Dalian 116021, Liaoning Province, China
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning Province, China
| |
Collapse
|
19
|
Peart JN, Pepe S, Reichelt ME, Beckett N, See Hoe L, Ozberk V, Niesman IR, Patel HH, Headrick JP. Dysfunctional survival-signaling and stress-intolerance in aged murine and human myocardium. Exp Gerontol 2013; 50:72-81. [PMID: 24316036 DOI: 10.1016/j.exger.2013.11.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/03/2013] [Accepted: 11/26/2013] [Indexed: 11/26/2022]
Abstract
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
Collapse
Affiliation(s)
- Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Salvatore Pepe
- Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Melissa E Reichelt
- Department of Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nikkie Beckett
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Louise See Hoe
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | - Victoria Ozberk
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia
| | | | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, USA; Department of Anesthesiology, University of California San Diego, USA
| | - John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
| |
Collapse
|
20
|
Lee ME, Kim SR, Lee S, Jung YJ, Choi SS, Kim WJ, Han JA. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner. Exp Mol Med 2013; 44:536-44. [PMID: 22771771 PMCID: PMC3465747 DOI: 10.3858/emm.2012.44.9.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1.
Collapse
Affiliation(s)
- Mi Eun Lee
- Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Arreche ND, Sarati LI, Martinez CR, Fellet AL, Balaszczuk AM. Contribution of caveolin-1 to ventricular nitric oxide in age-related adaptation to hypovolemic state. ACTA ACUST UNITED AC 2012; 179:43-9. [PMID: 22954805 DOI: 10.1016/j.regpep.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 06/24/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
Abstract
Our previous results have shown that hypovolemic state induced by acute hemorrhage in young anesthetized rats triggers heterogeneous and dynamic nitric oxide synthase (NOS) activation, modulating the cardiovascular response. Involvement of the nitric oxide pathway is both isoform-specific and time-dependent. The aim of the present study was to investigate changes in activity and protein levels of the different NOS forms, changes in the abundance of caveolin-1 during hypovolemic state and caveolin-1/eNOS association using young and middle-aged rats. Therefore, we studied (i) changes in NOS activity and protein levels and (ii) caveolin-1 abundance, as well as its association with endothelial NOS (eNOS) in ventricles from young and middle-aged rats during hypovolemic state. We used 2-month (young) and 12-month (middle-aged) old male Sprague-Dawley rats. Animals were divided into two groups (n=14/group): (a) sham; (b) hemorrhaged animals (20% blood loss). With advancing age, we observed an increase in ventricle NOS activity accompanied by a decrease in eNOS and caveolin-1 protein levels, but increased inducible NOS (iNOS). We also observed that aging is associated with caveolin-1 dissociation from eNOS. Myocardia from young and middle-aged rats subjected to hemorrhage-induced hypovolemia exhibited an increase in NOS activity and protein levels with a reduction in caveolin-1 abundance, accompanied by a greater dissociation between eNOS and its regulatory protein. Further, an increase in iNOS protein levels after blood loss was observed only in middle-aged rats. Our evidence suggests that aging and acute hemorrhage contribute to the development of upregulation in NOS activity. Our findings demonstrate that specific expression patterns of ventricular NOS isoforms, alterations in the amount of caveolin-1 and caveolin-1/eNOS interaction are involved in aged-related adjustment to hypovolemic state.
Collapse
Affiliation(s)
- Noelia D Arreche
- Department of Physiology, School of Pharmacy and Biochemistry, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
22
|
Yun JH, Park SJ, Jo A, Kang JL, Jou I, Park JS, Choi YH. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes. Exp Mol Med 2012; 43:660-8. [PMID: 21918362 DOI: 10.3858/emm.2011.43.12.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Ji Hee Yun
- Department of Physiology, Ewha Womans University School of Medicine Seoul 158-710, Korea
| | | | | | | | | | | | | |
Collapse
|
23
|
Nuclear barrier hypothesis of aging as mechanism for trade-off growth to survival. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 720:3-13. [PMID: 21901614 DOI: 10.1007/978-1-4614-0254-1_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
When the aging-dependent cellular behaviors toward growth factors and toxic stress have been analyzed, the perinuclear accumulation of the activated signals, either mitogenic or apoptotic, has been observed, suggesting the aging-dependent inefficiency of the nucleocytoplasmic trafficking of the signals. Thereby, it would be natural to assume the operation of the functional nuclear barrier in aging-dependent manner, which would be designated as "Park and Lim's Barrier." And for the ultimate transcriptional factor for these aging-dependent changes of the functional nuclear barrier, Sp1 transcriptional factor has been suggested to be the most probable candidate. This novel mechanism of aging-dependent operation of the functional nuclear barrier is proposed as the ultimate checking mechanism for cellular protection against toxic environment and the general mechanism for the trade-off growth to survival in aging.
Collapse
|
24
|
Adler AF, Leong KW. Emerging links between surface nanotechnology and endocytosis: impact on nonviral gene delivery. NANO TODAY 2010; 5:553-569. [PMID: 21383869 PMCID: PMC3048656 DOI: 10.1016/j.nantod.2010.10.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Significant effort continues to be exerted toward the improvement of transfection mediated by nonviral vectors. These endeavors are often focused on the design of particulate carriers with properties that encourage efficient accumulation at the membrane surface, particle uptake, and endosomal escape. Despite its demonstrated importance in successful nonviral transfection, relatively little investigation has been done to understand the pressures driving internalized vectors into favorable nondegradative endocytic pathways. Improvements in transfection efficiency have been noted for complexes delivered with a substrate-mediated approach, but the reasons behind such enhancements remain unclear. The phenotypic changes exhibited by cells interacting with nano- and micro-featured substrates offer hints that may explain these effects. This review describes nanoscale particulate and substrate parameters that influence both the uptake of nonviral gene carriers and the endocytic phenotype of interacting cells, and explores the molecular links that may mediate these interactions. Substrate-mediated control of endocytosis represents an exciting new design parameter that will guide the creation of efficient transgene carriers.
Collapse
Affiliation(s)
- Andrew F. Adler
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| | - Kam W. Leong
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, Box 90281, Durham, NC 27708, USA
| |
Collapse
|
25
|
Yudoh K, Shi Y, Karasawa R. Angiogenic growth factors inhibit chondrocyte ageing in osteoarthritis: potential involvement of catabolic stress-induced overexpression of caveolin-1 in cellular ageing. Int J Rheum Dis 2010; 12:90-9. [PMID: 20374325 DOI: 10.1111/j.1756-185x.2009.01390.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Recently, attention has been attracted by the finding that overexpression of caveolin-1 induces cellular senescence in age-related diseases. We aimed to ascertain whether angiogenic growth factors (AGFs) can inhibit interleukin (IL)-1beta-induced senescence in human chondrocytes by downregulation of caveolin-1. METHODS We investigated the intracellular signalling pathways involved in chondrocyte ageing. Human chondrocytes were isolated from the articular cartilage of patients undergoing arthroplastic knee surgery in osteoarthritis (OA). Chondrocytes were stimulated with or without IL-1beta (10 ng/mL) in the presence or absence of vascular endothelial growth factor, basic fibroblast growth factor or hepatocyte growth factor (20 ng/mL). After 72-h incubation, we observed the expression of caveolin-1 in human chondrocytes by immunohistochemistry, and analysed the protein levels of caveolin-1 by Western blot. We examined the time-course of phosphorylation patterns of mammalian mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-K) by Western blot, and used several specific protein kinase inhibitors to evaluate the involvement of the intracellular signalling pathways. Also, chondrocyte replicative lifespan was analyzed in the presence or absence of AGFs. RESULTS Treatment with AGFs inhibited IL-1beta-induced overexpression of caveolin-1 in human OA chondrocytes. Treatment with AGFs all down-regulated protein levels of IL-1beta-accelerated expression of caveolin-1 in chondrocytes. IL-1beta significantly decreased the cellular replicative lifespan in chondrocytes. Treatment with AGFs prevented the IL-1beta-induced shortening of chondrocyte replicative lifespan. The specific inhibitors for MAPK/extracellular signal-regulated kinase and PI3-K cancelled the AGF-induced downregulation of overexpression of caveolin-1. CONCLUSION Our results suggest that AGFs downregulated IL-1beta-induced chondrocyte ageing and overexpression of caveolin-1 in human chondrocytes, which is mediated by kinase cascades involving the p42/44 MAP kinase and PI3-K/Akt signalling pathways.
Collapse
Affiliation(s)
- Kazuo Yudoh
- Department of Frontier Medicine, Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| | | | | |
Collapse
|
26
|
Voghel G, Thorin-Trescases N, Mamarbachi AM, Villeneuve L, Mallette FA, Ferbeyre G, Farhat N, Perrault LP, Carrier M, Thorin E. Endogenous oxidative stress prevents telomerase-dependent immortalization of human endothelial cells. Mech Ageing Dev 2010; 131:354-63. [PMID: 20399802 DOI: 10.1016/j.mad.2010.04.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/26/2010] [Accepted: 04/09/2010] [Indexed: 10/19/2022]
Abstract
INTRODUCTION With aging, oxidative stress accelerates vascular endothelial cell (EC) telomere shortening-induced senescence, and may promote atherosclerosis in humans. Our aim was to investigate whether an antioxidant treatment combined with telomerase (hTERT) over-expression would prevent senescence of EC isolated from patients with severe atherosclerosis. METHODS Cells were isolated from internal mammary arteries (n=11 donors), cultured until senescence with or without N-acetylcystein (NAC) and infected, or not, with a lentivirus over-expressing hTERT. RESULTS Compared to control EC, hTERT-NAC cells had increased telomerase activity, longer telomeres and underwent more cell divisions. According to the donor, hTERT-NAC either delayed (n=5) or prevented (n=4) EC senescence, the latter leading to cell immortalization. Lack of cell immortalization by hTERT-NAC was accompanied by an absence of beneficial effect of NAC alone in paired EC. Accordingly, lack of EC immortalization by hTERT-NAC was associated with high endogenous susceptibility to oxidation. In EC where hTERT-NAC did not immortalize EC, p53, p21 and p16 expression increased with senescence, while oxidative-dependent DNA damage associated with senescence was not prevented. CONCLUSION Our data suggest that irreversible oxidative stress-dependent damages associated with cardiovascular risk factors are responsible for senescence of EC from atherosclerotic patients.
Collapse
Affiliation(s)
- Guillaume Voghel
- Department of Surgery, Research Center, Montreal Heart Institute, Université de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Farhat N, Thorin-Trescases N, Voghel G, Villeneuve L, Mamarbachi M, Perrault LP, Carrier M, Thorin E. Stress-induced senescence predominates in endothelial cells isolated from atherosclerotic chronic smokers. Can J Physiol Pharmacol 2009; 86:761-9. [PMID: 19011671 DOI: 10.1139/y08-082] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Age-associated telomere shortening leads to replicative senescence of human endothelial cells (EC). Risk factors for cardiovascular disease (CVD) accelerate ageing, while there is a concomitant rise in oxidative stress known to promote stress-induced senescence (SIS) in vitro. Of all risk factors for CVD, smoking is most associated with the development of inflammation and accelerated atherosclerosis due to a prooxidant-antioxidant imbalance. We tested the hypothesis that SIS predominates in EC isolated from chronic smokers with premature atherosclerosis undergoing coronary artery bypass graft surgery (CABG). We isolated and cultured EC from segments of internal mammary arteries from smoker, former smoker, and nonsmoker coronary patients. Senescence of EC was induced by serial passage and quantified by the measurement of telomere length and senescence-associated beta-galactosidase activity. Compared with nonsmokers, smoker patients were 10 years younger at the time of CABG, evidence of premature atherosclerosis. Cellular senescence was independent of telomere length and directly related to oxidative damage. EC exhibited higher expression levels of markers of oxidative stress (lipid peroxydation level and caveolin-1 mRNA), inflammation (angiopoietin-like 2 mRNA), hypoxia (vascular endothelial growth factor (VEGF)-A mRNA), and cell damage (p53 mRNA). In conclusion, a high oxidative stress environment in EC isolated from atherosclerotic chronic smokers predisposes to SIS rather than replicative senescence.
Collapse
Affiliation(s)
- Nada Farhat
- Department of Surgery and Research Center, Institut de Cardiologie de Montreal, Universite de Montreal, 5000, rue Belanger, Montreal, QC H1T1C8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Heathfield SK, Le Maitre CL, Hoyland JA. Caveolin-1 expression and stress-induced premature senescence in human intervertebral disc degeneration. Arthritis Res Ther 2008; 10:R87. [PMID: 18681962 PMCID: PMC2575636 DOI: 10.1186/ar2468] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Revised: 07/09/2008] [Accepted: 08/05/2008] [Indexed: 02/07/2023] Open
Abstract
Introduction Chronic and debilitating low back pain is a common condition and a huge economic burden. Many cases are attributed to age-related degeneration of the intervertebral disc (IVD); however, age-related degeneration appears to occur at an accelerated rate in some individuals. We have previously demonstrated biomarkers of cellular senescence within the human IVD and suggested a role for senescence in IVD degeneration. Senescence occurs with ageing but can also occur prematurely in response to stress. We hypothesised that stress-induced premature senescence (SIPS) occurs within the IVD and here we have investigated the expression and production of caveolin-1, a protein that has been shown previously to be upregulated in SIPS. Methods Caveolin-1 gene expression in human nucleus pulposus (NP) cells was assessed by conventional and quantitative real-time polymerase chain reaction (PCR), and caveolin-1 protein expression was examined within human IVDs using immunohistochemistry. The correlation between caveolin-1 and p16INK4a (biomarker of cellular senescence) gene expression was investigated using quantitative real-time PCR. Results Caveolin-1 gene expression and protein expression were demonstrated within the human IVD for the first time. NP cells from degenerate discs exhibited elevated levels of caveolin-1 which did not relate to increasing chronological age. A negative correlation was observed between gene expression for caveolin-1 and donor age, and no correlation was found between caveolin-1 protein expression and age. A positive correlation was identified between gene expression of caveolin-1 and p16INK4a. Conclusion Our findings are consistent with a role for caveolin-1 in degenerative rather than age-induced changes in the NP. Its expression in IVD tissue and its association with the senescent phenotype suggest that caveolin-1 and SIPS may play a prominent role in the pathogenesis of IVD degeneration.
Collapse
Affiliation(s)
- Sarah Kathleen Heathfield
- Faculty of Medical and Human Sciences, Tissue Injury and Repair Group, Research School of Clinical and Laboratory Sciences, The University of Manchester, Manchester, UK
| | | | | |
Collapse
|
29
|
Oh YS, Khil LY, Cho KA, Ryu SJ, Ha MK, Cheon GJ, Lee TS, Yoon JW, Jun HS, Park SC. A potential role for skeletal muscle caveolin-1 as an insulin sensitivity modulator in ageing-dependent non-obese type 2 diabetes: studies in a new mouse model. Diabetologia 2008; 51:1025-34. [PMID: 18408913 DOI: 10.1007/s00125-008-0993-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes mellitus is a common age-dependent disease. We discovered that male offspring of non-diabetic C57BL/6 and DBA/2 mice, called JYD mice, develop type 2 diabetes when they grow old. JYD mice show characteristics of insulin resistance, hyperglycaemia and hyperinsulinaemia in old age without obesity. We postulated that the mechanism of age-dependent type 2 diabetes in this model relates to caveolin-1 status in skeletal muscle, which appears to regulate insulin sensitivity in the mice. METHODS We compared insulin sensitivity in aged C57BL/6 and JYD mice using glucose and insulin tolerance tests and (18)F-fluorodeoxyglucose positron emission tomography. We also determined insulin signalling molecules and caveolin proteins using western blotting, and altered caveolin-1 levels in skeletal muscle of C57BL/6 and JYD mice using viral vector systems, to examine the effect of this on insulin sensitivity. RESULTS In 30-week-old C57BL/6 and JYD mice, the basal levels of IRS-1, Akt and peroxisome proliferator-activated receptor-gamma decreased, as did insulin-stimulated phosphorylation of Akt and insulin receptor beta. However, caveolin-1 was only increased about twofold in 30-week-old JYD mice as compared with 3-week-old mice, whereas an eightfold increase was seen in C57BL/6 mice. Downregulation of caveolin-1 production in C57BL/6 mice caused severe impairment of glucose and insulin tolerance. Upregulation of caveolin-1 in aged diabetic JYD mice significantly improved insulin sensitivity with a concomitant increase of glucose uptake in the skeletal muscle. CONCLUSIONS/INTERPRETATION The level of skeletal muscle caveolin-1 is correlated with the progression of age-dependent type 2 diabetes in JYD mice.
Collapse
Affiliation(s)
- Y S Oh
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, 28 Yungon Dong, Chongno Ku, Seoul 110-799, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim KS, Seu YB, Baek SH, Kim MJ, Kim KJ, Kim JH, Kim JR. Induction of cellular senescence by insulin-like growth factor binding protein-5 through a p53-dependent mechanism. Mol Biol Cell 2007; 18:4543-52. [PMID: 17804819 PMCID: PMC2043568 DOI: 10.1091/mbc.e07-03-0280] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factor (IGF) signaling pathway plays a crucial role in the regulation of cell growth, differentiation, apoptosis, and aging. IGF-binding proteins (IGFBPs) are important members of the IGF axis. IGFBP-5 is up-regulated during cellular senescence in human dermal fibroblasts and endothelial cells, but the function of IGFBP-5 in cellular senescence is unknown. Here we show that IGFBP-5 plays important roles in the regulation of cellular senescence. Knockdown of IGFBP-5 in old human umbilical endothelial cells (HUVECs) with IGFBP-5 micro-RNA lentivirus caused partial reduction of a variety of senescent phenotypes, such as changes in cell morphology, increases in cell proliferation, and decreases in senescence-associated beta-galactosidase (SA-beta-gal) staining. In addition, treatment with IGFBP-5 protein or up-regulation of IGFBP-5 in young cells accelerates cellular senescence, as confirmed by cell proliferation and SA-beta-gal staining. Premature senescence induced by IGFBP-5 up-regulation in young cells was rescued by knockdown of p53, but not by knockdown of p16. Furthermore, atherosclerotic arteries exhibited strong IGFBP-5-positive staining along intimal plaques. These results suggest that IGFBP-5 plays a role in the regulation of cellular senescence via a p53-dependent pathway and in aging-associated vascular diseases.
Collapse
Affiliation(s)
- Kwang Seok Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Young Bae Seu
- Department of Microbiology, College of Natural Science, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Suk-Hwan Baek
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| | - Mi Jin Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Keuk Jun Kim
- Aging-associated Vascular Disease Research Center, and
- Department of Pathology, College of Medicine, Yeungnam University, Daegu 705-717, Republic of Korea; and
| | - Jung Hye Kim
- *Department of Biochemistry and Molecular Biology
| | - Jae-Ryong Kim
- *Department of Biochemistry and Molecular Biology
- Aging-associated Vascular Disease Research Center, and
| |
Collapse
|
31
|
van Helmond ZK, Miners JS, Bednall E, Chalmers KA, Zhang Y, Wilcock GK, Love S, Kehoe PG. Caveolin-1 and -2 and their relationship to cerebral amyloid angiopathy in Alzheimer's disease. Neuropathol Appl Neurobiol 2007; 33:317-27. [PMID: 17493012 DOI: 10.1111/j.1365-2990.2006.00815.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebral amyloid angiopathy (CAA) affects over 90% of patients with Alzheimer's disease (AD) and increases the risk of cerebral haemorrhage and infarction. Caveolae--cholesterol-enriched plasmalemmal microinvaginations--are implicated in the production of amyloid beta peptide (Abeta). Caveolin-1 (CAV-1) is essential for the formation of caveolae. Caveolin-2 (CAV-2) is expressed at the plasma membrane only when in a stable hetero-oligomeric complex with CAV-1. CAV-1 and CAV-2 are highly co-expressed by endothelium and smooth muscle. Recent studies suggest that down-regulation of CAV-1 causes a reduction in alpha-secretase activity and consequent accumulation of Abeta. We have used quantitative immunohistochemical techniques to assess the relationship between CAV-1 and CAV-2 with respect to Abeta accumulation in the cerebral vasculature in a series of post mortem brains. CAV-1 and CAV-2 were co-expressed within the tunica media and endothelium of cerebral blood vessels. There were regional differences in CAV-1 immunolabelling, which was significantly greater in the frontal cortex and white matter than in the parietal lobe (in both control and AD cases) or the temporal lobe (in AD alone). However, CAV-1 labelling in AD did not differ from that in controls in any of the three lobes examined. Assessment of CAV-1 labelling in relation to the severity of CAA showed CAV-1 to be significantly increased in the frontal white matter in a subgroup of AD cases with absent/mild CAA compared with controls with absent/mild CAA and to AD cases with moderate/severe CAA, but the latter groups did not show significant differences from one another. CAV-1 labelling did not vary with age, gender, APOE genotype, post mortem delay or brain weight. Only segments of blood vessels with particularly abundant Abeta and extensive loss of smooth muscle actin showed loss of CAV-1 and CAV-2 from the tunica media. Within these vessels endothelial CAV-1 was preserved and discontinuous CAV-2 labelling was noted along the outer aspect of the vessel wall. Our findings suggest that alterations in the expression of vascular CAV-1 and CAV-2 are unlikely to play a role in the development of CAA in AD.
Collapse
Affiliation(s)
- Z K van Helmond
- Dementia Research Group, Institute of Clinical Neurosciences, Clinical Science at North Bristol, University of Bristol, Frenchay Hospital, Bristol, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Costa MJ, Senou M, Van Rode F, Ruf J, Capello M, Dequanter D, Lothaire P, Dessy C, Dumont JE, Many MC, Van Sande J. Reciprocal negative regulation between thyrotropin/3',5'-cyclic adenosine monophosphate-mediated proliferation and caveolin-1 expression in human and murine thyrocytes. Mol Endocrinol 2007; 21:921-32. [PMID: 17202321 DOI: 10.1210/me.2006-0328] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The expression of caveolins is down-regulated in tissue samples of human thyroid autonomous adenomas and in the animal model of this disease. Because several cell types present in thyroid express caveolins, it remained unclear if this down-regulation occurs in thyrocytes and which are the mechanism and role of this down-regulation in the tumor context. Here we show that prolonged stimulation of isolated human thyrocytes by TSH/cAMP/cAMP-dependent protein kinase inhibits caveolins' expression. The expression of caveolins is not down-regulated by activators of other signaling pathways relevant to thyroid growth/function. Therefore, the down-regulation of caveolins' expression in autonomous adenomas is a direct consequence of the chronic activation of the TSH/cAMP pathway in thyrocytes. The down-regulation of caveolin-1 occurs at the mRNA level, with a consequent protein decrease. TSH/cAMP induces a transcription-dependent, translation-independent destabilization of the caveolin-1 mRNA. This effect is correlated to the known proliferative role of that cascade in thyrocytes. In vivo, thyrocytes of caveolin-1 knockout mice display enhanced proliferation. This demonstrates, for the first time, the in vivo significance of the specific caveolin-1 down-regulation by one mitogenic cascade and its relation to a human disease.
Collapse
Affiliation(s)
- Maria José Costa
- Institut de Recherche Interdisciplinaire, Campus Erasme, Université Libre de Bruxelles, 808 Route de Lennik, Building C, 1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Despite many endeavors, no satisfactory strategy has emerged for modulating the aging process, most probably because they were based on faulty rationales. In an extension of the "gate theory of aging" that we proposed recently, we propose here that caveolin, an essential component of caveolae structure, may offer a potential target for modulating the aging process. According to the gate theory, certain biomolecules such as caveolins, amphiphysins, G proteins, and integrins play decisive roles in determining the senescent phenotype and thus provide targets for modulating the aging process. Among these molecules, we chose caveolin, because it can associate with a variety of regulatory and structural molecules via their scaffolding domains and thereby influence a broad spectrum of biological phenomena including both the physiology and morphology of the senescent cells. This is an attempt to review the vast body of evidence available in the literature, both direct and indirect, supporting the accord of this pivotal role to the caveolin in the background of the gate theory for the aging process.
Collapse
Affiliation(s)
- Sang Chul Park
- Department of Biochemistry and Molecular Biology, Aging and Apoptosis Research Center, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
34
|
Pascal T, Debacq-Chainiaux F, Chrétien A, Bastin C, Dabée AF, Bertholet V, Remacle J, Toussaint O. Comparison of replicative senescence and stress-induced premature senescence combining differential display and low-density DNA arrays. FEBS Lett 2005; 579:3651-9. [PMID: 15963989 DOI: 10.1016/j.febslet.2005.05.056] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 04/14/2005] [Accepted: 05/23/2005] [Indexed: 02/01/2023]
Abstract
Human diploid fibroblasts (HDFs) exposed to subcytotoxic stress display many features of senescence. Using differential display RT-PCR, gene expression of HDFs in premature senescence induced by tert-butylhydroperoxide or ethanol and in replicative senescence was compared to gene expression of HDFs at early cumulative population doublings. Thirty genes of known function were identified from the 265 differentially displayed cDNA fragments. A customized low-density array allowed to confirm the relative level of the corresponding 30 transcripts. We found differential expression of genes coding for proteins implicated namely in growth arrest (PTEN, IGFBP-3, LRP-1 and CAV1), senescent morphogenesis (TGF-beta1 and LOXL2) and iron metabolism (TFR and FTL).
Collapse
Affiliation(s)
- Thierry Pascal
- Unit of Research on Cellular Biology, Department of Biology, University of Namur (FUNDP), Rue de Bruxelles, 61 B-5000 Namur, Belgium
| | | | | | | | | | | | | | | |
Collapse
|