1
|
Zhou L, Wang T, Chen D, Cheng G, Li W, Cai X, Liao J, Bao W, Rong S. Association of serum vitamin C concentrations with Alzheimer's disease mortality among U.S. adults. Nutr Neurosci 2024:1-9. [PMID: 39531360 DOI: 10.1080/1028415x.2024.2403900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
BACKGROUND The association between vitamin C status and Alzheimer's disease (AD) mortality remains unclear. METHODS A total of 4864 adults aged 60 years or above from the National Health and Nutrition Examination Survey III 1988-1994 were included in this study. Serum vitamin C levels were measured by the fully automated electrochemiluminescence immunoassay. Death and underlying causes of death were ascertained by linkage to death records through December 31, 2019. Cox proportional hazards regression models were used to evaluate the association between serum vitamin C and AD mortality. RESULTS During 65,251 person-years of follow-up (a median follow-up of 12.0 years), 158 deaths occurred from AD. After adjustment for age, sex, race/ethnicity, socioeconomic status, lifestyle and dietary factors, body mass index, baseline diseases and vitamin C supplement use, compared with participants with deficiency serum vitamin C concentrations (< 53 µmol/L), the multivariate-adjusted HR (95% CI) for AD mortality was 0.62 (0.39-0.99) for participants with adequate serum vitamin C concentrations (53-70 µmol/L) and 0.64 (0.34-1.18) for participants with saturate serum vitamin C concentrations (> 70 µmol/L). CONCLUSION In this nationally representative sample of US adults, higher serum vitamin C was significantly associated with lower risk of AD mortality. These findings suggest that maintaining adequate vitamin C status may aid in lowering AD mortality risk.
Collapse
|
2
|
Muhoberac BB. Using substantial reductant concentration with chelation therapy to enhance small aggregate dispersal, iron mobilization, and its clearance in neurodegenerative diseases. Front Neurosci 2022; 16:1006203. [PMID: 36188476 PMCID: PMC9520002 DOI: 10.3389/fnins.2022.1006203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Connections between altered iron homeostasis and certain neurodegenerative diseases are highlighted by numerous studies suggesting iron neurotoxicity. Iron causes aggregation in neurodegenerative disease-linked proteins as well as others and additionally facilitates oxidative damage. Iron and oxidative damage can cause cell death including by ferroptosis. As treatment for neurodegeneration, chelation therapy alone is sometimes used with modest, varying efficacy and has not in general proven to reverse or halt the damage long term. Questions often focus on optimal chelator partitioning and fine-tuning binding strength; however iron oxidation state chemistry implies a different approach. More specifically, my perspective is that applying a redox-based component to iron mobilization and handling is crucial because ferrous iron is in general a more soluble, weaker biological binder than ferric. Once cellular iron becomes oxidized to ferric, it binds tenaciously, exchanges ligands more slowly, and enhances protein aggregation, which importantly can be reversed by iron reduction. This situation escalates with age as brain reducing ability decreases, iron concentration increases, autophagic clearance decreases, and cell stress diminishes iron handling capacity. Taken together, treatment employing chelation therapy together with a strong biological reductant may effectively remove inappropriately bound cellular iron or at least inhibit accumulation. This approach would likely require high concentration ascorbate or glutathione by IV along with chelation to enhance iron mobilization and elimination, thus reducing cumulative cellular damage and perhaps restoring partial function. Potential treatment-induced oxidative damage may be attenuated by high reductant concentration, appropriate choice of chelator, and/or treatment sequence. Comprehensive study is urged.
Collapse
|
3
|
Tveden-Nyborg P. Vitamin C Deficiency in the Young Brain-Findings from Experimental Animal Models. Nutrients 2021; 13:1685. [PMID: 34063417 PMCID: PMC8156420 DOI: 10.3390/nu13051685] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Severe and long-term vitamin C deficiency can lead to fatal scurvy, which is fortunately considered rare today. However, a moderate state of vitamin C (vitC) deficiency (hypovitaminosis C)-defined as a plasma concentration below 23 μM-is estimated to affect up to 10% of the population in the Western world, albeit clinical hallmarks in addition to scurvy have not been linked to vitC deficiency. The brain maintains a high vitC content and uniquely high levels during deficiency, supporting vitC's importance in the brain. Actions include both antioxidant and co-factor functions, rendering vitamin C deficiency likely to affect several targets in the brain, and it could be particularly significant during development where a high cellular metabolism and an immature antioxidant system might increase sensitivity. However, investigations of a non-scorbutic state of vitC deficiency and effects on the developing young brain are scarce. This narrative review provides a comprehensive overview of the complex mechanisms that regulate vitC homeostasis in vivo and in the brain in particular. Functions of vitC in the brain and the potential consequences of deficiency during brain development are highlighted, based primarily on findings from experimental animal models. Perspectives for future investigations of vitC are outlined.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Copenhagen, Denmark
| |
Collapse
|
4
|
Travica N, Ried K, Hudson I, Sali A, Scholey A, Pipingas A. The Contribution of Plasma and Brain Vitamin C on Age and Gender-Related Cognitive Differences: A Mini-Review of the Literature. Front Integr Neurosci 2020; 14:47. [PMID: 32973470 PMCID: PMC7471743 DOI: 10.3389/fnint.2020.00047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
Abstract
There is increasing evidence that sex differences in the brain may contribute to gender-related behavioral differences, including cognitive function. Literature has revealed gender dimorphisms in cognitive function between males and females. Additionally, several risk factors associated with cognitive decline depend on chronological age. It is well recognized that the process of aging is associated with a decline in cognitive ability and brain function. Various explanations may account for these gender-related cognitive differences and age-associated cognitive changes. Recent investigations have highlighted the importance of vitamin C in maintaining brain health and its association with cognitive function in both cognitively intact and impaired cohorts. The present review explores previous literature that has evaluated differences in plasma/brain vitamin C between genders and during aging. It then assesses whether these age and gender-related differences may affect the relationship between plasma/brain vitamin C and cognition. The purpose of this review was to examine the evidence for a link between plasma/brain vitamin C and cognition and the impact of gender and age on this relationship. Epidemiological studies have frequently shown higher vitamin C plasma concentrations in women. Similarly, aging has been systematically associated with reductions in plasma vitamin C levels. A range of animal studies has demonstrated potential gender and age-related differences in vitamin C brain distribution and utilization. The reviewed literature suggests that gender differences in plasma and brain vitamin C may potentially contribute to differences in gender-associated cognitive ability, particularly while females are pre-menopausal. Additionally, we can propose that age-associated differences in plasma and brain vitamin C may be potentially linked to age-associated cognitive differences, with older cohorts appearing more vulnerable to experience declines in plasma vitamin C concentrations alongside compromised vitamin C brain regulation. This review encourages future investigations to take into account both gender and age when assessing the link between plasma vitamin C concentrations and cognitive function. Further large scale investigations are required to assess whether differences in cognitive function between genders and age groups may be causally attributed to plasma vitamin C status and brain distribution and utilization.
Collapse
Affiliation(s)
- Nikolaj Travica
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Karin Ried
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
- Discipline of General Practice, University of Adelaide, Adelaide, SA, Australia
- Torrens University, Melbourne, VIC, Australia
| | - Irene Hudson
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, Mathematical Sciences, Royal Melbourne Institute of Technology (RMIT), Melbourne, VIC, Australia
- School of Mathematical and Physical Science, University of Newcastle, Callaghan, NSW, Australia
| | - Avni Sali
- The National Institute of Integrative Medicine, Melbourne, VIC, Australia
| | - Andrew Scholey
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew Pipingas
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Schou-Pedersen AMV, Schemeth D, Lykkesfeldt J. Determination of Reduced and Oxidized Coenzyme Q 10 in Canine Plasma and Heart Tissue by HPLC-ECD: Comparison with LC-MS/MS Quantification. Antioxidants (Basel) 2019; 8:antiox8080253. [PMID: 31366077 PMCID: PMC6720496 DOI: 10.3390/antiox8080253] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/11/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022] Open
Abstract
Coenzyme Q10 (Q10) plays an important role in mammals for energy production in the mitochondria, and as a potent antioxidant. Oxidation ratio (% oxidized in relation to total Q10) has been proposed as an important biomarker. A sensitive and reproducible HPLC-ECD method was developed for determination of reduced and oxidized Q10 in canine plasma and heart tissue. Chromatographic separation was achieved in 10 min using a Waters Nova-pak C18 column and a mobile phase with lithium perchlorate in ethanol/methanol/2-propanol. The validation showed satisfying results. Excellent linear correlation was found (r2 > 0.9997), intra- and inter-day precisions were below 6.5% (n = 5) and recoveries were between 89 and 109% (n = 5). Sensitivity stated as Lower Limit of Quantification (LLOQ) was 10 nM. Acceptable stability of both extracted and un-extracted samples was observed. The plasma concentration range of total Q10 was found to be between 0.64 and 1.24 µg/mL. Comparison with a developed LC-MS/MS method showed a correlation of r = 0.85 for reduced Q10 and r = 0.60 for oxidized Q10 (N = 17). However, average results were around 30% lower for ubiquinol using the LC-MS/MS method as compared with the HPLC-ECD analysis. The two methods are therefore not considered to be interchangeable.
Collapse
Affiliation(s)
- Anne Marie V Schou-Pedersen
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark.
| | - Dieter Schemeth
- Section for Environmental Chemistry and Physics, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1870 Frederiksberg C, Denmark
| | - Jens Lykkesfeldt
- Section for Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Ridebanevej 9, 1870 Frederiksberg C, Denmark
| |
Collapse
|
6
|
Marcos P, González-Fuentes J, Castro-Vázquez L, Lozano MV, Santander-Ortega MJ, Rodríguez-Robledo V, Villaseca-González N, Arroyo-Jiménez MM. Vitamin transporters in mice brain with aging. J Anat 2018; 232:699-715. [PMID: 29315537 DOI: 10.1111/joa.12769] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2017] [Indexed: 12/19/2022] Open
Abstract
Its high metabolic rate and high polyunsaturated fatty acid content make the brain very sensitive to oxidative damage. In the brain, neuronal metabolism occurs at a very high rate and generates considerable amounts of reactive oxygen species and free radicals, which accumulate inside neurons, leading to altered cellular homeostasis and integrity and eventually irreversible damage and cell death. A misbalance in redox metabolism and the subsequent neurodegeneration increase throughout the course of normal aging, leading to several age-related changes in learning and memory as well as motor functions. The neuroprotective function of antioxidants is crucial to maintain good brain homeostasis and adequate neuronal functions. Vitamins E and C are two important antioxidants that are taken up by brain cells via the specific carriers αTTP and SVCT2, respectively. The aim of this study was to use immunohistochemistry to determine the distribution pattern of these vitamin transporters in the brain in a mouse model that shows fewer signs of brain aging and a higher resistance to oxidative damage. Both carriers were distributed widely throughout the entire brain in a pattern that remained similar in 4-, 12-, 18- and 24-month-old mice. In general, αTTP and SVCT2 were located in the same regions, but they seemed to have complementary distribution patterns. Double-labeled cell bodies were detected only in the inferior colliculus, entorhinal cortex, dorsal subiculum, and several cortical areas. In addition, the presence of αTTP and SVCT2 in neurons was analyzed using double immunohistochemistry for NeuN and the results showed that αTTP but not SVCT2 was present in Bergmann's glia. The presence of these transporters in brain regions implicated in learning, memory and motor control provides an anatomical basis that may explain the higher resistance of this animal model to brain oxidative stress, which is associated with better motor performance and learning abilities in old age.
Collapse
Affiliation(s)
- P Marcos
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - J González-Fuentes
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - L Castro-Vázquez
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - M V Lozano
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - M J Santander-Ortega
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - V Rodríguez-Robledo
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - N Villaseca-González
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| | - M M Arroyo-Jiménez
- Cellular Neuroanatomy and Molecular Chemistry of Central Nervous System, Faculty of Pharmacy and Faculty of Medicine, University of Castilla-La Mancha, CRIB (Centro Regional de Investigaciones Biomédicas), Albacete, Spain
| |
Collapse
|
7
|
Silva FMDOE, Alcantara D, Carvalho RC, Favaron PO, Santos ACD, Viana DC, Miglino MA. Development of the central nervous system in guinea pig (Cavia porcellus, Rodentia, Caviidae). PESQUISA VETERINARIA BRASILEIRA 2016. [DOI: 10.1590/s0100-736x2016000800013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract: This study describes the development of the central nervous system in guinea pigs from 12th day post conception (dpc) until birth. Totally, 41 embryos and fetuses were analyzed macroscopically and by means of light and electron microscopy. The neural tube closure was observed at day 14 and the development of the spinal cord and differentiation of the primitive central nervous system vesicles was on 20th dpc. Histologically, undifferentiated brain tissue was observed as a mass of mesenchymal tissue between 18th and 20th dpc, and at 25th dpc the tissue within the medullary canal had higher density. On day 30 the brain tissue was differentiated on day 30 and the spinal cord filling throughout the spinal canal, period from which it was possible to observe cerebral and cerebellar stratums. At day 45 intumescences were visualized and cerebral hemispheres were divided, with a clear division between white and gray matter in brain and cerebellum. Median sulcus of the dorsal spinal cord and the cauda equina were only evident on day 50. There were no significant structural differences in fetuses of 50 and 60 dpc, and animals at term were all lissencephalic. In conclusion, morphological studies of the nervous system in guinea pig can provide important information for clinical studies in humans, due to its high degree of neurological maturity in relation to its short gestation period, what can provide a good tool for neurological studies.
Collapse
|
8
|
Kim H, Kim Y, Bae S, Lim SH, Jang M, Choi J, Jeon J, Hwang YI, Kang JS, Lee WJ. Vitamin C Deficiency Causes Severe Defects in the Development of the Neonatal Cerebellum and in the Motor Behaviors of Gulo(-/-) Mice. Antioxid Redox Signal 2015; 23:1270-83. [PMID: 25977985 DOI: 10.1089/ars.2014.6043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS The developing brain of a neonate is particularly susceptible to damage by vitamin C deficiency because of its rapid growth and immature antioxidant system. Cognitive impairment and sensory motor deficits are found in the adult brain upon vitamin C deficiency. Therefore, the aim of this study was to clarify the role of vitamin C in its own right and its related mechanisms in Gulo(-/-) mice incapable of synthesizing vitamin C. RESULTS When vitamin C supplementation was ceased for 2 weeks until delivery, stillbirths and a significant reduction in neonatal mice were observed and the growth of neonates was remarkably decreased. In addition, intraparenchymal hemorrhages were found in most of the brains, especially in the stillborn neonates. In addition, the levels of malondialdehyde (MDA) and 8-isoprostanes were increased and structural abnormalities were found in the cortex, hippocampus, and cerebellum. Especially, vitamin C deficiency caused the failure of or a delay in the formation of cerebellar fissures accompanied by abnormal foliation and altered Purkinje cell alignment. In the developed adult brains from vitamin C-deficient Gulo(-/-) mice, the levels of glutathione, MDA, nitrate, IL-6, TNF-α, and Bax were increased and the expression of the GABRA6 and calbindin-28k was decreased. Due to atrophy of the granule and Purkinje cells, the motor behavior of vitamin C-deficient Gulo(-/-) mice declined. INNOVATION AND CONCLUSION Vitamin C deficiency during gestation induces intraparenchymal hemorrhages and severe defects in the development of the cerebellum. In fully developed brains, it induces the functional impairment by altering the cellular composition in the cerebellum.
Collapse
Affiliation(s)
- Hyemin Kim
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea.,2 Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Yejin Kim
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Seyeon Bae
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Seung Hyeon Lim
- 3 Institute for Experimental Animals, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Mirim Jang
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jiyea Choi
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jane Jeon
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Young-il Hwang
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| | - Jae Seung Kang
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea.,2 Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Wang Jae Lee
- 1 Laboratory of Immunology and Vitamin C, Department of Anatomy, Seoul National University College of Medicine , Seoul, Republic of Korea
| |
Collapse
|
9
|
Hansen SN, Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency affect cognitive development and function? Nutrients 2014; 6:3818-46. [PMID: 25244370 PMCID: PMC4179190 DOI: 10.3390/nu6093818] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/14/2014] [Accepted: 09/01/2014] [Indexed: 12/12/2022] Open
Abstract
Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/−) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.
Collapse
Affiliation(s)
- Stine Normann Hansen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg C, Copenhagen, Denmark.
| | - Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg C, Copenhagen, Denmark
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Ridebanevej 9, DK-1870 Frederiksberg C, Copenhagen, Denmark.
| |
Collapse
|
10
|
Kennard JA, Harrison FE. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice. Behav Brain Res 2014; 264:34-42. [PMID: 24508240 PMCID: PMC3980584 DOI: 10.1016/j.bbr.2014.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 02/08/2023]
Abstract
The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling.
Collapse
Affiliation(s)
- John A Kennard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
11
|
Paidi MD, Schjoldager JG, Lykkesfeldt J, Tveden-Nyborg P. Prenatal vitamin C deficiency results in differential levels of oxidative stress during late gestation in foetal guinea pig brains. Redox Biol 2014; 2:361-7. [PMID: 24563854 PMCID: PMC3926113 DOI: 10.1016/j.redox.2014.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/10/2014] [Accepted: 01/11/2014] [Indexed: 12/03/2022] Open
Abstract
Antioxidant defences are comparatively low during foetal development making the brain particularly susceptible to oxidative stress during antioxidant deficiencies. The brain is one of the organs containing the highest concentration of vitamin C (VitC) and VitC deficiency during foetal development may place the brain at risk of redox status imbalance. In the present study, we investigated the developmental pattern and effect of VitC deficiency on antioxidants, vitamin E and superoxide dismutase (SOD), assessed oxidative damage by measuring malondialdehyde (MDA), hydroxynonenal (HNE) and nitrotyrosine (NT) and analysed gene and protein expression of apoptosis marker caspase-3 in the guinea pig foetal brain at two gestational (GD) time points, GD 45/pre-term and GD 56/near term following either a VitC sufficient (CTRL) or deficient (DEF) maternal dietary regime. We show that except for SOD, antioxidants and oxidative damage markers are differentially expressed between the two GDs, with high VitC (p<0.0001), NT modified proteins (p<0.0001) and active caspase-3 levels (p<0.05) at pre-term and high vitamin E levels (p<0.0001), HNE (p<0.0001) and MDA (p<0.0001) at near term. VitC deficiency significantly increased SOD activity (p<0.0001) compared to CTRLs at both GDs indicating a compensatory response, however, low levels of VitC significantly elevated MDA levels (p<0.05) in DEF at near term. Our results show a differential regulation of the investigated markers during late gestation and suggest that immature brains are susceptible to oxidative stress due to prenatal vitC deficiency in spite of an induction of protective adaptation mechanisms.
Collapse
Key Words
- 1VitC, vitamin C
- Brain
- CTRL, control
- DEF, deficient
- Deficiency
- Development
- GD, gestational day
- GPx, glutathione peroxidase
- Guinea pig
- HNE, hydroxynonenal
- MDA, malondialdehyde
- NT, nitrotyrosine
- Oxidative stress
- PCR, polymerase chain reaction
- PFA, paraformaldehyde
- SOD, superoxide dismutase
- Vitamin C
- s18, ribosomal protein 18S
Collapse
Affiliation(s)
- Maya D. Paidi
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Danmark DK-1870, Denmark
| | - Janne G. Schjoldager
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Danmark DK-1870, Denmark
| | - Jens Lykkesfeldt
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Danmark DK-1870, Denmark
| | - Pernille Tveden-Nyborg
- Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Danmark DK-1870, Denmark
| |
Collapse
|
12
|
Resveratrol protects the brain of obese mice from oxidative damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:419092. [PMID: 24163719 PMCID: PMC3791828 DOI: 10.1155/2013/419092] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/31/2013] [Accepted: 08/07/2013] [Indexed: 11/18/2022]
Abstract
Resveratrol (3,5,4′-trihydroxy-trans-stilbene) is a polyphenolic phytoalexin that exerts cardioprotective, neuroprotective, and antioxidant effects. Recently it has been shown that obesity is associated with an increase in cerebral oxidative stress levels, which may enhance neurodegeneration. The present study evaluates the neuroprotective action of resveratrol in brain of obese (ob/ob) mice. Resveratrol was administered orally at the dose of 25 mg kg−1 body weight daily for three weeks to lean and obese mice. Resveratrol had no effect on body weight or blood glucose levels in obese mice. Lipid peroxides were significantly increased in brain of obese mice. The enzymatic antioxidants superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and nonenzymatic antioxidants tocopherol, ascorbic acid, and glutathione were decreased in obese mice brain. Administration of resveratrol decreased lipid peroxide levels and upregulated the antioxidant activities in obese mice brain. Our findings indicate a neuroprotective effect of resveratrol by preventing oxidative damage in brain tissue of obese mice.
Collapse
|
13
|
Prolonged maternal vitamin C deficiency overrides preferential fetal ascorbate transport but does not influence perinatal survival in guinea pigs. Br J Nutr 2013; 110:1573-9. [PMID: 23591139 DOI: 10.1017/s0007114513000913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Human and guinea pig fetuses are completely dependent on an adequate maternal vitamin C (vitC) intake. Shortage of micronutrients can have negative implications for fetal health and pregnancy outcome; however, knowledge of maternal vitC deficiency's impact on fetal development is sparse and reports of pregnancy outcome have been divergent. The present study investigated whether maternal vitC deficiency affects pregnancy outcome and plasma vitC distribution between the mother and the offspring in a guinea pig model. A total of eighty pregnant Dunkin Hartley guinea pigs were randomised into two weight-stratified groups receiving either a deficient (100 mg/kg DEF) or a control (923 mg/kg CTRL) diet. VitC levels were measured in plasma during pregnancy and postpartum, and in the plasma and brain of newborns. Pregnancy outcome was recorded with respect to birth weight and perinatal survival and were similar between groups. Plasma vitC in dams declined throughout gestation in both groups (P< 0·01). Compared with maternal plasma vitC, plasma vitC of newborn pups was found to be significantly lower in the DEF group (P< 0·001) and higher in the CTRL group (P< 0·001), respectively. Brain vitC levels were significantly reduced in DEF newborn pups (P< 0·001). The present results indicate that preferential transport of vitC from the mother to the fetus is overridden during sustained maternal vitC deficiency, maintaining maternal vitC concentration at the expense of the offspring. This contradicts the notion that a fetus is protected from vitC deficiency by the placental Na-dependent vitC co-transporter, SVCT2, thus fetal development may be susceptible to the negative effects of maternal vitC deficiency.
Collapse
|
14
|
Yu R, Schellhorn HE. Recent applications of engineered animal antioxidant deficiency models in human nutrition and chronic disease. J Nutr 2013; 143:1-11. [PMID: 23173175 DOI: 10.3945/jn.112.168690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dietary antioxidants are essential nutrients that inhibit the oxidation of biologically important molecules and suppress the toxicity of reactive oxygen or nitrogen species. When the total antioxidant capacity is insufficient to quench these reactive species, oxidative damage occurs and contributes to the onset and progression of chronic diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. However, epidemiological studies that examine the relationship between antioxidants and disease outcome can only identify correlative associations. Additionally, many antioxidants also have prooxidant effects. Thus, clinically relevant animal models of antioxidant function are essential for improving our understanding of the role of antioxidants in the pathogenesis of complex diseases as well as evaluating the therapeutic potential and risks of their supplementation. Recent progress in gene knockout mice and virus-based gene expression has potentiated these areas of study. Here, we review the current genetically modified animal models of dietary antioxidant function and their clinical relevance in chronic diseases. This review focuses on the 3 major antioxidants in the human body: vitamin C, vitamin E, and uric acid. We examine genetic models of vitamin C synthesis (guinea pig, Osteogenic Disorder Shionogi rat, Gulo(-/-) and SMP30(-/-) mouse mutants) and transport (Slc23a1(-/-) and Slc23a2(-/-) mouse mutants), vitamin E transport (Ttpa(-/-) mouse mutant), and uric acid synthesis (Uox(-/-) mouse mutant). The application of these models to current research goals is also discussed.
Collapse
Affiliation(s)
- Rosemary Yu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
15
|
Tveden-Nyborg P, Vogt L, Schjoldager JG, Jeannet N, Hasselholt S, Paidi MD, Christen S, Lykkesfeldt J. Maternal vitamin C deficiency during pregnancy persistently impairs hippocampal neurogenesis in offspring of guinea pigs. PLoS One 2012; 7:e48488. [PMID: 23119033 PMCID: PMC3485340 DOI: 10.1371/journal.pone.0048488] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 09/25/2012] [Indexed: 01/30/2023] Open
Abstract
While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn pups (n = 157) were randomized into a total of four postnatal feeding regimens: High/High (Control); High/Low (Depleted), Low/Low (Deficient); and Low/High (Repleted). Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001) which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01). We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lucile Vogt
- Institute of Infectious Diseases, University of Bern, Bern, Switzerland
| | - Janne G. Schjoldager
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natalie Jeannet
- Institute of Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stine Hasselholt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maya D. Paidi
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephan Christen
- Institute of Infectious Diseases, University of Bern, Bern, Switzerland
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (SC); (JL)
| | - Jens Lykkesfeldt
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (SC); (JL)
| |
Collapse
|
16
|
Ascorbate status modulates reticuloendothelial iron stores and response to deferasirox iron chelation in ascorbate-deficient rats. Exp Hematol 2012; 40:820-7. [PMID: 22713799 DOI: 10.1016/j.exphem.2012.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/06/2012] [Accepted: 06/12/2012] [Indexed: 01/19/2023]
Abstract
Iron chelation is essential to patients on chronic blood transfusions to prevent toxicity from iron overload and remove excess iron. Deferasirox (DFX) is the most commonly used iron chelator in the United States; however, some patients are relatively refractory to DFX therapy. We postulated that vitamin C supplementation would improve the availability of transfusional iron to DFX treatment by promoting iron's redox cycling, increasing its soluble ferrous form and promoting its release from reticuloendothelial cells. Osteogenic dystrophy rats (n = 54) were given iron dextran injections for 10 weeks. Cardiac and liver iron levels were measured after iron loading (n = 18), 12 weeks of sham chelation (n = 18), and 12 weeks of DFX chelation (n = 18) at 75 mg/kg/day. Ascorbate supplementation of 150 ppm, 900 ppm, and 2250 ppm was used in the chow to mimic a broad range of ascorbate status; plasma ascorbate levels were 5.4 ± 1.9, 8.2 ± 1.4, 23.6 ± 9.8 μM, respectively (p < 0.0001). The most severe ascorbate deficiency produced reticuloenthelial retention, lowering total hepatic iron by 29% at the end of iron loading (p < 0.05) and limiting iron redistribution from cardiac and hepatic macrophages during 12 weeks of sham chelation. Most importantly, ascorbate supplementation at 2250 ppm improved DFX efficiency, allowing DFX to remove 21% more hepatic iron than ascorbate supplementation with 900 ppm or 150 ppm (p < 0.05). We conclude that vitamin C status modulates the release of iron from the reticuloendothelial system and correlates positively with DFX chelation efficiency. Our findings suggest that ascorbate status should be probed in patients with unsatisfactory response to DFX.
Collapse
|
17
|
Tveden-Nyborg P, Hasselholt S, Miyashita N, Moos T, Poulsen HE, Lykkesfeldt J. Chronic Vitamin C Deficiency does not Accelerate Oxidative Stress in Ageing Brains of Guinea Pigs. Basic Clin Pharmacol Toxicol 2012; 110:524-9. [DOI: 10.1111/j.1742-7843.2011.00852.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Accepted: 12/05/2011] [Indexed: 11/28/2022]
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Stine Hasselholt
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Namiyo Miyashita
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| | - Torben Moos
- Department of Health Science and Technology; Aalborg University; Aalborg; Denmark
| | - Henrik E. Poulsen
- Department of Clinical Pharmacology Q; Copenhagen University Hospital; Copenhagen; Denmark
| | - Jens Lykkesfeldt
- Section of Biomedicine; Department of Disease Biology; Faculty of Life Sciences; University of Copenhagen; Copenhagen; Denmark
| |
Collapse
|
18
|
Emir UE, Raatz S, McPherson S, Hodges JS, Torkelson C, Tawfik P, White T, Terpstra M. Noninvasive quantification of ascorbate and glutathione concentration in the elderly human brain. NMR IN BIOMEDICINE 2011; 24:888-94. [PMID: 21834011 PMCID: PMC3118919 DOI: 10.1002/nbm.1646] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Revised: 10/21/2010] [Accepted: 10/22/2010] [Indexed: 05/14/2023]
Abstract
In this study, ascorbate (Asc) and glutathione (GSH) concentrations were quantified noninvasively using double-edited (1)H MRS at 4 T in the occipital cortex of healthy young [age (mean ± standard deviation) = 20.4 ± 1.4 years] and elderly (age = 76.6 ± 6.1 years) human subjects. Elderly subjects had a lower GSH concentration than younger subjects (p < 0.05). The Asc concentration was not significantly associated with age. Furthermore, the lactate (Lac) concentration was higher in elderly than young subjects. Lower GSH and higher Lac concentrations are indications of defective protection against oxidative damage and impaired mitochondrial respiration. The extent to which the observed concentration differences could be associated with physiological differences and methodological artifacts is discussed. In conclusion, GSH and Asc concentrations were compared noninvasively for the first time in young vs elderly subjects.
Collapse
Affiliation(s)
- Uzay E Emir
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Park JK, Hong IH, Ki MR, Chung HY, Ishigami A, Ji AR, Goo MJ, Kim DH, Kwak JH, Min CW, Lee SS, Jeong KS. Vitamin C deficiency increases the binucleation of hepatocytes in SMP30 knock-out mice. J Gastroenterol Hepatol 2010; 25:1769-76. [PMID: 21039840 DOI: 10.1111/j.1440-1746.2010.06239.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS The binucleation of hepatocytes, which was known as an important feature of liver growth and physiology, has been reported to be increased during the chronic oxidative injury stage and has been regarded as an age-related change of hepatic structures. Therefore, we investigated the binuclearity pattern in the livers of senescence marker proteins-30 (SMP30) knock-out (KO) mice compared with wild-type (WT) mice and vitamin C-treated KO (KO + VC) mice. METHODS The WT, KO and KO + VC mice were fed a vitamin C free diet and VC(+) group mice were given vitamin C water containing 1.5 g/L of vitamin C, whereas VC(-) group was given normal drinking water without vitamin C, for 16 weeks. RESULTS In microscopic examination, the livers of KO mice showed a significantly increased number of binuclear hepatocytes compared with that of WT mice and KO + VC mice. KO mice also showed the most increased expression level of CYP2E1 and PCNA determined by immunohistochemistry and immunoblot analysis. Moreover, KO mice indicated the highest level of serum alanine aminotransferase and aspartate aminotransferase level in serum biochemical analysis. Accordingly, significantly decreased levels of reactive oxygen species, MDA (malondialdehyde) and HAE (4-hydroxyalkenals) were detected in KO + VC mice compared with KO mice. CONCLUSION Therefore, it is concluded that vitamin C deficiency induces an increase of CYP2E1 expression and elevated ROS production, which causes oxidative liver injury and the elevation of hepatocyte binucleation in SMP30 KO mice.
Collapse
Affiliation(s)
- Jin-Kyu Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Maggini S, Wenzlaff S, Hornig D. Essential role of vitamin C and zinc in child immunity and health. J Int Med Res 2010; 38:386-414. [PMID: 20515554 DOI: 10.1177/147323001003800203] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With the progressive elimination of dietary protein-energy deficits, deficiencies of micronutrients are emerging as the limiting factors in ensuring children's optimal health. Data from several countries in Asia and Latin America indicate that deficiencies of vitamin C and zinc continue to be at alarming levels. This article reviews the roles of vitamin C and zinc in supporting children's growth and development, with a particular focus on the complementary roles they play in supporting immune functions and combating infections. The contemporary relevance of vitamin C and zinc deficiency in the Asian and Latin American regions, both undergoing a rapid nutritional transition, are also discussed. Overall, there is increasing evidence that deficiency of vitamin C and zinc adversely affects the physical and mental growth of children and can impair their immune defences. Nutrition should be the main vehicle for providing these essential nutrients; however, supplementation can represent a valid support method, especially in developing regions.
Collapse
Affiliation(s)
- S Maggini
- Bayer Consumer Care Ltd, Basel, Switzerland.
| | | | | |
Collapse
|
21
|
Tveden-Nyborg P, Johansen LK, Raida Z, Villumsen CK, Larsen JO, Lykkesfeldt J. Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. Am J Clin Nutr 2009; 90:540-6. [PMID: 19640959 DOI: 10.3945/ajcn.2009.27954] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The neonatal brain is particularly vulnerable to imbalances in redox homeostasis because of rapid growth and immature antioxidant systems. Vitamin C has been shown to have a key function in the brain, and during states of deficiency it is able to retain higher concentrations of vitamin C than other organs. However, because neurons maintain one of the highest intracellular concentrations of vitamin C in the organism, the brain may still be more sensitive to deficiency despite these preventive measures. OBJECTIVE The objective was to study the potential link between chronic vitamin C deficiency and neuronal damage in newborn guinea pigs. DESIGN Thirty 6- to 7-d-old guinea pigs were randomly assigned to 2 groups to receive either a vitamin C-sufficient diet or the same diet containing a low concentration of vitamin C (but adequate to prevent scurvy) for 2 mo. Spatial memory was assessed by the Morris Water Maze, and hippocampal neuron numbers were quantified by stereologic techniques. RESULTS The results showed a reduction in spatial memory (P < 0.05) and an increased time to first platform hit (P < 0.05) in deficient animals compared with controls. The deficient animals had a lower total number of neurons in hippocampal subdivisions (dentate gyrus, cornu ammonis 1, and cornu ammonis 2-3) than did the normal controls (P < 0.05). CONCLUSIONS Our data show that vitamin C deficiency in early postnatal life results in impaired neuronal development and a functional decrease in spatial memory in guinea pigs. We speculate that this unrecognized effect of vitamin C deficiency may have clinical implications for high-risk individuals, such as in children born from vitamin C-deficient mothers.
Collapse
|
22
|
Hackenhaar FS, Salomon TB, Alabarse PVG, Ehrenbrink G, Benfato MS. Pulmonary antioxidant defences and protein damage during the ageing process of both sexes. Cell Biochem Funct 2009; 27:378-82. [DOI: 10.1002/cbf.1585] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
23
|
Harrison FE, Hosseini AH, McDonald MP, May JM. Vitamin C reduces spatial learning deficits in middle-aged and very old APP/PSEN1 transgenic and wild-type mice. Pharmacol Biochem Behav 2009; 93:443-50. [PMID: 19539642 DOI: 10.1016/j.pbb.2009.06.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/08/2009] [Accepted: 06/10/2009] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease is a progressive and fatal neurodegenerative disease characterized by a build up of amyloid beta (Abeta) deposits, elevated oxidative stress, and deterioration of the cholinergic system. The present study investigated short-term cognitive-enhancing effects of acute intraperitoneal (i.p.) Vitamin C (ascorbate) treatment in APP/PSEN1 mice, a mouse model of Alzheimer's disease. Middle-aged (12 months) and very old (24 months) APP/PSEN1 bigenic and wild-type mice were treated with ascorbate (125 mg/kg i.p.) or the vehicle 1 h before testing on Y-maze spontaneous alternation and Morris water maze tasks. Very old mice performed more poorly on cognitive tasks than middle-aged mice. Ascorbate treatment improved Y-maze alternation rates and swim accuracy in the water maze in both wild-type and APP/PSEN1 mice. Abeta deposits and oxidative stress both increased with age, and acetylcholinesterase (AChE) activity was significantly reduced in APP/PSEN1 compared to wild-type mice. However, the short course of acute ascorbate treatment did not alter Alzheimer-like neuropathological features of plaque deposition, oxidative stress, or AChE activity. These data suggest that ascorbate may have noötropic functions when administered parenterally in high doses and that the mode of action is via an acute, pharmacological-like mechanism that likely modulates neurotransmitter function.
Collapse
Affiliation(s)
- F E Harrison
- Department of Medicine, Vanderbilt University, Nashville, TN 37232-0475, USA.
| | | | | | | |
Collapse
|
24
|
Tveden-Nyborg P, Lykkesfeldt J. Does vitamin C deficiency result in impaired brain development in infants? Redox Rep 2009; 14:2-6. [PMID: 19161672 DOI: 10.1179/135100009x392412] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Scurvy, the rare but potentially mortal manifestation of severe and prolonged lack of vitamin C, is often confused with hypovitaminosis C, i.e. the mere definition of vitamin C deficiency. While the latter condition can be diagnosed in millions, the clinical consequences (if they exist) remain largely unknown, since only a tiny fraction of those deficient in vitamin C actually develop clinical scurvy. Is hypovitaminosis C itself a problem at all then? Yes, it may well be in some cases. Recent data from our laboratory suggest that the neonatal brain is particularly susceptible to vitamin C deficiency and that this condition may adversely affect early brain development.
Collapse
Affiliation(s)
- Pernille Tveden-Nyborg
- Section of Biomedicine, Department of Disease Biology, Faculty of Life Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
25
|
Abstract
Chronic obstructive pulmonary disease (COPD) is associated with a high incidence of morbidity and mortality. Cigarette smoke-induced oxidative stress is intimately associated with the progression and exacerbation of COPD and therefore targeting oxidative stress with antioxidants or boosting the endogenous levels of antioxidants is likely to have beneficial outcome in the treatment of COPD. Among the various antioxidants tried so far, thiol antioxidants and mucolytic agents, such as glutathione, N-acetyl-L-cysteine, N-acystelyn, erdosteine, fudosteine and carbocysteine; Nrf2 activators; and dietary polyphenols (curcumin, resveratrol, and green tea catechins/quercetin) have been reported to increase intracellular thiol status along with induction of GSH biosynthesis. Such an elevation in the thiol status in turn leads to detoxification of free radicals and oxidants as well as inhibition of ongoing inflammatory responses. In addition, specific spin traps, such as alpha-phenyl-N-tert-butyl nitrone, a catalytic antioxidant (ECSOD mimetic), porphyrins (AEOL 10150 and AEOL 10113), and a SOD mimetic M40419 have also been reported to inhibit cigarette smoke-induced inflammatory responses in vivo in the lung. Since a variety of oxidants, free radicals and aldehydes are implicated in the pathogenesis of COPD, it is possible that therapeutic administration of multiple antioxidants and mucolytics will be effective in management of COPD. However, a successful outcome will critically depend upon the choice of antioxidant therapy for a particular clinical phenotype of COPD, whose pathophysiology should be first properly understood. This article will review the various approaches adopted to enhance lung antioxidant levels, antioxidant therapeutic advances and recent past clinical trials of antioxidant compounds in COPD.
Collapse
Affiliation(s)
- Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
26
|
Age-dependent changes in uptake and recycling of ascorbic acid in erythrocytes of Beagle dogs. J Comp Physiol B 2008; 178:699-704. [DOI: 10.1007/s00360-008-0258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/22/2008] [Accepted: 03/16/2008] [Indexed: 11/25/2022]
|
27
|
Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P. Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 2007; 26:217-23. [PMID: 18207349 DOI: 10.1016/j.ijdevneu.2007.12.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 11/21/2007] [Accepted: 12/06/2007] [Indexed: 02/03/2023] Open
Abstract
Aging is a complex biological phenomenon which involves free radicals and oxidative stress. Brain is more susceptible and vulnerable to oxidative damage due to its high-polyunsaturated fatty acid content and high rate of aerobic metabolism. Since the antioxidant defense system is diminished during aging, antioxidant supplementation might be a protective strategy against age-associated oxidative damage. The present study evaluates the antioxidant potential of (-)-epigallocatechin-3-gallate (EGCG), a major polyphenol present in green tea against age-associated oxidative damage in rat brain. Male albino rats of Wistar strain were used in the study. Group I (young) and Group II (aged) rats received saline alone orally for 30 days. Group III (young) and Group IV (aged) rats received EGCG (2mg/kg body weight/day) orally for 30 days. Antioxidant status and oxidative damage were assessed. EGCG brought about an augmentation in the activities of enzymic antioxidants like superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glucose-6-phosphate dehydrogenase and improved the non-enzymic antioxidants like tocopherol, ascorbic acid and glutathione. EGCG ameliorated the malondialdehyde and protein carbonyl levels. Thus, EGCG has emerged out as a good antioxidant neutraceutical and a neuroprotective agent in alleviating the age-associated oxidative damage in aged rat brain.
Collapse
Affiliation(s)
- Ravichandran Srividhya
- Department of Medical Biochemistry, Dr. A.L.M. Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600113, India
| | | | | | | | | |
Collapse
|
28
|
May JM, Qu ZC, Nelson DJ. Uptake and reduction of alpha-lipoic acid by human erythrocytes. Clin Biochem 2007; 40:1135-42. [PMID: 17673195 PMCID: PMC2040502 DOI: 10.1016/j.clinbiochem.2007.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/18/2007] [Accepted: 06/19/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The reducing capacity of erythrocytes has been used clinically as to estimate resistance to oxidant stress. In this work we targeted the antioxidant capacity of pyridine nucleotide disulfide reductases of these cells by measuring their ability to reduce the disulfide alpha-lipoic acid. METHODS Erythrocyte reduction of alpha-lipoic acid and related disulfides was measured as reduction of 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) outside the cells. RESULTS Lipoic acid-dependent DTNB reduction by human erythrocytes required d-glucose and consumed NADPH, but not NADH. This activity was inhibited by carmustine and phenylarsine oxide, as expected if alpha-lipoic acid is reduced by the glutathione and thioredoxin reductase systems. Reduction of hydroxyethyl disulfide, which provides an estimate of total erythrocyte disulfide reduction capacity, was similar to that of alpha-lipoic acid. Erythrocytes incubated with alpha-lipoic acid also reduced extracellular ferricyanide, although rates of dehydroascorbate reduction were several-fold greater, probably because intracellular GSH can recycle ascorbate but not alpha-lipoic acid in erythrocytes. CONCLUSION These results show that alpha-lipoic acid-dependent DTNB reduction provides a simple method to selectively assess the capacity of pyridine nucleotide disulfide reductases of human erythrocytes. When coupled with other non-destructive assays, such as reduction of hydroxyethyl disulfide and ferricyanide, this assay provides a comprehensive approach to assessing erythrocyte reducing capacity in a variety of clinical conditions associated with oxidant stress.
Collapse
Affiliation(s)
- James M May
- Department of Medicine, Vanderbilt University School of Medicine, 715 Preston Research Building, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA.
| | | | | |
Collapse
|