1
|
Chamorro AF, Palencia M, Combatt EM. Biodegradable Cassava Starch/Phosphorite/Citric Acid Based Hydrogel for Slow Release of Phosphorus: In Vitro Study. Gels 2024; 10:431. [PMID: 39057454 PMCID: PMC11276383 DOI: 10.3390/gels10070431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphorous (P) is one the most important elements in several biological cycles, and is a fundamental component of soil, plants and living organisms. P has a low mobility and is quickly adsorbed on clayey soils, limiting its availability and absorption by plants. Here, biodegradable hydrogels based on Cassava starch crosslinked with citric acid (CA) were made and loaded with KH2PO4 and phosphorite to promote the slow release of phosphorus, the storing of water, and the reduction in P requirements during fertilization operations. Crosslinking as a function of CA concentrations was investigated by ATR-FTIR and TGA. The water absorption capacity (WAC) and P release, under different humic acid concentration regimens, were studied by in vitro tests. It is concluded that hydrogel formed from 10% w/w of CA showed the lowest WAC because of a high crosslinking degree. Hydrogel containing 10% w/w of phosphorite was shown to be useful to encouraging the slow release of P, its release behavior being fitted to the Higuchi kinetics model. In addition, P release increased as humic acid contents were increased. These findings suggest that these hydrogels could be used for encouraging P slow release during crop production.
Collapse
Affiliation(s)
- Andrés F. Chamorro
- Research Group of Electrochemistry and Environment (GIEMA), Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| | - Manuel Palencia
- Research Group in Science with Technological Applications (GICAT), Department of Chemistry, Faculty of Natural and Exact Science, Universidad del Valle, Cali 760032, Colombia
| | - Enrique M. Combatt
- Department of Agricultural and Rural Development, Faculty of Agricultural Sciences, Universidad de Córdoba, Monteria 230002, Colombia;
| |
Collapse
|
2
|
Qadeer A, Khan A, Khan NM, Wajid A, Ullah K, Skalickova S, Chilala P, Slama P, Horky P, Alqahtani MS, Alreshidi MA. Use of nanotechnology-based nanomaterial as a substitute for antibiotics in monogastric animals. Heliyon 2024; 10:e31728. [PMID: 38845989 PMCID: PMC11153202 DOI: 10.1016/j.heliyon.2024.e31728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Nanotechnology has emerged as a promising solution for tackling antibiotic resistance in monogastric animals, providing innovative methods to enhance animal health and well-being. This review explores the novel use of nanotechnology-based nanomaterials as substitutes for antibiotics in monogastric animals. With growing global concerns about antibiotic resistance and the need for sustainable practices in animal husbandry, nanotechnology offers a compelling avenue to address these challenges. The objectives of this review are to find out the potential of nanomaterials in improving animal health while reducing reliance on conventional antibiotics. We examine various forms of nanomaterials and their roles in promoting gut health and also emphasize fresh perspectives brought by integrating nanotechnology into animal healthcare. Additionally, we delve into the mechanisms underlying the antibacterial properties of nanomaterials and their effectiveness in combating microbial resistance. By shedding light on the transformative role of nanotechnology in animal production systems. This review contributes to our understanding of how nanotechnology can provide safer and more sustainable alternatives to antibiotics.
Collapse
Affiliation(s)
- Abdul Qadeer
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, China
| | - Aamir Khan
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Noor Muhammad Khan
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, UK
| | - Abdul Wajid
- Faculty of Pharmacy, Gomal University Dera Ismail Khan, Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Kaleem Ullah
- Livestock and Dairy Development (Extension), Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Sylvie Skalickova
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Pompido Chilala
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Petr Slama
- Laboratory of Animal Immunology and Biotechnology, Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Pavel Horky
- Department of Animal Nutrition and Forage Production, Mendel University in Brno, Zemedelska 1, CZ, 613 00, Brno, Czech Republic
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 RH, UK
| | | |
Collapse
|
3
|
Marcellini F, Varrella S, Ghilardi M, Barucca G, Giorgetti A, Danovaro R, Corinaldesi C. Inorganic UV filter-based sunscreens labelled as eco-friendly threaten sea urchin populations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124093. [PMID: 38703981 DOI: 10.1016/j.envpol.2024.124093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Although the negative effects of inorganic UV filters have been documented on several marine organisms, sunscreen products containing such filters are available in the market and proposed as eco-friendly substitutes for harmful, and already banned, organic UV filters (e.g. octinoxate and oxybenzone). In the present study, we investigated the effects of four sunscreen products, labelled by cosmetic companies as "eco-friendly", on the early developmental stages of the sea urchin Paracentrotus lividus, a keystone species occurring in vulnerable coastal habitats. Among sunscreens tested, those containing ZnO and TiO2 or their mix caused severe impacts on sea urchin embryos. We show that inorganic UV filters were incorporated by larvae during their development and, despite the activation of defence strategies (e.g. phagocytosis by coelomocytes), generated anomalies such as skeletal malformations and tissue necrosis. Conversely, the sunscreen product containing only new-generation organic UV filters (e.g. methylene bis-benzotriazolyl tetramethyl, ethylhexyl triazone, butylphenol diethylamino hydroxybenzoyl hexyl benzoate) did not affect sea urchins, thus resulting actually eco-compatible. Our findings expand information on the impact of inorganic UV filters on marine life, corroborate the need to improve the eco-friendliness assessment of sunscreen products and warn of the risk of bioaccumulation and potential biomagnification of inorganic UV filters along the marine food chain.
Collapse
Affiliation(s)
- F Marcellini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - S Varrella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - M Ghilardi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - G Barucca
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - A Giorgetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - R Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy; National Biodiversity Future Centre, Italy
| | - C Corinaldesi
- National Biodiversity Future Centre, Italy; Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
4
|
Murano C, Nonnis S, Scalvini FG, Maffioli E, Corsi I, Tedeschi G, Palumbo A. Response to microplastic exposure: An exploration into the sea urchin immune cell proteome. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 320:121062. [PMID: 36641070 DOI: 10.1016/j.envpol.2023.121062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
It is now known that the Mediterranean Sea currently is one of the major hotspot for microplastics (MPs; < 5 mm) pollution and that the risks will be even more pronounced in the coming years. Thus, the in-depth study of the mechanisms underlying the MPs toxicity in key Mediterranean organisms, subjected to high anthropic pressures, has become a categorical imperative to pursue. Here, we explore for the first time the sea urchins immune cells profile combined to their proteome upon in vivo exposure (72 h) to different concentrations of polystyrene-microbeads (micro-PS) starting from relevant environmental concentrations (10, 50, 103, 104 MP/L). Every 24 h, immunological parameters were monitored. After 72 h, the abundance of MPs was examined in various organs and coelomocytes were collected for proteomic analysis based on a shotgun label free proteomic approach. While sea urchins treated with the lowest concentration tested (10 and 50 micro-PS/L) did not show the presence of micro-PS in any tissue, in the specimens exposed to the highest concentration (103 and 104 micro-PS) there was an internalisation of 9.75 ± 2.75 and 113.75 ± 34.5 MP/g, respectively. Proteomic analyses revealed that MPs exposure altered coelomocytes protein profile not only compared to the control group but also among the different micro-PS concentrations and these variations are micro-PS concentration dependent. The proteins exclusively expressed in the coelomocytes of specimens exposed to MPs are mainly metabolite interconversion enzymes, involved in cellular processes, indicating a severe alteration of the cellular metabolic pathways. Overall, these findings provide new insights on the mode of action of MPs in the sea urchin immune cells both at the molecular and cellular level.
Collapse
Affiliation(s)
- Carola Murano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Elisa Maffioli
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Siena, Italy
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science (DIVAS), Università Degli Studi di Milano, Milano, Italy; CRC "Innovation for Well-being and Environment" (I-WE), Università Degli Studi di Milano, Milano, Italy
| | - Anna Palumbo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
5
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
6
|
Burić P, Čarapar I, Pavičić-Hamer D, Kovačić I, Jurković L, Dutour Sikirić M, Domazet Jurašin D, Mikac N, Bačić N, Lyons DM. Particle Size Modulates Silver Nanoparticle Toxicity during Embryogenesis of Urchins Arbacia lixula and Paracentrotus lividus. Int J Mol Sci 2023; 24:745. [PMID: 36614188 PMCID: PMC9821580 DOI: 10.3390/ijms24010745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Silver nanoparticles represent a threat to biota and have been shown to cause harm through a number of mechanisms, using a wide range of bioassay endpoints. While nanoparticle concentration has been primarily considered, comparison of studies that have used differently sized nanoparticles indicate that nanoparticle diameter may be an important factor that impacts negative outcomes. In considering this, the aim of the present study was to determine if different sizes of silver nanoparticles (AgNPs; 10, 20, 40, 60 and 100 nm) give rise to similar effects during embryogenesis of Mediterranean sea urchins Arbacia lixula and Paracentrotus lividus, or if nanoparticle size is a parameter that can modulate embryotoxicity and spermiotoxicity in these species. Fertilised embryos were exposed to a range of AgNP concentrations (1−1000 µg L−1) and after 48 h larvae were scored. Embryos exposed to 1 and 10 µg L−1 AgNPs (for all tested sizes) showed no negative effect in both sea urchins. The smaller AgNPs (size 10 and 20 nm) caused a decrease in the percentage of normally developed A. lixula larvae at concentrations ≥50 µg L−1 (EC50: 49 and 75 μg L−1, respectively) and at ≥100 µg L−1 (EC50: 67 and 91 μg L−1, respectively) for P. lividus. AgNPs of 40 nm diameter was less harmful in both species ((EC50: 322 and 486 μg L−1, for P. lividus and A. lixula, respectively)). The largest AgNPs (60 and 100 nm) showed a dose-dependent response, with little effect at lower concentrations, while more than 50% of larvae were developmentally delayed at the highest tested concentrations of 500 and 1000 µg L−1 (EC50(100 nm); 662 and 529 μg L−1, for P. lividus and A. lixula, respectively. While AgNPs showed no effect on the fertilisation success of treated sperm, an increase in offspring developmental defects and arrested development was observed in A. lixula larvae for 10 nm AgNPs at concentrations ≥50 μg L−1, and for 20 and 40 nm AgNPs at concentrations >100 μg L−1. Overall, toxicity was mostly ascribed to more rapid oxidative dissolution of smaller nanoparticles, although, in cases, Ag+ ion concentrations alone could not explain high toxicity, indicating a nanoparticle-size effect.
Collapse
Affiliation(s)
- Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Ivana Čarapar
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Dijana Pavičić-Hamer
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Ines Kovačić
- Faculty of Educational Sciences, Juraj Dobrila University of Pula, Zagrebačka 30, 52100 Pula, Croatia
| | - Lara Jurković
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Maja Dutour Sikirić
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Nevenka Mikac
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Niko Bačić
- Division of Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| |
Collapse
|
7
|
El-Kady MM, Ansari I, Arora C, Rai N, Soni S, Kumar Verma D, Singh P, El Din Mahmoud A. Nanomaterials: A Comprehensive Review of Applications, Toxicity, Impact, and Fate to Environment. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
8
|
Nano-ecotoxicology in a changing ocean. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05147-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
AbstractThe ocean faces an era of change, driven in large by the release of anthropogenic CO2, and the unprecedented entry of pollutants into the water column. Nanomaterials, those particles < 100 nm, represent an emerging contaminant of environmental concern. Research on the ecotoxicology and fate of nanomaterials in the natural environment has increased substantially in recent years. However, commonly such research does not consider the wider environmental changes that are occurring in the ocean, i.e., ocean warming and acidification, and occurrence of co-contaminants. In this review, the current literature available on the combined impacts of nanomaterial exposure and (i) ocean warming, (ii) ocean acidification, (iii) co-contaminant stress, upon marine biota is explored. Here, it is identified that largely co-stressors influence nanomaterial ecotoxicity by altering their fate and behaviour in the water column, thus altering their bioavailability to marine organisms. By acting in this way, such stressors, are able to mitigate or elevate toxic effects of nanomaterials in a material-specific manner. However, current evidence is limited to a relatively small set of test materials and model organisms. Indeed, data is biased towards effects upon marine bivalve species. In future, expanding studies to involve other ecologically significant taxonomic groups, primarily marine phytoplankton will be highly beneficial. Although limited in number, the available evidence highlights the importance of considering co-occurring environmental changes in ecotoxicological research, as it is likely in the natural environment, the material of interest will not be the sole stressor encountered by biota. As such, research examining ecotoxicology alongside co-occurring environmental stressors is essential to effectively evaluating risk and develop effective long-term management strategies.
Collapse
|
9
|
Kukla SP, Slobodskova VV, Zhuravel EV, Mazur AA, Chelomin VP. Exposure of adult sand dollars (Scaphechinus mirabilis) (Agassiz, 1864) to copper oxide nanoparticles induces gamete DNA damage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:39451-39460. [PMID: 35103949 DOI: 10.1007/s11356-021-18318-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The increase in the number of products containing nanoparticles (NPs) poses a real threat to the environment. Recently, more evidence has been added to predictive models about the presence of NPs in various natural and anthropogenic systems. The acute toxicity of most aquatic NPs has now been well documented. However, data such as the ecotoxicological significance of the long-lasting effects of NPs on the reproductive system and gamete quality of aquatic organisms are still relatively scarce. Therefore, a 10-day experiment was carried out on the sand dollar Scaphechinus mirabilis (Agassiz, 1864) exposed to low (20 and 40 μg/L) concentrations of copper oxide nanoparticles (CuO NPs). An accumulation of copper in tissues and a significant increase in lipid peroxidation product concentrations after exposure to NP were observed. A significant decrease in the fertilization rate was shown at 40 μg/L. No significant changes in embryonic or larval development were found. However, comet analysis results showed a significant increase in DNA damage in spermatozoa exposed to CuO NPs, which may further manifest as negative effects at later developmental stages or in subsequent generations.
Collapse
Affiliation(s)
- Sergey Petrovich Kukla
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia.
| | - Valentina Vladimirovna Slobodskova
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Elena Vladimirovna Zhuravel
- School of Natural Sciences, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690950, Russia
| | - Andrey Alexandrovich Mazur
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| | - Viktor Pavlovich Chelomin
- Laboratory of Marine Ecotoxicology, V.I. Il'ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, 43 Baltiyskaya St., Vladivostok, 690041, Russia
| |
Collapse
|
10
|
Auguste M, Melillo D, Corteggio A, Marino R, Canesi L, Pinsino A, Italiani P, Boraschi D. Methodological Approaches To Assess Innate Immunity and Innate Memory in Marine Invertebrates and Humans. FRONTIERS IN TOXICOLOGY 2022; 4:842469. [PMID: 35295223 PMCID: PMC8915809 DOI: 10.3389/ftox.2022.842469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 12/17/2022] Open
Abstract
Assessing the impact of drugs and contaminants on immune responses requires methodological approaches able to represent real-life conditions and predict long-term effects. Innate immunity/inflammation is the evolutionarily most widespread and conserved defensive mechanism in living organisms, and therefore we will focus here on immunotoxicological methods that specifically target such processes. By exploiting the conserved mechanisms of innate immunity, we have examined the most representative immunotoxicity methodological approaches across living species, to identify common features and human proxy models/assays. Three marine invertebrate organisms are examined in comparison with humans, i.e., bivalve molluscs, tunicates and sea urchins. In vivo and in vitro approaches are compared, highlighting common mechanisms and species-specific endpoints, to be applied in predictive human and environmental immunotoxicity assessment. Emphasis is given to the 3R principle of Replacement, Refinement and Reduction of Animals in Research and to the application of the ARRIVE guidelines on reporting animal research, in order to strengthen the quality and usability of immunotoxicology research data.
Collapse
Affiliation(s)
- Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Daniela Melillo
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Annunziata Corteggio
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Rita Marino
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), CNR, Palermo, Italy
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| | - Diana Boraschi
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), Shenzhen, China
- *Correspondence: Paola Italiani, ; Diana Boraschi,
| |
Collapse
|
11
|
Gokce C, Gurcan C, Delogu LG, Yilmazer A. 2D Materials for Cardiac Tissue Repair and Regeneration. Front Cardiovasc Med 2022; 9:802551. [PMID: 35224044 PMCID: PMC8873146 DOI: 10.3389/fcvm.2022.802551] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) have a massive impact on human health. Due to the limited regeneration capacity of adult heart tissue, CVDs are the leading cause of death and disability worldwide. Even though there are surgical and pharmacological treatments for CVDs, regenerative strategies are the most promising approaches and have the potential to benefit millions of people. As in any other tissue engineering approach, the repair and regeneration of damaged cardiac tissues generally involve scaffolds made up of biodegradable and biocompatible materials, cellular components such as stem cells, and growth factors. This review provides an overview of biomaterial-based tissue engineering approaches for CVDs with a specific focus on the potential of 2D materials. It is essential to consider both physicochemical and immunomodulatory properties for evaluating the applicability of 2D materials in cardiac tissue repair and regeneration. As new members of the 2D materials will be explored, they will quickly become part of cardiac tissue engineering technologies.
Collapse
Affiliation(s)
- Cemile Gokce
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
| | - Cansu Gurcan
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
| | | | - Acelya Yilmazer
- Department of Biomedical Engineering, Ankara University, Ankara, Turkey
- Stem Cell Institute, Ankara University, Ankara, Turkey
- *Correspondence: Acelya Yilmazer
| |
Collapse
|
12
|
Green Synthesis of Gold and Iron Nanoparticles for Targeted Delivery: An In Vitro and In Vivo Study. J CHEM-NY 2021. [DOI: 10.1155/2021/1581444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Nanotechnology has vast applications in almost all fields of science and technology. The use of medicinal plants for the synthesis of metallic nanoparticles has gained much attention nowadays. In the current research work, six medicinal plants were used for the synthesis of gold nanoparticles (AuNPs) and iron nanoparticles (FeNPs). The synthesized nanoparticles were characterized by different techniques including UV-visible spectrophotometry, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). Furthermore, the activities of green synthesized nanoparticles were screened in vitro using, for example, antibacterial, antioxidant, cytotoxic, and DNA protection assays. Both FeNPs and AuNPs had spherical shapes with an average size less than 50 nm and were found to have good antimicrobial and nontoxic effects. Furthermore, FeNPs from Ficus microcarpa demonstrated high drug loading efficiency (65%) as compared to an anti-inflammatory drug (diclofenac potassium, DFP). We also evaluated the drug delivery potential, as well as anti-inflammatory and anticoagulant properties, of nanoparticles in vivo. Interestingly, AuNPs of Syzygium cumini exhibited strong anti-inflammatory potential as compared to DFP and diclofenac-loaded FeNPs of Ficus microcarpa. The results suggest potential pharmacological applications of biogenic synthesized AuNPs and FeNPs which can be explored further. The study revealed that the green synthesized AuNPs and FeNPs provide a promising approach for the synthesis of drug-loaded nanoparticles and consequently in the field of targeted drug delivery.
Collapse
|
13
|
Gambardella C, Marcellini F, Falugi C, Varrella S, Corinaldesi C. Early-stage anomalies in the sea urchin (Paracentrotus lividus) as bioindicators of multiple stressors in the marine environment: Overview and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117608. [PMID: 34182396 DOI: 10.1016/j.envpol.2021.117608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
The morphological anomalies of the early development stages of the sea urchin Paracentrotus lividus, caused by exposure to environmental stressors, are used as biomarker in ecotoxicological and ecological investigations. Here, we reviewed the available literature and classified the embryo and larval anomalies identified so far, to highlight potential commonalities or differences related to the biological action of the different stressors and their ecological impact. Morphological anomalies are influenced by a) the developmental stage of exposure to stressors; b) the intensity of the stress; c) the intra- and inter-cellular mechanisms affected by the exposure to environmental agents. The classification and analysis of embryo and larvae anomalies, either observed by the authors of this review and reported in literature, indicate that sea urchin abnormalities, caused by exposure to different stressors, can be very similar among them and classified into 18 main types, which can occur individually or mixed. All anomalies can be used to calculate an Index of Contaminant Impact to assess the impact of multiple stressors and to identify relationships between morphological anomalies and compromised biological mechanisms. This approach could be useful for a first screening of the presence of potential stressors impairing the growth and development of the early life stages of marine organisms, thus providing a relevant advancement for in future monitoring activities devoted to assess the health status in coastal marine ecosystems.
Collapse
Affiliation(s)
- Chiara Gambardella
- Consiglio Nazionale Delle Ricerche - Istituto per Lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (CNR-IAS), Via de Marini 6, 16149, Genova, Italy
| | | | - Carla Falugi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Stefano Varrella
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy
| | - Cinzia Corinaldesi
- Dipartimento di Scienze e Ingegneria Della Materia, Dell'Ambiente e Urbanistica, Università Politecnica Delle Marche, Via Brecce Bianche, 60131, Ancona, Italy.
| |
Collapse
|
14
|
Wang X, Liu L, Liang D, Liu Y, Zhao Q, Huang P, Li X, Fan W. Accumulation, transformation and subcellular distribution of arsenite associated with five carbon nanomaterials in freshwater zebrafish specific-tissues. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125579. [PMID: 33721782 DOI: 10.1016/j.jhazmat.2021.125579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Although carbon nanomaterials (CNMs) commonly exist throughout the aquatic environment, their effect on arsenic (As) distribution and toxicity is unclear. In this study, arsenite accumulation, transformation, subcellular distribution, and enzyme activity were assessed in adult zebrafish (Danio rerio) intestines, heads and muscles, following co-exposure to arsenite and CNMs with different structures (single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerene (C60), graphene oxide (GO), and graphene (GN)). Results show that GN and GO promoted As toxicity in D. rerio, as carriers increasing total As accumulation in the intestine, resulting in arsenite adsorbed by GO and GN being released and transformed mainly into moderately-toxic monomethylarsonic acid (MMA), which was mostly distributed in organelles and metallothionein-like proteins (MTLPs). Moreover, GO and GN influenced As species distribution in D. rerio due to the excellent electron transfer ability. However, the effect was marginal for SWCNT, MWCNT and C60, because of the different structure and suspension stability in fish-culture water. In addition, in the muscle and head tissues, As was mainly distributed in cellular debris in the forms of dimethylarsinic acid (DMA) and arsenobetaine (AsB). These findings help better understand the influence of CNMs on the mechanism of As toxicity in natural aquatic environments.
Collapse
Affiliation(s)
- Xiaoyan Wang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Liping Liu
- Beijing Center for Disease Prevention and Control, Beijing 100013, PR China
| | - Dingyuan Liang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Yingying Liu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, No.19, Xinjiekouwai Street, Haidian, Beijing 100875, PR China
| | - Qing Zhao
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Peng Huang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - XiaoMin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| |
Collapse
|
15
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
16
|
Rosner A, Armengaud J, Ballarin L, Barnay-Verdier S, Cima F, Coelho AV, Domart-Coulon I, Drobne D, Genevière AM, Jemec Kokalj A, Kotlarska E, Lyons DM, Mass T, Paz G, Pazdro K, Perić L, Ramšak A, Rakers S, Rinkevich B, Spagnuolo A, Sugni M, Cambier S. Stem cells of aquatic invertebrates as an advanced tool for assessing ecotoxicological impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144565. [PMID: 33736145 DOI: 10.1016/j.scitotenv.2020.144565] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Environmental stressors are assessed through methods that quantify their impacts on a wide range of metrics including species density, growth rates, reproduction, behaviour and physiology, as on host-pathogen interactions and immunocompetence. Environmental stress may induce additional sublethal effects, like mutations and epigenetic signatures affecting offspring via germline mediated transgenerational inheritance, shaping phenotypic plasticity, increasing disease susceptibility, tissue pathologies, changes in social behaviour and biological invasions. The growing diversity of pollutants released into aquatic environments requires the development of a reliable, standardised and 3R (replacement, reduction and refinement of animals in research) compliant in vitro toolbox. The tools have to be in line with REACH regulation 1907/2006/EC, aiming to improve strategies for potential ecotoxicological risks assessment and monitoring of chemicals threatening human health and aquatic environments. Aquatic invertebrates' adult stem cells (ASCs) are numerous and can be pluripotent, as illustrated by high regeneration ability documented in many of these taxa. This is of further importance as in many aquatic invertebrate taxa, ASCs are able to differentiate into germ cells. Here we propose that ASCs from key aquatic invertebrates may be harnessed for applicable and standardised new tests in ecotoxicology. As part of this approach, a battery of modern techniques and endpoints are proposed to be tested for their ability to correctly identify environmental stresses posed by emerging contaminants in aquatic environments. Consequently, we briefly describe the current status of the available toxicity testing and biota-based monitoring strategies in aquatic environmental ecotoxicology and highlight some of the associated open issues such as replicability, consistency and reliability in the outcomes, for understanding and assessing the impacts of various chemicals on organisms and on the entire aquatic environment. Following this, we describe the benefits of aquatic invertebrate ASC-based tools for better addressing ecotoxicological questions, along with the current obstacles and possible overhaul approaches.
Collapse
Affiliation(s)
- Amalia Rosner
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200 Bagnols-sur-Cèze, France.
| | - Loriano Ballarin
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Stéphanie Barnay-Verdier
- Sorbonne Université; CNRS, INSERM, Université Côte d'Azur, Institute for Research on Cancer and Aging Nice, F-06107 Nice, France.
| | - Francesca Cima
- Department of Biology, University of Padova, via Ugo Bassi 58/B, 35121 Padova, Italy.
| | - Ana Varela Coelho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Isabelle Domart-Coulon
- Muséum National d'Histoire Naturelle, CNRS, Microorganism Communication and Adaptation Molecules MCAM, Paris F-75005, France.
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Anne-Marie Genevière
- Sorbonne Université, CNRS, Integrative Biology of Marine Organisms, BIOM, F-6650 Banyuls-sur-mer, France.
| | - Anita Jemec Kokalj
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Večna pot 111,D, 1000 Ljubljana, Slovenia.
| | - Ewa Kotlarska
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland.
| | - Daniel Mark Lyons
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, HR-52210 Rovinj, Croatia.
| | - Tali Mass
- Marine Biology Department, Leon H. Charney School of Marine Sciences, 199 Aba Khoushy Ave, University of Haifa, 3498838, Israel.
| | - Guy Paz
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Ksenia Pazdro
- Institute of Oceanology of the Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Lorena Perić
- Rudjer Boskovic Institute, Laboratory for Aquaculture and Pathology of Aquaculture Organisms, Bijenička cesta 54, HR-10000 Zagreb, Croatia.
| | - Andreja Ramšak
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia.
| | | | - Baruch Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Tel Shikmona, Haifa 3108001, Israel.
| | - Antonietta Spagnuolo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milano, Italy.
| | - Sébastien Cambier
- Luxembourg Institute of Science and Technology, 5, avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
17
|
Carata E, Tenuzzo BA, Mariano S, Setini A, Fidaleo M, Dini L. RETRACTED ARTICLE: Genotoxicity and alteration of the Gene Regulatory Network expression during Paracentrotus lividus development in the presence of carbon nanoparticles. Toxicol Res 2021; 38:257. [PMID: 35415079 PMCID: PMC8960529 DOI: 10.1007/s43188-020-00081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/13/2020] [Accepted: 12/17/2020] [Indexed: 10/25/2022] Open
|
18
|
Dedman CJ, King AM, Christie-Oleza JA, Davies GL. Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes. ENVIRONMENTAL SCIENCE. NANO 2021; 8:1236-1255. [PMID: 34046180 PMCID: PMC8136324 DOI: 10.1039/d0en00883d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 04/06/2021] [Indexed: 05/26/2023]
Abstract
Nano-sized titanium dioxide (nTiO2) represents the highest produced nanomaterial by mass worldwide and, due to its prevalent industrial and commercial use, it inevitably reaches the natural environment. Previous work has revealed a negative impact of nTiO2 upon marine phytoplankton growth, however, studies are typically carried out at concentrations far exceeding those measured and predicted to occur in the environment currently. Here, a series of experiments were carried out to assess the effects of both research-grade nTiO2 and nTiO2 extracted from consumer products upon the marine dominant cyanobacterium, Prochlorococcus, and natural marine communities at environmentally relevant and supra-environmental concentrations (i.e., 1 μg L-1 to 100 mg L-1). Cell declines observed in Prochlorococcus cultures were associated with the extensive aggregation behaviour of nTiO2 in saline media and the subsequent entrapment of microbial cells. Hence, higher concentrations of nTiO2 particles exerted a stronger decline of cyanobacterial populations. However, within natural oligotrophic seawater, cultures were able to recover over time as the nanoparticles aggregated out of solution after 72 h. Subsequent shotgun proteomic analysis of Prochlorococcus cultures exposed to environmentally relevant concentrations confirmed minimal molecular features of toxicity, suggesting that direct physical effects are responsible for short-term microbial population decline. In an additional experiment, the diversity and structure of natural marine microbial communities showed negligible variations when exposed to environmentally relevant nTiO2 concentrations (i.e., 25 μg L-1). As such, the environmental risk of nTiO2 towards marine microbial species appears low, however the potential for adverse effects in hotspots of contamination exists. In future, research must be extended to consider any effect of other components of nano-enabled product formulations upon nanomaterial fate and impact within the natural environment.
Collapse
Affiliation(s)
- Craig J Dedman
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Chemistry, University of Warwick Gibbet Hill Coventry CV4 7EQ UK
| | - Aaron M King
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Joseph A Christie-Oleza
- School of Life Sciences, Gibbet Hill Campus, University of Warwick Coventry CV4 7AL UK
- Department of Biology, University of the Balearic Islands Ctra. Valldemossa, km 7.5 CP: 07122 Palma Spain
- IMEDEA (CSIC-UIB) CP: 07190 Esporles Spain
| | - Gemma-Louise Davies
- UCL Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| |
Collapse
|
19
|
Kangale LJ, Raoult D, Fournier PE, Abnave P, Ghigo E. Planarians (Platyhelminthes)-An Emerging Model Organism for Investigating Innate Immune Mechanisms. Front Cell Infect Microbiol 2021; 11:619081. [PMID: 33732660 PMCID: PMC7958881 DOI: 10.3389/fcimb.2021.619081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
An organism responds to the invading pathogens such as bacteria, viruses, protozoans, and fungi by engaging innate and adaptive immune system, which functions by activating various signal transduction pathways. As invertebrate organisms (such as sponges, worms, cnidarians, molluscs, crustaceans, insects, and echinoderms) are devoid of an adaptive immune system, and their defense mechanisms solely rely on innate immune system components. Investigating the immune response in such organisms helps to elucidate the immune mechanisms that vertebrates have inherited or evolved from invertebrates. Planarians are non-parasitic invertebrates from the phylum Platyhelminthes and are being investigated for several decades for understanding the whole-body regeneration process. However, recent findings have emerged planarians as a useful model for studying innate immunity as they are resistant to a broad spectrum of bacteria. This review intends to highlight the research findings on various antimicrobial resistance genes, signaling pathways involved in innate immune recognition, immune-related memory and immune cells in planarian flatworms.
Collapse
Affiliation(s)
- Luis Johnson Kangale
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France.,Aix-Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- Aix-Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France.,Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France
| | | | - Eric Ghigo
- Institut Hospitalo-Universitaire-Méditerranée-Infection, Marseille, France.,TechnoJouvence, Marseille, France
| |
Collapse
|
20
|
Deidda I, Russo R, Bonaventura R, Costa C, Zito F, Lampiasi N. Neurotoxicity in Marine Invertebrates: An Update. BIOLOGY 2021; 10:161. [PMID: 33670451 PMCID: PMC7922589 DOI: 10.3390/biology10020161] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022]
Abstract
Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.
Collapse
|
21
|
Alijagic A, Barbero F, Gaglio D, Napodano E, Benada O, Kofroňová O, Puntes VF, Bastús NG, Pinsino A. Gold nanoparticles coated with polyvinylpyrrolidone and sea urchin extracellular molecules induce transient immune activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123793. [PMID: 33254802 DOI: 10.1016/j.jhazmat.2020.123793] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 06/12/2023]
Abstract
We report that the immunogenicity of colloidal gold nanoparticles coated with polyvinylpyrrolidone (PVP-AuNPs) in a model organism, the sea urchin Paracentrotus lividus, can function as a proxy for humans for in vitro immunological studies. To profile the immune recognition and interaction from exposure to PVP-AuNPs (1 and 10 μg mL-1), we applied an extensive nano-scale approach, including particle physicochemical characterisation involving immunology, cellular biology, and metabolomics. The interaction between PVP-AuNPs and soluble proteins of the sea urchin physiological coelomic fluid (blood equivalent) results in the formation of a protein "corona" surrounding the NPs from three major proteins that influence the hydrodynamic size and colloidal stability of the particle. At the lower concentration of PVP-AuNPs, the P. lividus phagocytes show a broad metabolic plasticity based on the biosynthesis of metabolites mediating inflammation and phagocytosis. At the higher concentration of PVP-AuNPs, phagocytes activate an immunological response involving Toll-like receptor 4 (TLR4) signalling pathway at 24 hours of exposure. These results emphasise that exposure to PVP-AuNPs drives inflammatory signalling by the phagocytes and the resolution at both the low and high concentrations of the PVP-AuNPs and provides more details regarding the immunogenicity of these NPs.
Collapse
Affiliation(s)
- Andi Alijagic
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy
| | - Francesco Barbero
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain
| | - Daniela Gaglio
- Consiglio Nazionale delle Ricerche, Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Segrate, MI, Italy; SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Elisabetta Napodano
- SYSBIO.IT, Centre of Systems Biology, University of Milano-Bicocca, Milano, Italy
| | - Oldřich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Victor F Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Vall d Hebron, Institut de Recerca (VHIR), Barcelona, Spain
| | - Neus G Bastús
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Spain
| | - Annalisa Pinsino
- Consiglio Nazionale delle Ricerche, Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Palermo, Italy.
| |
Collapse
|
22
|
Experimental Study of the Effect of Fuel Catalytic Additive on Specific Fuel Consumption and Exhaust Emissions in Diesel Engine. ENERGIES 2020. [DOI: 10.3390/en14010054] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fuel catalytic additives have been tested for many years. Herein, their influence on the overall efficiency of combustion engines is investigated, and their pro-ecological impact is assessed. The majority of this research concerns diesel engines. Despite many advantages, to this day, the use of catalytic additives has not become widespread. Wishing to clarify the situation, a research group from the Wroclaw University of Science and Technology decided to investigate this matter, starting with verification tests. This article presents the methodology and results of testing an actual diesel engine, and evaluates the effects of the use of a fuel catalytic additive. The focus was on the analysis of fuel consumption and exhaust gas emissions from a Doosan MD196TI engine. The tested additive was a commercial fuel performance catalyst (FAMAX) with up to 5% ferric chloride as an organometallic compound. The proportion of the mixture with the fuel was 1:2000. These studies provide an energy and ecological assessment of propulsion in inland vehicles relative to current exhaust emission standards. The tests were carried out in accordance with the ISO 8178 standard, albeit on a much broader scale regarding engine operation than required by the standard. In this way, a set of previously published data was more than doubled in scope. Detailed conclusions indicate the positive effect of the tested fuel additive. The emission values decreased, on average by 16.7% for particulate matter (PM), 10.1% for carbon monoxide (CO), and 7.9% for total hydrocarbons (THC). Unfortunately, the amount of nitrogen oxides (NOx) increased by 1.2%. The average difference in specific fuel consumption (BSFC) between the fuel with additive and pure diesel fuel was 0.5%, i.e. below the level of measurement error. The authors formulated the following scientific relationship between the thermal efficiency of the engine and the operation of the catalyst: the effect of the catalyst on the combustion process decreases with the increase of the thermodynamic efficiency of the engine. This conclusion indicates that despite the proven positive effect of catalysts on the combustion process, they can only be used in markets where engines with low thermal efficiency are used, i.e., older generation engines.
Collapse
|
23
|
Correia AT, Rodrigues S, Ferreira-Martins D, Nunes AC, Ribeiro MI, Antunes SC. Multi-biomarker approach to assess the acute effects of cerium dioxide nanoparticles in gills, liver and kidney of Oncorhynchus mykiss. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108842. [PMID: 32777470 DOI: 10.1016/j.cbpc.2020.108842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022]
Abstract
Cerium oxide nanoparticles (CeO2-NP) have already been detected in the aquatic compartment, however, the evaluation of potential ecotoxicological effects on biota are scarce. The present study aimed to assess the toxic effects of CeO2-NP in Oncorhynchus mykiss in different organs/tissues (gills, liver and kidney) after acute exposure (96 h) to three concentrations: 0.25, 2.5 and 25 mg/L. Oxidative stress response (catalase - CAT; glutathione S-transferases - GSTs), lipid peroxidation (thiobarbituric acid reactive substances - TBARS), Na+/K+-ATPase activity, genotoxicity (genetic damage index - GDI) and histopathology (organ's pathological indices) were evaluated. CAT activity was increased in gills and decreased in liver of fish exposed to the highest CeO2-NPs concentration tested. However, GSTs and Na+/K+-ATPase activities and TBARS levels were not significantly altered in analysed organs. CeO2-NP caused marked changes in the gills (aneurysms, blood capillary congestion, lamellar hypertrophy and hyperplasia, secondary lamella fusion and epithelial lifting), in liver (pyknotic nucleus, hyperemia, enlargement of sinusoids and leucocyte infiltration) and kidney (shrinkage of the glomeruli, enlargement of the Bowman space, tubular degeneration and nuclear hypertrophy). Moreover, a semi-quantitative histopathological scoring system (pathological index) confirmed significant alterations in the three organs of all exposed fish. Furthermore, a significant increase of GDI indices observed in gills and liver, for all tested concentrations, indicated a dose-dependent effect. The present study suggests that the release of CeO2-NP into the aquatic environment promotes biochemical, genotoxic and histopathological damages in fish. However, the mechanisms underlying the occurrence of such effects require further investigation.
Collapse
Affiliation(s)
- Alberto Teodorico Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Sara Rodrigues
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Ana Cristina Nunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Maria Inês Ribeiro
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150 Porto, Portugal
| | - Sara C Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
24
|
Pikula K, Zakharenko A, Chaika V, Em I, Nikitina A, Avtomonov E, Tregubenko A, Agoshkov A, Mishakov I, Kuznetsov V, Gusev A, Park S, Golokhvast K. Toxicity of Carbon, Silicon, and Metal-Based Nanoparticles to Sea Urchin Strongylocentrotus Intermedius. NANOMATERIALS 2020; 10:nano10091825. [PMID: 32933127 PMCID: PMC7557930 DOI: 10.3390/nano10091825] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/27/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022]
Abstract
With the increasing annual production of nanoparticles (NPs), the risks of their harmful influence on the environment and human health are rising. However, our knowledge about the mechanisms of interaction between NPs and living organisms is limited. Prior studies have shown that echinoderms, and especially sea urchins, represent one of the most suitable models for risk assessment in environmental nanotoxicology. To the best of the authors’ knowledge, the sea urchin Strongylocentrotus intermedius has not been used for testing the toxicity of NPs. The present study was designed to determine the effect of 10 types of common NPs on spermatozoa activity, egg fertilization, and early stage of embryo development of the sea urchin S. intermedius. In this research, we used two types of multiwalled carbon nanotubes (CNT-1 and CNT-2), two types of carbon nanofibers (CNF-1 and CNF-2), two types of silicon nanotubes (SNT-1 and SNT-2), nanocrystals of cadmium and zinc sulfides (CdS and ZnS), gold NPs (Au), and titanium dioxide NPs (TiO2). The results of the embryotoxicity test showed the following trend in the toxicity level of used NPs: Au > SNT-2 > SNT-1 > CdS > ZnS > CNF-2 > CNF-1 > TiO2 > CNT-1 > CNT-2. This research confirmed that the sea urchin S. intermedius can be considered as a sensitive and stable test model in marine nanotoxicology.
Collapse
Affiliation(s)
- Konstantin Pikula
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Correspondence:
| | - Alexander Zakharenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
| | - Vladimir Chaika
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Iurii Em
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Nikitina
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Evgenii Avtomonov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Anna Tregubenko
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Alexander Agoshkov
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
| | - Ilya Mishakov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Vladimir Kuznetsov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev Ave. 5, 630090 Novosibirsk, Russia; (I.M.); (V.K.)
| | - Alexander Gusev
- Tambov State University Named after G.R. Derzhavin, Internatsionalnaya 33, 392000 Tambov, Russia;
- National University of Science and Technology «MISIS», Leninskiy prospekt 4, 119049 Moscow, Russia
| | - Soojin Park
- Inha University, 100 Inharo, Nam-gu, Incheon 22212, Korea;
| | - Kirill Golokhvast
- Far Eastern Federal University, Sukhanova 8, 690950 Vladivostok, Russia; (A.Z.); (V.C.); (I.E.); (A.N.); (E.A.); (A.T.); (A.A.); (K.G.)
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources, B.Morskaya 42-44, 190000 Saint-Petersburg, Russia
- Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, Radio 7, 690041 Vladivostok, Russia
| |
Collapse
|
25
|
Boraschi D, Alijagic A, Auguste M, Barbero F, Ferrari E, Hernadi S, Mayall C, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Swartzwelter BJ, Bastús NG, Canesi L, Drobne D, Duschl A, Ewart MA, Horejs-Hoeck J, Italiani P, Kemmerling B, Kille P, Prochazkova P, Puntes VF, Spurgeon DJ, Svendsen C, Wilde CJ, Pinsino A. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000598. [PMID: 32363795 DOI: 10.1002/smll.202000598] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
The interaction of a living organism with external foreign agents is a central issue for its survival and adaptation to the environment. Nanosafety should be considered within this perspective, and it should be examined that how different organisms interact with engineered nanomaterials (NM) by either mounting a defensive response or by physiologically adapting to them. Herein, the interaction of NM with one of the major biological systems deputed to recognition of and response to foreign challenges, i.e., the immune system, is specifically addressed. The main focus is innate immunity, the only type of immunity in plants, invertebrates, and lower vertebrates, and that coexists with adaptive immunity in higher vertebrates. Because of their presence in the majority of eukaryotic living organisms, innate immune responses can be viewed in a comparative context. In the majority of cases, the interaction of NM with living organisms results in innate immune reactions that eliminate the possible danger with mechanisms that do not lead to damage. While in some cases such interaction may lead to pathological consequences, in some other cases beneficial effects can be identified.
Collapse
Affiliation(s)
- Diana Boraschi
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| | - Manon Auguste
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Eleonora Ferrari
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Neus G Bastús
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Genova, 16126, Italy
| | - Damjana Drobne
- Department of Biology, Biotechnical Faculty, University of Liubljana, Ljubljana, 1000, Slovenia
| | - Albert Duschl
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | | | - Jutta Horejs-Hoeck
- Department of Biosciences, Paris-Lodron University Salzburg, Salzburg, 5020, Austria
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology, National Research Council, Napoli, 80131, Italy
| | - Birgit Kemmerling
- Center for Plant Molecular Biology - ZMBP, Eberhard-Karls University Tübingen, Tübingen, 72076, Germany
| | - Peter Kille
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Victor F Puntes
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
- Vall d Hebron, Institut de Recerca (VHIR), Barcelona, 08035, Spain
| | | | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Wallingford, OX10 8BB, UK
| | | | - Annalisa Pinsino
- Institute for Biomedical Research and Innovation, National Research Council, Palermo, 90146, Italy
| |
Collapse
|
26
|
Villa S, Maggioni D, Hamza H, Di Nica V, Magni S, Morosetti B, Parenti CC, Finizio A, Binelli A, Della Torre C. Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113597. [PMID: 31744685 DOI: 10.1016/j.envpol.2019.113597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO2NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO2NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO2NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO2NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO2NPs. Specifically, in D. magna the CeO2NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO2NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Collapse
Affiliation(s)
- Sara Villa
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | | | - Hady Hamza
- Department of Chemistry, University of Milan, Italy
| | - Valeria Di Nica
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Italy
| | | | | | - Antonio Finizio
- Department of Earth and Environmental Sciences, University of Milan Bicocca, Italy
| | | | | |
Collapse
|
27
|
Mir AH, Qamar A, Qadir I, Naqvi AH, Begum R. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci Rep 2020; 10:1617. [PMID: 32005898 PMCID: PMC6994675 DOI: 10.1038/s41598-020-58526-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/02/2019] [Indexed: 01/18/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO NPs) are used in many applications; however, their interactions with cells, immune cells in particular, and potential health risk(s) are not fully known. In this manuscript, we have demonstrated the potential of ZnO NPs to cross the gut barrier in an invertebrate model, Bombyx mori, and that they can reach the hemolymph where they interact with and/or are taken up by immune-competent cells resulting in various toxic responses like decline in hemocyte viability, ROS generation, morphological alterations, apoptotic cell death, etc. Exposure to these NPs also resulted in alteration of hemocyte dynamics including an immediate increase in THC, possibly due to the release of these hemocytes either from enhanced rate of cell divisions or from attached hemocyte populations, and decline in percentage of prohemocytes and increase in percentage of two professional phagocytes, i.e., granulocytes and plasmatocytes, possibly due to the differentiation of prohemocytes into phagocytes in response to a perceived immune challenge posed by these NPs. Taken together, our data suggest that ZnO NPs have the potential to cross gut barrier and cause various toxic effects that could reverse and the insects could return to normal physiological states as there is restoration and repair of various systems and their affected pathways following the clearance of these NPs from the insect body. Our study also indicates that B. mori has the potential to serve as an effective alternate animal model for biosafety, environmental monitoring and screening of NPs, particularly to evaluate their interactions with invertebrate immune system.
Collapse
Affiliation(s)
- Ashiq Hussain Mir
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India. .,Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Ayesha Qamar
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Ishana Qadir
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Alim H Naqvi
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Rizwana Begum
- Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
28
|
Mahjouri S, Kosari-Nasab M, Mohajel Kazemi E, Divband B, Movafeghi A. Effect of Ag-doping on cytotoxicity of SnO 2 nanoparticles in tobacco cell cultures. JOURNAL OF HAZARDOUS MATERIALS 2020; 381:121012. [PMID: 31437804 DOI: 10.1016/j.jhazmat.2019.121012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
SnO2 nanoparticles (NPs) are promising materials for electrochemical, catalytic, and biomedical applications due to their high photosensitivity, suitable stability characteristics, wide band gap energy potential, and low cost. Doping SnO2 NPs with metallic elements such as Ag has been used to improve their efficiency. Despite their commercial importance, the current literature lacks investigations to determine their toxic effects on plant systems. In this study, SnO2 and Ag/SnO2 NPs were synthesized using polymer pyrolysis method and characterized by means of XRD, TEM, SEM, EDX, and DLS techniques. Subsequently, the toxicity of the synthesized NPs on cell viability, cell proliferation, and a number of oxidative stress markers were measured in tobacco cell cultures. SnO2 and Ag/SnO2 NPs were found to be polygonal in shape with the size range of 10-30 nm. Both NPs induced cytotoxicity by reducing the cell viability and cell proliferation in a dose-dependent manner. Furthermore, the generation of H2O2, phenolics, flavonoids, and increased activities of superoxide dismutase (SOD) and peroxidase (POD) were observed. According to the results, Ag-doping played a key role in the induction of toxicity in tobacco cell cultures. The obtained results confirmed that SnO2 and Ag/SnO2 NPs induced cytotoxicity in tobacco cells through oxidative stress.
Collapse
Affiliation(s)
- Sepideh Mahjouri
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Morteza Kosari-Nasab
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mohajel Kazemi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Baharak Divband
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Movafeghi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
29
|
Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Song J. The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response. NANOSCALE 2019; 11:22849-22859. [PMID: 31755508 DOI: 10.1039/c9nr08261a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo. In addition, we report that smaller-sized nanoparticles (ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles (ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo.
Collapse
Affiliation(s)
- Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Bin Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jinghui Guo
- Department of gastroenterology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| |
Collapse
|
30
|
Alijagic A, Benada O, Kofroňová O, Cigna D, Pinsino A. Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior. Front Immunol 2019; 10:2261. [PMID: 31616433 PMCID: PMC6763604 DOI: 10.3389/fimmu.2019.02261] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023] Open
Abstract
Extensive exploitation of titanium dioxide nanoparticles (TiO2NPs) augments rapid release into the marine environment. When in contact with the body fluids of marine invertebrates, TiO2NPs undergo a transformation and adhere various organic molecules that shape a complex protein corona prior to contacting cells and tissues. To elucidate the potential extracellular signals that may be involved in the particle recognition by immune cells of the sea urchin Paracentrotus lividus, we investigated the behavior of TiO2NPs in contact with extracellular proteins in vitro. Our findings indicate that TiO2NPs are able to interact with sea urchin proteins in both cell-free and cell-conditioned media. The two-dimensional proteome analysis of the protein corona bound to TiO2NP revealed that negatively charged proteins bound preferentially to the particles. The main constituents shaping the sea urchin cell-conditioned TiO2NP protein corona were proteins involved in cellular adhesion (Pl-toposome, Pl-galectin-8, Pl-nectin) and cytoskeletal organization (actin and tubulin). Immune cells (phagocytes) aggregated TiO2NPs on the outer cell surface and within well-organized vesicles without eliciting harmful effects on the biological activities of the cells. Cells showed an active metabolism, no oxidative stress or caspase activation. These results provide a new level of understanding of the extracellular proteins involved in the immune-TiO2NP recognition and interaction in vitro, confirming that primary immune cell cultures from P. lividus can be an optional model for swift and efficient immune-toxicological investigations.
Collapse
Affiliation(s)
- Andi Alijagic
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Oldřich Benada
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Olga Kofroňová
- Institute of Microbiology of The Czech Academy of Sciences, Prague, Czechia
| | - Diego Cigna
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Annalisa Pinsino
- Istituto per la Ricerca e l'Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche, Palermo, Italy
| |
Collapse
|
31
|
Correia AT, Rebelo D, Marques J, Nunes B. Effects of the chronic exposure to cerium dioxide nanoparticles in Oncorhynchus mykiss: Assessment of oxidative stress, neurotoxicity and histological alterations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 68:27-36. [PMID: 30870693 DOI: 10.1016/j.etap.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/24/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
Cerium dioxide nanoparticles (CeO2-NPs) have a variety of uses, especially in the production of solar panels, oxygen pumps, gas sensors, computer chips and catalytic converters. Despite their worldwide use, the few published studies demonstrate that metallic nanoparticles, in general, are still not properly characterized in terms of their potencial ecotoxicological effects. CeO2-NPs, in particular, have demonstrated extreme antioxidant activity, but their in vivo toxicity is still unknown. This work intended to characterize the chronic toxicity (28 days) of three different ecologically relevant concentrations (0.1, 0.01, and 0.001 μg/L) of CeO2-NPs in the rainbow trout (Oncorhynchus mykiss), in terms of biomarkers of oxidative stress [activity of the enzymes glutathione S-transferases (GSTs) and catalase (CAT)] and neurotoxicity [activity of the enzyme acetylcholinesterase (AChE)], as well as histological alterations in liver and gills. In the hereby study, GSTs activity was increased in gills of fish exposed to the highest CeO2-NPs level. Moreover, a potential anti-oxidant response was also reported, with a significant increase of CAT activity observed in livers of the same fish. AChE, however, was not significantly altered in fish eyes. Individuals exposed to CeO2-NPs also presented marked changes in the gills (e.g. epithelial lifting, intercellular edema, lamellar hypertrophy and hyperplasia, secondary lamella fusion and aneurysms) and liver (e.g. hepatocyte vacuolization, pyknotic nucleus, enlargement of sinusoids and hyperemia). The semi-quantitative analysis (organs pathological index) also showed the establishment of a dose-effect relationship. Further studies about the ecotoxicological effects of the CeO2-NPs have yet to be conducted, considering their properties, as the aggregation chemistry and the ratio of its redox state, which may affect their availability to the organism and their toxicity in the environment and biota.
Collapse
Affiliation(s)
- A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - D Rebelo
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - J Marques
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Rua dos Bragas 289, 4050-123 Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa (UFP), Rua Carlos da Maia 296, 4200-150, Porto, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
32
|
Şeker Ş. Comparative evaluation of nano and bulk tin dioxide cytotoxicity on dermal fibroblasts by real-time impedance-based and conventional methods. Turk J Biol 2019; 42:435-446. [PMID: 30930627 PMCID: PMC6438124 DOI: 10.3906/biy-1802-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In this study, the possible cellular effects of tin dioxide (SnO2) nanoparticles, together with its bulk form, on mouse dermal fibroblasts (DFs) were revealed using in vitro assays. Particle characterizations were carried out with AFM, Braun-Emmet-Teller, and DLS analyses. The cells were treated with nano and bulk SnO2 at concentrations of 0.1, 1, 10, 50, and 100 μg/mL for 6, 24, and 48 h. At the end of the exposure periods, the morphology, viability, particle uptake, and membrane leakage statuses of the cells were evaluated. Furthermore, real-time monitoring of cell responses was performed by using an impedance-based label-free system. Findings showed that at concentrations of 0.1-10 μg/mL, cells had similar doubling time to that of control cells (20.4 ± 2.6 h), while the doubling time of cells exposed to 100 μg/mL of nano and bulk SnO2 increased slightly (P ˃ 0.05) to 25.1 ± 3.9 h and 26.2 ± 5.9 h, respectively. The results indicated that DFs exhibited a similar toxicity response to nano and bulk SnO2; thus, 50 and 100 μg/mL of nano and bulk SnO2 had mild toxic effects on DFs. In conclusion, this study provides information and insight necessary for the safe use of SnO2 in medical and consumer products.
Collapse
Affiliation(s)
- Şükran Şeker
- Ankara University, Stem Cell Institute , Ankara , Turkey.,Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Faculty of Science, Ankara University , Ankara , Turkey
| |
Collapse
|
33
|
An HJ, Sarkheil M, Park HS, Yu IJ, Johari SA. Comparative toxicity of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean, Artemia salina. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:62-69. [PMID: 30639249 DOI: 10.1016/j.cbpc.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/22/2022]
Abstract
This study evaluated the potential toxic effects of silver nanoparticles (AgNPs) and silver nanowires (AgNWs) on saltwater microcrustacean Artemia salina nauplii under ISO TS 20787 guideline. To investigate the acute toxicity of these nanomaterials, the nauplii were exposed to different concentrations of 0 (control), 0.39, 1.56, 6.25, 25 and 100 mg/L AgNPs and concentrations of 0 (control), 0.01, 0.1, 1, 10, 50 and 100 mg/L AgNWs for 72 h. Immobilization rate of A. salina exposed to both AgNPs and AgNWs for 72 h increased significantly in a concentration-dependent manner (P < 0.05). The 72 h EC10 and EC50 were found to be 1.48 ± 0.6 and 10.70 ± 1.3 mg/L for AgNPs, respectively, and 0.03 ± 0.02 and 0.43 ± 0.04 mg/L for AgNWs, respectively. Based on the EC10 and EC50 values, the toxicity of AgNWs was significantly higher than AgNPs (P < 0.05). Oxidative stress resulted from 48 h exposure to both AgNPs and AgNWs in A. salina was assessed by measuring reactive oxygen species (ROS) production and superoxide dismutase (SOD) activity. The results revealed that both AgNPs and AgNWs could induce ROS production. The SOD activity decreased significantly with the increase of exposure concentration (P < 0.05). In conclusion, the present results show that both nanomaterials have toxic effects on A. salina nauplii and thus, more effort should be made to prevent their release into saltwater ecosystems and trophic transfer in the aquatic food chain.
Collapse
Affiliation(s)
- Hyo Jin An
- Biotoxtech Co., Ltd., Cheongju, Republic of Korea
| | - Mehrdad Sarkheil
- Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Il Je Yu
- HCTm CO., LTD., Icheon, Republic of Korea
| | - Seyed Ali Johari
- Department of Fisheries, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
34
|
Othman N, Masarudin MJ, Kuen CY, Dasuan NA, Abdullah LC, Md Jamil SNA. Synthesis and Optimization of Chitosan Nanoparticles Loaded with L-Ascorbic Acid and Thymoquinone. NANOMATERIALS 2018; 8:nano8110920. [PMID: 30405074 PMCID: PMC6267081 DOI: 10.3390/nano8110920] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
Abstract
The combination of compounds with different classes (hydrophobic and hydrophilic characters) in single chitosan carrier is a challenge due to the hydrophilicity of chitosan. Utilization of l-ascorbic acid (LAA) and thymoquinone (TQ) compounds as effective antioxidants is marred by poor bioavailability and uptake. Nanoparticles (NPs) solved the problem by functioning as a carrier for them because they have high surface areas for more efficient delivery and uptake by cells. This research, therefore, synthesized chitosan NPs (CNPs) containing LAA and TQ, CNP-LAA-TQ via ionic gelation routes as the preparation is non-toxic. They were characterized using electron microscopy, zetasizer, UV⁻VIS spectrophotometry, and infrared spectroscopy. The optimum CNP-LAA-TQ size produced was 141.5 ± 7.8 nm, with a polydispersity index (PDI) of 0.207 ± 0.013. The encapsulation efficiency of CNP-LAA-TQ was 22.8 ± 3.2% for LAA and 35.6 ± 3.6% for TQ. Combined hydrophilic LAA and hydrophobic TQ proved that a myriad of highly efficacious compounds with poor systemic uptake could be encapsulated together in NP systems to increase their pharmaceutical efficiency, indirectly contributing to the advancement of medical and pharmaceutical sectors.
Collapse
Affiliation(s)
- Nurhanisah Othman
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Cha Yee Kuen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
- Cancer Research Laboratory, Institute of Biosciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Nurul Azira Dasuan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Luqman Chuah Abdullah
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Siti Nurul Ain Md Jamil
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
35
|
Graca B, Zgrundo A, Zakrzewska D, Rzodkiewicz M, Karczewski J. Origin and fate of nanoparticles in marine water - Preliminary results. CHEMOSPHERE 2018; 206:359-368. [PMID: 29754060 DOI: 10.1016/j.chemosphere.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The number, morphology and elemental composition of nanoparticles (<100 nm) in marine water was investigated using Variable Pressure Scanning Electron Microscopy (VP-SEM) and Energy-dispersive X-ray spectroscopy (EDS). Preliminary research conducted in the Baltic Sea showed that the number of nanoparticles in seawater varied from undetectable to 380 (x102) cm-3. Wind mixing and density barriers (thermocline) had a significant impact on the abundance and distribution of nanoparticles in water. Many more nanoparticles (mainly nanofibers) were detected in periods of intensive primary production and thermal stratification of water than at the end of the growing season and during periods of strong wind mixing. Temporal and spatial variability of nanoparticles as well as air mass trajectories indicated that the analysed nanofibers were both autochthonous and allochthonous (atmospheric), while the nanospheres were mainly autochthonous. Chemical composition of most of analysed nanoparticles indicates their autochthonous, natural (biogenic/geogenic) origin. Silica nanofibers (probably the remains of flagellates), nanofibers composed of manganese and iron oxides (probably of microbial origin), and pyrite nanospheres (probable formed in anoxic sediments), were all identified in the samples. Only asbestos nanofibers, which were also detected, are probably allochthonous and anthropogenic.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Aleksandra Zgrundo
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Danuta Zakrzewska
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Monika Rzodkiewicz
- University of Adam Mickiewicz, Institute of Geoecology and Geoinformation, Department of Quaternary Geology and Paleogeography, ul. Dzięgielowa 27, 61-680 Poznań, Poland.
| | - Jakub Karczewski
- Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Department of Solid State Physics, ul. Narutowicza 11/12 80-233 Gdansk, Poland.
| |
Collapse
|
36
|
Marques-Santos LF, Grassi G, Bergami E, Faleri C, Balbi T, Salis A, Damonte G, Canesi L, Corsi I. Cationic polystyrene nanoparticle and the sea urchin immune system: biocorona formation, cell toxicity, and multixenobiotic resistance phenotype. Nanotoxicology 2018; 12:847-867. [DOI: 10.1080/17435390.2018.1482378] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- L. F. Marques-Santos
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - G. Grassi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - E. Bergami
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| | - C. Faleri
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - T. Balbi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - A. Salis
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - G. Damonte
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - L. Canesi
- Department of Life Sciences-DSV, University of Siena, Siena, Italy
| | - I. Corsi
- Department of Physical, Earth and Environmental Sciences-DSFTA, University of Siena, Siena, Italy
| |
Collapse
|
37
|
de Souza TAJ, Rocha TL, Franchi LP. Detection of DNA Damage Induced by Cerium Dioxide Nanoparticles: From Models to Molecular Mechanism Activated. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:215-226. [DOI: 10.1007/978-3-319-72041-8_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
38
|
Magesky A, Pelletier É. Cytotoxicity and Physiological Effects of Silver Nanoparticles on Marine Invertebrates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:285-309. [DOI: 10.1007/978-3-319-72041-8_17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
39
|
Rotini A, Gallo A, Parlapiano I, Berducci MT, Boni R, Tosti E, Prato E, Maggi C, Cicero AM, Migliore L, Manfra L. Insights into the CuO nanoparticle ecotoxicity with suitable marine model species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:852-860. [PMID: 28968938 DOI: 10.1016/j.ecoenv.2017.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Metal oxide nanoparticles, among them copper oxide nanoparticles (CuO NPs), are widely used in different applications (e.g. batteries, gas sensors, superconductors, plastics and metallic coatings), increasing their potential release in the environment. In aquatic matrix, the behavior of CuO NPs may strongly change, depending on their surface charge and some physical-chemical characteristics of the medium (e.g. ionic strength, salinity, pH and natural organic matter content). Ecotoxicity of CuO NPs to aquatic organisms was mainly studied on freshwater species, few tests being performed on marine biota. The aim of this study was to assess the toxicity of CuO NPs on suitable indicator species, belonging to the ecologically relevant level of consumers. The selected bioassays use reference protocols to identify Effect/Lethal Concentrations (E(L)C), by assessing lethal and sub-lethal endpoints. Mortality tests were performed on rotifer (Brachionus plicatilis), shrimp (Artemia franciscana) and copepod (Tigriopus fulvus). While moult release failure and fertilization rate were studied, as sub-lethal endpoints, on T. fulvus and sea urchin (Paracentrotus lividus), respectively. The size distribution and sedimentation rates of CuO NPs, together with the copper dissolution, were also analyzed in the exposure media. The CuO NP ecotoxicity assessment showed a concentration-dependent response for all species, indicating similar mortality for B. plicatilis (48hLC50 = 16.94 ± 2.68mg/l) and T. fulvus (96hLC50 = 12.35 ± 0.48mg/l), followed by A. franciscana (48hLC50 = 64.55 ± 3.54mg/l). Comparable EC50 values were also obtained for the sub-lethal endpoints in P. lividus (EC50 = 2.28 ± 0.06mg/l) and T. fulvus (EC50 = 2.38 ± 0.20mg/l). Copper salts showed higher toxicity than CuO NPs for all species, with common sensitivity trend as follows: P. lividus ≥ T. fulvus (sublethal endpoint) ≥ B. plicatilis >T. fulvus (lethal endpoint) >A. franciscana. CuO NP micrometric aggregates and high sedimentation rates were observed in the exposure media, with different particle size distributions depending on the medium. The copper dissolution was about 0.16% of the initial concentration, comparable to literature values. The integrated ecotoxicological-physicochemical approach was used to better describe CuO NP toxicity and behavior. In particular, the successful application of ecotoxicological reference protocols allowed to produce reliable L(E)C data useful to identify thresholds and assess potential environmental hazard due to NPs.
Collapse
Affiliation(s)
- A Rotini
- Department of Biology, University Tor Vergata, Rome, Italy; Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - A Gallo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - I Parlapiano
- CNR, Institute for Coastal Marine Environment, Section of Taranto, Via Roma 3, Taranto, Italy
| | - M T Berducci
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - R Boni
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy; Department of Sciences, University of Basilicata, Potenza, Italy
| | - E Tosti
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - E Prato
- CNR, Institute for Coastal Marine Environment, Section of Taranto, Via Roma 3, Taranto, Italy
| | - C Maggi
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - A M Cicero
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - L Migliore
- Department of Biology, University Tor Vergata, Rome, Italy
| | - L Manfra
- Institute for Environmental Protection and Research (ISPRA), Rome, Italy; Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy.
| |
Collapse
|
40
|
Manzo S, Schiavo S, Oliviero M, Toscano A, Ciaravolo M, Cirino P. Immune and reproductive system impairment in adult sea urchin exposed to nanosized ZnO via food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:9-13. [PMID: 28460290 DOI: 10.1016/j.scitotenv.2017.04.173] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/22/2017] [Accepted: 04/22/2017] [Indexed: 06/07/2023]
Abstract
In marine environment the release and the consequent sedimentation of ZnO NPs, mainly used in sunscreens, could provoke toxic effects in particular in grazer organisms, like sea urchins. In this work, a first evaluation of DNA and cellular effects on adult sea urchins Paracentrotus lividus exposed through the diet to different sizes (100 and 14nm) ZnO NPs, was performed. Moreover, the consequent impact upon offspring quality was evaluated. Preliminarily results showed that the assumption of food containing ZnO NPs 100nm provoked in adult echinoids damages to immune cells (33% of damaged nucleus) and transmissible effects to offspring (75.5% of malformed larvae). Instead food with ZnO NPs 14nm provoked 64% of damaged nucleus in immune cells and 84.7% of malformed larvae.
Collapse
Affiliation(s)
- Sonia Manzo
- Enea CR Portici, P.le E. Fermi, 1, 80055 Portici, Naples, Italy.
| | - Simona Schiavo
- Enea CR Portici, P.le E. Fermi, 1, 80055 Portici, Naples, Italy
| | - Maria Oliviero
- Enea CR Portici, P.le E. Fermi, 1, 80055 Portici, Naples, Italy; Department of Science and Technology, Parthenope University of Naples, Centro Direzionale - Isola C4, 80143 Naples, Italy
| | | | | | - Paola Cirino
- Anton Dohrn Zoological Station, 80121 Naples, Italy
| |
Collapse
|
41
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
42
|
Khosravi-Katuli K, Prato E, Lofrano G, Guida M, Vale G, Libralato G. Effects of nanoparticles in species of aquaculture interest. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17326-17346. [PMID: 28597390 DOI: 10.1007/s11356-017-9360-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 05/08/2023]
Abstract
Recently, it was observed that there is an increasing application of nanoparticles (NPs) in aquaculture. Manufacturers are trying to use nano-based tools to remove the barriers about waterborne food, growth, reproduction, and culturing of species, their health, and water treatment in order to increase aquaculture production rates, being the safe-by-design approach still unapplied. We reviewed the applications of NPs in aquaculture evidencing that the way NPs are applied can be very different: some are direclty added to feed, other to water media or in aquaculture facilities. Traditional toxicity data cannot be easily used to infer on aquaculture mainly considering short-term exposure scenarios, underestimating the potential exposure of aquacultured species. The main outputs are (i) biological models are not recurrent, and in the case, testing protocols are frequently different; (ii) most data derived from toxicity studies are not specifically designed on aquaculture needs, thus contact time, exposure concentrations, and other ancillary conditions do not meet the required standard for aquaculture; (iii) short-term exposure periods are investigated mainly on species of indirect aquaculture interest, while shrimp and fish as final consumers in aquaculture plants are underinvestigated (scarce or unknown data on trophic chain transfer of NPs): little information is available about the amount of NPs accumulated within marketed organisms; (iv) how NPs present in the packaging of aquacultured products can affect their quality remained substantially unexplored. NPs in aquaculture are a challenging topic that must be developed in the near future to assure human health and environmental safety. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Kheyrollah Khosravi-Katuli
- Department of Fishery, Gorgan University of Agricultural Sciences and Natural Resources, Via 45165-386, Gorgan, Iran.
| | - Ermelinda Prato
- Institute for the Coastal Marine Environment, National Research Council (CNR IAMC), Via Roma 3, 74100, Taranto, Italy
| | - Giusy Lofrano
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126, Naples, Italy
| | - Gonçalo Vale
- Centro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Torre Sul Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Harry Dallas, TX, 75390, USA
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia ed. 7, 80126, Naples, Italy.
| |
Collapse
|
43
|
Magesky A, de Oliveira Ribeiro CA, Beaulieu L, Pelletier É. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1872-1886. [PMID: 27943424 DOI: 10.1002/etc.3709] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/14/2016] [Accepted: 12/08/2016] [Indexed: 06/06/2023]
Abstract
Using immune cells of sea urchin Strongylocentrotus droebachiensis in early development as a model, the cellular protective mechanisms against ionic and poly(allylamine)-coated silver nanoparticle (AgNPs; 14 ± 6 nm) treatments at 100 μg L-1 were investigated. Oxidative stress, heat shock protein expression, and pigment production by spherulocytes were determined as well as AgNP translocation pathways and their multiple effects on circulating coelomocytes. Sea urchins showed an increasing resilience to Ag over time because ionic Ag is accumulated in a steady way, although nanoAg levels dropped between 48 h and 96 h. A clotting reaction emerged on tissues injured by dissolved Ag (present as chloro-complexes in seawater) between 12 h and 48 h. Silver contamination and nutritional state influenced the production of reactive oxygen species. After passing through coelomic sinuses and gut, AgNPs were found in coelomocytes. Inside blood vessels, apoptosis-like processes appeared in coelomocytes highly contaminated by poly(allylamine)-coated AgNPs. Increasing levels of Ag accumulated by urchins once exposed to AgNPs pointed to a Trojan-horse mechanism operating over 12-d exposure. However, under short-term treatments, physical interactions of poly(allylamine)-coated AgNPs with cell structures might be, at some point, predominant and responsible for the highest levels of stress-related proteins detected. The present study is the first report detailing nano-translocation in a marine organism and multiple mechanisms by which sea urchin cells can deal with toxic AgNPs. Environ Toxicol Chem 2017;36:1872-1886. © 2016 SETAC.
Collapse
Affiliation(s)
- Adriano Magesky
- Institut de sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| | | | - Lucie Beaulieu
- Département des sciences des aliments, Université Laval, Québec, Québec, Canada
| | - Émilien Pelletier
- Institut de sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, Canada
| |
Collapse
|
44
|
Châtel A, Mouneyrac C. Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2017; 196:61-70. [PMID: 28344012 DOI: 10.1016/j.cbpc.2017.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 03/10/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
Abstract
Environmental risk assessment of engineered nanomaterials (ENMs) is an emergent field since nanotechnology industry is rapidly growing due to the interesting physicochemical properties of nanomaterials. Metal-based nanomaterials are among the most rapidly commercialized materials and their toxicity towards aquatic animals has been investigated at different levels of the biological organization. The objective of this synthesis review is to give an overview of the signaling molecules that have a key role in metal-based NM mediated cytotoxicity in both marine and freshwater organisms. Since toxicity of metal-based NMs could be (partly) due to metal dissolution, this review only highlights studies that showed a specific nano-effect. From this bibliographic study, three mechanisms (detoxification, immunomodulation and genotoxicity) have been selected as they represent the major cell defense mechanisms and the most studied ones following ENM exposure. This better understanding of NM-mediated cytotoxicity may provide a sound basis for designing environmentally safer nanomaterials.
Collapse
Affiliation(s)
- Amélie Châtel
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France.
| | - Catherine Mouneyrac
- Université Catholique de l'Ouest, UBL, MMS EA 2160, 3 Place André Leroy, 49000 Angers, France
| |
Collapse
|
45
|
Amaroli A, Gambardella C, Ferrando S, Hanna R, Benedicenti A, Gallus L, Faimali M, Benedicenti S. The Effect of Photobiomodulation on the Sea Urchin Paracentrotus lividus (Echinodermata) Using Higher-Fluence on Fertilization, Embryogenesis, and Larval Development: An In Vitro Study. Photomed Laser Surg 2016; 35:127-135. [PMID: 28056208 DOI: 10.1089/pho.2016.4136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the photobiomodulation (PBM) effect of the 808 nm diode laser irradiation on spermatozoa, eggs, fertilized eggs, embryos, and larvae of Paracentrotus lividus, using two different power settings. BACKGROUND DATA Studies have shown the possible use of PBM in artificial insemination. These have shown the potential effect of low-power laser irradiation on spermatozoa, while there are few studies on the effect of laser photonic energy on oocytes and almost no reports on the influence of lasers in embryogenesis. METHODS P. lividus gametes, zygotes, embryos, and larvae were irradiated using the 808 nm diode laser (fluence 64 J/cm2 using 1 W or 192 J/cm2 with 3 W) with a flat-top hand-piece delivery, compared to a control without laser irradiation (0 J/cm2-0 W). The fertilization rate and the early developmental stages were investigated. RESULTS The fertilization ability was not affected by the sperm/egg irradiation. At the gastrula stage, no significant differences were observed compared with the control samples. In the late pluteus stage, there were no differences in the developmental percentage observed between the control and the treated samples (1 W), with the exception of larvae from gastrulae and larvae, which were irradiated at 3 W. CONCLUSIONS This study has demonstrated that both the 64 J/cm2-1 W and the 192 J/cm2-3 W do not induce morphological damage on the irradiated P. lividus gametes whose zygotes generate normal embryos and larvae. Our data therefore support the assumption to use higher fluence in preliminary studies on in vitro fertilization.
Collapse
Affiliation(s)
- Andrea Amaroli
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy .,2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Chiara Gambardella
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Sara Ferrando
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Reem Hanna
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy .,4 Department of Oral Surgery, Dental Institute , King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alberico Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| | - Lorenzo Gallus
- 1 Department of Earth, Environmental and Life Sciences (DISTAV), University of Genoa , Genoa, Italy
| | - Marco Faimali
- 3 Institute of Marine Sciences , National Research Council (ISMAR-CNR), Genoa, Italy
| | - Stefano Benedicenti
- 2 Department of Surgical Sciences and Integrated Diagnostic (DISC), University of Genoa , Genoa, Italy
| |
Collapse
|
46
|
Gambardella C, Ferrando S, Gatti AM, Cataldi E, Ramoino P, Aluigi MG, Faimali M, Diaspro A, Falugi C. Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. ENVIRONMENTAL TOXICOLOGY 2016; 31:1552-1562. [PMID: 26031494 DOI: 10.1002/tox.22159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
We describe the use of different life stages of the Mediterranean sea urchin Paracentrotus lividus for the assessment of the possible risk posed by nanoparticles (NPs) in the coastal water. A first screening for the presence of NPs in sea water may be obtained by checking their presence inside tissues of organisms taken from the wild. The ability of NPs to pass from gut to the coelomic fluid is demonstrated by accumulation in sea urchin coelomocytes; the toxicity on sperms can be measured by embryotoxicity markers after sperm exposure, whereas the transfer through the food chain can be observed by developmental anomalies in larvae fed with microalgae exposed to NPs. The most used spermiotoxicity and embryotoxicity tests are described, as well as the biochemical and histochemical analyses of cholinesterase (ChE) activities, which are used to verify toxicity parameters such as inflammation, neurotoxicity, and interference in cell-to-cell communication. Morphological markers of toxicity, in particular skeletal anomalies, are described and classified. In addition, NPs may impair viability of the immune cells of adult specimens. Molecular similarity between echinoderm and human immune cells is shown and discussed. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1552-1562, 2016.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science, National Research Council (CNR), Genova, Italy.
| | | | | | | | | | | | - Marco Faimali
- Institute of Marine Science, National Research Council (CNR), Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Italian Institute of Technology (IIT), Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
47
|
Canesi L, Corsi I. Effects of nanomaterials on marine invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:933-940. [PMID: 26805446 DOI: 10.1016/j.scitotenv.2016.01.085] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The development of nanotechnology will inevitably lead to the release of consistent amounts of nanomaterials (NMs) and nanoparticles (NPs) into marine ecosystems. Ecotoxicological studies have been carried out to identify potential biological targets of NPs, and suitable models for predicting their impact on the health of the marine environment. Recent studies in invertebrates mainly focused on NP accumulation and sub-lethal effects, rather than acute toxicity. Among marine invertebrates, bivalves represent by large the most studied group, with polychaetes and echinoderms also emerging as significant targets of NPs. However, major scientific gaps still need to be filled. In this work, factors affecting the fate of NPs in the marine environment, and their consequent uptake/accumulation/toxicity in marine invertebrates will be summarized. The results show that in different model species, NP accumulation mainly occurs in digestive tract and gills. Data on sub-lethal effects and modes of action of different types of NPs (mainly metal oxides and metal based NPs) in marine invertebrates will be reviewed, in particular on immune function, oxidative stress and embryo development. Moreover, the possibility that such effects may be influenced by NP interactions with biomolecules in both external and internal environment will be introduced. In natural environmental media, NP interactions with polysaccharides, proteins and colloids may affect their agglomeration/aggregation and consequent bioavailability. Moreover, once within the organism, NPs are known to interact with plasma proteins, forming a protein corona that can affect particle uptake and toxicity in target cells in a physiological environment. These interactions, leading to the formation of eco-bio-coronas, may be crucial in determining particle behavior and effects also in marine biota. In order to classify NPs into groups and predict the implications of their release into the marine environment, information on their intrinsic properties is clearly insufficient, and a deeper understanding of NP eco/bio-interactions is required.
Collapse
Affiliation(s)
- Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Italy.
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences (DSFTA), University of Siena, Italy
| |
Collapse
|
48
|
Ruocco N, Costantini M, Santella L. New insights into negative effects of lithium on sea urchin Paracentrotus lividus embryos. Sci Rep 2016; 6:32157. [PMID: 27562248 PMCID: PMC4999890 DOI: 10.1038/srep32157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/03/2016] [Indexed: 11/29/2022] Open
Abstract
The diffuse use of lithium in a number of industrial processes has produced a significant contamination of groundwater and surface water with it. The increased use of lithium has generated only scarce studies on its concentrations in ambient waters and on its effects on aquatic organisms. Only few contributions have focused on the toxicity of lithium in marine organisms (such as marine animals, algae and vegetables), showing that the toxic effect depends on the animal species. In the present study we describe the morphological and the molecular effects of lithium chloride (LiCl), using the sea urchin Paracentrotus lividus as a model organism. We show that LiCl, if added to the eggs before fertilization, induces malformations in the embryos in a dose-dependent manner. We have also followed by RT qPCR the expression levels of thirty seven genes (belonging to different classes of functional processes, such as stress, development, differentiation, skeletogenesis and detoxifications) to identify the molecular targets of LiCl. This study opens new perspectives for the understanding of the mechanism of action of lithium on marine organisms. The findings may also have relevance outside the world of marine organisms since lithium is widely prescribed for the treatment of human bipolar disorders.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.,Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 80126, Napoli, Italy.,Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry-CNR, Via Campi Flegrei 34, Pozzuoli, Naples 80078, Italy
| | - Maria Costantini
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Luigia Santella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| |
Collapse
|
49
|
Kanold JM, Wang J, Brümmer F, Šiller L. Metallic nickel nanoparticles and their effect on the embryonic development of the sea urchin Paracentrotus lividus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 212:224-229. [PMID: 26849528 DOI: 10.1016/j.envpol.2016.01.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
The presence of nanoparticles in many industrial applications and daily products is making it nowadays crucial to assess their impact when exposed to the environment. Metallic nickel nanoparticles (Ni NPs) are of high industrial interest due to their ability to catalyze the reversible hydration of CO2 to carbonic acid at ambient conditions. We characterized metallic Ni NPs by XRD, HRTEM and EDS and determined the solubility of free nickel ions from 3 mg/L metallic Ni NPs in seawater by ICP-MS over 96 h, which was below 3%. Further, embryonic development of the sea urchin Paracentrotus lividus was investigated for 48 h in the presence of metallic Ni NPs (0.03 mg/L to 3 mg/L), but no lethal effects were observed. However, 3 mg/L metallic Ni NPs caused a size reduction similar to 1.2 mg/L NiCl2*6 H2O. The obtained results contribute to current studies on metallic Ni NPs and point to their consequences for the marine ecosystem.
Collapse
Affiliation(s)
- Julia Maxi Kanold
- Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany.
| | - Jiabin Wang
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
| | - Franz Brümmer
- Institute of Biomaterials and Biomolecular Systems, Department of Zoology, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Lidija Šiller
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK.
| |
Collapse
|
50
|
Magesky A, Ribeiro CAO, Pelletier É. Physiological effects and cellular responses of metamorphic larvae and juveniles of sea urchin exposed to ionic and nanoparticulate silver. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:208-227. [PMID: 26966875 DOI: 10.1016/j.aquatox.2016.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/21/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
The widespread use of silver nanoparticles (AgNPs) would likely result in their discharge into wastewater and inevitable release in densely populated coastal areas. It is known that AgNPs can cause harmful effects to marine fauna, but how they affect development stages is still an open question. In order to understand in details how polymer-coated AgNPs (PAAm-AgNPs) (from 0.19 to 4.64mM as Ag) can affect critical stages of marine invertebrate development, metamorphic larvae and juveniles of sea urchins were used as biological models. Multidimensional scaling (MDS) approach based on Bray-Curtis similarity matrix with PERMANOVA showed organisms in a multivariate space undergoing through different physiological conditions as a function of time, chemical forms of silver, nominal concentrations, and presence or absence of food. Sublethal effects such as lethargy, oedema and immobility mainly characterized PAAm-AgNPs effects with juveniles and postlarvae, whereas necrosis and death arose in Ag(+) conditions in short-term tests. Chronically exposed metamorphic larvae had their morphogenic processes interrupted by PAAm-AgNPs and a high mortality rate was observed in recovery period. On the contrary, Ag(+) ions caused progressive mortality during exposure, but a quick recovery in uncontaminated seawater was observed. By means of fluorescent markers we showed that nanosilver could be transferred between consecutive stages (swimming larvae and postlarvae) and highlighted how important is food to enhance PAAm-AgNPs uptake. Using TEM we observed that unfed juveniles had nanosilver aggregates mostly restricted to their coelomic sinuses, while metamorphic larvae already had nano-contamination overspread in different tissues and blastocoel. Our main hypothesis for nanotoxicity of PAAM-AgNPs relies on the slow dissolution of nano-core over time, but in this study the effects of particulate silver form itself are also evoked. Main mechanisms governing tissular and cellular responses to nano-intoxication such as inflammatory response and detoxification based on the role of sentinel cells (peritoneal cells and coelomocytes) for general homeostasis are discussed. This paper is first to detail physiological states, main uptake routes and cellular response against polymer-coated AgNPs in developmental stages of marine invertebrate species.
Collapse
Affiliation(s)
- Adriano Magesky
- Institut de Sciences de la mer (ISMER), Université du Québec à Rimouski. 300, allée des Ursulines, C.P. 3300, succ. A., Rimouski, Québec G5L 3A1, Canada
| | - Ciro A Oliveiro Ribeiro
- Departamento de Biologia Celular, Universidade Federal do Paraná, C.P. 19031, CEP 81531-990 Curitiba, PR, Brazil
| | - Émilien Pelletier
- Institut de Sciences de la mer (ISMER), Université du Québec à Rimouski. 300, allée des Ursulines, C.P. 3300, succ. A., Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|