1
|
Shaw EM, Tate AJ, Periasamy R, Lipinski DM. Characterization of drusen formation in a primary porcine tissue culture model of dry AMD. Mol Ther Methods Clin Dev 2024; 32:101331. [PMID: 39434920 PMCID: PMC11492580 DOI: 10.1016/j.omtm.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander J. Tate
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
2
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
3
|
Hyttinen JMT, Koskela A, Blasiak J, Kaarniranta K. Autophagy in drusen biogenesis secondary to age-related macular degeneration. Acta Ophthalmol 2024; 102:759-772. [PMID: 39087629 DOI: 10.1111/aos.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
4
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
6
|
Huang C, Kaur A, Ji L, Tian H, Webster KA, Li W. Suppression of matrigel-induced choroidal neovascularization by AAV delivery of a novel anti-Scg3 antibody. Gene Ther 2024:10.1038/s41434-024-00491-9. [PMID: 39333408 DOI: 10.1038/s41434-024-00491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.
Collapse
Affiliation(s)
- Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Schwartz L, Schwartz J, Henry M, Bakkar A. Metabolic Shift and Hyperosmolarity Underlie Age-Related Macular Degeneration. Life (Basel) 2024; 14:1189. [PMID: 39337971 PMCID: PMC11432886 DOI: 10.3390/life14091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is both a poorly understood and devastating disease. Here, we analyze the physico-chemical forces at stake, including osmolarity, redox shift, and pressure due to inflammation. Hyperosmolarity plays a key role in diseases of the anterior segment of the eye such as glaucoma, cataracts or dry eyes, and corneal ulceration. However, its role in macular degeneration has been largely overlooked. Hyperosmolarity is responsible for metabolic shifts such as aerobic glycolysis which increases lactate secretion by Muller cells. Increased osmolarity will also cause neoangiogenesis and cell death. Because of its unique energetic demands, the macula is very sensitive to metabolic shifts. As a proof of concept, subretinal injection of drugs increasing hyperosmolarity such as polyethylene glycol causes neoangiogenesis and drusen-like structures in rodents. The link between AMD and hyperosmolarity is reinforced by the fact that treatments aiming to restore mitochondrial activity, such as lipoic acid and/or methylene blue, have been experimentally shown to be effective. We suggest that metabolic shift, inflammation, and hyperosmolarity are hallmarks in the pathogenesis and treatment of AMD.
Collapse
Affiliation(s)
| | - Jules Schwartz
- Assistance Publique des Hôpitaux de Paris, 75610 Paris, France;
| | - Marc Henry
- Institut Le Bel, Université Louis Pasteur, 67070 Strasbourg, France;
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt;
| |
Collapse
|
8
|
Seol A, Kim JE, Jin YJ, Song HJ, Roh YJ, Kim TR, Park ES, Park KH, Park SH, Uddin MS, Lee SW, Choi YW, Hwang DY. Novel Therapeutic Effects of Euphorbia heterophylla L. Methanol Extracts in Macular Degeneration Caused by Blue Light in A2E-Laden ARPE-19 Cells and Retina of BALB/c Mice. Pharmaceuticals (Basel) 2024; 17:1193. [PMID: 39338355 PMCID: PMC11435363 DOI: 10.3390/ph17091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products with high antioxidant activity are considered as innovative prevention strategies to effectively prevent age-related macular degeneration (AMD) in the early stage because the generation of reactive oxygen species (ROS) leading to the development of drusen is reported as an important cause of this disease. To investigate the prevention effects of the methanol extracts of Euphorbia heterophylla L. (MEE) on AMD, its effects on the antioxidant activity, inflammatory response, apoptosis pathway, neovascularization, and retinal tissue degeneration were analyzed in N-retinylidene-N-retinylethanolamine (A2E)-landed spontaneously arising retinal pigment epithelia (ARPE)-19 cells and BALB/c mice after exposure to blue light (BL). The MEE contained 10 active components and showed high free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide (NO) radicals. The pretreatments of high-dose MEE remarkably suppressed the production of intracellular ROS (88.2%) and NO (25.2%) and enhanced (SOD) activity (84%) and the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in A2E + BL-treated ARPE-19 cells compared to Vehicle-treated group. The activation of the inducible nitric oxide synthase (iNOS)-induced cyclooxygenase-2 (COX-2) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was significantly inhibited in A2E + BL-treated ARPE-19 cells after the MEE pretreatment. The activation of the apoptosis pathway and increased expression of neovascular proteins (36% for matrix metalloproteinase (MMP)-9) were inhibited in the MEE pretreated groups compared to the Vehicle-treated group. Furthermore, the thickness of the whole retina (31%), outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) were significantly increased by the MEE pretreatment of BALB/c mice with BL-induced retinal degeneration. Therefore, these results suggest that the MEE, with its high antioxidative activity, protects against BL-induced retinal degeneration through the regulation of the antioxidative system, inflammatory response, apoptosis, and neovascularization in the AMD mouse model.
Collapse
Affiliation(s)
- Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So-Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Sang-Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Woo Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
9
|
Seyed-Razavi Y, Lee SR, Fan J, Shen W, Cornish EE, Gillies MC. JR5558 mice are a reliable model to investigate subretinal fibrosis. Sci Rep 2024; 14:18752. [PMID: 39138242 PMCID: PMC11322289 DOI: 10.1038/s41598-024-66068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis. Fundus and optical coherence tomography (OCT) imaging was used to non-invasively track lesions. Lesion number and area were quantified with ImageJ. Retinal sections, wholemounts and Western blots were used to characterise alterations. Subretinal lesions expand between 4 and 8 weeks and become established in size and location around 12 weeks. Subretinal lesions were confirmed to be fibrotic, including various cell populations involved in fibrosis development. Müller cell processes extended from superficial retina into subretinal lesions at 8 weeks. Western blotting revealed increases in fibronectin (4 wk and 8 wk, p < 0.001), CTGF (20 wks, p < 0.001), MMP2 (12 wks and 20 wks p < 0.05), αSMA (12 wks and 20 wks p < 0.05) and GFAP (8 wk and 12 wk, p ≤ 0.01), consistent with our immunofluorescence results. Intravitreal injection of Aflibercept reduced subretinal lesion growth. Our study provides evidence JR5558 mice have subretinal fibrotic lesions that grow between 4 and 8 weeks and confirms this line to be a good model to study subretinal fibrosis development and assess treatment options.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
- Centre for Vision Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, Sydney University, Sydney, Westmead, NSW, 2145, Australia.
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Jiawen Fan
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
10
|
Salzman MM, Takimoto T, Foster ML, Mowat FM. Differential gene expression between central and peripheral retinal regions in dogs and comparison with humans. Exp Eye Res 2024; 245:109980. [PMID: 38914302 PMCID: PMC11250724 DOI: 10.1016/j.exer.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.
Collapse
Affiliation(s)
- Michele M Salzman
- Dept. Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| | - Tetsuya Takimoto
- Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, USA; Division of Gene Regulation, Division of Data Science, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Melanie L Foster
- Dept. Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Freya M Mowat
- Dept. Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA; Dept. Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Dept. Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
11
|
Linder M, Bennink L, Foxton RH, Kirkness M, Westenskow PD. In vivo monitoring of active subretinal fibrosis in mice using collagen hybridizing peptides. Lab Anim (NY) 2024; 53:196-204. [PMID: 39060633 PMCID: PMC11291276 DOI: 10.1038/s41684-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Subretinal fibrosis is associated with worse visual outcomes in patients with neovascular age-related macular degeneration. As there is a lack of optimal biomarkers and no method that directly detects collagen in the back of the eye, novel tools that monitor fibrosis-related changes in neovascular age-related macular degeneration are needed. Here, using two mouse models (the laser-induced choroidal neovascularization model, and the JR5558 mouse presenting with spontaneous subretinal neovascularization with fibrosis), we imaged active fibrotic lesions using fluorescently labeled collagen hybridizing peptides (CHPs), short peptides that bind to single α-chain collagen structures during collagen remodeling. JR5558 retinal pigment epithelium/choroid flat mounts showed CHP co-staining with fibrosis and epithelial mesenchymal transition-related markers; additionally, CHP histopathology staining correlated with in vivo CHP imaging. After laser-induced choroidal neovascularization, in vivo CHP binding correlated with laser intensity, histopathology CHP and fibronectin staining. Laser-induced choroidal neovascularization showed decreased CHP intensity over time in healing/regressing versus active scars in vivo, whereas increased CHP binding correlated with elevated fibrosis in JR5558 mouse eyes with age. In bispecific angiopoietin 2/vascular endothelial growth factor antibody-treated JR5558 mice, CHPs detected significantly decreased collagen remodeling versus immunoglobulin G control. These results demonstrate the first use of CHPs to directly image remodeling collagen in the eye and as a potential clinical optical biomarker of active subretinal fibrosis associated with ocular neovascularization.
Collapse
Affiliation(s)
- Markus Linder
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard H Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
12
|
Chucair-Elliott AJ, Ocañas SR, Pham K, Machalinski A, Plafker S, Stout MB, Elliott MH, Freeman WM. Age- and sex- divergent translatomic responses of the mouse retinal pigmented epithelium. Neurobiol Aging 2024; 140:41-59. [PMID: 38723422 PMCID: PMC11173338 DOI: 10.1016/j.neurobiolaging.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Adeline Machalinski
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
13
|
Wei X, Hormel TT, Renner L, Neuringer M, Jia Y. Wide-field OCT angiography for non-human primate retinal imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4642-4654. [PMID: 39346973 PMCID: PMC11427193 DOI: 10.1364/boe.525839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
Optical coherence tomography (OCT) is a well-established research tool for vision research in animal models capable of providing in vivo imaging of the retina. Structural OCT can be enhanced using OCT angiography (OCTA) processing in order to provide simultaneously acquired, automatically co-registered vascular information. Currently available OCT. Currently available OCTA lack either large field of view or high resolution. In this study we developed a wide-field (60-degree), high-resolution (10.5-µm optical transverse) and high-sensitivity (104-dB) OCTA-enabled system for non-human primate imaging and with it imaged multiple disease models, including models of age-related macular degeneration (AMD), Bardet-Biedl Syndrome (BBS), and the CLN7 variant of Batten disease. We demonstrate clear visualization of features including drusen, ellipsoid zone loss, vascular retinopathy, and retinal thinning in these eyes.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tristan T Hormel
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Laurie Renner
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Martha Neuringer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Yali Jia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
14
|
Zhang X, Zhong H, Wang S, He B, Cao L, Li M, Jiang M, Li Q. Subpixel motion artifacts correction and motion estimation for 3D-OCT. JOURNAL OF BIOPHOTONICS 2024:e202400104. [PMID: 38955360 DOI: 10.1002/jbio.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
A number of hardware-based and software-based strategies have been suggested to eliminate motion artifacts for improvement of 3D-optical coherence tomography (OCT) image quality. However, the hardware-based strategies have to employ additional hardware to record motion compensation information. Many software-based strategies have to need additional scanning for motion correction at the expense of longer acquisition time. To address this issue, we propose a motion artifacts correction and motion estimation method for OCT volumetric imaging of anterior segment, without requirements of additional hardware and redundant scanning. The motion correction effect with subpixel accuracy for in vivo 3D-OCT has been demonstrated in experiments. Moreover, the physiological information of imaging object, including respiratory curve and respiratory rate, has been experimentally extracted using the proposed method. The proposed method offers a powerful tool for scientific research and clinical diagnosis in ophthalmology and may be further extended for other biomedical volumetric imaging applications.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haozhe Zhong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Sainan Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bin He
- State Key Laboratory of Low-dimensional Quantum Physics and Center for Atomic and Molecular Nanoscience, Department of Physics, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Liangqi Cao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Qin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
15
|
Borchert GA, Shamsnajafabadi H, Ng BWJ, Xue K, De Silva SR, Downes SM, MacLaren RE, Cehajic-Kapetanovic J. Age-related macular degeneration: suitability of optogenetic therapy for geographic atrophy. Front Neurosci 2024; 18:1415575. [PMID: 39010943 PMCID: PMC11246919 DOI: 10.3389/fnins.2024.1415575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Age-related macular degeneration (AMD) is a growing public health concern given the aging population and it is the leading cause of blindness in developed countries, affecting individuals over the age of 55 years. AMD affects the retinal pigment epithelium (RPE) and Bruch's membrane in the macula, leading to secondary photoreceptor degeneration and eventual loss of central vision. Late AMD is divided into two forms: neovascular AMD and geographic atrophy (GA). GA accounts for around 60% of late AMD and has been the most challenging subtype to treat. Recent advances include approval of new intravitreally administered therapeutics, pegcetacoplan (Syfovre) and avacincaptad pegol (Iveric Bio), which target complement factors C3 and C5, respectively, which slow down the rate of enlargement of the area of atrophy. However, there is currently no treatment to reverse the central vision loss associated with GA. Optogenetics may provide a strategy for rescuing visual function in GA by imparting light-sensitivity to the surviving inner retina (i.e., retinal ganglion cells or bipolar cells). It takes advantage of residual inner retinal architecture to transmit visual stimuli along the visual pathway, while a wide range of photosensitive proteins are available for consideration. Herein, we review the anatomical changes in GA, discuss the suitability of optogenetic therapeutic sensors in different target cells in pre-clinical models, and consider the advantages and disadvantages of different routes of administration of therapeutic vectors.
Collapse
Affiliation(s)
- Grace A. Borchert
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin W. J. Ng
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Samantha R. De Silva
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
16
|
Akula M, McNamee SM, Love Z, Nasraty N, Chan NPM, Whalen M, Avola MO, Olivares AM, Leehy BD, Jelcick AS, Singh P, Upadhyay AK, Chen DF, Haider NB. Retinoic acid related orphan receptor α is a genetic modifier that rescues retinal degeneration in a mouse model of Stargardt disease and Dry AMD. Gene Ther 2024; 31:413-421. [PMID: 38755404 PMCID: PMC11257945 DOI: 10.1038/s41434-024-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Degeneration of the macula is associated with several overlapping diseases including age-related macular degeneration (AMD) and Stargardt Disease (STGD). Mutations in ATP Binding Cassette Subfamily A Member 4 (ABCA4) are associated with late-onset dry AMD and early-onset STGD. Additionally, both forms of macular degeneration exhibit deposition of subretinal material and photoreceptor degeneration. Retinoic acid related orphan receptor α (RORA) regulates the AMD inflammation pathway that includes ABCA4, CD59, C3 and C5. In this translational study, we examined the efficacy of RORA at attenuating retinal degeneration and improving the inflammatory response in Abca4 knockout (Abca4-/-) mice. AAV5-hRORA-treated mice showed reduced deposits, restored CD59 expression and attenuated amyloid precursor protein (APP) expression compared with untreated eyes. This molecular rescue correlated with statistically significant improvement in photoreceptor function. This is the first study evaluating the impact of RORA modifier gene therapy on rescuing retinal degeneration. Our studies demonstrate efficacy of RORA in improving STGD and dry AMD-like disease.
Collapse
Affiliation(s)
- M Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - S M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Z Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N Nasraty
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N P M Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - B D Leehy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A S Jelcick
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - P Singh
- Ocugen, Inc., Malvern, PA, USA
| | | | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Shi G, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing IRAK-M expression in retinal pigment epithelium attenuates outer retinal degeneration. Sci Transl Med 2024; 16:eadi4125. [PMID: 38838135 DOI: 10.1126/scitranslmed.adi4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Alison J Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Burt T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Gongyu Shi
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver H Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Coffey
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Erica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
18
|
Dieckmann BW, Paguaga ME, McCollum GW, Penn JS, Uddin MDI. Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization. Immunohorizons 2024; 8:363-370. [PMID: 38775688 PMCID: PMC11150128 DOI: 10.4049/immunohorizons.2400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.
Collapse
Affiliation(s)
- Blake W. Dieckmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Marcell E. Paguaga
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Gary W. McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN
| |
Collapse
|
19
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
20
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
21
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
22
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
23
|
Fu Y, Zhang Z, Webster KA, Paulus YM. Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization. Biomolecules 2024; 14:252. [PMID: 38540673 PMCID: PMC10968528 DOI: 10.3390/biom14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 05/04/2024] Open
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
Affiliation(s)
- Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
| | - Keith A. Webster
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
24
|
Lin JB, Santeford A, Colasanti JJ, Lee Y, Shah AV, Wang TJ, Ruzycki PA, Apte RS. Targeting cell-type-specific, choroid-peripheral immune signaling to treat age-related macular degeneration. Cell Rep Med 2024; 5:101353. [PMID: 38232696 PMCID: PMC10829736 DOI: 10.1016/j.xcrm.2023.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/25/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness featuring pathogenic neovascularization of the choroidal vasculature (CNV). Although systemic immunity plays a role in AMD, the ocular signals that recruit and activate immune cells remain poorly defined. Using single-cell RNA sequencing, we prospectively profile peripheral blood mononuclear cells from 65 individuals including AMD and controls, which we integrate with existing choroid data. We generate a network of choroid-peripheral immune interactions dysregulated in AMD, including known AMD-relevant gene vascular endothelial growth factor (VEGF) receptor 2. Additionally, we find CYR61 is upregulated in choroidal veins and may signal to circulating monocytes. In mice, we validate that CYR61 is abundant in endothelial cells within CNV lesions neighboring monocyte-derived macrophages. Mechanistically, CYR61 activates macrophage anti-angiogenic gene expression, and ocular Cyr61 knockdown increases murine CNV size, indicating CYR61 inhibits CNV. This study highlights the potential of multi-tissue human datasets to identify disease-relevant and potentially therapeutically modifiable targets.
Collapse
Affiliation(s)
- Joseph B Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason J Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Molecular Cell Biology Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoon Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaditya V Shah
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tzu Jui Wang
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
25
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
26
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
27
|
Bhutto IA, McLeod DS, Thomson BR, Lutty GA, Edwards MM. Visualization of choroidal vasculature in pigmented mouse eyes from experimental models of AMD. Exp Eye Res 2024; 238:109741. [PMID: 38056552 PMCID: PMC10872330 DOI: 10.1016/j.exer.2023.109741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.
Collapse
Affiliation(s)
- Imran A Bhutto
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg SOM, Chicago, IL, USA
| | - Gerard A Lutty
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Mousavi M, Mousavi A, Jamei B, Sameni H, Zarbakhsh S, Aboutaleb Kadkhodaeian H. Classification, location, and intensity of granules in retinal pigment epithelium following sodium iodate injection in rat animal model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:286-296. [PMID: 38333749 PMCID: PMC10849205 DOI: 10.22038/ijbms.2023.71194.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/23/2023] [Indexed: 02/10/2024]
Abstract
Objectives Age-related macular degeneration (AMD) is one of the eye diseases that can affect a person's central vision. Retinal pigment epithelium (RPE) cells are damaged in this medical condition and some pigments are presented in these cells. Here, we aimed to investigate melanin and lipofuscin granules of RPE cells as a precursor of AMD. Materials and Methods Hooded rats (n=18) were divided into two groups and received 100 μl of sodium iodate (SI) into the retro-orbital sinus of their eyes at 40 and 60 mg/kg doses. The total number of melanin and lipofuscin granules, different types of granules, cytoplasmic dispersion of granules as well as morphological changes in the shape and number of nuclei of RPE cells were evaluated over the course of 1-30 days. Results The total number of melanin pigments increases over time at a dose of 40 mg/kg and decreases at a dose of 60 mg/kg. Also, the total number of lipofuscin granules in 40 mg/kg increases over time and decreases in 60 mg/kg. Autofluorescent intensity (AF) is also increased at 40 mg/kg, but at 60 mg/kg, the highest intensity is on day 7. Also, the highest number of multinucleated giant cells was on day 7 at 60 mg/kg and the most changes in cell appearance due to sodium iodate injection were seen on the first day after injection. Conclusion We demonstrated that granules and autofluorescent intensity appear to decrease at high doses of sodium iodate, which is similar to the advanced stage of the AMD disease, where the number of granules and AF intensity increase in the middle and even early stages of the disease.
Collapse
Affiliation(s)
- Mahboube Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aliasghar Mousavi
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Behnam Jamei
- Neurosciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Aboutaleb Kadkhodaeian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
29
|
Luo LL, Xu J, Wang BQ, Chen C, Chen X, Hu QM, Wang YQ, Zhang WY, Jiang WX, Li XT, Zhou H, Xiao X, Zhao K, Lin S. A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization. Biomaterials 2024; 304:122403. [PMID: 38016335 DOI: 10.1016/j.biomaterials.2023.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Gene therapy has been adapted, from the laboratory to the clinic, to treat retinopathies. In contrast to subretinal route, intravitreal delivery of AAV vectors displays the advantage of bypassing surgical injuries, but the viral particles are more prone to be nullified by the host neutralizing factors. To minimize such suppression of therapeutic effect, especially in terms of AAV2 and its derivatives, we introduced three serine-to-glycine mutations, based on the phosphorylation sites identified by mass spectrum analysis, to the XL32 capsid to generate a novel serotype named AAVYC5. Via intravitreal administration, AAVYC5 was transduced more effectively into multiple retinal layers compared with AAV2 and XL32. AAVYC5 also enabled successful delivery of anti-angiogenic molecules to rescue laser-induced choroidal neovascularization and astrogliosis in mice and non-human primates. Furthermore, we detected fewer neutralizing antibodies and binding IgG in human sera against AAVYC5 than those specific for AAV2 and XL32. Our results thus implicate this capsid-optimized AAVYC5 as a promising vector suitable for a wide population, particularly those with undesirable AAV2 seroreactivity.
Collapse
Affiliation(s)
- Lin-Lin Luo
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jie Xu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Bing-Qiao Wang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China
| | - Xi Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Qiu-Mei Hu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yu-Qiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Yun Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wan-Xiang Jiang
- Sichuan Greentech Bioscience Co,. Ltd, Bencao Avenue, New Economic Development Zone, Meishan, Sichuan, 620010, China
| | - Xin-Ting Li
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Sen Lin
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
30
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
31
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023:1-25. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
32
|
Chauhan P, Kho AM, Srinivasan VJ. From Soma to Synapse: Imaging Age-Related Rod Photoreceptor Changes in the Mouse with Visible Light OCT. OPHTHALMOLOGY SCIENCE 2023; 3:100321. [PMID: 37388138 PMCID: PMC10302163 DOI: 10.1016/j.xops.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/05/2023] [Accepted: 04/24/2023] [Indexed: 07/01/2023]
Abstract
Purpose Although the outer nuclear layer (ONL) and outer plexiform layer (OPL) each exhibit a complex internal organization, near-infrared OCT depicts both as monolithic bands. Here, using visible light OCT in the C57BL/6J mouse retina, sublaminar age-related changes in photoreceptor features were imaged and interpreted. These features were (1) oscillations in reflectivity, or striations, in the ONL and (2) a moderately reflective subband in the OPL. Design Cross-sectional study. Participants Pigmented mice (C57BL/6J, n = 14). Methods A 1.0-μm axial resolution visible light spectral/Fourier domain OCT system was used for in vivo retinal imaging. Light and electron microscopy were performed ex vivo. Linear mixed effects models or regression were employed for statistical analysis. Main Outcome Measures Comparison of OCT subbands with corresponding histological features, as well as quantification of subband thickness and reflectivity. Results Corresponding histological comparisons confirm that striations in the ONL arise from the rowlike arrangement of photoreceptor nuclei and reveal that the moderately reflective OPL subband arises from rod spherules. Compression of outer ONL striations with age suggests changes in soma organization. Thinning of the moderately reflective OPL subband with age supports a reduction of synapses in the OPL. Critically, the ONL somas are tightly correlated with the purported spherule layer but not with the rest of the OPL. Conclusions Visible light OCT imaging of the mouse OPL resolves postsynaptic and synaptic differences. Visible light OCT can study rod photoreceptor changes from the soma to the synapse in the living mouse retina. Financial Disclosures Proprietary or commercial disclosure may be found after the references.
Collapse
Affiliation(s)
- Pooja Chauhan
- Department of Radiology, NYU Langone Health, New York, New York
| | - Aaron M. Kho
- Department of Biomedical Engineering, University of California Davis, Davis, California
| | - Vivek J. Srinivasan
- Department of Radiology, NYU Langone Health, New York, New York
- Department of Biomedical Engineering, University of California Davis, Davis, California
- Department of Ophthalmology, NYU Langone Health, New York, New York
| |
Collapse
|
33
|
Xiao J, Zhang JY, Luo W, He PC, Skondra D. The Emerging Role of Gut Microbiota in Age-Related Macular Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1627-1637. [PMID: 37156326 DOI: 10.1016/j.ajpath.2023.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/14/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023]
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative retinal disease that is a leading cause of blindness globally. Although multiple risk factors have been identified regarding disease incidence and progression, including smoking, genetics, and diet, the understanding of AMD pathogenesis remains unclear. As such, primary prevention is lacking, and current treatments have limited efficacy. More recently, the gut microbiome has emerged as an influential player in various ocular pathologies. As mediators of metabolism and immune regulation, perturbations in gut microbiota may impart significant effects distally on the neuroretina and its adjacent tissues, termed the gut-retina axis. In this review, key studies over the past several decades are summarized, both in humans and in animal models, which shed insight on the relationships between the gut microbiome and retinal biology and their implications for AMD. The literature linking gut dysbiosis with AMD is examined, along with preclinical animal models and techniques apt for studying the role of gut microbiota in AMD pathogenesis, which include interactions with systemic inflammation, immune regulation, chorioretinal gene expression, and diet. As understanding of the gut-retina axis continues to advance, so too will the possibility for more accessible and effective prevention and therapy of this vision-threatening condition.
Collapse
Affiliation(s)
- Jason Xiao
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Jason Y Zhang
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Wendy Luo
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - P Cody He
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Wei-Zhang S, Cui B, Xing M, Liu J, Guo Y, He K, Bai T, Dong X, Lei Y, Zhou W, Zhou H, Liu S, Wang X, Zhou D, Yan H. Chimpanzee adenovirus-mediated multiple gene therapy for age-related macular degeneration. iScience 2023; 26:107939. [PMID: 37810255 PMCID: PMC10550724 DOI: 10.1016/j.isci.2023.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Neovascular age-related macular degeneration AMD (nAMD) is characterized by choroidal neovascularization (CNV) and could lead to irreversible blindness. However, anti-vascular endothelial growth factor (VEGF) therapy has limited efficacy. Therefore, we generated a chimpanzee adenoviral vector (AdC68-PFC) containing three genes, pigment endothelial-derived factor (PEDF), soluble fms-like tyrosine kinase-1 (sFlt-1), and soluble forms of CD59 (sCD59), to treat nAMD. The results showed that AdC68-PFC mediated a strong onset of PEDF, sFlt-1, and sCD59 expression both in vivo and in vitro. AdC68-PFC showed preventive and therapeutic effects following intravitreal (IVT) injection in the laser-induced CNV model and very low-density lipoprotein receptor-deficient (Vldlr-/-) mouse model. In vitro assessment indicated that AdC68-PFC had a strong inhibitory effect on endothelial cells. Importantly, the safety test showed no evidence of in vivo toxicity of adenovirus in murine eyes. Our findings suggest that AdC68-PFC may be a long-acting and safe gene therapy vector for future nAMD treatments.
Collapse
Affiliation(s)
- Selena Wei-Zhang
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai He
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Tinghui Bai
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xue Dong
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
| | - Wei Zhou
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Hui Zhou
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Shengnan Liu
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaohong Wang
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hua Yan
- Department of Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
- Laboratory of Molecular Ophthalmology, Tianjin Medical University, Tianjin 300070, China
- School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
35
|
Sasseville S, Karami S, Tchatchouang A, Charpentier P, Anney P, Gobert D, Proulx S. Biomaterials used for tissue engineering of barrier-forming cell monolayers in the eye. Front Bioeng Biotechnol 2023; 11:1269385. [PMID: 37840667 PMCID: PMC10569698 DOI: 10.3389/fbioe.2023.1269385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
Cell monolayers that form a barrier between two structures play an important role for the maintenance of tissue functionality. In the anterior portion of the eye, the corneal endothelium forms a barrier that controls fluid exchange between the aqueous humor of the anterior chamber and the corneal stroma. This monolayer is central in the pathogenesis of Fuchs endothelial corneal dystrophy (FECD). FECD is a common corneal disease, in which corneal endothelial cells deposit extracellular matrix that increases the thickness of its basal membrane (Descemet's membrane), and forms excrescences (guttae). With time, there is a decrease in endothelial cell density that generates vision loss. Transplantation of a monolayer of healthy corneal endothelial cells on a Descemet membrane substitute could become an interesting alternative for the treatment of this pathology. In the back of the eye, the retinal pigment epithelium (RPE) forms the blood-retinal barrier, controlling fluid exchange between the choriocapillaris and the photoreceptors of the outer retina. In the retinal disease dry age-related macular degeneration (dry AMD), deposits (drusen) form between the RPE and its basal membrane (Bruch's membrane). These deposits hinder fluid exchange, resulting in progressive RPE cell death, which in turn generates photoreceptor cell death, and vision loss. Transplantation of a RPE monolayer on a Bruch's membrane/choroidal stromal substitute to replace the RPE before photoreceptor cell death could become a treatment alternative for this eye disease. This review will present the different biomaterials that are proposed for the engineering of a monolayer of corneal endothelium for the treatment of FECD, and a RPE monolayer for the treatment of dry AMD.
Collapse
Affiliation(s)
- Samantha Sasseville
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Samira Karami
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Ange Tchatchouang
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Pascale Charpentier
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Princia Anney
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Delphine Gobert
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
- Centre universitaire d’ophtalmologie (CUO), Hôpital du Saint-Sacrement, CHU de Québec-Université Laval, Québec, QC, Canada
| | - Stéphanie Proulx
- Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX; Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec-Université Laval, Québec, QC, Canada
- Département d’ophtalmologie et d’oto-rhino-laryngologie-chirurgie cervico-faciale, Faculté de Médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
36
|
Dieckmann BW, Paguaga ME, McCollum GW, Penn JS, Uddin I. Role of NLRP3 inflammasomes in monocyte and microglial recruitments in choroidal neovascularization. RESEARCH SQUARE 2023:rs.3.rs-3318233. [PMID: 37720026 PMCID: PMC10503854 DOI: 10.21203/rs.3.rs-3318233/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Though the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice to characterize migration of Ccr2RFP positive monocytes and Cx3cr1GFP positive microglial cells into CNV lesions after laser-induced rupture of Bruch's membrane. MCC950 was used as NLRP3 inhibitor. Immunostaining was used to confirm localization of NLRP3 inflammasomes in the LCNV lesions. Confocal microscopy was used to image and quantify LCNV volumes. ELISA and qRT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that RFP positive monocyte-derived macrophages and GFP positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP positive macrophages, Cx3cr1GFP positive microglia, and other cells resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice, showed significantly increased lesion size compared to age-matched controls. Inhibition of NLRP3, resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.
Collapse
|
37
|
Salas A, Badia A, Fontrodona L, Zapata M, García-Arumí J, Duarri A. Neovascular Progression and Retinal Dysfunction in the Laser-Induced Choroidal Neovascularization Mouse Model. Biomedicines 2023; 11:2445. [PMID: 37760886 PMCID: PMC10525599 DOI: 10.3390/biomedicines11092445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The mouse model of laser-induced choroidal neovascularization (LI-CNV) has been widely used to study neovascular age-related macular degeneration; however, it still lacks a comprehensive characterization. Here, CNV was induced in the eyes of 12-week-old C57BL/6J male mice by argon laser irradiation. We studied the CNV lesion progression of an LI-CNV mouse cohort by using multimodal imaging (color fundus, optical coherence tomography (OCT), and fluorescence angiography, focal electroretinography features for 14 days, and related cytokines, angiogenic factors, and reactive gliosis for 5 days. CNV lesions involving the rupture of the Bruch's membrane were confirmed using funduscopy and OCT after laser photocoagulation. During the initial stage, from the CNV induction until day 7, CNV lesions presented leakage observed by using fluorescence angiography and a typical hyperreflective area with cell infiltration, subretinal leakage, and degeneration of photoreceptors observed through OCT. This correlated with decreased retinal responses to light. Moreover, inflammatory and angiogenic markers were reduced to basal levels in the first 5 days of CNV progression. In contrast, reactive gliosis and the VEGF expression in retinal sections were sustained, with infiltration of endothelial cells in the subretinal space. In the second stage, between days 7 and 14 post-induction, we observed stabilization of the CNV lesions, a hyperfluorescent area corresponding to the formation of fibrosis, and a partial rescue of retinal function. These findings suggest that the LI-CNV lesion development goes through an acute phase during the first seven days following induction, and then the CNV lesion stabilizes. According to these results, this model is suitable for screening anti-inflammatory and anti-angiogenic drugs in the early stages of LI-CNV. At the same time, it is more convenient for screening anti-fibrotic compounds in the later stages.
Collapse
Affiliation(s)
- Anna Salas
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Anna Badia
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Laura Fontrodona
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| | - Miguel Zapata
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - José García-Arumí
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
- Department of Ophthalmology, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain
| | - Anna Duarri
- Ophthalmology Research Group, Vall d’Hebron Institut de Recerca, 08035 Barcelona, Spain
| |
Collapse
|
38
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
39
|
Wang H, Wang C, Yao Y, Duan J, Liang Y, Shang Q. Analysis of long noncoding RNAs in the aqueous humor of wet age-related macular degeneration. Exp Eye Res 2023; 234:109576. [PMID: 37490994 DOI: 10.1016/j.exer.2023.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/25/2023] [Accepted: 07/13/2023] [Indexed: 07/27/2023]
Abstract
Wet age-related macular degeneration (wAMD) is the main cause of irreversible blindness in the elderly, and its pathogenesis is still not fully understood. Long non-coding RNAs (lncRNAs) participated in the pathogenesis of a number of neovascular diseases, but their role in wAMD is less known. In order to reveal the potential role of lncRNAs in wAMD, we used high-throughput sequencing to assess lncRNAs and mRNAs expression profile in the aqueous humor of patients with wAMD and of patients with age-related cataract as control. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the potential biological functions and signaling pathways of RNA. A coding-non-coding gene co-expression (CNC) network was constructed to identify the interaction of lncRNAs and mRNAs. Quantitative PCR was used to validate the expression of selected lncRNAs. We identified 1071 differentially expressed lncRNAs and 3658 differentially expressed mRNAs in patients with wAMD compared to controls. GO and KEGG analyses suggested that differentially expressed lncRNAs-coexpressed mRNAs were mainly enriched in Rab GTPase binding, GTPase activation, RAS signaling pathway and autophagy. The top 100 differentially expressed genes were selected to build the CNC network, which could be connected by 416 edges. LncRNAs are differentially expressed in the aqueous humor of patients with wAMD and they are involved in several pathogenetic pathways. These dysregulated lncRNAs and their target genes could represent promising therapeutic targets in wAMD.
Collapse
Affiliation(s)
- Hanying Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Department of Ophthalmology, Hebei Eye Hospital, Xingtai, 054000, Hebei, China
| | - Caixia Wang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jialiang Duan
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yuchen Liang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
40
|
Jakobsen TS, Fabian-Jessing BK, Hansen S, Bek T, Askou AL, Corydon TJ. Porcine models of choroidal neovascularization: A systematic review. Exp Eye Res 2023; 234:109590. [PMID: 37474015 DOI: 10.1016/j.exer.2023.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
Animal models of choroidal neovascularization (CNV) are extensively used in translational studies of CNV formation and to evaluate angiostatic treatment strategies. However, the current paucity of large animal models compared with rodent models constitutes a knowledge gap regarding the clinical translation of findings. Ocular anatomical and physiological similarities to humans suggest the pig as a relevant model animal. Thus, a systematic survey of porcine CNV models was performed to identify pertinent model parameters and suggest avenues for model standardization and optimization. A systematic search was performed in PubMed and EMBASE on November 28, 2022 for porcine models of CNV. Following inclusion by two investigators, data from the articles were extracted according to a predefined protocol. A total of 14 articles, representing 19 independent porcine CNV models were included. The included models were almost equally divided between laser-induced (53%) and surgically-induced (47%) models. Different specified breeds of domestic pigs (71%) were most commonly used in the studies. All studies used normal animals. Female pigs were reported used in 43% of the studies, while 43% did not report on sex of the animals. Younger pigs were typically used. The surgical models reported consistent CNV induction following mechanical Bruch's membrane rupture. The laser models used variants of the infrared diode laser (40%) or the frequency-doubled Nd:YAG laser (50%). Both lasers enabled successful CNV induction with reported induction rates ranging from 60 to 100%. Collateral damage to the neuroretina was reported for the infrared diode laser. CNV evaluation varied across studies with fluorescein angiography (50%) as the most used in vivo method and retinal sections (71%) as the most used ex vivo method. In interventional studies, quantification of lesions was in general performed between 7 and 14 days. The field of porcine CNV models is relatively small and heterogeneous and almost equally divided between surgically-induced and laser-induced models. Both methods have allowed successful modeling of CNV formation with induction rates comparable to those of non-human primates. However, the field would benefit from standardization of model parameters and reporting. This includes laser parameters and validation of CNV formation as well as methods of CNV evaluation and statistical analysis.
Collapse
Affiliation(s)
- Thomas Stax Jakobsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Bjørn K Fabian-Jessing
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Silja Hansen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| | - Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Anne Louise Askou
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| | - Thomas J Corydon
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark; Department of Ophthalmology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 167, 8200, Aarhus N, Denmark.
| |
Collapse
|
41
|
Jones MK, Orozco LD, Qin H, Truong T, Caplazi P, Elstrott J, Modrusan Z, Chaney SY, Jeanne M. Integration of human stem cell-derived in vitro systems and mouse preclinical models identifies complex pathophysiologic mechanisms in retinal dystrophy. Front Cell Dev Biol 2023; 11:1252547. [PMID: 37691820 PMCID: PMC10483287 DOI: 10.3389/fcell.2023.1252547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Rare DRAM2 coding variants cause retinal dystrophy with early macular involvement via unknown mechanisms. We found that DRAM2 is ubiquitously expressed in the human eye and expression changes were observed in eyes with more common maculopathy such as Age-related Macular Degeneration (AMD). To gain insights into pathogenicity of DRAM2-related retinopathy, we used a combination of in vitro and in vivo models. We found that DRAM2 loss in human pluripotent stem cell (hPSC)-derived retinal organoids caused the presence of additional mesenchymal cells. Interestingly, Dram2 loss in mice also caused increased proliferation of cells from the choroid in vitro and exacerbated choroidal neovascular lesions in vivo. Furthermore, we observed that DRAM2 loss in human retinal pigment epithelial (RPE) cells resulted in increased susceptibility to stress-induced cell death in vitro and that Dram2 loss in mice caused age-related photoreceptor degeneration. This highlights the complexity of DRAM2 function, as its loss in choroidal cells provided a proliferative advantage, whereas its loss in post-mitotic cells, such as photoreceptor and RPE cells, increased degeneration susceptibility. Different models such as human pluripotent stem cell-derived systems and mice can be leveraged to study and model human retinal dystrophies; however, cell type and species-specific expression must be taken into account when selecting relevant systems.
Collapse
Affiliation(s)
- Melissa K. Jones
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
- Product Development Clinical Science Ophthalmology, Genentech Inc., South San Francisco, CA, United States
| | - Luz D. Orozco
- Department of Bioinformatics, Genentech Inc., South San Francisco, CA, United States
| | - Han Qin
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| | - Tom Truong
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Patrick Caplazi
- Department of Research Pathology, Genentech Inc., South San Francisco, CA, United States
| | - Justin Elstrott
- Department of Translational Imaging, Genentech Inc., South San Francisco, CA, United States
| | - Zora Modrusan
- Department of Microchemistry, Proteomics, Lipidomics and Next-Generation Sequencing, Genentech Inc., South San Francisco, CA, United States
| | - Shawnta Y. Chaney
- Department of Translational Immunology, Genentech Inc., South San Francisco, CA, United States
| | - Marion Jeanne
- Department of Neuroscience, Genentech Inc., South San Francisco, CA, United States
| |
Collapse
|
42
|
Hu S, Chen Y, Xie D, Xu K, Fu Y, Chi W, Liu H, Huang J. Nme 2 Cas9-mediated therapeutic editing in inhibiting angiogenesis after wet age-related macular degeneration onset. Clin Transl Med 2023; 13:e1383. [PMID: 37598400 PMCID: PMC10440058 DOI: 10.1002/ctm2.1383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/17/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD), particularly wet AMD characterised by choroidal neovascularization (CNV), is a leading cause of vision loss in the elderly. The hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF)/VEGF receptor 2 (VEGFR2) pathway contributes to CNV pathogenesis. Previous gene editing research indicated that disrupting these genes in retinal pigment epithelial cells could have a preventive effect on CNV progression. However, no studies have yet been conducted using gene editing to disrupt VEGF signalling after CNV induction for therapeutic validation, which is critical to the clinical application of wet AMD gene editing therapies. METHOD Here, we employed the single-adeno-associated virus-mediated Nme2 Cas9 to disrupt key molecules in VEGF signalling, Hif1α, Vegfa and Vegfr2 after inducing CNV and estimated their therapeutic effects. RESULTS We found that Nme2 Cas9 made efficient editing in target genes up to 71.8% post 11 days in vivo. And only Nme2 Cas9-Vegfa treatment during the early stage of CNV development reduced the CNV lesion area by 49.5%, compared to the negative control, while Nme2 Cas9-Hif1α or Nme2 Cas9-Vegfr2 treatment did not show therapeutic effect. Besides, no off-target effects were observed in Nme2 Cas9-mediated gene editing in vivo. CONCLUSIONS This study provides proof-of-concept possibility of employing Nme2 Cas9 for potential anti-angiogenesis therapy in wet AMD.
Collapse
Affiliation(s)
- Sihui Hu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Yuxi Chen
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Dongchun Xie
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Kan Xu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yunzhao Fu
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Wei Chi
- The State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Haiying Liu
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and RegulationState Key Laboratory of BiocontrolSchool of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Key Laboratory of Reproductive Medicine of Guangdong ProvinceSchool of Life Sciences and the First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
43
|
Velazquez-Soto H, Groman-Lupa S, Cruz-Aguilar M, Salazar AL, Zenteno JC, Jimenez-Martinez MC. Exogenous CFH Modulates Levels of Pro-Inflammatory Mediators to Prevent Oxidative Damage of Retinal Pigment Epithelial Cells with the At-Risk CFH Y402H Variant. Antioxidants (Basel) 2023; 12:1540. [PMID: 37627535 PMCID: PMC10451625 DOI: 10.3390/antiox12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/13/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Age-related macular degeneration (AMD) is a complex, progressive degenerative retinal disease. Retinal pigment epithelial (RPE) cells play an important role in the immune defense of the eye and their dysfunction leads to the progressive irreversible degeneration of photoreceptors. Genetic factors, chronic inflammation, and oxidative stress have been implicated in AMD pathogenesis. Oxidative stress causes RPE injury, resulting in a chronic inflammatory response and cell death. The Y402H polymorphism in the complement factor H (CFH) protein is an important risk factor for AMD. However, the functional significance of CFH Y402H polymorphism remains unclear. In the present study, we investigated the role of CFH in the pro-inflammatory response using an in vitro model of oxidative stress in the RPE with the at-risk CFH Y402H variant. ARPE-19 cells with the at-risk CFH Y402H variant were highly susceptible to damage caused by oxidative stress, with increased levels of inflammatory mediators and pro-apoptotic factors that lead to cell death. Pretreatment of the ARPE-19 cell cultures with exogenous CFH prior to the induction of oxidative stress prevented damage and cell death. This protective effect may be related to the negative regulation of pro-inflammatory cytokines. CFH contributes to cell homeostasis and is required to modulate the pro-inflammatory cytokine response under oxidative stress in the ARPE-19 cells with the at-risk CFH Y402H variant.
Collapse
Affiliation(s)
- Henry Velazquez-Soto
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Sergio Groman-Lupa
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Marisa Cruz-Aguilar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Alberto L. Salazar
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
| | - Juan C. Zenteno
- Department of Genetics, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Maria C. Jimenez-Martinez
- Department of Immunology, Research Unit, Institute of Ophthalmology “Conde de Valenciana Foundation”, Mexico City 06800, Mexico; (H.V.-S.)
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| |
Collapse
|
44
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
45
|
Kushwah N, Bora K, Maurya M, Pavlovich MC, Chen J. Oxidative Stress and Antioxidants in Age-Related Macular Degeneration. Antioxidants (Basel) 2023; 12:1379. [PMID: 37507918 PMCID: PMC10376043 DOI: 10.3390/antiox12071379] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Oxidative stress plays a crucial role in aging-related eye diseases, including age-related macular degeneration (AMD), cataracts, and glaucoma. With age, antioxidant reparative capacity decreases, and excess levels of reactive oxygen species produce oxidative damage in many ocular cell types underling age-related pathologies. In AMD, loss of central vision in the elderly is caused primarily by retinal pigment epithelium (RPE) dysfunction and degeneration and/or choroidal neovascularization that trigger malfunction and loss of photo-sensing photoreceptor cells. Along with various genetic and environmental factors that contribute to AMD, aging and age-related oxidative damage have critical involvement in AMD pathogenesis. To this end, dietary intake of antioxidants is a proven way to scavenge free radicals and to prevent or slow AMD progression. This review focuses on AMD and highlights the pathogenic role of oxidative stress in AMD from both clinical and experimental studies. The beneficial roles of antioxidants and dietary micronutrients in AMD are also summarized.
Collapse
Affiliation(s)
| | | | | | | | - Jing Chen
- Department of Ophthalmology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
46
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
47
|
Rad IJ, Chapman L, Tupally KR, Veidt M, Al-Sadiq H, Sullivan R, Parekh HS. A systematic review of ultrasound-mediated drug delivery to the eye and critical insights to facilitate a timely path to the clinic. Theranostics 2023; 13:3582-3638. [PMID: 37441595 PMCID: PMC10334839 DOI: 10.7150/thno.82884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/11/2023] [Indexed: 07/15/2023] Open
Abstract
Ultrasound has long been identified as a promising, non-invasive modality for improving ocular drug delivery across a range of indications. Yet, with 20 years of learnings behind us, clinical translation remains limited. To help address this, and in accordance with PRISMA guidelines, the various mechanisms of ultrasound-mediated ocular drug delivery have been appraised, ranging from first principles to emergent applications spanning both ex vivo and in vivo models. The heterogeneity of study methods precluded meta-analysis, however an extensive characterisation of the included studies allowed for semi-quantitative and qualitative assessments. Methods: In this review, we reflected on study quality of reporting, and risk of bias (RoB) using the latest Animal Research: Reporting of In Vivo Experiments (ARRIVE 2.0) guidelines, alongside the Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) RoB tools. Literature studies from 2002 to 2022 were initially characterised according to methods of ultrasound application, ultrasound parameters applied, animal models employed, as well as safety and efficacy assessments. This exercise contributed to developing a comprehensive understanding of the current state of play within ultrasound-mediated ocular drug delivery. The results were then synthesised and processed into a guide to aid future study design, with the goal of improving the reliability of data, and to support efficient and timely translation to the clinic. Results: Key attributes identified as hindering translation included: poor reporting quality and high RoB, skewed use of animals unrepresentative of the human eye, and the over reliance of reductionist safety assessments. Ex vivo modelling studies were often unable to have comprehensive safety assessments performed on them, which are imperative to determining treatment safety, and represent a pre-requisite for clinical translation. Conclusion: With the use of our synthesised guide, and a thorough understanding of the underlying physicochemical interactions between ultrasound and ocular biology provided herein, this review offers a firm foundation on which future studies should ideally be built, such that ultrasound-mediated ocular drug delivery can be translated from concept to the coalface where it can provide immense clinical benefit.
Collapse
Affiliation(s)
- Isaac J Rad
- The University of Queensland, School of Pharmacy, Brisbane, Queensland, Australia
- The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
| | - Luke Chapman
- The University of Queensland, Faculty of Medicine, Brisbane, Queensland, Australia
| | | | - Martin Veidt
- The University of Queensland, School of Mechanical and Mining Engineering, Brisbane, Queensland, Australia
| | - Hussain Al-Sadiq
- Al-Asala University, Department of Industrial Engineering, Dammam, Saudi Arabia
| | - Robert Sullivan
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia
| | - Harendra S Parekh
- The University of Queensland, School of Pharmacy, Brisbane, Queensland, Australia
| |
Collapse
|
48
|
Jang HY, Cho CS, Shin YM, Kwak J, Sung YH, Kang BC, Kim JH. Isolation and Characterization of the Primary Marmoset ( Callithrix jacchus) Retinal Pigment Epithelial Cells. Cells 2023; 12:1644. [PMID: 37371114 DOI: 10.3390/cells12121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Marmosets have emerged as a valuable primate model in ophthalmic research due to their similarity to the human visual system and their potential for generating transgenic models to advance the development of therapies. In this study, we isolated and cultured primary retinal pigment epithelium (RPE) cells from marmosets to investigate the mechanisms underlying RPE dysfunction in aging and age-related macular degeneration (AMD). We confirmed that our culture conditions and materials supported the formation of RPE monolayers with functional tight junctions that closely resembled the in vivo RPE. Since serum has been shown to induce epithelial-mesenchymal transition (EMT) in RPE cells, we compared the effects of fetal bovine serum (FBS) with serum-free supplements B27 on transepithelial electrical resistance (TER), cell proliferation, and morphological characteristics. Additionally, we assessed the age-related morphological changes of in vivo and primary RPE cells. Our results indicate that primary marmoset RPE cells exhibit in vivo-like characteristics, while cells obtained from an older donor show evidence of aging, including a failure to form a polarized monolayer, low TER, and delayed cell cycle. In conclusion, our primary marmoset RPE cells provide a reliable in vitro model for developing novel therapeutics for visual-threatening disorders such as AMD, which can be used before animal experiments using marmosets.
Collapse
Affiliation(s)
- Ha Young Jang
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Young Mi Shin
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
| | - Jina Kwak
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Young Hoon Sung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Republic of Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul 03082, Republic of Korea
- Department of Biomedical Sciences & Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Institute of Reproductive Medicine and Population, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
49
|
Kropp M, Mohit M, Leroy-Ciocanea CI, Schwerm L, Harmening N, Bascuas T, De Clerck E, Kreis AJ, Pajic B, Johnen S, Thumann G. Mammalian Animal and Human Retinal Organ Culture as Pre-Clinical Model to Evaluate Oxidative Stress and Antioxidant Intraocular Therapeutics. Antioxidants (Basel) 2023; 12:1211. [PMID: 37371942 DOI: 10.3390/antiox12061211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Oxidative stress (OS) is involved in the pathogenesis of retinal neurodegenerative diseases such as age-related macular degeneration (AMD) and diabetic retinopathy (DR) and an important target of therapeutic treatments. New therapeutics are tested in vivo despite limits in terms of transferability and ethical concerns. Retina cultures using human tissue can deliver critical information and significantly reduce the number of animal experiments along with increased transferability. We cultured up to 32 retina samples derived from one eye, analyzed the model's quality, induced OS, and tested the efficiency of antioxidative therapeutics. Bovine, porcine, rat, and human retinae were cultured in different experimental settings for 3-14 d. OS was induced by a high amount of glucose or hydrogen peroxide (H2O2) and treated with scutellarin, pigment epithelium-derived factor (PEDF), and/or granulocyte macrophage colony-stimulating factor (GM-CSF). The tissue morphology, cell viability, inflammation, and glutathione level were determined. The retina samples showed only moderate necrosis (23.83 ± 5.05 increased to 27.00 ± 1.66 AU PI-staining over 14 d) after 14 days in culture. OS was successfully induced (reduced ATP content of 288.3 ± 59.9 vs. 435.7 ± 166.8 nM ATP in the controls) and the antioxidants reduced OS-induced apoptosis (from 124.20 ± 51.09 to 60.80 ± 319.66 cells/image after the scutellarin treatment). Enhanced mammalian animal and human retina cultures enable reliable, highly transferable research on OS-triggered age-related diseases and pre-clinical testing during drug development.
Collapse
Affiliation(s)
- Martina Kropp
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Mohit Mohit
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | | | - Laura Schwerm
- Department of Ophthalmology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
| | - Nina Harmening
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Thais Bascuas
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Eline De Clerck
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Andreas J Kreis
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| | - Bojan Pajic
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Eye Clinic ORASIS, Swiss Eye Research Foundation, 5734 Reinach, Switzerland
- Department of Physics, Faculty of Sciences, University of Novi Sad, 21000 Novi Sad, Serbia
- Faculty of Medicine of the Military Medical Academy, University of Defense, 11000 Belgrade, Serbia
| | - Sandra Johnen
- Department of Ophthalmology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, 52074 Aachen, Germany
| | - Gabriele Thumann
- Experimental Ophthalmology, University of Geneva,1205 Geneva, Switzerland
- Department of Ophthalmology, University Hospitals of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
50
|
Nguyen VP, Henry J, Zhe J, Hu J, Wang X, Paulus YM. Multimodal imaging of laser-induced choroidal neovascularization in pigmented rabbits. Sci Rep 2023; 13:8396. [PMID: 37225775 DOI: 10.1038/s41598-023-35394-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023] Open
Abstract
This study aimed to demonstrate longitudinal multimodal imaging of laser photocoagulation-induced choroidal neovascularization (CNV) in pigmented rabbits. Six Dutch Belted pigmented rabbits were treated with 12 laser lesions in each eye at a power of 300 mW with an aerial diameter spot size of 500 μm and pulse duration of 100 ms. CNV progression was monitored over a period of 4 months using different imaging techniques including color fundus photography, fluorescein angiography (FA), photoacoustic microscopy (PAM), and optical coherence tomography (OCT). All treated eyes developed CNV with a success rate of 100%. The margin and morphology of CNV were detected and rendered in three dimensions using PAM and OCT. The CNV was further distinguished from the surrounding melanin and choroidal vessels using FDA-approved indocyanine green dye-enhanced PAM imaging. By obtaining PAM at 700 nm, the location and density of CNV were identified, and the induced PA signal increased up to 59 times. Immunohistochemistry with smooth muscle alpha-actin (αSMA) antibody confirmed the development of CNV. Laser photocoagulation demonstrates a great method to create CNV in pigmented rabbits. The CNV was stable for up to 4 months, and the CNV area was measured from FA images similar to PAM and OCT results. In addition, this study demonstrates that contrast agent-enhanced PAM imaging allows for precise visualization and evaluation of the formation of new blood vessels in a clinically-relevant animal model of CNV. This laser-induced CNV model can provide a unique technique for longitudinal studies of CNV pathogenesis that can be imaged with multimodal imaging.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Jessica Henry
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Josh Zhe
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Justin Hu
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Yannis M Paulus
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA.
| |
Collapse
|