1
|
Zhang B, Pethybridge H, Sutton C, Virtue P, Li Y. Total mercury concentrations in Tasman Sea mesopelagic fish: Exploring biotic and abiotic drivers. MARINE POLLUTION BULLETIN 2024; 206:116676. [PMID: 38991610 DOI: 10.1016/j.marpolbul.2024.116676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024]
Abstract
Understanding mercury (Hg) concentrations in mesopelagic and mid-trophic fishes is important for assessing Hg accumulation in oceanic ecosystems and higher-order predators. This study measured total Hg (THg) concentrations in the whole body of 16 abundant mesopelagic fish species sampled in two distinct sites within the Tasman Sea. Across all species, total Hg concentrations ranged from 0.02 to 0.48 μg g-1 dry weight (0.01 to 0.15 μg g-1 wet weight). Total Hg concentrations varied with vertical migration patterns, with shallower migrators exhibiting higher THg. Females typically had statistically higher THg concentrations than males. Positive correlations between THg concentration and standard length were observed for some but not all species. At the community level, THg concentrations correlated positively with estimated trophic position and foraging habitat, as inferred by stable isotope values. These findings contribute to our understanding of Hg cycling in oceanic ecosystems and the potential for biomagnification in oceanic top-order predators.
Collapse
Affiliation(s)
- Bowen Zhang
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia; CSIRO Environment, Battery Point, Tasmania 7004, Australia.
| | | | | | - Patti Virtue
- Institute for Marine and Antarctic Studies, University of Tasmania, Battery Point, Tasmania 7004, Australia; CSIRO Environment, Battery Point, Tasmania 7004, Australia
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
2
|
Sisma-Ventura G, Silverman J, Segal Y, Hauzer H, Abu Khadra M, Stern N, Guy-Haim T, Herut B. Exceptionally high levels of total mercury in deep-sea sharks of the Southeastern Mediterranean sea over the last ∼ 40 years. ENVIRONMENT INTERNATIONAL 2024; 187:108661. [PMID: 38688233 DOI: 10.1016/j.envint.2024.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
Deep-sea habitats are currently recognized as a hot spot for mercury (Hg) accumulation from anthropogenic sources, resulting in elevated concentrations of total mercury (THg) in deep-sea megafauna. Among them, deep-sea sharks (Class Chondrichthyes) are characterized by high trophic position and extended longevity and are, therefore, at high risk for mercury contamination. Despite this, sharks are overexploited by fishing activity in increasingly deeper water, worldwide, imposing health risks to human consumption. While it is imperative to better understand long-term mercury contamination in deep-sea megafauna, few historical data sets exist to capture this process. Here we explore four decades (1985-2022) of THg accumulation in five species of deep-sea sharks (G. melastomus, E. spinax, S. rostratus, C. granulosus, and D. licha) of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) sampled during 19 research cruises. We exhibited exceptionally high THg levels (per length/weight), the highest as 16.6 μg g-1 (wet wt.), almost entirely (98.9 %; n = 298 specimens) exceeding the limit for safe consumption (0.3-0.5 μg THg g-1 wet wt.). The maximal THg levels of the long-lived species D. licha and C. granulosus in the SEMS were enriched by a factor of ∼ 7 and >10 compared to counterpart species from other oceanic areas, respectively. We attribute this to the ultra-oligotrophic conditions of the SEMS, which cause slower growth rates and dwarfism in deep-sea sharks, resulting in an extended exposure time to mercury contamination. In the long-lived species, C. granulosus and D. licha, a temporal increase of average THg levels of ∼ 80 % was recorded between 1987-1999 and 2021-2022. This likely reflects the long-term accumulation of historical anthropogenic Hg in deep-sea environments, which is further amplified in marginal seas such as the Mediterranean, impacted by global air pollution crossroads and surrounded by land-based pollution sources. Future consumption of products from deep-sea sharks is potentially high risk to human health.
Collapse
Affiliation(s)
- Guy Sisma-Ventura
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel.
| | - Jacob Silverman
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Yael Segal
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Hagar Hauzer
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Maria Abu Khadra
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Nir Stern
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Tamar Guy-Haim
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel
| | - Barak Herut
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 310800, Israel.
| |
Collapse
|
3
|
Díaz-Delgado E, Girolametti F, Annibaldi A, Trueman CN, Willis TJ. Mercury bioaccumulation and its relationship with trophic biomarkers in a Mediterranean elasmobranch mesopredator. MARINE POLLUTION BULLETIN 2024; 201:116218. [PMID: 38531207 DOI: 10.1016/j.marpolbul.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Human activity has led to increased concentrations of mercury (Hg) in the world's oceans. Mercury can bioaccumulate and biomagnify in animal tissues via trophic transfer, thus, becoming most pronounced in larger and older predators. Here, we measured Hg concentrations and their relationship with stable isotopes-based proxies of trophic level (δ13C and δ15N values) in multiple tissues of Mustelus spp. from the Mediterranean Sea. We found higher Hg concentrations in muscle than in liver and fin tissues. The relationship between Hg concentrations and δ15N values in muscle suggested repeated foraging for low trophic level and Hg-poor prey, and biomagnification of Hg at higher trophic levels. Seasonal variations in δ13C values could indicate shifts in primary production sources and/or in local prey availability. The HBVSe index suggested no risk to human health, however the safe meal limit recommendations are 4.5 and 2.2 portions per month for adults and children, respectively.
Collapse
Affiliation(s)
- Eric Díaz-Delgado
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Fano Marine Center, Viale Adriatico 1/N, 61032 Fano, Italy.
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Clive N Trueman
- Ocean and Earth Science, University of Southampton, Southampton SO143ZH, UK
| | - Trevor J Willis
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Fano Marine Center, Viale Adriatico 1/N, 61032 Fano, Italy
| |
Collapse
|
4
|
Carrasco-Puig P, Colmenero AI, Ruiz-García D, Molera-Arribas AJ, Hernández-Martínez AM, Raga JA, Barría C. Heavy metal concentrations in sharks, rays and chimaeras from the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 199:115942. [PMID: 38154172 DOI: 10.1016/j.marpolbul.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/30/2023]
Abstract
The potential bioaccumulation of pollutants, such as heavy metals, may pose a threat to the western Mediterranean chondrichthyans and human consumers. Therefore, the first extensive assessment of cadmium (Cd), lead (Pb), and copper (Cu) concentrations in the muscle tissue of 17 species of sharks, rays, and chimaeras in this region was conducted via Microwave Assisted Extraction (MAE) and Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Significant differences between species were observed, particularly related to the rabbit fish (Chimaera monstrosa) and the velvet belly lantern shark (Etmopterus spinax), which exceeded the European Union (EU) Commission Regulation 2023/915 threshold of Cd. Overall, heavy metal concentrations correlated negatively with size and trophic level but positively with depth. Although the consumption of these species may entail minimal risk to adult humans, caution is advised, especially for children. These findings are important due to the widespread consumption of chondrichthyans in many western Mediterranean regions.
Collapse
Affiliation(s)
- Pol Carrasco-Puig
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain.
| | - Ana I Colmenero
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Institut de Ciències del Mar, CSIC, Barcelona, Spain
| | - David Ruiz-García
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain; Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Alejandro J Molera-Arribas
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), Universidad Católica de Valencia San Vicente Mártir, Calpe, Alicante, Spain
| | - Ana M Hernández-Martínez
- Instituto de Investigación en Medio Ambiente y Ciencia Marina (IMEDMAR-UCV), Universidad Católica de Valencia San Vicente Mártir, Calpe, Alicante, Spain
| | - Juan A Raga
- Marine Zoology Unit, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Claudio Barría
- Association for the Study and Conservation of Elasmobranchs and its Ecosystems (Catsharks), Barcelona, Spain
| |
Collapse
|
5
|
Baek K, Park C, Sakong J. Increase of blood mercury level with shark meat consumption: A repeated-measures study before and after Chuseok, Korean holiday. CHEMOSPHERE 2023; 344:140317. [PMID: 37775060 DOI: 10.1016/j.chemosphere.2023.140317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Sharks are known to contain high levels of mercury in their meat. However, few studies have directly assessed the changes in mercury concentration in the human body according to shark meat intake. One hundred and ninety-seven participants that traditionally consume shark meat during the Chuseok holiday were recruited from two areas of Gyeongsangbuk-do, South Korea to examine their blood mercury level before and after the holiday season. Blood mercury levels were measured before and after the holiday season. Characteristics such as the consumption of shark meat, intake amount, and the effect on mercury concentration were assessed during the survey. Univariable and multivariable analysis (Linear Mixed Model) were done for assessing the association between shark meat consumption of holiday season and blood mercury level. Among the total participants, 83 consumed shark meat during holiday. In the univariable analysis, a significant increase in blood mercury levels before and after Chuseok was observed only for the group that consumed shark meat during holiday. The multivariable analysis (adjusted for identified confounders that affect both exposure and outcome considering repeated measurements) showed that consuming shark meat was significantly associated with increased blood mercury levels by 3.56 μg/L (95% confidence interval [CI], 2.64-4.67 μg/L). In the model considering the amount consumed as two group, the level of increase was 2.61 μg/L (95% CI, 1.63-3.58 μg/L) for those consuming <100 g, and 6.20 μg/L (95% CI, 4.77-7.62 μg/L) for those consuming ≥100 g compared to group without consuming shark meat. Considering amount consumed as continuous value, 0.02 μg/L (95% CI, 0.01-0.02 μg/L) of blood mercury increase was significantly associated with consuming 1 g. Consumption of shark meat significantly elevated blood mercury levels, exceeding commonly suggested reference concentrations in less than 2 weeks. These findings suggest the need for public health warnings and regulations regarding shark meat consumption.
Collapse
Affiliation(s)
- Kiook Baek
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, South Korea; Department of Medicine, Graduate School of Kyungpook National University, Daegu, South Korea
| | - Chulyong Park
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, South Korea; Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University, Daegu, South Korea
| | - Joon Sakong
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, South Korea; Department of Preventive Medicine and Public Health, College of Medicine, Yeungnam University, Daegu, South Korea.
| |
Collapse
|
6
|
Guo Z, Gong Y, Li Z, Shen Y, Li Y. Lipid-extracted muscle and liver tissues: Can they reveal mercury exposure of pelagic sharks? CHEMOSPHERE 2023; 340:139873. [PMID: 37619753 DOI: 10.1016/j.chemosphere.2023.139873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Pelagic sharks are apex predators in oceanic ecosystems and tend to accumulate high amounts of mercury (Hg). The conventional method for assessing Hg exposure in sharks involves analyzing tissue samples without any chemical treatment. However, a substantial number of chemically treated tissue samples are still being preserved in laboratories or museums. It is critical to maximize the utilization of existing samples to reduce the need for additional sampling of pelagic sharks, especially endangered species. Lipid extraction is a widely employed pretreatment process for carbon isotope analysis in shark trophic ecology, while its impact on Hg quantification remains uncertain. Here, we evaluated the feasibility of using lipid-free muscle and liver tissues for investigation of Hg exposure in four endangered pelagic sharks inhabiting the eastern Pacific, including bigeye thresher (Alopias superciliosus), pelagic thresher (A. pelagicus), blue shark (Prionace glauca) and silky shark (Carcharhinus falciformis). Results showed that total Hg concentrations (THg) differed between untreated (THgbulk) and lipid-free (THglipid-free) samples for each tissue type of each species. In addition, dichloromethane-methanol extractions significantly altered the amount of Hg. This may result from the removal of lipoprotein compounds that vary between tissues and species. The THgbulk can be calculated by THglipid-free using the following formulas, THgbulk = 1.14 × THglipid-free + 0.30 and THgbulk = 0.33 × THglipid-free + 0.18, for muscle and liver tissues, respectively. These findings emphasize the applications of lipid-free tissues in THg analysis. This study may have important implications for improving evaluation of Hg exposure in endangered pelagic sharks.
Collapse
Affiliation(s)
- Zehao Guo
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yi Gong
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Zezheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yongfu Shen
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
7
|
Crawford LM, Gelsleichter J, Newton AL, Hoopes LA, Lee CS, Fisher NS, Adams DH, Giraudo M, McElroy AE. Associations between total mercury, trace minerals, and blood health markers in Northwest Atlantic white sharks (Carcharodon carcharias). MARINE POLLUTION BULLETIN 2023; 195:115533. [PMID: 37734227 DOI: 10.1016/j.marpolbul.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
The ecology and life-histories of white sharks make this species susceptible to mercury bioaccumulation; however, the health consequences of mercury exposure are understudied. We measured muscle and plasma total mercury (THg), health markers, and trace minerals in Northwest Atlantic white sharks. THg in muscle tissue averaged 10.0 mg/kg dry weight, while THg in blood plasma averaged 533 μg/L. THg levels in plasma and muscle were positively correlated with shark precaudal length (153-419 cm), and THg was bioaccumulated proportionally in muscle and plasma. Nine sharks had selenium:mercury molar ratios in blood plasma >1.0, indicating that for certain individuals the potential protective effects of the trace mineral were diminished, whereas excess selenium may have protected other individuals. No relationships between plasma THg and any trace minerals or health markers were identified. Thus, we found no evidence of negative effects of Hg bioaccumulation, even in sharks with very high THg.
Collapse
Affiliation(s)
- Lisa M Crawford
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| | | | - Alisa L Newton
- OCEARCH, Park City, UT 84060, USA; ZooQuatic Laboratory, LLC, Baltimore, MD 21202, USA
| | - Lisa A Hoopes
- Department of Research and Conservation, Georgia Aquarium, Atlanta, GA 30313, USA
| | - Cheng-Shiuan Lee
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Nicholas S Fisher
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | | | - Maeva Giraudo
- Laboratoire de Biodiversité et Biotechnologie Microbienne, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
| | - Anne E McElroy
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
8
|
Dutton J, Hobbs JC, Joung SJ, Schmidt JV. Mercury Concentrations in Whale Shark (Rhincodon typus) Embryo Muscle Tissue. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:23. [PMID: 37568035 DOI: 10.1007/s00128-023-03787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
Mercury (Hg) is known to be maternally transferred during embryonic development in sharks; however, Hg concentrations in embryos of filter feeding shark species have not previously been reported. This study measured the total Hg (THg) concentration in muscle tissue of 27 embryos taken from a pregnant whale shark (Rhincodon typus) landed in Taiwan in 1995 and the mean THg concentration compared to the mean muscle THg concentration in embryos from other shark species. The mean (± standard deviation) THg concentration in whale shark embryos was 0.0762 ± 0.0163 µg/g dry weight (0.0224 ± 0.0054 µg/g wet weight). There was no relationship between muscle THg concentration and body length and no significant difference in THg concentration between male and female embryos (p > 0.05). Whale shark embryos have the lowest reported muscle THg concentrations compared to literature values for muscle THg concentrations for embryos from other shark species.
Collapse
Affiliation(s)
- Jessica Dutton
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| | - Jessica C Hobbs
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA
| | - Shoou-Jeng Joung
- Department of Environmental Biology and Fisheries Science, National Taiwan Ocean University, Keelung, 202, Taiwan
| | | |
Collapse
|
9
|
Li Z, Pethybridge HR, Wu F, Li Y. Mercury bioaccumulation in thresher sharks from the eastern tropical Pacific: Influences of body size, maturation stage, and feeding habitat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162248. [PMID: 36804976 DOI: 10.1016/j.scitotenv.2023.162248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Sharks, as top order predators, provide a guidance on how contaminants such as mercury bioaccumulate in marine environments. This study assessed the bioaccumulation of mercury (total mercury, THg) in the muscle, liver, red blood cells (RBC), and plasma of pelagic and bigeye thresher sharks (Alopias pelagicus and A. superciliosus) from eastern tropical Pacific. Additionally, the concentration of methylmercury (MeHg) in muscle was also determined to assess risks for human consumption. For both species, muscle THg concentrations (4.05 ± 2.15 and 4.12 ± 1.84 μg g-1 dry weight for pelagic and bigeye thresher shark) were higher than that in other tissues. THg concentrations for all tissues were significantly correlated with precaudal length, with higher accumulation rates after maturity in pelagic than bigeye thresher sharks, suggesting an associated dietary shift at maturation. Correlations among tissues in both species suggested similar transportation and distribution patterns in internal tissues. The δ13C values in muscle, RBC and plasma suggested that habitat shifts influenced Hg accumulation, whereas trophic position, estimated by δ15N values, had limited effects on patterns of Hg bioaccumulation. Diet shifts towards prey more cephalopods that content higher Hg than small fishes (large fishes: 1.77 μg g-1; cephalopods: 0.66 μg g-1 and small fishes 0.48 μg g-1, dry weight) increased Hg accumulation rates in adult pelagic thresher sharks. Concentrations of MeHg in the muscle of both thresher shark (3.42 ± 1.68 μg g-1 in A. pelagicus and 3.78 ± 2.13 μg g-1 in A. superciliosus) exceeded the recommended levels for human consumption. This research provides insight into the factors influencing mercury bioaccumulation in thresher sharks, which are essential for the management and conservation of these species.
Collapse
Affiliation(s)
- Zezheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Heidi R Pethybridge
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization, Hobart, Tasmania, Australia
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
10
|
Baró-Camarasa I, Galván-Magaña F, Cobelo-García A, Marmolejo-Rodríguez AJ. Major, minor and trace element concentrations in the muscle and liver of a pregnant female Pacific sharpnose shark (Rhizoprionodon longurio) and its embryos. MARINE POLLUTION BULLETIN 2023; 188:114619. [PMID: 36689873 DOI: 10.1016/j.marpolbul.2023.114619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The Pacific sharpnose shark Rhizoprionodon longurio is an abundant shark consumed by human population in Mexico. This study aimed to determine and compare the concentrations of thirteen essential elements (K, S, P, Na, Ca, Mg, Fe, Zn, Se, Cu, Mn, Cr and Co) and eleven non-essential elements (As, Sr, Cd, V, Li, U, Tl, Ag, Sn, Sb and Pb) in the muscle and liver of a pregnant female, fished near the copper mine of Santa Rosalía, and their respective embryos. Major, minor and trace (essential and non-essential) elements were transferred during gestation to embryos. All major elements analyzed had significantly higher concentrations in embryos liver than the pregnant female, except for magnesium. Higher concentrations in embryo tissues than the pregnant female tissues were found for the non-essential trace elements of strontium, lithium, thallium and silver, which indicate an easy maternal transfer of these non-essential elements.
Collapse
Affiliation(s)
- Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico
| | | | | |
Collapse
|
11
|
Riesgo L, Sanpera C, García-Barcelona S, Sánchez-Fortún M, Coll M, Navarro J. Understanding the role of ecological factors affecting mercury concentrations in the blue shark (Prionace glauca). CHEMOSPHERE 2023; 313:137642. [PMID: 36572364 DOI: 10.1016/j.chemosphere.2022.137642] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Human activities have increased environmental concentrations of pollutants in marine ecosystems, which can cause harmful effects on marine organisms. Top predators are particularly susceptible to bioaccumulation and biomagnification of pollutants through the food webs and are described as good sentinels for monitoring metal accumulation such mercury (Hg) in marine ecosystems. However, to be used as sentinels, it is important to understand the main ecological factors affecting the concentrations of pollutants in these organisms. In the present study, our main objective was to investigate the effect of body size, sex, trophic niche and geographic area on Hg concentrations in a top marine top predator, the blue shark (Prionace glauca). We analysed Hg in muscle samples from male and female blue sharks of different body sizes collected from the waters surrounding the Canary Islands and the South of Portugal, in the Atlantic Ocean, to waters of the north-western Mediterranean Sea. The results revealed that the sampling area was an important factor explaining Hg concentrations, showing higher values in the Mediterranean blue sharks. We also found a positive relationship between Hg concentrations and body size of blue sharks, indicating a bioaccumulation process of this pollutant in relation with body size. Moreover, we observed a relationship between Hg concentrations and δ13C values, a proxy of the use of inshore-offshore marine habitats. Individuals with depleted δ13C values that potentially foraged in offshore waters showed higher Hg values. Importantly, most of the analysed blue sharks presented Hg concentrations that exceeded the limits established by the European Union for human consumption.
Collapse
Affiliation(s)
- Lola Riesgo
- Institut de Ciències Del Mar (ICM), CSIC, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Carola Sanpera
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | | | - Moisès Sánchez-Fortún
- Departament de Biologia Evolutiva, Ecologia I Ciències Ambientals, Universitat de Barcelona, Barcelona, Spain
| | - Marta Coll
- Institut de Ciències Del Mar (ICM), CSIC, Barcelona, Spain
| | - Joan Navarro
- Institut de Ciències Del Mar (ICM), CSIC, Barcelona, Spain.
| |
Collapse
|
12
|
Mitchell JD, Drymon JM, Vardon J, Coulson PG, Simpfendorfer CA, Scyphers SB, Kajiura SM, Hoel K, Williams S, Ryan KL, Barnett A, Heupel MR, Chin A, Navarro M, Langlois T, Ajemian MJ, Gilman E, Prasky E, Jackson G. Shark depredation: future directions in research and management. REVIEWS IN FISH BIOLOGY AND FISHERIES 2023; 33:475-499. [PMID: 36404946 PMCID: PMC9664043 DOI: 10.1007/s11160-022-09732-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/28/2022] [Indexed: 05/19/2023]
Abstract
Shark depredation is a complex social-ecological issue that affects a range of fisheries worldwide. Increasing concern about the impacts of shark depredation, and how it intersects with the broader context of fisheries management, has driven recent research in this area, especially in Australia and the United States. This review synthesises these recent advances and provides strategic guidance for researchers aiming to characterise the occurrence of depredation, identify the shark species responsible, and test deterrent and management approaches to reduce its impacts. Specifically, the review covers the application of social science approaches, as well as advances in video camera and genetic methods for identifying depredating species. The practicalities and considerations for testing magnetic, electrical, and acoustic deterrent devices are discussed in light of recent research. Key concepts for the management of shark depredation are reviewed, with recommendations made to guide future research and policy development. Specific management responses to address shark depredation are lacking, and this review emphasizes that a "silver bullet" approach for mitigating depredation does not yet exist. Rather, future efforts to manage shark depredation must rely on a diverse range of integrated approaches involving those in the fishery (fishers, scientists and fishery managers), social scientists, educators, and other stakeholders.
Collapse
Affiliation(s)
- J. D. Mitchell
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
| | - J. M. Drymon
- Mississippi State University, Coastal Research and Extension Center, 1815 Popps Ferry Road, Biloxi, MS 39532 USA
- Mississippi-Alabama Sea Grant Consortium, 703 East Beach Drive, Ocean Springs, MS 39564 USA
| | - J. Vardon
- Southern Cross University, Lismore, NSW Australia
| | - P. G. Coulson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - C. A. Simpfendorfer
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - S. B. Scyphers
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - S. M. Kajiura
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - K. Hoel
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - S. Williams
- Queensland Government, Department of Agriculture and Fisheries, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102 Australia
- School of Biological Sciences, The University of Queensland, St Lucia, Qld 4072 Australia
| | - K. L. Ryan
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| | - A. Barnett
- Biopixel Oceans Foundation, Cairns, QLD Australia
- Marine Data Technology Hub, James Cook University, Townsville, QLD 4811 Australia
| | - M. R. Heupel
- Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, TAS 7004 Australia
| | - A. Chin
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Bldg 34 James Cook Drive, Douglas, QLD 4811 Australia
| | - M. Navarro
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - T. Langlois
- School of Biological Sciences, The University of Western Australia, Crawley, WA Australia
- The Oceans Institute, University of Western Australia, Crawley, WA Australia
| | - M. J. Ajemian
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - E. Gilman
- Pelagic Ecosystems Research Group, Honolulu, HI USA
- Heriot-Watt University, Edinburgh, UK
| | - E. Prasky
- Coastal Sustainability Institute, Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908 USA
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA 02115 USA
| | - G. Jackson
- Department of Primary Industries and Regional Development, Western Australian Fisheries and Marine Research Laboratories, 39 Northside Drive, Hillarys, WA 6025 Australia
| |
Collapse
|
13
|
Rodrigues PDA, Ferrari RG, do Rosário DKA, de Almeida CC, Saint'Pierre TD, Hauser-Davis RA, Dos Santos LN, Conte-Junior CA. Toxic metal and metalloid contamination in seafood from an eutrophic Brazilian estuary and associated public health risks. MARINE POLLUTION BULLETIN 2022; 185:114367. [PMID: 36435023 DOI: 10.1016/j.marpolbul.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Guanabara Bay (GB) is a highly contaminated estuarine system and an important fishing area in Southeastern Brazil. In this regard, knowledge concerning the association of certain contaminants in seafood to abiotic factors and human health risk assessments is still understudied. Therefore, this study aimed to quantify nine toxic elements in highly consumed crabs, shrimp, and squid, and associate the results with abiotic factors. A human health risk assessment was also performed. Our findings indicate that crabs are the main bioaccumulators. Transparency and depth were noteworthy for all three taxonomic groups. In general, contaminant concentrations were below the limits established by different international agencies, except for As, which was higher than the Brazilian limit (1 mg kg-1). However, the Hazard Index identified risks to consumer health for the ingestion of seafood. This study emphasizes the importance of jointly evaluating different toxic elements, for a more accurate health risk assessment.
Collapse
Affiliation(s)
- Paloma de Almeida Rodrigues
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil.
| | - Rafaela Gomes Ferrari
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Agrarian Sciences Center, Department of Zootechnics, Federal University of Paraiba, Paraíba, Brazil
| | - Denes Kaic Alves do Rosário
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| | - Cristine Couto de Almeida
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | | | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), 21040-360 Rio de Janeiro, Brazil.
| | - Luciano Neves Dos Santos
- Laboratory of Theoretical and Applied Ichthyology, Institute of Biosciences, Federal University of the State of Rio de Janeiro, Rio de Janeiro 22290-240, Brazil
| | - Carlos Adam Conte-Junior
- Graduate Program in Veterinary Hygiene (PPGHV), Faculty of Veterinary Medicine, Fluminense Federal University (UFF), Vital Brazil Filho, Niterói, RJ 24220-000, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil; Graduate Program in Food Science (PPGCAL), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil; Graduate Program in Sanitary Surveillance (PPGVS), National Institute of Health Quality Control (INCQS), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
| |
Collapse
|
14
|
Vega-Barba C, Páez-Osuna F, Galván-Magaña F, Baró-Camarasa I, Aguilar-Palomino B, Galván-Piña VH, Marmolejo-Rodríguez AJ. Trace elements in the silky shark Carcharhinus falciformis in the Central Pacific Mexican Shelf. MARINE POLLUTION BULLETIN 2022; 185:114263. [PMID: 36327932 DOI: 10.1016/j.marpolbul.2022.114263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Mercury (Hg), cadmium (Cd) and copper (Cu) concentrations were determined in muscle, liver and fin of the silky shark (Carcharhinus falciformis) caught in the Central Pacific Mexican Shelf. Liver tissue presented the highest concentrations of Cd (2.83 μg g-1 wet weight (ww)) and Cu (2.34 μg g-1 ww). For muscle and fin, Cu presented the highest concentrations (0.97 and 1.80 μg g-1 ww, respectively). Liver concentrations were influenced by the maturation stages for the three elements. Immature organisms exhibited lower trace element concentrations than adults. No significant differences were found between sexes, except for Cu concentrations in muscle, where adult females present higher levels than adult males. One muscle sample (2.3 %) exceeded the Mexican Legislation for Hg (1.0 μg g-1 ww) and five muscles samples (11.6 %) exceeded the Mexican limit for Cd (0.5 μg g-1 ww). Meat consumption of this species can be a risk to human health if it is ingested regularly.
Collapse
Affiliation(s)
- Christian Vega-Barba
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Federico Páez-Osuna
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, P.O. Box 811, Mazatlán 82000, Sinaloa, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435 pte., Centro Histórico, C.P. 80000 Culiacán, Sinaloa, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Bernabé Aguilar-Palomino
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco C.P. 48980, Mexico
| | - Víctor Hugo Galván-Piña
- Departamento de Estudios para el Desarrollo Sustentable de Zonas Costeras, Universidad de Guadalajara, Gómez Farías 82, San Patricio-Melaque, Jalisco C.P. 48980, Mexico
| | - Ana J Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n, Col. Playa Palo de Sta. Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
15
|
Erasmus JH, Smit NJ, Gerber R, Schaeffner BC, Nkabi N, Wepener V. Total mercury concentrations in sharks, skates and rays along the South African coast. MARINE POLLUTION BULLETIN 2022; 184:114142. [PMID: 36182787 DOI: 10.1016/j.marpolbul.2022.114142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Global declines in elasmobranch populations resulting from several stressors raises conservation concern. Additionally, apex predators bioaccumulate high concentrations of total mercury (THg), due to biomagnification. Although South Africa is considered one of the top ten contributors of Hg emissions globally, information on Hg concentrations in elasmobranchs is limited. The aim of this study was to evaluate the THg concentrations in 22 species of elasmobranchs along the South African coastline. Concentrations ranged between 0.22 and 5.8 mg/kg in Haploblepharus pictus (dark shysharks) and Rostroraja alba (white skates) on the south coast, respectively. Along the east coast it ranged between 0.21 and 17.8 mg/kg in Mobula kuhlii (shortfin devil rays) and Sphyrna lewini (scalloped hammerheads), respectively. Mercury concentrations on the east coast were in the same range or higher compared to the same species sampled between 2005-10 from the same region, with generally higher concentrations compared to the same species sampled globally.
Collapse
Affiliation(s)
- J H Erasmus
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa.
| | - N J Smit
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa.
| | - R Gerber
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; South African Shark Conservancy, Old Harbour, 22 Marine Drive, Hermanus 7200, South Africa.
| | - B C Schaeffner
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa; South African Shark Conservancy, Old Harbour, 22 Marine Drive, Hermanus 7200, South Africa; Institute for Experimental Pathology at Keldur, University of Iceland, Keldnavegur 3, 112 Reykjavík, Iceland.
| | - N Nkabi
- KwaZulu-Natal Sharks Board, 1a Herrwood Drive, Umhlanga Rocks 4320, South Africa.
| | - V Wepener
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, 11 Hoffman Street, Potchefstroom 2520, South Africa.
| |
Collapse
|
16
|
Li Z, Pethybridge HR, Gong Y, Wu F, Dai X, Li Y. Effect of body size, feeding ecology and maternal transfer on mercury accumulation of vulnerable silky shark Carcharhinus falciformis in the eastern tropical pacific. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119751. [PMID: 35835271 DOI: 10.1016/j.envpol.2022.119751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The silky shark Carcharhinus falciformis is a large pelagic species distributed in the global oceans and was recently listed as "Vulnerable" by the IUCN because of its decline in population due to overfishing. As an apex predator, the silky shark can accumulate elevated quantities of mercury (Hg), posing a potential risk to its remaining population. In this study, total Hg (THg) concentrations were determined in silky shark muscle, liver, dermis, red blood cells (RBC) and plasma sampled from the eastern tropical Pacific, and δ15N values were measured to explore the influence of feeding ecology on Hg accumulation. The highest THg concentrations were in muscle (7.81 ± 6.70 μg g-1 dry weight (dw) or 2.14 ± 1.83 μg g-1 wet weight (ww)) and liver (7.88 ± 10.22 μg g-1 dw or 4.66 ± 6.04 μg g-1 ww) rather than dermis, RBC and plasma. The THg concentrations in all tissue types were significantly correlated with fork length and showed faster accumulation rates after maturity. Maternal THg transfer was observed in silky sharks with embryos having 33.16% and 1.98% in muscle and liver compared with their respective mothers. The potentially harmful THg concentrations in silky shark tissues and embryos may lead to health problems of sharks and consumers. THg concentrations were negatively correlated with δ15N values for all tissues, indicating likely baseline variations in δ15N values that reflect changes in the foraging habitats or regions of silky sharks with size or age. Lastly, strong correlations were observed among THg concentrations of all tissue types, indicating that nonlethal sampling of muscle and dermis tissue can be used effectively to quantify THg concentration of other internal tissues.
Collapse
Affiliation(s)
- Zezheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Heidi R Pethybridge
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organization, Hobart, Tasmania, Australia
| | - Yi Gong
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| | - Feng Wu
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Xiaojie Dai
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai, China; National Engineering Research Centre for Oceanic Fisheries, Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai, China.
| |
Collapse
|
17
|
Butler ECV, Harries SJ, McAllister KA, Windsor JO, Logan M, Crook DA, Roberts BH, Grubert MA, Saunders TM. Influence of life history variation and habitat on mercury bioaccumulation in a high-order predatory fish in tropical Australia. ENVIRONMENTAL RESEARCH 2022; 212:113152. [PMID: 35341754 DOI: 10.1016/j.envres.2022.113152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Mercury distribution and bioaccumulation in aquatic ecosystems of tropical Australia is poorly characterised. Barramundi (Lates calcarifer), a widespread high-order predator in both fresh and coastal marine waters of the region, fulfils requirements for a bio-indicator of mercury contamination. In a study of the Mary River system of the Northern Territory, total mercury in the muscle tissue of 300 specimens gathered over four years (2013-2017, across both wet and dry seasons) was determined by direct combustion-atomic absorption spectrometry. Source of nutrition and trophic position of barramundi in the food web was also estimated via carbon and nitrogen isotopes (δ13C and δ15N), respectively, in tissue by stable isotope mass spectrometry, and determination of strontium isotopes (87Sr/86Sr) in otoliths by laser ablation-ICPMS differentiated between freshwater and saltwater residence. Results showed that fish moving into freshwater floodplain wetlands concentrated mercury in muscle tissue at approximately twice the level of those that remained in saline habitats. Resolving life histories through otolith analyses demonstrated diversity in mercury bioaccumulation for individual fish of the same migratory contingent on the floodplains. Although trophic level (δ15N), capture location, source of nutrition (δ13C), and age or size partly predicted mercury concentrations in barramundi, our results suggest that individual variability in diets, migration patterns and potentially metabolism are also influential. Using a migratory fish as a bio-indicator, and tracking its life history and use of resources, proved valuable as a tool to discern hot spots in a coastal waterway for a contaminant, such as mercury.
Collapse
Affiliation(s)
- Edward C V Butler
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia.
| | - Simon J Harries
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Kirsty A McAllister
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Jonathan O Windsor
- Australian Institute of Marine Science, Arafura Timor Research Facility, Casuarina, Northern Territory, Australia
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David A Crook
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia; Department of Primary Industries, Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - Brien H Roberts
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, Australia
| | - Mark A Grubert
- Fisheries Division, Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| | - Thor M Saunders
- Fisheries Division, Department of Industry, Tourism and Trade, Berrimah, Northern Territory, Australia
| |
Collapse
|
18
|
Li Z, Hussey NE, Li Y. Quantifying maternal transfer of trace elements and stable isotopes in the endangered pelagic thresher shark (Alopias pelagicus). CHEMOSPHERE 2022; 300:134614. [PMID: 35439495 DOI: 10.1016/j.chemosphere.2022.134614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
To quantify maternal provisioning of nutrients in the pelagic thresher shark (Alopias pelagicus) and the potential for negative impacts, the concentrations of trace elements (essential: Co, Cr, Cu, Mn, Ni, Se, and Zn; nonessential: As, Ba, Cd, Hg, and Pb) and fractionation of stable isotopes (13C and 15N) were analyzed in the muscle and liver of 10 pregnant females and 18 associated embryos. Essential trace elements were observed to be offloaded at higher concentrations to embryos, with the exception of Zn and Ni in liver, while nonessential trace elements were unevenly distributed between maternal-embryo tissues. Observed Hg concentrations were at levels considered toxic in A. pelagicus, but the Se: Hg molar ratios in all embryonic tissues were all greater than one. A negative correlation was observed between transfer ratios and concentrations of all elements in maternal tissue, indicating the existence of a regulatory mechanism in maternal ovaries of A. pelagicus. Compared with maternal specimens, associated embryos had higher δ13C and δ15N values in muscle and liver tissue. Negative correlations were observed between δ13C, δ15N, and Δδ13C values and precaudal length in embryonic muscle tissue potentially reflecting either a dietary-habitat shift in pregnant females during the latter period of gestation or a physiological change modifying fractionation. Higher concentrations of essential elements are linked to potential benefits for embryos during early development, levels of Hg suggested a degree of anthropogenic impact with unknown consequences while the directionality of isotopic fractionation could suggest a potential reproductive migration as a protective mechanism for birthing.
Collapse
Affiliation(s)
- Zezheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Nigel E Hussey
- Department of Integrative Biology, University of Windsor, Windsor, Ontario, Canada
| | - Yunkai Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai, China; Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai,China; National Engineering Research Centre for Oceanic Fisheries,Shanghai Ocean University, Shanghai, China; Key Laboratory of Oceanic Fisheries Exploration, Ministry of Agriculture and Rural Affairs, Shanghai,China.
| |
Collapse
|
19
|
Baró-Camarasa I, Marmolejo-Rodríguez AJ, O'Hara TM, Castellini JM, Murillo-Cisneros DA, Martínez-Rincón RO, Elorriaga-Verplancken FR, Galván-Magaña F. Mercury maternal transfer in two placental sharks and a yolk-sac ray from Baja California Sur, Mexico. MARINE POLLUTION BULLETIN 2022; 179:113672. [PMID: 35512518 DOI: 10.1016/j.marpolbul.2022.113672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Total mercury (THg) concentrations were measured in muscle and liver of two placental viviparous sharks, the Pacific sharpnose shark (Rhizoprionodon longurio) and the brown smooth-hound (Mustelus henlei); as well as in the muscle, liver, and yolk of the yolk-sac viviparous speckled guitarfish (Pseudobatos glaucostigmus) in Baja California Sur. The aim was to determine which factors could be involved in maternal transfer and resultant maternal and embryonic THg concentration. Higher THg concentrations were found in pregnant females compared to embryos paired tissues. THg concentrations of embryo tissues decreased with total length (TL), except for the muscle of the Pacific sharpnose shark. THg concentrations of embryo muscle was positively related to THg concentration in the muscle of pregnant females. Embryos TL, muscle THg concentration of pregnant females, percentage of THg concentration in embryos, along with the reproductive strategy are relevant factors required to improve our understanding of THg concentration in embryo tissues.
Collapse
Affiliation(s)
- Isis Baró-Camarasa
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Ana J Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Todd M O'Hara
- Bilingual Laboratory of Toxicology, Dept. of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, C.P. 4461, TX, USA; Department of Veterinary Medicine, University of Alaska Fairbanks, C.P. 99775, AK, USA
| | - J Margaret Castellini
- Department of Veterinary Medicine, University of Alaska Fairbanks, C.P. 99775, AK, USA
| | - Daniela A Murillo-Cisneros
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Raúl O Martínez-Rincón
- CONACYT-Centro de Investigaciones Biológicas del Noroeste, S.C. La Paz, Baja California Sur C.P. 23096, Mexico
| | | | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
20
|
Cordero-Maldonado C, Espinoza P. Cadmium and lead levels in muscle tissue of blue shark (Prionace glauca) in the Southeastern Pacific Waters. MARINE POLLUTION BULLETIN 2022; 177:113523. [PMID: 35290836 DOI: 10.1016/j.marpolbul.2022.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Prionace glauca is a top predator, prone to bioaccumulate trace elements, representing the most captured elasmobranch species for human consumption in Peru. Concentrations of cadmium and lead in the edible muscle tissue of the blue shark captured in the south Peruvian coastal waters and offshore north-central Chile were determined. The Cd and Pb levels varied between 0.004 and 0.014 and 0.004 and 0.03 mg kg-1, respectively. We found direct correlation of Cd concentration with the total length, nevertheless there was no clear relationship regarding sex, seasons, and capture areas. Both metals were below the safety limits for human consumption. The target hazard quotient (THQ) values suggest that its consumption does not represent a risk to the human health. In Peru, this is only the second paper that reports Cd and Pb in sharks. We recommend increasing the sampling by including larger sharks and in other regions of the Peruvian coastline.
Collapse
Affiliation(s)
- Cristel Cordero-Maldonado
- Carrera de Biología Marina, Facultad de Ciencias Veterinarias y Biológicas, Universidad Científica del Sur, Lima, Peru.
| | - Pepe Espinoza
- Carrera de Biología Marina, Facultad de Ciencias Veterinarias y Biológicas, Universidad Científica del Sur, Lima, Peru; Instituto del Mar del Perú, Esquina Gamarra con General Valle, Chucuito, Callao, Peru
| |
Collapse
|
21
|
Le Croizier G, Sonke JE, Lorrain A, Renedo M, Hoyos-Padilla M, Santana-Morales O, Meyer L, Huveneers C, Butcher P, Amezcua-Martinez F, Point D. Foraging plasticity diversifies mercury exposure sources and bioaccumulation patterns in the world's largest predatory fish. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127956. [PMID: 34986563 DOI: 10.1016/j.jhazmat.2021.127956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/16/2021] [Accepted: 11/28/2021] [Indexed: 05/04/2023]
Abstract
Large marine predators exhibit high concentrations of mercury (Hg) as neurotoxic methylmercury, and the potential impacts of global change on Hg contamination in these species remain highly debated. Current contaminant model predictions do not account for intraspecific variability in Hg exposure and may fail to reflect the diversity of future Hg levels among conspecific populations or individuals, especially for top predators displaying a wide range of ecological traits. Here, we used Hg isotopic compositions to show that Hg exposure sources varied significantly between and within three populations of white sharks (Carcharodon carcharias) with contrasting ecology: the north-eastern Pacific, eastern Australasian, and south-western Australasian populations. Through Δ200Hg signatures in shark tissues, we found that atmospheric Hg deposition pathways to the marine environment differed between coastal and offshore habitats. Discrepancies in δ202Hg and Δ199Hg signatures among white sharks provided evidence for intraspecific exposure to distinct sources of marine methylmercury, attributed to population and ontogenetic shifts in foraging habitat and prey composition. We finally observed a strong divergence in Hg accumulation rates between populations, leading to three times higher Hg concentrations in large Australasian sharks compared to north-eastern Pacific sharks, and likely due to different trophic strategies adopted by adult sharks across populations. This study illustrates the variety of Hg exposure sources and bioaccumulation patterns that can be found within a single species and suggests that intraspecific variability needs to be considered when assessing future trajectories of Hg levels in marine predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France; Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin 82040, Mexico.
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Marina Renedo
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C, Sinaloa 1540, Col. Las Garzas, C.P. 23070 La Paz, B.C.S., Mexico; Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, CO 80908, USA
| | | | - Lauren Meyer
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; Georgia Aquarium, Atlanta, GA 30313, USA
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Paul Butcher
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Felipe Amezcua-Martinez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Joel Montes Camarena S/N, Mazatlán, Sin 82040, Mexico
| | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
22
|
Rodrigues ACM, Gravato C, Galvão D, Silva VS, Soares AMVM, Gonçalves JMS, Ellis JR, Vieira RP. Ecophysiological effects of mercury bioaccumulation and biochemical stress in the deep-water mesopredator Etmopterus spinax (Elasmobranchii; Etmopteridae). JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127245. [PMID: 34844362 DOI: 10.1016/j.jhazmat.2021.127245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a non-essential metal that can have toxic effects on the fitness of organisms and tends to bioaccumulate with age and to biomagnify in higher trophic levels. Few studies have assessed oxidative stress and neurotoxicity in deep-water sharks. This study evaluated early ontogenetic changes and physiological effects (antioxidant defences, oxidative damage, aerobic metabolism and neurotransmission functions) of Hg accumulation in the white muscle and brain tissues of the velvet belly lantern shark Etmopterus spinax from the southern Iberian coast (NE Atlantic). Results suggested that the low mercury concentrations observed may induce acute effects in E. spinax before they reach sexual maturity. We found different Hg concentrations in E. spinax: [Hg] males > [Hg] females; [Hg] muscle > [Hg] brain. Females appeared to have higher redox capability translated into higher activities and levels of antioxidant defences than males. However, higher levels of oxidative damage were also observed in females. Whilst the mechanisms underlying these effects remain unknown, these results suggest differences in mercury accumulation between tissues and sex, and potentially deleterious effects on oxidative stress status and neurophysiology of E. spinax, potentially impairing swimming performance and reproduction, which could subsequently impact on the health of both individuals and population.
Collapse
Affiliation(s)
- Andreia C M Rodrigues
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810- 193 Aveiro, Portugal.
| | - Carlos Gravato
- Faculdade de Ciências & CESAM, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Daniela Galvão
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810- 193 Aveiro, Portugal
| | - Virgília S Silva
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810- 193 Aveiro, Portugal
| | - Amadeu M V M Soares
- CESAM - Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810- 193 Aveiro, Portugal
| | - Jorge M S Gonçalves
- Centre of Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jim R Ellis
- Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK
| | - Rui P Vieira
- Centre for Environment, Fisheries & Aquaculture Science (CEFAS), Pakefield Road, Lowestoft NR33 0HT, UK; School of Environmental Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
23
|
Martins MF, Costa PG, Bianchini A. Assessing multigenerational exposure to metals in elasmobranchs: Maternal transfer of contaminants in a yolk-sac viviparous species. MARINE POLLUTION BULLETIN 2022; 175:113364. [PMID: 35093781 DOI: 10.1016/j.marpolbul.2022.113364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to assess the maternal offloading of metals in the Brazilian guitarfishPseudobatos horkelii through determining essential (Cr, Cu, Fe) and non-essential (Cd, Hg, Pb) metal concentrations along two generations of this species: pregnant females and offspring. The maximum transfer capacity (ECER) and offspring/mother ratio were calculated to estimate the extent of offloading, as well as the proportion of contaminants presented in offspring related to the maternal concentrations. Transfer efficiency was element-dependent. Chromium had the highest ECER (99.7%), followed by Hg (67.7%). Other essential metals were less transferred (9.6-35.6%) and Cd and Pb were not detected in uterine content samples. The relationships between maternal length and concentration, as well as transfer capacity were not significant, indicating that females might be continuously exposed, and that offloading might not excrete metals efficiently. On the other hand, embryos are exposed to these elements which could impair embryonic development.
Collapse
Affiliation(s)
- Mariana F Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil.
| | - Patrícia G Costa
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil
| |
Collapse
|
24
|
Lara A, Galván-Magaña F, Elorriaga-Verplancken FR, Marmolejo-Rodríguez AJ, González-Armas R, Arreola-Mendoza L, Sujitha SB, Jonathan MP, Pantoja-Echevarría LM. Mercury, selenium and cadmium in juvenile blue (Prionace glauca) and smooth hammerhead (Sphyrna zygaena) sharks from the Northwest Mexican Pacific coast. MARINE POLLUTION BULLETIN 2022; 175:113311. [PMID: 35092935 DOI: 10.1016/j.marpolbul.2021.113311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 12/23/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Cadmium, selenium, and mercury concentrations were measured in muscle and liver of juvenile blue (Prionace glauca) and smooth hammerhead (Sphyrna zygaena) sharks caught on the west coast of Baja California Sur, Mexico, to evaluate the human health risk associated with its consumption. Cd and Hg were lower than the maximum allowable limit for human consumption established by the Mexican government (Hg = 1.0 μg g-1 and Cd = 0.50 μg g-1). Interspecific differences in trace elements accumulation denoted diet variations and physiological requirements of each shark species. Calculated biomagnification factor (BMF) values confirmed a prey-predator trophic transfer of elements. Not significant results of Selenium health benefit Index value (P. glauca = -0.46; S. zygaena = -0.02) signify no potential risks for human health. However, calculated Hazard Index values displayed possible health hazards to the children who consume blue shark meat regularly. The local population is advised regarding the ingestion rates of shark.
Collapse
Affiliation(s)
- Ariagna Lara
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico.
| | - Fernando R Elorriaga-Verplancken
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Rogelio González-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Laura Arreola-Mendoza
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, C.P. 07340 Ciudad de México, Mexico
| | - S B Sujitha
- Instituto Politécnico Nacional, Escuela Superior de Ingeniería y Arquitectura (ESIA), Unidad Ticoman, Calz. Ticomán 600, C.P. 07340 Ciudad de México, Mexico
| | - M P Jonathan
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, C.P. 07340 Ciudad de México, Mexico
| | | |
Collapse
|
25
|
Veron A, Dell'Anno A, Angelidis MO, Aloupi M, Danovaro R, Radakovitch O, Poirier A, Heussner S. Pollutant Pb burden in Mediterranean Centroscymnus coelolepis deep-sea sharks. MARINE POLLUTION BULLETIN 2022; 174:113245. [PMID: 34995885 DOI: 10.1016/j.marpolbul.2021.113245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
We report lead (Pb) analyses in juvenile (n = 37; mean length = 24.7 ± 2.3 cm) and adult (n = 16; mean length = 52.3 ± 9.3 cm) Centroscymnus coelolepis Mediterranean deep-sea sharks that are compared to Pb content in bathy-demersal, pelagic and shallow coastal sharks. Median Pb concentrations of C. coelolepis muscle (0.009-0.056 wet ppm) and liver (0.023-0.061 wet ppm) are among the lowest encountered in shark records. Stable Pb isotope imprints in adult C. coelolepis muscles highlight that most of Pb in C. coelolepis is from human origin. Lead isotopes reveal the persistence of gasoline Pb emitted in the 1970s in low-turnover adult shark's muscle while associated liver imprints are in equilibrium with recent pollutant Pb signatures suggesting an efficient pollutant Pb turnover metabolism. The comparison of Pb distribution between adult and juvenile cohorts suggests the role of dietary exposure and possible maternal offloading of Pb during gestation, likely associated to vitellogenesis in this aplacental viviparous deep-sea shark.
Collapse
Affiliation(s)
- A Veron
- CEREGE, UMR7330 CNRS, AMU, IRD, Coll. France, INRAE, Technopole Arbois, BP80, 13545 Aix en Provence cedex 4, France; GEOTOP, Université du Québec à Montréal, CP8888 Centre-Ville, Montréal, QC H3C3P8, Canada.
| | - A Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - M O Angelidis
- Department of Environment, University of the Aegean, University Hill, 81100 Mytilini, Greece
| | - M Aloupi
- Department of Environment, University of the Aegean, University Hill, 81100 Mytilini, Greece
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - O Radakovitch
- CEREGE, UMR7330 CNRS, AMU, IRD, Coll. France, INRAE, Technopole Arbois, BP80, 13545 Aix en Provence cedex 4, France; Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SRTE-LRTA, Cadarache, France
| | - A Poirier
- GEOTOP, Université du Québec à Montréal, CP8888 Centre-Ville, Montréal, QC H3C3P8, Canada
| | - S Heussner
- CEFREM, UMR5110 CNRS, Université de Perpignan Via Domitia, Avenue Paul Alduy, 66860 Perpignan, France
| |
Collapse
|
26
|
Men W, Wang F, Yu W, He J, Lin F, Deng F, Yu T, Ma H, Zeng Z. Radioactive impacts of the Fukushima Dai-ichi Nuclear Power Plant Accident on blue sharks in the Northwest Pacific. CHEMOSPHERE 2021; 285:131537. [PMID: 34329145 DOI: 10.1016/j.chemosphere.2021.131537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
The Fukushima Dai-ichi Nuclear Power Plant Accident (FDNPPA) derived 134Cs, 137Cs and 110mAg in blue sharks captured in the Northwest Pacific during 2011-2018 were assessed for the first time in the aspects of radioactive contamination, temporal variation, maternal-to-fetus transfer, tissue distribution and radiation dose, to demonstrate the impacts of the FDNPPA on blue sharks. The contribution of the FDNPPA derived radiocesium in blue sharks (>52%) was estimated based on 134Cs/137Csactivity ratios. The effective and ecological half-lives of the FDNPPA derived 134Cs (270 d, 410 d), and 137Cs (430 d, 450 d) were calculated. These contaminations decreased with time and returned to the level before the FDNPPA during the period of Sep. 2017-Sep. 2018.134Cs and 137Cs tended to distribute in muscles, while 110mAg mainly distribute in their guts. 134Cs and 137Cs were also transferred to fetuses and the activities were up to ~30% of the maternal activities. Dose assessment demonstrated that the highest FDNPPA derived dose rate in blue sharks (~0.42 nGy/h) was far below the ERICA ecosystem screening benchmark of 10 μGy/h and the committed effective dose in humans from ingesting blue shark meat (0.06-0.90 μSv) was far less than that from annual consumption of food and water. It was far from causing radiation harm to blue sharks and humans, suggesting that the impacts of the FDNPPA on blue sharks were not significant.
Collapse
Affiliation(s)
- Wu Men
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China.
| | - Fenfen Wang
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Wen Yu
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Jianhua He
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Feng Lin
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Fangfang Deng
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Tao Yu
- Laboratory of Marine Isotopic Technology and Environmental Risk Assessment, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen, 361005, China
| | - Hao Ma
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing, 100084, China
| | - Zhi Zeng
- Key Laboratory of Particle and Radiation Imaging (Ministry of Education) and Department of Engineering Physics, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
27
|
Vélez N, Bessudo S, Barragán-Barrera DC, Ladino F, Bustamante P, Luna-Acosta A. Mercury concentrations and trophic relations in sharks of the Pacific Ocean of Colombia. MARINE POLLUTION BULLETIN 2021; 173:113109. [PMID: 34749115 DOI: 10.1016/j.marpolbul.2021.113109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Sharks are fished for human consumption in Colombia, and fins are exported illegally to international markets. The goal was to identify differences in total mercury (THg) concentrations in fins and muscles of shark species seized in the Buenaventura port (Colombian Pacific), and to assess potential human health risks related to shark consumption. Seven species were considered in this study: Pelagic Thresher (Alopias pelagicus), Pacific Smalltail Shark (Carcharhinus cerdale), Brown Smoothhound (Mustelus henlei), Sicklefin Smoothhound (Mustelus lunulatus), Scalloped Bonnethead (Sphyrna corona), Scalloped Hammerhead (Sphyrna lewini), and Bonnethead Shark (Sphyrna tiburo), and THg was analyzed in shark tissues. 24% muscle samples concentrations were above international recommended limits for human consumption, especially for A. pelagicus and S. lewini. Stable isotopes (δ13C and δ15N) analysis showed a foraging overlapping in coastal habitats, where overfishing usually occurs. This study provides useful scientific information to develop management plans for sharks in Colombia and neighboring countries.
Collapse
Affiliation(s)
- Natalia Vélez
- Fundación Malpelo y Otros Ecosistemas Marinos, Parques Nacionales Naturales de Colombia, Carrera 11 # 87-51, Bogotá, Colombia; Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Bogotá, Colombia.
| | - Sandra Bessudo
- Fundación Malpelo y Otros Ecosistemas Marinos, Parques Nacionales Naturales de Colombia, Carrera 11 # 87-51, Bogotá, Colombia
| | - Dalia C Barragán-Barrera
- Centro de Investigaciones Oceanográficas e Hidrográficas del Caribe-CIOH, Dirección General Marítima, Barrio Bosque, Sector Manzanillo Escuela Naval de Cadetes "Almirante Padilla", Cartagena de Indias, Colombia; Corporation Center of Excellence in Marine Sciences-CEMarin, Carrera 21 # 35-53, Bogotá, Colombia; Fundación Macuáticos Colombia, Calle 27 # 79-167, Medellín, Colombia
| | - Felipe Ladino
- Fundación Malpelo y Otros Ecosistemas Marinos, Parques Nacionales Naturales de Colombia, Carrera 11 # 87-51, Bogotá, Colombia
| | - Paco Bustamante
- Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS, La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes 75005, Paris, France
| | - Andrea Luna-Acosta
- Departamento de Ecología y Territorio, Facultad de Estudios Ambientales y Rurales, Pontificia Universidad Javeriana, Transversal 4 # 42-00, Bogotá, Colombia
| |
Collapse
|
28
|
Costa F, Coelho JP, Baptista J, Martinho F, Pereira E, Pardal MA. Lifelong mercury bioaccumulation in Atlantic horse mackerel (Trachurus trachurus) and the potential risks to human consumption. MARINE POLLUTION BULLETIN 2021; 173:113015. [PMID: 34628345 DOI: 10.1016/j.marpolbul.2021.113015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Atlantic horse mackerel is one of the most commercially important species in Europe. It can reach a longevity of 30 years, with potential implications in lifespan mercury contamination. This study conducted along the Portuguese coast aimed at evaluating the total Hg content and tissue distribution, to determine the annual mercury bioaccumulation patterns and the associated risk for consumption. The T-Hg accumulation patterns observed followed the order: muscle (0.34) > liver (0.28) > heart (0.19) > gills (0.11) > brain (0.041 mg kg-1). Significant differences between tissues reflect the role of the different tissues in storage and redistribution. Significant relationships observed between age and T-Hg for all tissues highlight the continuous nature of the bioaccumulation process. European food safety guidelines signalled significant risk of consumption in about 30% of the samples. Still, there was an overall low risk from the consumption of this species, which can be further minimized through consumer options to avoid health issues.
Collapse
Affiliation(s)
- Filipe Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - João P Coelho
- Department of Biology, CESAM, ECOMARE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Joana Baptista
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Filipe Martinho
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Eduarda Pereira
- Department of Chemistry, REQUIMTE, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Miguel A Pardal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
29
|
Wosnick N, Chaves AP, Leite RD, Nunes JLS, Saint'Pierre TD, Willmer IQ, Hauser-Davis RA. Nurse sharks, space rockets and cargo ships: Metals and oxidative stress in a benthic, resident and large-sized mesopredator, Ginglymostoma cirratum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117784. [PMID: 34329051 DOI: 10.1016/j.envpol.2021.117784] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/15/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
It is widely recognized that apex predators, such as large sharks with highly migratory behavior, are particularly vulnerable to pollution, mainly due to biomagnification processes. However, in highly impacted areas, mesopredator sharks with resident behavior can be as vulnerable as apex sharks. In this context, this study evaluated cadmium (Cd), mercury (Hg), lead (Pb), and rubidium (Rb) concentrations, as well as the potentially protective effects of selenium (Se) and the behavior of two non-enzymatic biomarkers, metallothionein (MT) and reduced glutathione (GSH), employing the Atlantic nurse shark Ginglymostoma cirratum as a study model and compared the results with other resident benthic sharks, as well as highly mobile apex sharks. Muscle tissue samples from 28 nurse sharks opportunistically sampled from the Brazilian Amazon Coast were analyzed. Lower metal concentrations were observed for Pb, Rb and Se in the rainy season, while statistically significant correlations between metals were observed only between Hg and Cd and Pb and Se. Molar ratio calculations indicate potential protective Se effects against Pb, but not against Cd and Hg. No associations between MT and the determined metals were observed, indicating a lack of detoxification processes via the MT detoxification route. The same was noted for GSH, indicating no induction of this primary cellular antioxidant defense. Our results indicate that benthic/mesopredator sharks with resident behavior are, in fact, as impacted as highly mobile apex predators, with the traditional detoxification pathways seemingly inefficient for the investigated species. Moreover, considering the studied population and other literature data, pollution should be listed as a threat to the species in future risk assessments.
Collapse
Affiliation(s)
- Natascha Wosnick
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Paraná, Brazil
| | - Ana Paula Chaves
- Analytical and System Toxicology Laboratory, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (USP), São Paulo, Brazil
| | - Renata Daldin Leite
- Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Paraná, Brazil
| | | | | | - Isabel Quental Willmer
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil; Laboratório de Biologia e Tecnologia Pesqueira, Centro de Ciências da Saúde, Instituto de Biologia, Departamento de Biologia Marinha, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
| |
Collapse
|
30
|
Boldrocchi G, Spanu D, Mazzoni M, Omar M, Baneschi I, Boschi C, Zinzula L, Bettinetti R, Monticelli D. Bioaccumulation and biomagnification in elasmobranchs: A concurrent assessment of trophic transfer of trace elements in 12 species from the Indian Ocean. MARINE POLLUTION BULLETIN 2021; 172:112853. [PMID: 34425367 DOI: 10.1016/j.marpolbul.2021.112853] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/29/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
We provided the first multi-species study investigating the presence and organotropism of trace elements in three tissues of 12 elasmobranch species. Shark species showed comparable TE loads, although milk sharks and juvenile scalloped hammerhead sharks exhibited the highest Cd and Hg levels, respectively. Fins accumulated higher levels of Pb, Co, and Cr; muscles higher V, As, and Hg; livers higher Se and Cd levels. The organotropism of TEs calls for cautious when choosing a tissue to be sampled since certain tissues, like fin clips, do not provide reliable surrogate for the internal loads of some TEs. Strong correlations between essential and toxic TEs indicated detoxification mechanisms, while the TMF provided evidence for Hg, As and Se biomagnification along the food-web. Considering the difficulties in assessing elasmobranchs contamination from different areas, the proposed multi-species approach represents a valuable way to estimate the species-specific accumulation and transfer of pollutants in sharks.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy.
| | - D Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy
| | - M Mazzoni
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy
| | - M Omar
- Centre d'Etude et de Recherche de Djibouti Route de l'aéroport, Djibouti
| | - I Baneschi
- Institute of Geosciences and Earth Resources - National Research Council of Italy, Pisa, Italy
| | - C Boschi
- Institute of Geosciences and Earth Resources - National Research Council of Italy, Pisa, Italy
| | - L Zinzula
- Centro di Educazione Ambientale e alla Sostenibilità Laguna di Nora, Pula, CA, Italy
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio 11, Como, Italy.
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, Italy.
| |
Collapse
|
31
|
Lozano-Bilbao E, Adern N, Hardisson A, González-Weller D, Rubio C, Paz S, Pérez JA, Zupa R, Gutiérrez ÁJ. Differences in macroelements, trace elements and toxic metals between wild and captive-reared greater amberjack (Seriola dumerili) from the Mediterranean Sea. MARINE POLLUTION BULLETIN 2021; 170:112637. [PMID: 34153858 DOI: 10.1016/j.marpolbul.2021.112637] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/10/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Despite its legislative regulation and control, the quality and safety of aquatic products is somewhat questioned due to the potential bioaccumulation of pollutants. The elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Sr, V and Zn) were determined in the liver and muscle of wild and captive-reared Seriola dumerili with the aim of studying possible differences between origins, and sex-related variations. Additionally, the dietary intake of these elements derived from its consumption was also evaluated. Most of the elements and metals analyzed were accumulated to a higher extent in the liver of wild specimens whereas lower differences were observed in the muscle. Overall, the elements and metal composition of wild females strongly differed from that of captive-reared specimens probably related to the mobilization of nutrients for the spawning season in wild mature females, which were greater than their captive-reared counterparts.
Collapse
Affiliation(s)
- Enrique Lozano-Bilbao
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain
| | - Ninoska Adern
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Arturo Hardisson
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Dailos González-Weller
- Health Inspection and Laboratory Service, Canary Health Service, 38006, Santa Cruz de Tenerife, Spain
| | - Carmen Rubio
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - Soraya Paz
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain
| | - José A Pérez
- Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, 38206, La Laguna, Santa Cruz de Tenerife, Spain
| | - Rosa Zupa
- Department of Emergency and Organ Transplantation, Section of Veterinary Clinics and Animal Production, University of Bari Aldo Moro, per Casamassima km. 3, I-70010, Valenzano (Bari), Italy
| | - Ángel J Gutiérrez
- Área de Toxicología, Departamento de Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200, La Laguna, Santa Cruz de Tenerife, Spain.
| |
Collapse
|
32
|
Gao Y, Wang R, Li Y, Ding X, Jiang Y, Feng J, Zhu L. Trophic transfer of heavy metals in the marine food web based on tissue residuals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145064. [PMID: 33770865 DOI: 10.1016/j.scitotenv.2021.145064] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Trophic transfer of metals has been well researched in aquatic food webs; however, most studies have examined the presence of metal residuals in the entire body of marine organisms and but not in specific tissues. In this study, we determined the concentrations of Cu, Cr, Pb, Zn, Cd, and Ni in various organs of 17 marine species, including crustaceans, gastropods, bivalves, and fishes, with different trophic levels (TLs), which were collected from the Liaodong Bay, China, in July 2019. Results showed that the liver, gill, and muscle tissues of marine species are ideal indicators for analyzing Cu, Cr, Pb, Zn, Cd, and Ni contamination in marine environments. When the entire bodies of these marine species were considered, a bio-dilution in Cu, Cr, Pb, Zn, Cd, and Ni was observed in the studied food web. In contrast, the metal tissue-specific bio-magnification in the entire studied food web showed different results. In the liver and gill tissues, negative correlations were found between the concentrations of cadmium and TLs, while copper bio-dilution was also observed in gill tissue. In the muscle tissues, Cu, Pb, and Ni showed bio-dilution and trophic magnification factors of Cu, Pb, and Ni ranged from 0.44 to 0.73. This study highlights the importance of tissue-specific considerations to obtain further accurate information on metal trophodynamics and trophic transfers in marine food webs, thereby enhancing the risk assessment of many elements in wildlife and human health.
Collapse
Affiliation(s)
- Yongfei Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ruyue Wang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yanyu Li
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuebin Ding
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yueming Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
33
|
Maurice L, Croizier GL, Morales G, Carpintero N, Guayasamin JM, Sonke J, Páez-Rosas D, Point D, Bustos W, Ochoa-Herrera V. Concentrations and stable isotopes of mercury in sharks of the Galapagos Marine Reserve: Human health concerns and feeding patterns. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 215:112122. [PMID: 33725489 DOI: 10.1016/j.ecoenv.2021.112122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.
Collapse
Affiliation(s)
- Laurence Maurice
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France; Universidad Andina Simón Bolívar, Área de Salud, P.O. Box 17-12-569, Quito, Ecuador.
| | - Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Gabriela Morales
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France; Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Natalia Carpintero
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador
| | - Juan M Guayasamin
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto Biósfera USFQ, Diego de Robles y Vía Interoceánica, Quito, Ecuador; Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - Jeroen Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Diego Páez-Rosas
- Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées, Université de Toulouse, CNRS, IRD, 14 Avenue E. Belin, F-31400 Toulouse, France
| | - Walter Bustos
- Parque Nacional Galápagos, Av. Charles Darwin s/n, Santa Cruz, Ecuador
| | - Valeria Ochoa-Herrera
- Universidad San Francisco de Quito, Colegio de Ciencias e Ingenierías, Instituto Biosfera, Diego de Robles y Vía Interoceánica, Quito, Ecuador; Universidad San Francisco de Quito, Galápagos Science Center, Isla San Cristóbal, Islas Galápagos, Ecuador
| |
Collapse
|
34
|
Mille T, Bisch A, Caill-Milly N, Cresson P, Deborde J, Gueux A, Morandeau G, Monperrus M. Distribution of mercury species in different tissues and trophic levels of commonly consumed fish species from the south Bay of Biscay (France). MARINE POLLUTION BULLETIN 2021; 166:112172. [PMID: 33631695 DOI: 10.1016/j.marpolbul.2021.112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Mercury (Hg) is a contaminant of global concern in marine ecosystems, notably due to its ability to accumulate and concentrate in food webs. Concentrations of total mercury (THg), methylmercury (MeHg) and inorganic mercury (IHg) were assessed and compared in different tissues (liver, muscle, and gonads) of three common fish species (hake Merluccius merluccius, red mullet Mullus surmuletus, and sole Solea solea) from the continental shelf from the southern part of the Bay of Biscay. Several studies investigated Hg concentration in fish muscle, but few assessed concentrations in other organs, despite the importance of such data to understand contaminant organotropism and metabolization. Results showed that trophic position and feeding habitat are required to understand the variability of Hg concentration in muscle between fish species. In addition, high MeHg/THg ratio in muscle could be explained by the predatory behavior of the studied fish species and the biomagnification of this Hg species within the food web, MeHg. Despite differences between species, Hg concentration was always higher in muscle (from 118 ± 64 to 338 ± 101 ng g-1 w.w.) and liver (from 122 ± 108 to 271 ± 95 ng g-1 w.w.). These results can be related to physiological processes especially the MeHg detoxification strategies.
Collapse
Affiliation(s)
- Tiphaine Mille
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Amaëlle Bisch
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France
| | - Nathalie Caill-Milly
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600 Anglet, France
| | - Pierre Cresson
- Ifremer, Centre Manche Mer du Nord, Laboratoire Ressources Halieutiques Manche Mer du Nord, 150 quai Gambetta, 62200 Boulogne sur Mer, France
| | - Jonathan Deborde
- Ifremer, LITTORAL, Laboratoire Environnement et Ressources des Pertuis Charentais (LER/PC), BP133, 17390 La Tremblade, France
| | - Aurore Gueux
- Ifremer, LITTORAL, Laboratoire Environnement et Ressources des Pertuis Charentais (LER/PC), BP133, 17390 La Tremblade, France
| | - Gilles Morandeau
- Ifremer, LITTORAL, Laboratoire Environnement Ressources d'Arcachon, 64600 Anglet, France
| | - Mathilde Monperrus
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM-MIRA, UMR 5254, 64600 Anglet, France.
| |
Collapse
|
35
|
Reistad NA, Norris SB, Rumbold DG. Mercury in neonatal and juvenile blacktip sharks (Carcharhinus limbatus). Part I: exposure assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:187-197. [PMID: 33415661 DOI: 10.1007/s10646-020-02322-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Elasmobranchs are exposed to mercury (Hg) through a variety of pathways in the environment. This study assessed maternal offloading and diet-based Hg exposure for neonatal and juvenile blacktip sharks (Carcharhinus limbatus) from Charlotte Harbor located along southwest Florida's coast, a recognized Hg hotspot. Neonates (n = 57) had highest total Hg (THg) concentrations in the kidney (0.56 ± 0.26 mg kg-1; n = 38) and muscle (0.53 ± 0.17 mg kg-1; n = 57), followed by liver (0.31 ± 0.11 mg kg-1; n = 38), and blood (0.05 ± 0.033 mg kg-1; n = 57). Juveniles (n = 13) exhibited a different distribution with highest THg in the liver (0.868 ± 0.54 mg kg-1; n = 6), followed by the muscle (0.84 ± 0.28 mg kg-1; n = 13), kidney (0.55 ± 0.22 mg kg-1; n = 6), and blood (0.11 ± 0.04 mg kg-1; n = 11). The distribution of THg among tissues and liver-to-muscle ratios indicated that Hg originated primarily from maternal offloading in neonates, whereas juveniles continued to accumulate Hg through dietary exposure post-parturition. Additionally, comparisons between results of the present study and previous Florida blacktip shark surveys suggested that Hg levels have not declined in southwest Florida estuaries for over two decades.
Collapse
Affiliation(s)
- Nicole A Reistad
- Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA.
| | - Sarah B Norris
- Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA
| | - Darren G Rumbold
- Florida Gulf Coast University, 10501 FGCU Blvd. South., Fort Myers, FL, 33965, USA
| |
Collapse
|
36
|
Bevacqua L, Reinero FR, Becerril-García EE, Elorriaga-Verplancken FR, Juaristi-Videgaray D, Micarelli P, Galván-Magaña F, Curiel-Godoy P, Giglio G, Tripepi S, Barca D, Sperone E. Trace elements and isotopes analyses on historical samples of white sharks from the Mediterranean Sea. THE EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2020.1853265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- L. Bevacqua
- Università della Calabria, Rende (CS), Italy
| | - F. R. Reinero
- Università della Calabria, Rende (CS), Italy
- Centro Studi Squali-Sharks Studies Center, Massa Marittima (GR), Italy
| | - E. E. Becerril-García
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz (BCS), Mexico
| | | | - D. Juaristi-Videgaray
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz (BCS), Mexico
| | - P. Micarelli
- Centro Studi Squali-Sharks Studies Center, Massa Marittima (GR), Italy
| | - F. Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz (BCS), Mexico
| | - P. Curiel-Godoy
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz (BCS), Mexico
| | - G. Giglio
- Università della Calabria, Rende (CS), Italy
| | - S. Tripepi
- Università della Calabria, Rende (CS), Italy
| | - D. Barca
- Università della Calabria, Rende (CS), Italy
| | - E. Sperone
- Università della Calabria, Rende (CS), Italy
| |
Collapse
|
37
|
Le Croizier G, Lorrain A, Sonke JE, Hoyos-Padilla EM, Galván-Magaña F, Santana-Morales O, Aquino-Baleytó M, Becerril-García EE, Muntaner-López G, Ketchum J, Block B, Carlisle A, Jorgensen SJ, Besnard L, Jung A, Schaal G, Point D. The Twilight Zone as a Major Foraging Habitat and Mercury Source for the Great White Shark. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15872-15882. [PMID: 33238094 DOI: 10.1021/acs.est.0c05621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The twilight zone contains the largest biomass of the world's ocean. Identifying its role in the trophic supply and contaminant exposure of marine megafauna constitutes a critical challenge in the context of global change. The white shark (Carcharodon carcharias) is a threatened species with some of the highest concentrations of neurotoxin methylmercury (MeHg) among marine top predators. Large white sharks migrate seasonally from coastal habitats, where they primarily forage on pinnipeds, to oceanic offshore habitats. Tagging studies suggest that while offshore, white sharks may forage at depth on mesopelagic species, yet no biochemical evidence exists. Here, we used mercury isotopic composition to assess the dietary origin of MeHg contamination in white sharks from the Northeast Pacific Ocean. We estimated that a minimum of 72% of the MeHg accumulated by white sharks originates from the consumption of mesopelagic prey, while a maximum of 25% derives from pinnipeds. In addition to highlighting the potential of mercury isotopes to decipher the complex ecological cycle of marine predators, our study provides evidence that the twilight zone constitutes a crucial foraging habitat for these large predators, which had been suspected for over a decade. Climate change is predicted to expand the production of mesopelagic MeHg and modify the mesopelagic biomass globally. Considering the pivotal role of the twilight zone is therefore essential to better predict both MeHg exposure and trophic supply to white sharks, and effectively protect these key vulnerable predators.
Collapse
Affiliation(s)
- Gaël Le Croizier
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - Anne Lorrain
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Jeroen E Sonke
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| | - E Mauricio Hoyos-Padilla
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Fins Attached: Marine Research and Conservation, 19675 Still Glen Drive, Colorado Springs, Colorado 80908, United States
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | | | - Marc Aquino-Baleytó
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Edgar E Becerril-García
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - Gádor Muntaner-López
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Av. IPN s/n., 23096 La Paz, Baja California Sur, México
| | - James Ketchum
- Pelagios-Kakunjá A.C., Sinaloa 1540, Col. Las Garzas, 23070 La Paz, Baja California Sur, México
| | - Barbara Block
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, United States
| | - Aaron Carlisle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware 19958, United States
| | - Salvador J Jorgensen
- Institute of Marine Sciences, University of California, Santa Cruz, Santa Cruz, California 95064, United States
| | - Lucien Besnard
- Univ Brest, CNRS, Ifremer, LEMAR, 29280 Plouzané, France
| | - Armelle Jung
- Des Requins et Des Hommes (DRDH), BLP/Technopole Brest-Iroise, 15 rue Dumont d'Urville, Plouzané 29860, France
| | | | - David Point
- UMR Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), 14 avenue Edouard Belin, 31400 Toulouse, France
| |
Collapse
|
38
|
Gelsleichter J, Sparkman G, Howey LA, Brooks EJ, Shipley ON. Elevated accumulation of the toxic metal mercury in the Critically Endangered oceanic whitetip shark Carcharhinus longimanus from the northwestern Atlantic Ocean. ENDANGER SPECIES RES 2020. [DOI: 10.3354/esr01068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The oceanic whitetip shark Carcharhinus longimanus is a widely distributed large pelagic shark species once considered abundant in tropical and warm temperate waters, but recently listed as Critically Endangered by the IUCN due to drastic population declines associated with overfishing. In addition to risks posed to its populations due to overexploitation, oceanic whitetip sharks are also capable of accumulating elevated quantities of harmful environmental toxicants, placing them at special risk from anthropogenic pollution. Herein, we provide the first data on accumulation of the toxic, non-essential metal mercury (Hg) in northwest Atlantic (NWA) oceanic whitetip sharks, focusing on aggregations occurring at Cat Island, The Bahamas. Total Hg (THg) concentrations were measured in muscle of 26 oceanic whitetip sharks and compared with animal length and muscle δ15N to evaluate potential drivers of Hg accumulation. THg concentrations were also measured in fin and blood subcomponents (red blood cells and plasma) to determine their value as surrogates for assessing Hg burden. Muscle THg concentrations were among the highest ever reported for a shark species and correlated significantly with animal length, but not muscle δ15N. Fin, red blood cell, and plasma THg concentrations were significantly correlated with muscle THg. Fin THg content was best suited for use as a surrogate for estimating internal Hg burden because of its strong relationship with muscle THg levels, whereas blood THg levels may be better suited for characterizing recent Hg exposure. We conclude that Hg poses health risks to NWA oceanic whitetip sharks and human consumers of this species.
Collapse
Affiliation(s)
- J Gelsleichter
- University of North Florida, 1 UNF Dr, Jacksonville, FL 32224, USA
| | - G Sparkman
- University of North Florida, 1 UNF Dr, Jacksonville, FL 32224, USA
| | - LA Howey
- Johns Hopkins University, 100 International Dr., Baltimore, MD 21202, USA
- Haiti Ocean Project, #10, Dupuy 1, Petite Riviere de Nippes, Haiti
| | - EJ Brooks
- Cape Eleuthera Institute, Eleuthera, The Bahamas
| | - ON Shipley
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
39
|
Tiktak GP, Butcher D, Lawrence PJ, Norrey J, Bradley L, Shaw K, Preziosi R, Megson D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. MARINE POLLUTION BULLETIN 2020; 160:111701. [PMID: 33181965 DOI: 10.1016/j.marpolbul.2020.111701] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
This review represents a comprehensive analysis on pollutants in elasmobranchs including meta-analysis on the most studied pollutants: mercury, cadmium, PCBs and DDTs, in muscle and liver tissue. Elasmobranchs are particularly vulnerable to pollutant exposure which may pose a risk to the organism as well as humans that consume elasmobranch products. The highest concentrations of pollutants were found in sharks occupying top trophic levels (Carcharhiniformes and Lamniformes). A human health risk assessment identified that children and adults consuming shark once a week are exposed to over three times more mercury than is recommended by the US EPA. This poses a risk to local fishing communities and international consumers of shark-based products, as well as those subject to the widespread mislabelling of elasmobranch products. Wider screening studies are recommended to determine the risk to elasmobranchs from emerging pollutants and more robust studies are recommended to assess the risks to human health.
Collapse
Affiliation(s)
- Guuske P Tiktak
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK.
| | - Demi Butcher
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Peter J Lawrence
- Bangor University, School of Ocean Sciences, Askew St, Menai Bridge, Wales LL59 5AB, UK
| | - John Norrey
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Lee Bradley
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kirsty Shaw
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Richard Preziosi
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - David Megson
- Ecology & Environment Research Centre, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
40
|
Le Croizier G, Lorrain A, Sonke JE, Jaquemet S, Schaal G, Renedo M, Besnard L, Cherel Y, Point D. Mercury isotopes as tracers of ecology and metabolism in two sympatric shark species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114931. [PMID: 32590319 DOI: 10.1016/j.envpol.2020.114931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
In coastal ecosystems, top predators are exposed to a wide variety of nutrient and contaminant sources due to the diversity of trophic webs within inshore marine habitats. Mercury contamination could represent an additional threat to shark populations that are declining worldwide. Here we measured total mercury, carbon and nitrogen isotopes, as well as mercury isotopes, in two co-occurring shark species (the bull shark Carcharhinus leucas and the tiger shark Galeocerdo cuvier) and their potential prey from a coastal ecosystem of the western Indian Ocean (La Réunion Island). Our primary goals were to (i) determine the main trophic Hg sources for sharks and (ii) better characterize their diet composition and foraging habitat. Hg isotope signatures (Δ199Hg and δ202Hg) of shark prey suggested that bull sharks were exposed to methylmercury (MeHg) produced in offshore epipelagic waters, while tiger sharks were exposed to offshore mesopelagic MeHg with additional microbial transformation in slope sediments. Δ199Hg values efficiently traced the ecology of the two predators, demonstrating that bull sharks targeted coastal prey in shallow waters while tiger sharks were mainly foraging on mesopelagic species in the deeper waters of the island slope. Unexpectedly, we found a positive shift in δ202Hg (>1‰) between sharks and their prey, leading to high δ202Hg values in the two shark species (e.g. 1.91 ± 0.52‰ in bull sharks). This large shift in δ202Hg indicates that sharks may display strong MeHg demethylation abilities, possibly reflecting evolutionary pathways for mitigating their MeHg contamination.
Collapse
Affiliation(s)
- Gaël Le Croizier
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France.
| | - Anne Lorrain
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Jeroen E Sonke
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Sébastien Jaquemet
- Laboratoire ENTROPIE, UMR 9220 CNRS/IRD/Université de La Réunion, 15 Avenue René Cassin, BP 92003, 97744, Saint-Denis, La Réunion, France
| | - Gauthier Schaal
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Marina Renedo
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| | - Lucien Besnard
- Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280, Plouzané, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372 du CNRS-La Rochelle Université, 79360, Villiers-en-Bois, France
| | - David Point
- Géosciences Environnement Toulouse (GET), Observatoire Midi Pyrénées (OMP), UMR 5563 CNRS/IRD/Université Paul Sabatier, 14 avenue Edouard Belin, 31400, Toulouse, France
| |
Collapse
|
41
|
Teixeira G, Raimundo J, Goulart J, Costa V, Menezes GM, Caetano M, Pacheco M, Martins I. Hg and Se composition in demersal deep-sea fish from the North-East Atlantic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33649-33657. [PMID: 32358755 DOI: 10.1007/s11356-020-08970-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
It has been emphasized that seafood consumers may have a higher risk of mercury (Hg) exposure. Nevertheless, the co-occurrence of selenium (Se) in organisms may affect the toxicity and bioavailability of Hg. In this work, we aim to demonstrate the possible role of Se as a potential protective element against Hg in muscle and liver tissues of three demersal deep-sea fish species: common mora Mora moro, birdbeak dogfish Deania calcea, and smooth lanternshark Etmopterus pusillus. Comparing species, the birdbeak dogfish D. calcea showed the highest Hg concentrations, the lowest Se levels, the lowest mean Se:Hg molar ratio, a negative HBV-Se index, and no correlation between total length. On the other hand, smooth lanternshark E. pusillus showed the lowest Hg concentrations, the highest Se concentrations, the highest mean Se:Hg molar ratio, a positive HBV-Se index, and a significant positive correlation between total length and Se concentrations in muscle. Comparing tissues, the common mora Mora moro seems to accumulate more Hg and Se in liver than shark species D. calcea and E. pusillus that showed to accumulate Hg and Se preferentially in muscle. Our results indicate that these three species for having Hg concentrations near and above the EU regulatory thresholds and for presenting low Se:Hg ratios, and negative (or low positive) HBV-Se index may pose a real risk of Hg toxicity for the consumer.
Collapse
Affiliation(s)
- Guilherme Teixeira
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Raimundo
- IPMA- Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Matosinhos, Portugal
| | - Joana Goulart
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Valentina Costa
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Gui M Menezes
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal
| | - Miguel Caetano
- IPMA- Portuguese Institute for Sea and Atmosphere, Av. Brasília, 1449-006, Lisbon, Portugal
| | - Mário Pacheco
- Department of Biology and CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Inês Martins
- IMAR- Department of Oceanography and Fisheries, University of Azores, 9901-862, Horta, Portugal.
- OKEANOS- Research Unit- Faculty of Science and Technology, University of the Azores, 9901-862, Horta, Portugal.
| |
Collapse
|
42
|
Lara A, Galván-Magaña F, Elorriaga-Verplancken F, Marmolejo-Rodríguez AJ, Gonzalez-Armas R, Arreola-Mendoza L, Sujitha SB, Jonathan MP. Bioaccumulation and trophic transfer of potentially toxic elements in the pelagic thresher shark Alopias pelagicus in Baja California Sur, Mexico. MARINE POLLUTION BULLETIN 2020; 156:111192. [PMID: 32365003 DOI: 10.1016/j.marpolbul.2020.111192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Pelagic thresher shark (Alopias pelagicus) is a circumglobal species with high ecological and economic importance. Concentrations of mercury, selenium and cadmium in the muscle and liver tissues of A. pelagicus captured from Baja California Sur, Mexico were determined for assessing the potential human hazard. Results revealed that the average concentrations of Hg (0.76 mg kg-1) and Cd (0.18 mg kg-1) in muscle tissues were below the maximum permissible limits for human consumption. Se in the muscles were relatively low (mean: 0.30 mg kg-1 -1) resulting in a molar excess of Hg over Se. Average levels of hepatic Cd were extremely higher than the maximum limit for consumption. Organotropism of Hg was muscle > liver, whereas Se and Cd presented an order of liver > muscle. Biomagnification Factor (BMF) emphasized the trophic transfer of elements. Selenium Health Benefit value was negative (-3.76) posing potential health risks demanding regular monitoring for health risks.
Collapse
Affiliation(s)
- Ariagna Lara
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Fernando Elorriaga-Verplancken
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Ana Judith Marmolejo-Rodríguez
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Rogelio Gonzalez-Armas
- Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Avenida IPN, s/n Colonia Playa Palo de Santa Rita, C.P. 23096 La Paz, Baja California Sur, Mexico
| | - Laura Arreola-Mendoza
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, C.P.07340 Ciudad de México, Mexico.
| | - S B Sujitha
- Instituto Politécnico Nacional, Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, C.P. 07340 Ciudad de México, Mexico
| | - M P Jonathan
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, C.P.07340 Ciudad de México, Mexico
| |
Collapse
|
43
|
Hauser-Davis RA, Pereira CF, Pinto F, Torres JPM, Malm O, Vianna M. Mercury contamination in the recently described Brazilian white-tail dogfish Squalus albicaudus (Squalidae, Chondrichthyes). CHEMOSPHERE 2020; 250:126228. [PMID: 32114339 DOI: 10.1016/j.chemosphere.2020.126228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
The recently described Squalus albicaudus is a mesopredator shark and, as such, exposed to mercury biomagnification processes. Therefore, this study aimed to assess total Hg (THg) concentrations in S. albicaudus, a deep-water species, sampled off Southeastern Brazil and discuss ecological, reproductive, human consumption and conservation implications. Thirty-two individuals were sampled off the coast of Rio de Janeiro, including 13 gravid females carrying 34 embryos. Muscle THg concentrations were higher in all sex classes compared to liver, gonads and brain. The last three, in turn, presented THg concentrations above toxic biota thresholds. Significant correlations were observed between muscle and brain and liver, indicating systemic Hg contamination and inter-organ transport and distribution. In addition, correlations observed between organs strongly support efficient Hg blood-brain barrier crossing and maternal transfer. Maternal THg transfer was observed, with embryo THg also above toxic thresholds for fish. THg levels in muscle and liver, as well as embryos, were higher compared to other Squalus species worldwide. Hg contamination off the coast of Rio de Janeiro is of significant concern and should be further assessed. Potential human consumption risks are noted, as muscle THg concentrations were above maximum permissible levels set by regulatory agencies.
Collapse
Affiliation(s)
- Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil.
| | - Camila Ferreira Pereira
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Centro de Ciências da Saúde, UFRJ, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Fernando Pinto
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, UFRJ, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil
| | - João Paulo M Torres
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, UFRJ, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Centro de Ciências da Saúde, UFRJ, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Centro de Ciências da Saúde, UFRJ, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil; IMAM-AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil.
| |
Collapse
|
44
|
Boldrocchi G, Monticelli D, Butti L, Omar M, Bettinetti R. First concurrent assessment of elemental- and organic-contaminant loads in skin biopsies of whale sharks from Djibouti. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137841. [PMID: 32199374 DOI: 10.1016/j.scitotenv.2020.137841] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/16/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
The Gulf of Tadjoura (Djibouti) is an important site where the whale shark (Rhincodon typus Smith, 1828) aggregates seasonally. Because of the proximity to the port of Djibouti that is located along one of the busiest shipping areas in the world, whale sharks are potentially exposed to relatively high levels of trace elements and organochlorines. To assess their contamination status, concentrations of 15 trace elements, DDTs and PCBs were concurrently assessed for the first time in skin biopsies of 20 whale sharks. Additionally, 12 zooplankton samples were collected and analyzed for trace elements content. Concentration of As, Cu, Zn and Se were higher than in previous studies on this species. Whale shark samples exceeded the maximum allowable limits for foodstuffs for Cr, Pb Se, Cd and Zn. Results from this study suggests that Cr, Ni and Mo may biomagnify in this species. With regard to PCBs, the predominant congener were Tetra-CB, accounting for 41% of total PCBs and Penta-CB for 23%, while for DDTs, the predominant metabolite was DDE contributing for 51% of total compounds. The maximum residue limit for DDTs and for the ind-PCBs in fish set by U.S. EPA and by the EU regulation, respectively, was exceeded in 62% of whale sharks. Moreover, the p,p'DDE/ΣDDT ratios were higher than the critical value of 0.6, indicating possible recent inputs of technical DDTs in the area. This study suggests some concerns for the contamination status of whale sharks in Djibouti and, since major threats for this species include bycatch and illegal fisheries, highlights some level of risk from the exposure to elemental- and organic-contaminant via shark consumption.
Collapse
Affiliation(s)
- G Boldrocchi
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio, 11 22100 Como, Italy.
| | - D Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - L Butti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Moussa Omar
- Centre d' Etude et de Recherche de Djibouti Route de l'aéroport, Djibouti, Djibouti
| | - R Bettinetti
- Department of Human Sciences, Innovation and Territory, University of Insubria, Via Valleggio, 11 22100 Como, Italy.
| |
Collapse
|
45
|
Medina-Morales SA, Corro-Espinosa D, Escobar-Sánchez O, Delgado-Alvarez CG, Ruelas-Inzunza J, Frías-Espericueta MG, Jara-Marini ME, Páez-Osuna F. Mercury (Hg) and selenium (Se) content in the shark Mustelus henlei (Triakidae) in the northern Mexican Pacific. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16774-16783. [PMID: 32133613 DOI: 10.1007/s11356-020-08198-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Mercury and selenium were assessed in Mustelus henlei, which is a carnivorous predatory shark that is important for the coastal communities of the northern Mexican Pacific (NMP). Sixty-two individuals were sampled; muscle and liver were isolated and analyzed by atomic absorption spectrophotometry. The mean Hg concentrations (wet weight) obtained for muscle (0.08 ± 0.10 μg g-1) and liver (0.09 ± 0.26 μg g-1) were below the allowed limits (< 1.0 μg g-1 Hg). The average Se concentration was 0.03 ± 0.01 μg g-1 in muscle and 0.13 ± 0.05 μg g-1 in liver. The Se/Hg molar ratio of muscle was 1.83; however, the selenium health benefit value (HBVSe) was of 0.08. We calculated that an adult man (70 kg), an adult woman (60 kg), and a child (16 kg) could consume 1595, 838, and 223 g/week of M. henlei muscle, respectively, without risks to health. In conclusion, the concentrations and molar ratio of Hg and Se in M. henlei muscle mean that consumption of this shark's meat does not represent neither a benefit nor a public health risk.
Collapse
Affiliation(s)
- Sergio Alonzo Medina-Morales
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
| | - David Corro-Espinosa
- Centro Regional de Investigaciones Acuícolas y Pesqueras de Mazatlán, INAPESCA, Calzada Sábalo-Cerritos S/N, Contiguo al Estero El Yugo, 82112, Mazatlán, Sinaloa, Mexico
| | - Ofelia Escobar-Sánchez
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico.
- Dirección de Cátedras CONACYT, CONACYT, Av. Insurgentes Sur 1582, Col Crédito Constructor, Del. Benito Juárez, 03940, Mexico City, Mexico.
| | | | - Jorge Ruelas-Inzunza
- Sección Ambiental, Instituto Tecnológico de Mazatlán, Corsario 1, No. 203, Col. Urías, 82070, Mazatlán, Sinaloa, Mexico
| | - Martin Gabriel Frías-Espericueta
- Facultad de Ciencias del Mar (FACIMAR), Universidad Autónoma de Sinaloa (UAS), Paseo Claussen S/N. Col. Los Pinos, 82000, Mazatlán, Sinaloa, Mexico
| | - Martin Enrique Jara-Marini
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera Gustavo Astiazarán Rosas 46, Colonia La Victoria, 83304, Hermosillo, Sonora, Mexico
| | - Federico Páez-Osuna
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, P.O. Box 811, 82040, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
46
|
Rodríguez-Gutiérrez J, Galván-Magaña F, Jacobo-Estrada T, Arreola-Mendoza L, Sujitha SB, Jonathan MP. Mercury-selenium concentrations in silky sharks (Carcharhinus falciformis) and their toxicological concerns in the southern Mexican Pacific. MARINE POLLUTION BULLETIN 2020; 153:111011. [PMID: 32275557 DOI: 10.1016/j.marpolbul.2020.111011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
Mercury- Selenium concentrations were determined in 136 samples of Carcharhinus falciformis (Silky shark) sampled from the Chiapas coast, Gulf of Tehuantepec, Mexico during August 2014 - January 2015. Average Hg concentrations in neonates and juveniles (all values in μg g-1 w.w.) were found to be 0.115 and 0.129 respectively, below the maximum permissible limit of 1 μg g-1 set by the Mexican government. However, excess Se values (all values in μg g-1 d.w.) observed in neonates (5.366) and juveniles (2.815) prove to maintain antioxidant ability by inducing Hg excretion and reducing its toxicity. Calculated Biomagnification Factor (BMFTL) denoted high values for the prey C.hippurus, signifying absolute magnification of Hg and Se along the food chain. This study provides key toxicological evidences of Hg- Se interaction and their effects in marine systems and human health.
Collapse
Affiliation(s)
- Juanita Rodríguez-Gutiérrez
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Avenida IPN, s/n Colonia Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico
| | - Felipe Galván-Magaña
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Ciencias Marinas (CICIMAR), Avenida IPN, s/n Colonia Playa Palo de Santa Rita, 23096 La Paz, Baja California Sur, Mexico
| | - Tania Jacobo-Estrada
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico
| | - Laura Arreola-Mendoza
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico.
| | - S B Sujitha
- Instituto Politécnico Nacional (IPN), Centro Mexicano para la Producción más Limpia (CMP+L), Av. Acueducto s/n, Col. Barrio la Laguna Ticomán, Gustavo A. Madero, 07340 Ciudad de México, Mexico
| | - M P Jonathan
- Instituto Politécnico Nacional (IPN), Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo (CIIEMAD), Calle 30 de Junio de 1520, Barrio la Laguna Ticomán, 07340 Ciudad de México, Mexico
| |
Collapse
|
47
|
Ruelas-Inzunza J, Amezcua F, Coiraton C, Páez-Osuna F. Cadmium, mercury, and selenium in muscle of the scalloped hammerhead Sphyrna lewini from the tropical Eastern Pacific: Variation with age, molar ratios and human health risk. CHEMOSPHERE 2020; 242:125180. [PMID: 31698208 DOI: 10.1016/j.chemosphere.2019.125180] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
With the aim of assessing health risk to shark consumers, cadmium, mercury, and selenium were measured in muscle of Sphyrna lewini from four coastal states (Baja California Sur, Sinaloa, Nayarit, and Colima) in western Mexico. According to length of specimens, three age modes were found: juveniles and neonates (the majority of the individuals), preadults and adults. Average concentrations (μg g-1 dry weight) in all the studied individuals followed the order cadmium (0.06), selenium (0.94), and mercury (1.56). The mean concentrations of cadmium and mercury increased significantly (p < 0.001) with mean length of specimens. Overall, hazard quotient and hazard index values were below one so there is no health risk to consumers. According to molar ratios of Hg and Se in the edible portion (muscle) of sharks, and depending on the areas of collection, individuals from Baja California Sur might not be beneficial to consumers.
Collapse
Affiliation(s)
- Jorge Ruelas-Inzunza
- Instituto Tecnológico de Mazatlán, Calle Corsario 1, No. 203, Col. Urías, 82070, Mazatlán, Sinaloa, Mexico.
| | - Felipe Amezcua
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, 82040, Mazatlán, Sinaloa, Mexico
| | - Claire Coiraton
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Av. Ciudad Universitaria 3000, Coyoacán, Mexico City, 04510, Mexico
| | - Federico Páez-Osuna
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, 82040, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
48
|
Ancora S, Mariotti G, Ponchia R, Fossi MC, Leonzio C, Bianchi N. Trace elements levels in muscle and liver of a rarely investigated large pelagic fish: The Mediterranean spearfish Tetrapturus belone (Rafinesque, 1810). MARINE POLLUTION BULLETIN 2020; 151:110878. [PMID: 32056654 DOI: 10.1016/j.marpolbul.2019.110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/22/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
We determined levels of mercury, cadmium, lead and selenium in muscle and liver of 29 specimens of a large pelagic fish rarely investigated, the Mediterranean spearfish Tetrapturus belone (Raf., 1810). The following element concentration ranking (mean ± S.D.; espressed in mg/kg dry weight) was recorded in muscle: Hg (3.401 ± 1.908) > Se (1.727 ± 0.232) > Pb (0.532 ± 0.322) > Cd (0.019 ± 0.015), and Se (6.577 ± 1.789) > Cd (5.815 ± 3.038) > Hg (2.698 ± 2.214) > Pb (0.661 ± 1.334) in liver. Levels of Hg, Se and Cd were compared to those reported for other Istiophoridae from oceanic areas and for other large predators of Mediterranean Sea, like swordfish and tuna. Organotropism of trace elements and their relation to size was discussed. Ecophysiological considerations regarding the Se-Hg relationship as well as Se-Cd indicate a possible detoxification mechanism. The implications for human consumption are briefly discussed.
Collapse
Affiliation(s)
- Stefania Ancora
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy.
| | - Giacomo Mariotti
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy
| | - Rosetta Ponchia
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy
| | - Maria Cristina Fossi
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy
| | - Claudio Leonzio
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy
| | - Nicola Bianchi
- Department of Earth, Environmental and Physical Sciences, University of Siena, Italy
| |
Collapse
|
49
|
Ehnert-Russo SL, Gelsleichter J. Mercury Accumulation and Effects in the Brain of the Atlantic Sharpnose Shark (Rhizoprionodon terraenovae). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 78:267-283. [PMID: 31760438 DOI: 10.1007/s00244-019-00691-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Few published studies have examined whether the elevated concentrations of the nonessential toxic metal mercury (Hg) often observed in shark muscle also occur in the shark brain or whether Hg accumulation affects shark neurophysiology. Therefore, this study examined accumulation and distribution of Hg in the shark brain, as well as effects of Hg on oxidative stress in the shark central nervous system, with particular focus on the Atlantic sharpnose shark (Rhizoprionodon terraenovae). Sharks were collected along the southeastern U.S. coast throughout most of this species' U.S. geographical range. Total Hg (THg) concentrations were measured in and compared between shark muscle and brain, whereas known biomarkers of Hg-induced neurological effects, including glutathione depletion, lipid peroxidation, and concentrations of a protein marker of glial cell damage (S100b), were measured in shark cerebrospinal fluid. Brain THg concentrations were correlated with muscle THg levels but were significantly lower and did not exceed most published thresholds for neurological effects, suggesting limited potential for detrimental responses. Biomarker concentrations supported this premise, because these data were not correlated with brain THg levels. Hg speciation also was examined. Unlike muscle, methylmercury (MeHg) did not comprise a high percentage of THg in the brain, suggesting that differential uptake or loss of organic and inorganic Hg and/or demethylation of MeHg may occur in this organ. Although Hg accumulation in the shark brain generally fell below toxicity thresholds, higher THg levels were measured in the shark forebrain compared with the midbrain and hindbrain. Therefore, there is potential for selective effects on certain aspects of shark neurophysiology if brain Hg accumulation is increased.
Collapse
Affiliation(s)
- S L Ehnert-Russo
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA
| | - J Gelsleichter
- University of North Florida, 1 UNF Dr, Jacksonville, FL, 32224, USA.
| |
Collapse
|
50
|
Murillo-Cisneros DA, O'Hara TM, Elorriaga-Verplancken FR, Sánchez-González A, Marín-Enríquez E, Marmolejo-Rodríguez AJ, Galván-Magaña F. Trophic Structure and Biomagnification of Total Mercury in Ray Species Within a Benthic Food Web. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:321-329. [PMID: 31028414 DOI: 10.1007/s00244-019-00632-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/15/2019] [Indexed: 06/09/2023]
Abstract
Stable isotopes of C (δ13C) and N (δ15N) were used to explore the trophic structure and evaluate mercury (Hg) biomagnification in the food web of muscle of three commercially important ray species from the Pacific coast of Baja California Sur (PCBCS): the shovelnose guitarfish (Pseudobatos productus), banded guitarfish (Zapteryx exasperata), and bat ray (Myliobatis californica). The food web of these ray species predominately consisted of zooplankton, three species of fish, and five species of invertebrates. Mean δ15N values in all species ranged from 10.54 ± 0.18‰ in zooplankton to 17.84 ± 0.81‰ in the shovelnose guitarfish. Mean δ13C values ranged from - 22.05 ± 0.75‰ in the red crab to - 15.93 ± 0.78‰ in the bat ray. Mean total Hg concentration ([THg]) in all species ranged from 0.0009 ± 0.0002 mg kg-1 ww in zooplankton to 0.24 ± 0.19 mg kg-1 ww in the banded guitarfish. The food web magnification factor was 6.38 and significantly greater than 1.0. The present study describes [THg] biomagnification in the benthic food web of three ray species of the PCBCS. This provides an important baseline knowledge of the biomagnification dynamics and pathways of Hg in this environment for these multiple interacting species.
Collapse
Affiliation(s)
- Daniela A Murillo-Cisneros
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. I.P.N. s/n, Colonia Playa Palo de Santa Rita, Apartado Postal 592, C.P. 23000, La Paz, B.C.S, Mexico
| | - Todd M O'Hara
- Department of Veterinary Medicine, University of Alaska Fairbanks, 901 Koyukuk Dr, Fairbanks, 99775-7750, USA
| | - Fernando R Elorriaga-Verplancken
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. I.P.N. s/n, Colonia Playa Palo de Santa Rita, Apartado Postal 592, C.P. 23000, La Paz, B.C.S, Mexico
| | - Alberto Sánchez-González
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. I.P.N. s/n, Colonia Playa Palo de Santa Rita, Apartado Postal 592, C.P. 23000, La Paz, B.C.S, Mexico
| | - Emigdio Marín-Enríquez
- Centro de Investigaciones Biológicas del Noroeste, S.C. Av. IPN S/N, Col. Playa Palo de Santa Rita, 23096, La Paz, B.C.S, Mexico
| | - Ana J Marmolejo-Rodríguez
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. I.P.N. s/n, Colonia Playa Palo de Santa Rita, Apartado Postal 592, C.P. 23000, La Paz, B.C.S, Mexico
| | - Felipe Galván-Magaña
- Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, Av. I.P.N. s/n, Colonia Playa Palo de Santa Rita, Apartado Postal 592, C.P. 23000, La Paz, B.C.S, Mexico.
| |
Collapse
|