1
|
Singh PK, Kumar U, Kumar I, Dwivedi A, Singh P, Mishra S, Seth CS, Sharma RK. Critical review on toxic contaminants in surface water ecosystem: sources, monitoring, and its impact on human health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56428-56462. [PMID: 39269525 DOI: 10.1007/s11356-024-34932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Surface water pollution is a critical and urgent global issue that demands immediate attention. Surface water plays a crucial role in supporting and sustaining life on the earth, but unfortunately, till now, we have less understanding of its spatial and temporal dynamics of discharge and storage variations at a global level. The contamination of surface water arises from various sources, classified into point and non-point sources. Point sources are specific, identifiable origins of pollution that release pollutants directly into water bodies through pipes or channels, allowing for easier identification and management, e.g., industrial discharges, sewage treatment plants, and landfills. However, non-point sources originate from widespread activities across expansive areas and present challenges due to its diffuse nature and multiple pathways of contamination, e.g., agricultural runoff, urban storm water runoff, and atmospheric deposition. Excessive accumulation of heavy metals, persistent organic pollutants, pesticides, chlorination by-products, pharmaceutical products in surface water through different pathways threatens food quality and safety. As a result, there is an urgent need for developing and designing new tools for identifying and quantifying various environmental contaminants. In this context, chemical and biological sensors emerge as fascinating devices well-suited for various environmental applications. Numerous chemical and biological sensors, encompassing electrochemical, magnetic, microfluidic, and biosensors, have recently been invented by hydrological scientists for the detection of water pollutants. Furthermore, surface water contaminants are monitored through different sensors, proving their harmful effects on human health.
Collapse
Affiliation(s)
- Prince Kumar Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Umesh Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Indrajeet Kumar
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Akanksha Dwivedi
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Mishra
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | | | - Rajesh Kumar Sharma
- Laboratory of Ecotoxicology, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Siwach S, Bharti M, Yadav S, Dolkar P, Modeel S, Yadav P, Negi T, Negi RK. Unveiling the ecotoxicological impact of microplastics on organisms - the persistent organic pollutant (POP): A comprehensive review. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 266:104397. [PMID: 39059355 DOI: 10.1016/j.jconhyd.2024.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/17/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Microplastics have been ubiquitous in our environment for decades, and numerous studies have revealed their extensive dispersion, reaching far beyond the surface of the land, soil, aquatic ecosystems. They have infiltrated the food-chain, the food web, even the air we breathe, as well as the water we drink. Microplastics have been detected in the food we consume, acting as vectors for hazardous chemicals that adhere to their hydrophobic surfaces. This can result in the transfer of these chemicals to the aquatic life, posing a threat to their well-being. The release of microplastics into different environmental settings can give rise to various eco-toxicological implications. The substantial body of literature has led scientists to the consensus that microplastic pollution is a global problem with the potential to impact virtually any type of ecosystem. This paper aims to discuss crucial information regarding the occurrence, accumulation, and ecological effects of microplastics on organisms. It also highlights the new and emerging disease named "Plasticosis" that is directly linked to microplastics and its toxicological effects like permanent scarring and long-term inflammation in the digestive system of the seabirds. By comprehending the behaviour of these microplastic pollutants in diverse habitats and evaluating their ecological consequences, it becomes possible to facilitate a better understanding of this toxicological issue.
Collapse
Affiliation(s)
- Sneha Siwach
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Meghali Bharti
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sheetal Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Padma Dolkar
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Sonakshi Modeel
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Pankaj Yadav
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India
| | - Tarana Negi
- Government College, Dujana, Jhajjar, Haryana 124102, India
| | - Ram Krishan Negi
- Fish Molecular Biology laboratory, Department of Zoology, University of Delhi, North campus, Delhi 110007, India.
| |
Collapse
|
3
|
Vasudeva M, Adarsh UK, Warrier AK, George SD, Unnikrishnan VK. Performance evaluation of a hyphenated laser spectroscopy system with conventional methods for microplastic analysis. Sci Rep 2024; 14:19327. [PMID: 39164370 PMCID: PMC11336231 DOI: 10.1038/s41598-024-70501-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024] Open
Abstract
Microplastics are one of the concerning environmental pollutants because of their ubiquity. Their capability to adsorb other environmental pollutants increases the risk even further. Existing identification approaches for microplastic characterization for polymer class and their surface-adsorbed heavy metal detection require the utilization of multiple resources and expertise. The article discusses the applicability of a custom-made hyphenated Laser Induced Breakdown Spectroscopy (LIBS)-Raman spectroscopic system in characterizing microplastics by comparing the analytical performance with conventional methods such as Attenuated Total Reflectance- Fourier Transform Infrared (ATR-FTIR) spectroscopy, confocal Raman spectroscopy, and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Raman analysis identified polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) plastics, which is confirmed by confocal Raman and FTIR study of the same. LIBS study of microplastics detected heavy metals such as Al, Ni, Co, and Zn, along with Ca and Mg trace elements. The cross-examination with EDS validates these trace elements' presence on the microplastics' surface. The results of the reported LIBS-Raman analysis and its validity evaluated using conventional gold-standard methods show the applicability of the proposed methodology in characterizing microplastics from environmental resources with less or no sample preparation in short time.
Collapse
Affiliation(s)
- M Vasudeva
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - U K Adarsh
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
- Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, 576104, India
| | - Sajan D George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Centre for Applied Nanosciences, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, 576104, India
| | - V K Unnikrishnan
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Büngener L, Schäffer SM, Schwarz A, Schwalb A. Microplastics in a small river: Occurrence and influencing factors along the river Oker, Northern Germany. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104366. [PMID: 38759476 DOI: 10.1016/j.jconhyd.2024.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Much attention regarding the environmental pollution by plastics had focused on the Oceans. More recently, contamination of freshwater ecosystems has been addressed but information from smaller rivers in moderately populated catchments is still comparatively scarce. This study explored the microplastic (MP) occurrence in the small regional river Oker, Northern Germany (catchment area 1822 km2, population of ca. 500,000, discharge approx. 12 m3 s-1). MPs (fibers and fragments in the size range 0.3-5 mm, identification by microscopy) were found in all 10 in-stream samples collected along the course of the river, ranging between 28 and 134 particles m-3 with an overall average of 63 particles m-3. This MP concentration found in the small river Oker is similar to, or higher than, that reported for larger rivers in similar environments in Central Europe. On average, higher MP concentration was found at urban (71 particles m-3) compared to rural sampling sites (51 particles m-3). Within the Oker catchment, in-stream MP concentration showed no or low correlation to the catchment-scale factors of catchment size and population. Additional samples taken from three locations directly influenced by discharges of potential MP point sources confirmed wastewater treatment plants of different capacities and an urban rainwater sewer as sources. Our results support findings that MP concentrations in small rivers are crucially influenced by local sources, superimposing linear relationships to factors of catchment size and -population. They show that even small rivers draining moderately populated catchments may exhibit comparatively high concentrations of MPs, and thereby represent underestimated pathways of MP in the environment.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, University of Oulu, Finland.
| | - Sarah-Maria Schäffer
- Institute of Geosystems and Bioindication, Technical University of Braunschweig, Germany
| | - Anja Schwarz
- Institute of Geosystems and Bioindication, Technical University of Braunschweig, Germany
| | - Antje Schwalb
- Institute of Geosystems and Bioindication, Technical University of Braunschweig, Germany
| |
Collapse
|
5
|
Fattahi H, Mirzaei N, Bagheri A, Ravanyar L, Ahmadpour M, Makhdoumi P, Pirsaheb M, Heshmati S, Hoseinzadeh E, Ahmadi K, Meshabaz RA, Hossini H, Franzem T. The occurrence and distribution of microplastic contamination in Qara-sou river, Iran: incidence, quantification, and qualification. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2264-2279. [PMID: 37496422 DOI: 10.1080/09603123.2023.2239755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/17/2023] [Indexed: 07/28/2023]
Abstract
In the current study to investigate the characte - rization of Microplastic - released into the Qara-Sou river, Kermanshah, Iran, 12 sampling sites were surveyed along a 100 km stretch of the river. The maximum and minimum numbers of MPs were about 10,000 and 45,000 items per m3. The average concentration of MPs in the Qara-sou river was 23,666 ± 12147 items per m3. The dominant size and shape of MPs ranged from 0.025 to 1 mm (~44%) and fiber shapes (~78%). In addition, SEM-EDS analyses confirmed the presence of carbon-dominant peaks with O, Ca, Fe, Al, and Si. FTIR spectra have identified some MPs in the PVC, PU, PS, PE, and nylon polymer categories. A high level of MPs was discharged into the Qara-sou river, which should be attracting the attention of the community and decision-makers to reduce damage to the environment and human health.
Collapse
Affiliation(s)
- Hadis Fattahi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nezam Mirzaei
- Department of Environmental Health Engineering, Social Determinants of Health (SDH), Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Amin Bagheri
- Department of Health, Safety and Environmental Management, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ravanyar
- Health Education and Health Promotion, Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Ahmadpour
- Health Education and Promotion, Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Pouran Makhdoumi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Meghdad Pirsaheb
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shohreh Heshmati
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Edris Hoseinzadeh
- Students Research Committee, Saveh University of Medical Sciences, Saveh, Iran
| | - Kosar Ahmadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Hooshyar Hossini
- Department of Environmental Health Engineering, Faculty of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Thomas Franzem
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
6
|
Dai Z, Zhang N, Ma X, Wang F, Peng J, Yang S, Cao W. Microplastics strengthen nitrogen retention by intensifying nitrogen limitation in mangrove ecosystem sediments. ENVIRONMENT INTERNATIONAL 2024; 185:108546. [PMID: 38458116 DOI: 10.1016/j.envint.2024.108546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Mangrove wetlands are hotspots of the global nitrogen (N) cycle and important sinks of microplastics (MPs) due to their ecotone location between terrestrial and marine ecosystems. However, the effects of MPs on N cycle processes in mangrove ecosystems are still poorly understood. Thus, the present study assessed the impacts by adding MPs to mangrove sediments in a microcosm incubation experiment. The results showed that MPs increased dissolved organic carbon and nitrate but reduced ammonium contents in the sediments. MPs increased C:N stoichiometric and N:C-acquiring enzymatic ratios, indicating an intensified N limitation in mangrove sediments following exposure of MPs. MPs decreased microbial community diversity and shifted sediment microbial communities from r- to K-strategists, consistent with the intensified N limitation. In response, dissimilatory nitrate reduction to ammonium (DNRA) rates increased while nitrous oxide (N2O) production reduced suggesting more efficient N utilization in MPs treatments. The MPs with heteroatoms such as PLA- and PVC-MPs, increased DNRA rates by 67.5-78.7%, exhibiting a stronger impact than PE-MPs. The variation partitioning analysis revealed that the variances of DNRA rates and N2O production could be attributed to synergistic effects of physicochemical properties, nutrient limitation, and microbial community in mangrove sediments. Overall, this study provides pertinent insights into the impacts of MPs as a new carbon source on nutrient limitation and N turnover in mangrove ecosystems.
Collapse
Affiliation(s)
- Zetao Dai
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Ning Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiao Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Feifei Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jiarui Peng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Shengchang Yang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Ding R, Li Q, Wang K, Tian J, Lu L, Li W, Xu L. Occurrence and distribution of microplastics in the adjacent environment of Yellow River Delta, China. MARINE POLLUTION BULLETIN 2024; 199:116019. [PMID: 38184859 DOI: 10.1016/j.marpolbul.2023.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
In the precent study, the microplastics (MPs) pollution level was evaluated in diverse environmental samples from the Yellow River Delta. The results indicated that the abundance of MPs in water, sediment and soil samples ranged from 0.50 to 7.83 items·L-1, 200 to 4200 items·kg-1, and 100 to 1400 items·kg-1, respectively. Film form of MPs was dominant in water, while fiber MPs were dominant in both sediment and soil samples. In all samples, most MPs were < 1 mm in size. White was the main color in water, black was the main color in sediment and soil samples. The most common MPs type was polyethylene (33 %) in water, while rayon accounted for the majority of MPs in sediment (42 %) and soil (70 %) samples. The redundancy analysis results showed that MPs in water and sediment were more affected by water quality, while soil MPs were easily affected by landscape pattern.
Collapse
Affiliation(s)
- Ruibo Ding
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China; Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Qiaoling Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Kang Wang
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Jiayu Tian
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Luli Lu
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Wenxing Li
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China
| | - Li Xu
- Institute of Quality Standards and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, China.
| |
Collapse
|
8
|
Lahon J, Handique S. Impact of flooding on microplastic abundance and distribution in freshwater environment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:118175-118191. [PMID: 37936046 DOI: 10.1007/s11356-023-30819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Due to smaller particle size (0.1 µm-5 mm), non-biodegradable or slowly degradable nature, and high accumulation capacity in the environment, microplastics are becoming a cause of concern throughout the globe. The abundance and distribution of microplastics in aquatic compartments are strongly influenced by various natural and anthropogenic variables. Hydrodynamic conditions like flood events, caused due to extreme precipitation, accelerate the transport and settlement of microplastics in freshwater bodies. This review highlights the current literature which focuses on the effect of flooding on microplastic abundance, characterization, and distribution in freshwater environments worldwide. However, only limited research papers are identified through focused literature search, as this area of research is relatively new. Most of the studies reported increased and decreased abundance of microplastics in water and sediment samples, respectively, during post-flooding period with the exception of few studies. We also evaluate the post-flooding abundances of different morphological shape and polymer type of microplastics. Fragments, fibers, beads, and film were the most frequently reported microplastic shape and polystyrene, and polyethylene was the dominant polymer type found in freshwater environments. Future research should focus on more advanced techniques to understand microplastic fluxes under flood condition and the dominance of various natural and human-induced factors over one another in determining microplastic abundance. This will further enhance to mitigate microplastic pollution in freshwater environments.
Collapse
Affiliation(s)
- Jigyashree Lahon
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India
| | - Sumi Handique
- Department of Environmental Science, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
9
|
He X, Song S, Huang Y, Huang X, Huang H, Zhang T, Sun H. Contamination of neonicotinoid insecticides in source water and their fate during drinking water treatment in the Dongguan section of the Pearl River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165935. [PMID: 37532038 DOI: 10.1016/j.scitotenv.2023.165935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
Neonicotinoid insecticides (NEOs) as well as their metabolites are highly mobile on the subsurface and can potentially contaminate drinking water sources; however, their pollution status and fate in the drinking water system remains ambiguous. In this study, six parent NEOs and two characteristic metabolites were measured in drinking water source protection area (source water, n = 52) and two related drinking water treatment plants (DWTPs) (n = 88) located in the Dongguan section of the Pearl River. The ubiquitous of NEOs was observed in source water with the mean concentration of total NEOs (ΣNEOs) at 240 ng/L. Although advanced DWTP (A-DWTP; range: 26 % to 100 %) showed better removals of ΣNEOs and all individual NEOs rather than those in conventional DWTP (C-DWTP; range: -53 % to 28 %), the removals were still low for acetamiprid (ACE, 26 %), thiacloprid (THD, 59 %), thiamethoxam (THM, 56 %) and N-desmethyl-acetamiprid (N-dm-ACE, 45 %) in A-DWTP. Removal rates were positive in chlorination (48 %), final stage of sedimentation (F-Sed, 24 %), and granular activated carbon (GAC) filter effluent (19 %) in A-DWTP. It worthy to note that ΣNEOs has high negative removal rates at the start stage of sedimentation (S-Sed, -83 %), middle stage of sedimentation (M-Sed, -47 %), and sand filter effluent (-42 %) water in C-DWTP, which resulted in negative removals of ΣNEOs (-9.6 %), imidacloprid (IMI, -22 %), clothianidin (CLO, -37 %), flupyradifurone (FLU, -76 %), and N-dm-ACE (-29 %) in C-DWTP. Residual levels of NEOs were high in source water, and their low or negative removals in DWTPs should be highly concerning. Results would fill the existing knowledge gap of NEOs in aquatic environment and provide a scientific dataset for policy-making on pollution control and environmental protection.
Collapse
Affiliation(s)
- Xiaoxin He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shiming Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; School of Chemistry and Environment, Jiaying University, Mei Zhou 514015, China
| | - Yingyan Huang
- Guangzhou Hexin Instrument Co., Ltd., Guangzhou 510530, China
| | - Xiongfei Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
10
|
Ismanto A, Hadibarata T, Sugianto DN, Zainuri M, Kristanti RA, Wisha UJ, Hernawan U, Anindita MA, Gonsilou AP, Elshikh MS, Al-Mohaimeed AM, Abbasi AM. First evidence of microplastics in the water and sediment of Surakarta city river basin, Indonesia. MARINE POLLUTION BULLETIN 2023; 196:115677. [PMID: 37862842 DOI: 10.1016/j.marpolbul.2023.115677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The main aim of this study was to assess the presence of microplastics in the water and sediments of the Surakarta city river basin in Indonesia. In order to accurately reflect the river basin, a deliberate selection process was employed to choose three separate sampling locations and twelve sampling points. The results of the study revealed that fragments and fibers were the primary types of microplastics seen in both water and sediment samples. Furthermore, a considerable percentage of microplastics, comprising 53.8 % of the total, had dimensions below 1 mm. Moreover, the prevailing hues identified in the water samples were blue and black, comprising 45.1 % of the overall composition. In contrast, same color categories accounted for 23.3 % of the microplastics found in the soil samples. The analysis of microplastic polymers was carried out utilizing ATR-FTIR spectroscopy, which yielded the identification of various types including polystyrene, silicone polymer, polyester, and polyamide.
Collapse
Affiliation(s)
- Aris Ismanto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia
| | - Tony Hadibarata
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia; Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250 Miri, Malaysia.
| | - Denny Nugroho Sugianto
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia
| | - Muhammad Zainuri
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia
| | - Risky Ayu Kristanti
- Research Center for Oceanography, National Research Center for Oceanography, Jakarta 14430, Indonesia
| | - Ulung Jantama Wisha
- Research Institute for Coastal Resources and Vulnerability, Ministry of Marine Affairs and Fisheries, Jl. Raya Padang-Painan KM. 16, Bungus, Padang - Sumatera, Barat 25245, Indonesia
| | - Undang Hernawan
- Research Center for Oceanography, National Research Center for Oceanography, Jakarta 14430, Indonesia
| | - Malya Asoka Anindita
- Department of Oceanography, Faculty of Fisheries and Marine Science, Diponegoro University, Semarang 50275, Indonesia
| | - Audrey Primus Gonsilou
- Department of Water and Environmental Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Arshad Mehmood Abbasi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan; University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, CN, Italy
| |
Collapse
|
11
|
Amesho KTT, Chinglenthoiba C, Samsudin MSAB, Lani MN, Pandey A, Desa MNM, Suresh V. Microplastics in the environment: An urgent need for coordinated waste management policies and strategies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118713. [PMID: 37567004 DOI: 10.1016/j.jenvman.2023.118713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
Collapse
Affiliation(s)
- Kassian T T Amesho
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan; The International University of Management, Centre for Environmental Studies, Main Campus, Dorado Park Ext 1, Windhoek, Namibia; Destinies Biomass Energy and Farming Pty Ltd, P.O. Box 7387, Swakopmund, Namibia.
| | - Chingakham Chinglenthoiba
- School of Materials Science and Engineering, National Institute of Technology Calicut, Kozhikode, India; Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Mohd S A B Samsudin
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Mohd Nizam Lani
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Microplastic Research Interest Group (MRIG), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Ashutosh Pandey
- Institute for Water and Wastewater Technology, Durban University of Technology, 19 Steve Biko Road, Durban 4000, South Africa; Department of Biotechnology, Faculty of Life Science and Technology, AKS University, Satna, Madhya Pradesh, 485001, India.
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia
| | - Valiyaveettil Suresh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
12
|
Mishra A, Mohan Viswanathan P, Ramasamy N, Panchatcharam S, Sabarathinam C. Spatiotemporal distribution of microplastics in Miri coastal area, NW Borneo: inference from a periodical observation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:103225-103243. [PMID: 37688695 PMCID: PMC10567912 DOI: 10.1007/s11356-023-29582-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/25/2023] [Indexed: 09/11/2023]
Abstract
The current study aims to investigate the spatiotemporal distribution of microplastics (MPs) in the Miri coast, targeting their occurrences, characterisation, and potential sources. For a periodical study, coastal sediments were collected from three different time intervals (monsoon, post-monsoon, and post-COVID) and subjected to stereomicroscope, ATR-FTIR, and SEM-EDX analyses. These results show a significant increase of MPs in post-COVID samples by approximately 218% and 148% comparatively with monsoon and post-monsoon samples, respectively. The highest concentration of MPs was detected near the river mouths and industrial areas where the waste discharge rate and anthropogenic activities dominate. Fibre-type MPs are the most abundant, with an average of nearly 64%, followed by fragments, films, microbeads, and foams. The most dominant polymer types were polytetrafluoroethylene (PTFE), polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyester (PET). Overall, the current study shows a better understanding of MPs occurrence and potential sources in the Miri coastal area.
Collapse
Affiliation(s)
- Anshuman Mishra
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Prasanna Mohan Viswanathan
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia.
| | - Nagarajan Ramasamy
- Department of Applied Sciences, Faculty of Engineering and Science, Curtin University, Malaysia, CDT 250, 98009, Miri, Sarawak, Malaysia
| | | | | |
Collapse
|
13
|
Kaur M, Ghosh D, Guleria S, Arya SK, Puri S, Khatri M. Microplastics/nanoplastics released from facemasks as contaminants of emerging concern. MARINE POLLUTION BULLETIN 2023; 191:114954. [PMID: 37121188 DOI: 10.1016/j.marpolbul.2023.114954] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Facemasks have become a global medical necessity and are a key preventive measure against COVID-19. Typically, facemasks (FMs) are fabricated from non-renewable polymers, particularly polypropylene (PP) and polyethylene (PE), which release secondary microplastic (MPs) due to the chemical, physical, and biological processes. In light of the widespread usage and improper disposal of single-use facemasks, there is concern about their environmental impact since they contribute to plastic pollution during and after pandemics. The repercussions of this have led to millions of tons of plastic waste being dumped into the environment. Due to lack of awareness and improper disposal, the occurrence of micro/nanoplastics released from facemasks in wastewater treatment plants and landfills poses a concern. Infiltration of wastewater treatment processes by micro/nanoplastics at various levels can be problematic because of their chemical nature and broad but small size. Thus, operational and process stability issues can arise during wastewater treatment processes. In addition, landfilling and illegal waste disposal are being used to dispose of potentially infectious COVID-19 waste, leading to an environmental threat to animal and human health and exacerbating plastic pollution. This paper reviews the fate of facemasks in the environment and the repercussions of improper waste management of facemasks in wastewater treatment plants, landfills, and ultimately the environment.
Collapse
Affiliation(s)
- Mehakdeep Kaur
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Debopriya Ghosh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Shikha Guleria
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India.
| |
Collapse
|
14
|
Gündoğdu S, Kutlu B, Özcan T, Büyükdeveci F, Blettler MCM. Microplastic pollution in two remote rivers of Türkiye. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:791. [PMID: 37261625 DOI: 10.1007/s10661-023-11426-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
Microplastic pollution in aquatic ecosystems presents an emerging environmental threat that can have adverse effects on ecology, endanger aquatic species, and result in economic damage. Despite the numerous studies reporting the presence of microplastics in marine environments, research into their presence in freshwater systems or inland waters remains limited. This study aimed to assess the level of microplastic pollution transported by the Munzur and Pülümür Rivers and some small rivers that flow into the Uzunçayır dam lake, which is the confluence of the Munzur and Pülümür Rivers in Türkiye. Samples were collected from 23 stations, with the concentration of microplastics ranging from 0.01 MP/m3 at P-4 station to 28.21 MP/m3 at P-10, a station located near a city. Microplastics comprise four types: fiber, film, fragment, and glitter. The average size of microplastics was 1.46 ± 0.05 mm, with the average size of fibers, films, fragments, and glitter-type microplastics being 1.58 ± 0.07 mm, 1.23 ± 0.10 mm, 1.21 ± 0.11 mm, and 0.78 ± 0.16 mm, respectively. The most frequent polymers were polyethylene (31.8%), polystyrene (21.1%), and polypropylene (10.5%). Despite being considered remote and less populated rivers compared to other river systems in Türkiye, all sampling sites showed varying concentrations of microplastics.
Collapse
Affiliation(s)
- Sedat Gündoğdu
- Faculty of Fisheries, Department of Basic Sciences, Cukurova University, 01330, Adana, Turkey.
| | - Banu Kutlu
- Faculty of Fisheries, Department of Basic Sciences, Munzur University, 62000, Tunceli, Turkey
| | - Tahir Özcan
- Faculty of Marine Sciences and Technology, Iskenderun Technical University, TR-31200, Iskenderun, Hatay, Turkey
| | - Ferhat Büyükdeveci
- Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
- Adana Directorate of Provincial Food, Agriculture and Livestock, 01330, Adana, Turkey
| | - Martin C M Blettler
- The National Institute of Limnology (INALI; CONICET-UNL), Santa Fe, Argentina
| |
Collapse
|
15
|
Nantege D, Odong R, Auta HS, Keke UN, Ndatimana G, Assie AF, Arimoro FO. Microplastic pollution in riverine ecosystems: threats posed on macroinvertebrates. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27839-9. [PMID: 37248351 DOI: 10.1007/s11356-023-27839-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Microplastics (MPs) are pollutants of emerging concern that have been reported in terrestrial and aquatic ecosystems as well as in food items. The increasing production and use of plastic materials have led to a rise in MP pollution in aquatic ecosystems. This review aimed at providing an overview of the abundance and distribution of MPs in riverine ecosystems and the potential effects posed on macroinvertebrates. Microplastics in riverine ecosystems are reported in all regions, with less research in Africa, South America, and Oceania. The abundance and distribution of MPs in riverine ecosystems are mainly affected by population density, economic activities, seasons, and hydraulic regimes. Ingestion of MPs has also been reported in riverine macroinvertebrates and has been incorporated in caddisflies cases. Further, bivalves and chironomids have been reported as potential indicators of MPs in aquatic ecosystems due to their ability to ingest MPs relative to environmental concentration. Fiber and fragments are the most common types reported. Meanwhile, polyethylene, polypropylene, polystyrene, polyethylene terephthalate (polyester), polyamide, and polyvinyl chloride are the most common polymers. These MPs are from materials/polymers commonly used for packaging, shopping/carrier bags, fabrics/textiles, and construction. Ingestion of MPs by macroinvertebrates can physically harm and inhibit growth, reproduction, feeding, and moulting, thus threatening their survival. In addition, MP ingestion can trigger enzymatic changes and cause oxidative stress in the organisms. There is a need to regulate the production and use of plastic materials, as well as disposal of the wastes to reduce MP pollution in riverine ecosystems.
Collapse
Affiliation(s)
- Diana Nantege
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria.
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda.
| | - Robinson Odong
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Helen Shnada Auta
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Unique Ndubuisi Keke
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Gilbert Ndatimana
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Attobla Fulbert Assie
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| | - Francis Ofurum Arimoro
- Applied Hydrobiology Unit, Department of Animal Biology, Federal University of Technology, PMB 65, Minna, Nigeria
| |
Collapse
|
16
|
Li B, Li B, Jia Q, Hong B, Xie Y, Yuan X, Peng J, Cai Y, Yang Z. Source or sink role of an urban lake for microplastics from Guangdong-Hong Kong-Macao greater bay area, China. ENVIRONMENTAL RESEARCH 2023; 224:115492. [PMID: 36796614 DOI: 10.1016/j.envres.2023.115492] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/08/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Plastic production and consumption in China are larger than others in the world, and the challenge of microplastic pollution is widespread. With the development of urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area, China, the environmental pollution of microplastics is becoming an increasingly prominent issue. Here, the spatial and temporal distribution characteristics, sources, and ecological risks of microplastics were analyzed in water from an urban lake, Xinghu Lake, as well as the contribution of rivers. Importantly, the roles of urban lakes for microplastics were demonstrated through the investigations of contributions and fluxes for microplastic in rivers. The results showed that the average abundances of microplastics in water of Xinghu Lake were 4.8 ± 2.2 and 10.1 ± 7.6 particles/m3 in wet and dry seasons, and the average contribution degree of the inflow rivers was 75%. The size of microplastics in water from Xinghu Lake and its tributaries was concentrated in the range of 200-1000 μm. In general, the average comprehensive potential ecological risk indexes of microplastics in water were 247 ± 120.6 and 273.1 ± 353.7 in wet and dry seasons, which the high ecological risks of them were found through the adjusted evaluation method. There were also mutual effects among microplastic abundance, the concentrations of total nitrogen and organic carbon. Finally, Xinghu Lake has been a sink for microplastics both in wet and dry seasons, and it would be a source of microplastics under the influence of extreme weather and anthropogenic factors.
Collapse
Affiliation(s)
- Bo Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qunpo Jia
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bin Hong
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou, 510655, China
| | - Yulei Xie
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xiao Yuan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jinping Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
17
|
He Y, Huang Q, Wang Q, Tang M, Lu X, Cheng F, Xiao G. Seasonal pollution and surface characteristics of microplastics in surface water in the Wanzhou section of the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67854-67864. [PMID: 37119489 PMCID: PMC10203002 DOI: 10.1007/s11356-023-27185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
The pollution of freshwater environments with microplastics (MPs) has attracted increasing attention owing to their threats to aquatic ecosystems and human health. Here, we sampled and analyzed MPs from mainstream, tributary, and backwater areas in the Wanzhou section of the Three Gorges Reservoir (TGR) in impoundment and flood periods. Microplastic pollution was the most severe in the backwater areas. The average abundance of MPs reached the highest value in the flood period (5.27±3.47×107 items km-2), which was 3-5 times that in the impoundment period. In the 0.3-5 mm size class, the 1-5 mm fraction was the most abundant, accounting for more than 81% in the flood period and 68% of the total MP particle abundance in the impoundment period in the mainstream and backwater areas. However, 0.3-1 mm MPs contributed more than 50% in the tributaries during the impoundment period. Polystyrene, polypropylene, and polyethylene MPs were detected in foam, fragment, sheet, and line-shaped MP particles. White, opaque, foamed polystyrene MPs contributed 32-81% to total MP particle abundance in the watershed. Microplastic particle surfaces showed signs of damage and oxidation, and ten different elements were found. Oxygen was clustered on the surface of foam and fragment MPs. Microplastic pollution was severe in the Wanzhou watershed. Especially in the backwater areas, oxidized MPs of variable shapes derived mainly from surface runoff in the flood period and sewage discharge in the impoundment period were abundant. The results of this study contribute to understanding seasonal pollution patterns and surface characteristics of MPs in the TGR and similar watersheds.
Collapse
Affiliation(s)
- Ying He
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qian Huang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Qilong Wang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Mingfeng Tang
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Xiaoyu Lu
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Fei Cheng
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, Chongqing Three Gorges University, Wanzhou, Chongqing, China.
| |
Collapse
|
18
|
Gurumoorthi K, Luis AJ. Recent trends on microplastics abundance and risk assessment in coastal Antarctica: Regional meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121385. [PMID: 36868550 DOI: 10.1016/j.envpol.2023.121385] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
We investigated sources, abundance and risk of microplastics (MPs) in water, sediments and biota around Antarctica. The concentration of MPs in Southern Ocean (SO) ranged from 0 to 0.56 items/m3 (mean = 0.01 items/m3) and 0-1.96 items/m3 (mean = 0.13 items/m3) in surface and sub-surface water. The distribution of fibers in water was 50%, sediments were 61%, and biota had 43%, which were followed by fragments in the water (42%), sediments (26%), and biota (28%). Shapes of film had lowest concentrations in water (2%), sediments 13%), and biota (3%). Ship traffic, drift of MPs by currents, and untreated waste water discharge contributed to the variety of MPs. The degree of pollution in all matrices was evaluated using the pollution load index (PLI), polymer hazard index (PHI), and potential ecological risk index (PERI). PLI at about 90.3% of locations were at category I followed by 5.9% at category II, 1.6% at category III, and 2.2% at category IV. Average PLI for water (3.14), sediments (6.6), and biota (2.72) had low pollution load (<10). Mean PHI for water, sediments, and biota showed hazards level V with a higher percentage of 84.6% (>1000) and 63.9% (PHI:0-1) in sediments and water, respectively. PERI for water showed 63.9% minor risk, and 36.1% extreme risk. Around 84.6% of sediments were at extreme risk, 7.7% faced minor risk, and 7.7% were at high risk. While 20% of marine organisms living in cold environments experienced minor risk, 20% were in high risk, and 60% were in extreme risk. Highest PERI was found in the water, sediments, and biota in Ross Sea, due to high hazardous polymer composition of polyvinylchloride (PVC) in the water and sediments due to human activity, particularly use of personnel care products and waste water discharge from research stations.
Collapse
Affiliation(s)
- K Gurumoorthi
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India
| | - Alvarinho J Luis
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Goa, 403 804, India.
| |
Collapse
|
19
|
Gosavi SM, Phuge SK. First report on microplastics contamination in a meteorite impact Crater Lake from India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64755-64770. [PMID: 37079229 DOI: 10.1007/s11356-023-27074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Microplastic pollution is a worldwide concern affecting all environmental matrices, including pristine lakes. Lentic lakes operate as a sink for microplastics (MPs), which interfere with a biogeochemical cycle and, therefore, deserve immediate attention. We present a comprehensive assessment of MPs contamination in the sediment and surface water of a geo-heritage site, Lonar lake (India). It is the third largest natural saltwater lake and only basaltic crater in the world formed by meteoric impact around 52,000 years ago. Mean MPs abundance in lakeshore sediment and surface water was 14.44 particles/kg and 2.66 particles/L, respectively. Small-sized MPs dominate the hypersaline region of the lake. Transparent and green fragments and filaments morphotypes were abundant. Most of the MPs in Lonar lake were secondary in origin. FTIR-ATR analysis revealed 16 types of polymers in the lake, of which polypropylene, polyvinyl chloride, polyethylene, high-density polyethylene, low-density polyethylene, polystyrene, and polyester were the most common. The overall pollution load index (PLI) for Lonar lake sediment and water was 1.39 and 2.58, respectively. Although all sampling stations had significant MPs pollution (PLI > 1), there was noticeable station-specific variability, which could be linked to anthropogenic activities. Irresponsible tourist behavior and religious activities, coupled with poor waste management are the leading causes of MPs contamination in the lake. The current work fills a gap in the investigation of MP pollution in a crater lake formed by a meteorite impact by being the first to provide a precise estimate of the MPs contamination in the Lonar lake.
Collapse
Affiliation(s)
- Sachin M Gosavi
- Department of Zoology, Maharashtra College of Arts, Science and Commerce, Mumbai, Maharashtra, India.
| | - Samadhan K Phuge
- Department of Zoology, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
- Department of Education and Extension, Savitribai Phule Pune University, Ganeshkhind, Pune, Maharashtra, India
| |
Collapse
|
20
|
Vieira Dantas Filho J, Perez Pedroti V, Temponi Santos BL, de Lima Pinheiro MM, Bezerra de Mira Á, Carlos da Silva F, Soares e Silva EC, Cavali J, Cecilia Guedes EA, de Vargas Schons S. First evidence of microplastics in freshwater from fish farms in Rondônia state, Brazil. Heliyon 2023; 9:e15066. [PMID: 37082633 PMCID: PMC10112025 DOI: 10.1016/j.heliyon.2023.e15066] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The main aimed of this study was to provide information on microplastics present in the freshwater of fish farm ponds. In addition, the study showes a relationship between the seasonal, spatial distribution and the amount of microplastics found. This study was conducted in 35 fish farms located in the Rondônia state, Brazil, the sample collects were carried out in the two Amazonian hydrological seasons (dry and rainy). The study was developed in a completely randomized factorial scheme 35 × 3 x 3 (35 fish farms, 3 ponds and 3 repetitions per ponds). Microplastic sampling was performed following a modified method based on National Oceanic and Atmospheric Administration (NOAA). Samples of 250 mL freshwater collected, which were deionized and pre-filtered through 6.0 mm mesh granulometric sieves. The average abundances of the different hydrological seasons were compared by Student's t-test, with differences statistically significant at p < 0.05. The microplastics were morphological categorized into fibers and colors blue, red or transparent. Microplastic contamination was confirmed in freshwater of 9 fish farming, with greater abundance of blue fibers and greater quantification in the rainy season. Fish farms P3, P4 and P6 had the highest quantifications of blue fiber in the two seasons (6 and 43, 19 and 56, 11 and 88 items mL-1, respectively). Almost all fish farms had a higher abundance of microplastics in the rainy season. It is important to highlight the prominence of microplastics in the blue fiber rainy season (286 items mL-1) compared to the dry season (58 items mL-1). Fish farms P3, P4 and P6 showed a strong positive correlation between the factors distance from the nearest urban area (r = 0.94, 0.79 and 0.97, respectively) and seasonality (r = 0.98, 0.77 and 0.96, respectively). Rainfall variations influenced the abundance of microplastics, especially of blue fibers. Fish farms are supplied with fresh water by rivers or streams, so it is possible that microplastics originate outside the fish farm, perhaps they were introduced due to high soil occupation, although surface runoff (of water contaminated by sewage) caused by heavy rains the most important factor. Therefore, one factor must be considered, surface runoff and groundwater contaminated by urban, agricultural and urban effluents may have contaminated rivers and streams and then contaminated the water in the fish farm ponds.
Collapse
Affiliation(s)
- Jerônimo Vieira Dantas Filho
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Rondônia, Rolim de Moura, RO, Brazil
- Corresponding author.
| | - Vinícius Perez Pedroti
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Rondônia, Rolim de Moura, RO, Brazil
| | | | | | - Átila Bezerra de Mira
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Rondônia, Rolim de Moura, RO, Brazil
| | | | - Emerson Carlos Soares e Silva
- Centro de Ciências Agrárias e Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Jucilene Cavali
- Dept. Engenharia de Pesca, Universidade Federal de Rondônia, Ariquemes, RO, Brazil
| | - Elica Amara Cecilia Guedes
- Centro de Ciências Agrárias e Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas, Maceió, AL, Brazil
| | - Sandro de Vargas Schons
- Programa de Pós-Graduação em Ciências Ambientais, Universidade Federal de Rondônia, Rolim de Moura, RO, Brazil
| |
Collapse
|
21
|
Dalvand M, Hamidian AH. Occurrence and distribution of microplastics in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160740. [PMID: 36496018 DOI: 10.1016/j.scitotenv.2022.160740] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Presence of microplastic particles has been reported in all over the world, even in remote areas with no human activities. Wetlands are important transitional areas between terrestrial and aquatic systems. However, microplastic pollution in wetlands is less studied than other aquatic ecosystems. In this review, documented researches about microplastic occurrence and distribution in different components of wetland systems (except constructed wetlands) were investigated. In this regard, all available articles from different science databases with the keywords microplastic, wetland and lagoon in title were examined and results were proposed by text, table and diagram, after standardization of data express units. Based on results, wetland ecosystems are prone to microplastic pollution. Based on particle properties, PE/PP and fiber/fragment were the most dominant reported chemical composition and particle shapes, respectively.
Collapse
Affiliation(s)
- Mahdieh Dalvand
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran.
| |
Collapse
|
22
|
Amrutha K, Shajikumar S, Warrier AK, Sebastian JG, Sali YA, Chandran T, Sivadas S, Naik R, Amrish VN, Kumar A, Unnikrishnan V. Assessment of pollution and risks associated with microplastics in the riverine sediments of the Western Ghats: a heritage site in southern India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32301-32319. [PMID: 36462078 PMCID: PMC10017654 DOI: 10.1007/s11356-022-24437-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/23/2022] [Indexed: 05/02/2023]
Abstract
There is very little knowledge on microplastic pollution in the Western Ghats (WG), a heritage site in southwest India. To address this, we have studied the spatiotemporal variations of sedimentary microplastics (MPs) from the River Sharavathi, a pristine river in the Western Ghats (WG), southern India. The rich biodiversity in the region makes it relevant to analyse the distribution of this emerging pollutant that is causing harm to the biota and the ecosystem. We analysed the sedimentological and carbon content (organic and inorganic) of these sediments and explored their relationship with MPs. Finally, risk assessment indices such as the Pollution Load Index (PLI), the Polymer Hazard Index (PHI), and the Potential Ecological Risk Index (PERI) were calculated to detect the levels of plastic pollution. The concentration of MPs ranged from 2.5 to 57.5 pieces/kg and 0 to 15 pieces/kg during the pre-monsoon and post-monsoon seasons, respectively. The dip in the MPs' abundance during the post-monsoon season was due to the extremely high rainfall in the river basin during July-August 2019, which would have entrained the sedimentary MPs and transported them to the coast/Arabian Sea. Smaller MPs (0.3-1 mm) were more abundant than the larger MPs (1-5 mm), mainly due to the breakdown of sedimentary plastics by physical processes. Fragments, films, foams, and fibres were the main categories of MPs, and the main polymers were polyethylene, polyethylene terephthalate, and polypropylene. No significant relationship was observed between the sedimentological properties and microplastics, which may be due to the different physical properties of sediments and microplastics. The PLI, PHI, and PERI indices suggest different contamination levels in the river basin. Based on the PLI scores, all the samples belong to the hazardous level I suggesting minor risk category, and the risk of microplastic pollution falls under the high to hazardous risk category based on the PHI values. The PERI value ranged from 160 to 440 and 40 to 2240 during the pre-monsoon and post-monsoon seasons, respectively. The risk assessment in a region known for its rich biodiversity is crucial, as the data can be used by the district administration to mitigate plastic pollution.
Collapse
Affiliation(s)
- Kaniyambadi Amrutha
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sachin Shajikumar
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
- Centre for Climate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| | - Joju George Sebastian
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Yamuna Adichinalniravel Sali
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Thara Chandran
- Nitte (Deemed to Be University), Department of Public Health Dentistry, AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Mangalore, 574199, Karnataka, India
| | - Sanitha Sivadas
- National Centre for Coastal Research, NIOT Campus, Velacherry-Tambaram Main Road, Pallikaranai, Chennai - 600100, India
| | - Ravidas Naik
- National Centre for Polar and Ocean Research, Headland Sada, Vasco-da-Gama, 403804, Goa, India
| | - Vadakkeveedu Narayan Amrish
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Arun Kumar
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vishnu Unnikrishnan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
23
|
Lin H, Pan H, Sun J, Du R, Xu J, Lin H, Pan Z, Zhuang M. Transboundary microplastic pollution in Xiamen Bay and adjacent Jiulong River estuary after the outbreak of COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160562. [PMID: 36455729 DOI: 10.1016/j.scitotenv.2022.160562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Land-based transport from nearshore areas is a key pathway of microplastic (MP) pollution in the oceans. Therefore, transport, fate, and intervention on MPs necessitate an investigation of MP contamination in coastal regions. Here, MP pollution in the surface waters of Xiamen Bay and Jiulong River estuary was evaluated in 2021 after the outbreak of COVID-19. The abundance of MPs in Xiamen Bay ranged from 0.20 to 5.79 items m-3 with an average of 1.03 items m-3, whereas that in the Jiulong River estuary spanned from 0.55 to 2.11 items m-3 with a mean of 1.30 items m-3. A yearly decreasing trend in the abundance of MPs in surface waters in both regions was observed. The particle sizes of MPs were concentrated in the range of 2.50-5.00 mm, and the colors were mainly white, transparent, and green. The micro-Raman spectroscopic results showed that MP polymer types were predominantly polyethylene, polypropylene, and polystyrene. A lower abundance of MPs in Xiamen Bay with no obvious pattern was observed, while that in the Jiulong River estuary showed a wavelike distribution from upstream to downstream. Ecological risk assessment of MP pollution in surface waters of two regions was performed using the pollution load index (PLI), giving the risk level in descending order: wastewater discharge area > aquaculture area > sloughs > estuary mouth > estuarine rivers > shipping lane. The average risk level of Xiamen Bay (I) was lower than that in Jiulong River estuary (II). The MP pollution in the Jiulong River estuary appeared heavier than that in Xiamen Bay, which may be due to the combined effects of COVID-19 and marine governance. This study provided insights into the prevention and management of MP pollution in nearshore semi-enclosed bays.
Collapse
Affiliation(s)
- Haitao Lin
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Huanglei Pan
- Xiamen Institute of Environmental Science, Xiamen 361021, China
| | - Jincheng Sun
- College of Ocean and Earth Science, Xiamen University, Xiamen 361102, China
| | - Rupeng Du
- College of Environment and Ecology, Xiamen University, Xiamen 361105, China
| | - Jielong Xu
- Xiamen Institute of Environmental Science, Xiamen 361021, China
| | - Hui Lin
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Mazhan Zhuang
- Xiamen Institute of Environmental Science, Xiamen 361021, China.
| |
Collapse
|
24
|
Hao Y, Sun Y, Li M, Fang X, Wang Z, Zuo J, Zhang C. Adverse effects of polystyrene microplastics in the freshwater commercial fish, grass carp (Ctenopharyngodon idella): Emphasis on physiological response and intestinal microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159270. [PMID: 36208741 DOI: 10.1016/j.scitotenv.2022.159270] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) pollution in aquatic environment has attracted global attention in recent years. To evaluate the potential toxic effects of MPs in freshwater cultured fish, grass carps (Ctenopharyngodon idella) (body length: 7.7 ± 0.1 cm, wet weight: 6.28 ± 0.23 g) were exposed to different sizes (0.5 μm, 15 μm) and concentrations (100 μg/L, 500 μg/L) of polystyrene microplastics (PS-MPs) suspension for 7 and 14 days, followed by 7 days of depuration, detecting the variations in growth rate, histological structure, oxidative response and intestinal microbiome. Our results indicate that MP toxicity elicited significant size- and concentration-dependent responses by grass carp. MP exposure caused obvious decrease in growth rate on day 14 but not on day 7. Additionally, MPs with large size and high concentration caused more severe intestinal damage and less weight gain, while MP particles with small size and high concentration induced more severe liver congestion and stronger oxidative stress. MP exposure dramatically shifted the gut microbial composition, with the top 10 genera in abundance being associated with the diameter and concentration of the MPs. After 7 days of depuration, only superoxide dismutase and malondialdehyde in liver, showed a tendency to recover to the initial values. Even though the differences in the gut microbial community between the control and treatment groups disappeared, and the proportion of potential pathogenic bacteria in intestine was still high. Thus, it is clear that a short-term depuration period of 7 days is not enough for complete normalization.
Collapse
Affiliation(s)
- Yaotong Hao
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yanfeng Sun
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China.
| | - Mo Li
- Life Sciences College, Cangzhou Normal University, Cangzhou 061001, China
| | - Xuedan Fang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Zhikui Wang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Jiulong Zuo
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| | - Cuiyun Zhang
- Ocean College, Hebei Agricultural University, Qinhuangdao 066003, China
| |
Collapse
|
25
|
Yin J, Long Y, Xiao W, Liu D, Tian Q, Li Y, Liu C, Chen L, Pan Y. Ecotoxicology of microplastics in Daphnia: A review focusing on microplastic properties and multiscale attributes of Daphnia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114433. [PMID: 38321655 DOI: 10.1016/j.ecoenv.2022.114433] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 02/08/2024]
Abstract
The ubiquitous presence of microplastics in aquatic environments is considered a global threat to aquatic organisms. Species of the genus Daphnia provide an important link between aquatic primary producers and consumers of higher trophic levels; furthermore, these organisms exhibit high sensitivity to various environmental pollutants. Hence, the biological effects of microplastics on Daphnia species are well documented. This paper reviews the latest research regarding the ecotoxicological effects of microplastics on Daphnia, including the: 1) responses of individual, population, and community attributes of Daphnia to microplastics; 2) influence of the physical and chemical properties of microplastics; and 3) joint toxicity of microplastics and other pollutants on responses of Daphnia. Our literature review found that the published literature does not provide sufficient evidence to reveal the risks of microplastics at the population and community levels. Furthermore, we emphasized that high-level analysis has more general implications for understanding how individual-level research can reveal the ecological hazards of microplastics on Daphnia. Based on this review, we suggest avenues for future research, including microplastic toxicology studies based on both omics-based and community-level methods, especially the latter.
Collapse
Affiliation(s)
- Jiang Yin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Instititue of International Rivers and Eco-security, Yunnan Key Laboratory of International Rivers and Trans-Boundary Eco-security, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Yaoyue Long
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Weiyi Xiao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Dan Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Qindong Tian
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Ya Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Change Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China
| | - Liqiang Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Ying Pan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming, Yunnan, 650091, China.
| |
Collapse
|
26
|
Nousheen R, Hashmi I, Rittschof D, Capper A. Comprehensive analysis of spatial distribution of microplastics in Rawal Lake, Pakistan using trawl net and sieve sampling methods. CHEMOSPHERE 2022; 308:136111. [PMID: 35995190 DOI: 10.1016/j.chemosphere.2022.136111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of microplastics (MPs) in freshwater environments, particularly reservoir and lakes, is an emerging concern. There are limited studies in Pakistan on microplastic pollution in the lacustrine environments and those that exist do not provide sufficient information on the spatial distribution of MPs in offshore surface water. The aims of this study were to determine microplastic abundance in Rawal Lake, Pakistan and to ascertain if sampling methodology influences microplastic counts. Surface water samples were collected from 10 sites; 5 tributaries, 2 human settlement and 3 fishing and boating areas using two different sampling techniques: 100 μm mesh trawl and 20 L sample through a 45 μm mesh sieve. A significant difference was observed in the abundance of MPs across two methods with the sieve method yielding 2.8 ± 1.44 particles/L and trawl yielding 0.025 ± 0.024 particles/L. Tributaries and boating/fishing area had higher microplastic abundance than the residential area regardless of sampling method. Filaments were the dominant shape of MPs in both type of samples followed by fragments in trawl samples and films in sieved samples. Microbeads were only detected in trawl samples. MPs within size range 0.1-0.9 mm were mostly fragments (82%). MPs were diverse in colors with white/transparent and black MPs common. Polypropylene was the main type of microplastic in Rawal Lake (40-74%). Scanning Electron Microscopy (SEM) of MPs showed cracks, roughness and striations on the particles. Energy Dispersive Spectroscopy (EDS) detected heavy metals (Fe, Cu, Ni, Pb, Zn, Co and Cr) in MPs. Findings suggest that microplastic pollution in Rawal Lake may pose great risk to aquatic and human life through leaching of inherent/adsorbed heavy metals and therefore requires future investigation.
Collapse
Affiliation(s)
- Rabia Nousheen
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, H-12 Sector, Islamabad, Pakistan
| | - Imran Hashmi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, H-12 Sector, Islamabad, Pakistan.
| | - Daniel Rittschof
- Duke Marine Laboratory, Nicholas School of the Environment, Duke University, Beaufort, NC, 28516, United States
| | - Angela Capper
- CQUniversity, Coastal Marine Ecosystems Research Centre (CMERC), Gladstone, QLD 4680, Australia
| |
Collapse
|
27
|
Kannankai MP, Alex RK, Muralidharan VV, Nazeerkhan NP, Radhakrishnan A, Devipriya SP. Urban mangrove ecosystems are under severe threat from microplastic pollution: a case study from Mangalavanam, Kerala, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80568-80580. [PMID: 35725875 DOI: 10.1007/s11356-022-21530-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of microplastics in urban mangrove ecosystems has received little scientific attention despite their immense ecological significance. An investigation was conducted to assess the microplastic abundance and characteristics in three different environmental compartments viz; soil (933 ± 564 particles/kg), sediment (1275 ± 532 particles/kg d.w.), and water (101.6 ± 24 particles/liter) of the Mangalavanam bird sanctuary, a protected mangrove forest in the Cochin city of India. Microplastic fibres were predominant in water, while soil and sediment contained a higher proportion of microplastic fragments. Importantly, surrounding urban features and tidal fluctuation were considered to be influencing microplastic metrics in the area. The colour composition of microplastics was found to be similar in all three environmental compartments and most of the identified polymers were those which are scarcely recycled. Altogether, this study highlights the importance of adopting location-specific measures to protect the area from microplastic pollution and provides the baseline data required for further assessing the impacts of microplastic pollution on mangroves, avifauna, and other components of biodiversity in the region.
Collapse
Affiliation(s)
- Madhuraj Palat Kannankai
- School of Environmental Studies, Cochin University of Science and Technology, Cochin, 682022, India
| | - Riya Kumbukattu Alex
- School of Environmental Studies, Cochin University of Science and Technology, Cochin, 682022, India
| | | | | | - Amal Radhakrishnan
- School of Environmental Studies, Cochin University of Science and Technology, Cochin, 682022, India
| | | |
Collapse
|
28
|
Vayghan AH, Rasta M, Zakeri M, Kelly FJ. Spatial distribution of microplastics pollution in sediments and surface waters of the Aras River and reservoir: An international river in Northwestern Iran. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156894. [PMID: 35777571 DOI: 10.1016/j.scitotenv.2022.156894] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) in freshwater environments have been recognized as one of the important sources of plastic contamination in marine ecosystems. Reducing the amount and spatial distribution of MPs reaching the sea through accumulation behind dams remains unclear. In this study we analyzed the spatial distribution of sediment and surface water MPs in the Aras Dam and from nineteen upstream and downstream locations of the Dam in the Aras River. The MPs abundance ranged from 32 to 528 items/kg dry weight (mean 217.8 ± 132.6) and 1 to 43 items/m3 (mean 12.8 ± 10.5) in the sediment and surface water stations, respectively. MPs abundance in surface waters collected within the Dam reservoir was significantly higher than those found either upstream or downstream (P < 0.05). For sediments, reservoir MPs concentration was generally higher than upstream and downstream, although their differences were not significant. High MPs concentration was observed in the vicinity of urban areas. Moreover, MPs abundance was positively correlated with total organic carbon (TOC) and clay content (P < 0.01). GAM analysis revealed that clay is the most important variable with lowest Akaike information criterion (AIC) and explained 61.3 % of deviance (R-sq.(adj) = 0.344) in MPs abundance. MP particles ranged from 0.1 to 5 mm in size and were dominated by fibers (53.5 %), black color (24 %) and PE polymer (36.6 %). Our results highlight the high MPs distribution in the Aras River and demonstrate that they accumulate in the surface waters behind the Dam. Consequently, the fate and effects of MPs in international rivers is one of the most politicized issues between countries with a common boundary and therefore needs joint management policies that help mitigate this insidious problem.
Collapse
Affiliation(s)
- Ali Haghi Vayghan
- Department of Ecology & Aquatic Stocks Management, Artemia & Aquaculture Research Institute, Urmia University, P.O. Box: 57179-44514, Urmia, Iran.
| | - Majid Rasta
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmehsara, Iran.
| | - Mohammad Zakeri
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Frank J Kelly
- MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
29
|
Du R, Sun X, Lin H, Pan Z. Assessment of manta trawling and two newly-developed surface water microplastic monitoring techniques in the open sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156803. [PMID: 35750175 DOI: 10.1016/j.scitotenv.2022.156803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The ubiquitous microplastic (MP) pollution across the waterways, sediments, biota, and atmosphere has amplified concerns at a global scale. Unfortunately, harmonized MP monitoring protocols are absent for accurate evaluation on MP pollution. Few large-scale MP sampling programs involving different designs have been implemented in the open sea. In this study, a manta trawling and two newly custom-built pump filtration systems, namely, a trawl-underway pump combination system coupled in conjunction with an in-situ filtration device (Y-shaped filter, New Type I) and a stationary onboard pumping coupled to Y-shaped filter (New Type II), were evaluated for MP pollution in the mid-North Pacific Ocean. The trawling-based systems (manta trawl and New Type I) collected samples covering a large area, whereas New Type II operated at a fixed site. The new systems achieved fractionated filtration of MPs on site and prevented airborne contamination. The electronic fuel meter installed in the New Type II yielded a more accurate volume. Results showed that the average MP abundance of the aforementioned sampling techniques were 0.65, 2.56, and 7.48 items m-3, respectively. The abundances in the same particle size range (0.3-5.0 mm) from the new systems were higher. The recovered MPs from all systems were mainly white and polypropylene. Note that the MPs from the manta trawl were primarily fragments; however, they were mainly fibers from the new systems. This corroborated the capability of new systems in harvesting small items (0.1-0.3 mm) and fibers. The cost analysis showed that the new systems beat the manta trawl concerning price performance. The study results provide alternatives for future MP sampling, which will ultimately aid in the method harmonization and standardization of MP sampling.
Collapse
Affiliation(s)
- Rupeng Du
- College of Environment and Ecology, Xiamen University, Xiamen 361105, China
| | - Xiuwu Sun
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Zhong Pan
- Laboratory of Marine Ecological Environment Early Warning and Monitoring, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
30
|
Chen B, Chen Z, Liu Y, Zhu S, Cai X. Effects of garbage salvaging and suspended crossbar on microplastic pollution along a typical urban river. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3239-3248. [PMID: 34476638 DOI: 10.1007/s10653-021-01084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Microplastic pollution has been considered as a global environmental issue that potentially threatens human health. However, research about microplastic pollution in urban rivers is still insufficient. This study analyzed the abundance and distribution of microplastics in surface water of the Nanfei River in Hefei, China. Microplastic concentrations ranged from 0.8 to 27 items/L along the studied river. The small size (50-333 μm) (47.58-84.89%) and white (55.65-88.89%) were predominant among all samples, except that collected from the source reach. Pellet was a typical and abundant microplastic type and accounted for 60.30%. PE and PP were the major polymers, occupying 55.24% and 22.86%, respectively. The results showed that traditional environmental management practices including salvaging surface garbage regularly and setting wooden suspended crossbars at tributary confluences could significantly mitigate the pollution degree of microplastics. The polymer risk index was calculated to describe the potential risk of microplastics, and the pollution level was still at high risk under various management practices. This study provides a valuable finding for future research on microplastics in urban city rivers, which may improve the knowledge that how to control and prevent microplastic pollution.
Collapse
Affiliation(s)
- Bingyu Chen
- Anhui Engineering and Technology Research Center of Smart City, Anhui Jianzhu University, Hefei, China.
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China.
- Anhui Advanced Technology Research Institute of Green Building, Anhui Jianzhu University, Hefei, China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China.
| | - Ziwei Chen
- Anhui Engineering and Technology Research Center of Smart City, Anhui Jianzhu University, Hefei, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
- Anhui Advanced Technology Research Institute of Green Building, Anhui Jianzhu University, Hefei, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Yuan Liu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Shuguang Zhu
- Anhui Engineering and Technology Research Center of Smart City, Anhui Jianzhu University, Hefei, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
- Anhui Advanced Technology Research Institute of Green Building, Anhui Jianzhu University, Hefei, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| | - Xinli Cai
- Anhui Engineering and Technology Research Center of Smart City, Anhui Jianzhu University, Hefei, China
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, China
- Anhui Advanced Technology Research Institute of Green Building, Anhui Jianzhu University, Hefei, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, China
| |
Collapse
|
31
|
Cordova MR, Ulumuddin YI, Purbonegoro T, Puspitasari R, Afianti NF, Rositasari R, Yogaswara D, Hafizt M, Iswari MY, Fitriya N, Widyastuti E, Kampono I, Kaisupy MT, Wibowo SPA, Subandi R, Sani SY, Sulistyowati L, Muhtadi A, Riani E, Cragg SM. Seasonal heterogeneity and a link to precipitation in the release of microplastic during COVID-19 outbreak from the Greater Jakarta area to Jakarta Bay, Indonesia. MARINE POLLUTION BULLETIN 2022; 181:113926. [PMID: 35841674 PMCID: PMC9288859 DOI: 10.1016/j.marpolbul.2022.113926] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 06/19/2023]
Abstract
To reduce microplastic contamination in the environment, we need to better understand its sources and transit, especially from land to sea. This study examines microplastic contamination in Jakarta's nine river outlets. Microplastics were found in all sampling intervals and areas, ranging from 4.29 to 23.49 particles m-3. The trend of microplastic contamination tends to increase as the anthropogenic activity towards Jakarta Bay from the eastern side of the bay. Our study found a link between rainfall and the abundance of microplastic particles in all river outlets studied. This investigation found polyethylene, polystyrene, and polypropylene in large proportion due to their widespread use in normal daily life and industrial applications. Our research observed an increase in microplastic fibers made of polypropylene over time. We suspect a relationship between COVID-19 PPE waste and microplastic shift in our study area. More research is needed to establish how and where microplastics enter rivers.
Collapse
Affiliation(s)
- Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia.
| | - Yaya Ihya Ulumuddin
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Triyoni Purbonegoro
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Rachma Puspitasari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Nur Fitriah Afianti
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Ricky Rositasari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Deny Yogaswara
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Hafizt
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Marindah Yulia Iswari
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Hydrodynamics Technology, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Mlati Jln. Grafika No.2 Sekip, Yogyakarta, Indonesia
| | - Nurul Fitriya
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Ernawati Widyastuti
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Irfan Kampono
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Muhammad Taufik Kaisupy
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Singgih Prasetyo Adi Wibowo
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Riyana Subandi
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Sofia Yuniar Sani
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency Republic of Indonesia, BRIN Kawasan Jakarta Ancol Jl. Pasir Putih 1, Ancol, 14430 Jakarta, Indonesia
| | - Lilik Sulistyowati
- Environmental Studies Graduate Program, Universitas Terbuka, Jl. Cabe Raya, Pondok Cabe, Pamulang Tangerang Selatan 15418, Indonesia
| | - Ahmad Muhtadi
- Department of Aquatic Resources Management, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Prof. A. Sofyan No. 3, Medan 20222, Indonesia
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, Bogor Agricultural University, Jl. Agatis Gedung Fakultas Perikanan dan Ilmu Kelautan, Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Simon M Cragg
- Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Blue Governance, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
32
|
Fiore L, Serranti S, Mazziotti C, Riccardi E, Benzi M, Bonifazi G. Classification and distribution of freshwater microplastics along the Italian Po river by hyperspectral imaging. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48588-48606. [PMID: 35195863 PMCID: PMC9252960 DOI: 10.1007/s11356-022-18501-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/31/2021] [Indexed: 06/13/2023]
Abstract
In this work, freshwater microplastic samples collected from four different stations along the Italian Po river were characterized in terms of abundance, distribution, category, morphological and morphometrical features, and polymer type. The correlation between microplastic category and polymer type was also evaluated. Polymer identification was carried out developing and implementing a new and effective hierarchical classification logic applied to hyperspectral images acquired in the short-wave infrared range (SWIR: 1000-2500 nm). Results showed that concentration of microplastics ranged from 1.89 to 8.22 particles/m3, the most abundant category was fragment, followed by foam, granule, pellet, and filament and the most diffused polymers were expanded polystyrene followed by polyethylene, polypropylene, polystyrene, polyamide, polyethylene terephthalate and polyvinyl chloride, with some differences in polymer distribution among stations. The application of hyperspectral imaging (HSI) as a rapid and non-destructive method to classify freshwater microplastics for environmental monitoring represents a completely innovative approach in this field.
Collapse
Affiliation(s)
- Ludovica Fiore
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| | - Silvia Serranti
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy.
| | - Cristina Mazziotti
- ARPAE, Regional Agency for Environmental Prevention and Energy of Emilia-Romagna, Oceanographic Unit Daphne - V. le Vespucci 2, 47042, Cesenatico, FC, Italy
| | - Elena Riccardi
- ARPAE, Regional Agency for Environmental Prevention and Energy of Emilia-Romagna, Oceanographic Unit Daphne - V. le Vespucci 2, 47042, Cesenatico, FC, Italy
| | - Margherita Benzi
- ARPAE, Regional Agency for Environmental Prevention and Energy of Emilia-Romagna, Oceanographic Unit Daphne - V. le Vespucci 2, 47042, Cesenatico, FC, Italy
| | - Giuseppe Bonifazi
- Department of Chemical Engineering, Materials & Environment, Sapienza University of Rome, Via Eudossiana 18, 00184, Rome, Italy
| |
Collapse
|
33
|
Zhao M, Cao Y, Chen T, Li H, Tong Y, Fan W, Xie Y, Tao Y, Zhou J. Characteristics and source-pathway of microplastics in freshwater system of China: A review. CHEMOSPHERE 2022; 297:134192. [PMID: 35257703 DOI: 10.1016/j.chemosphere.2022.134192] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
China plays a key role in global plastic production, consumption and disposal, which arouses growing concern about microplastics (MPs) contamination in Chinese freshwater systems. However, few reviews have discussed the characteristics of MP pollution in whole freshwater systems at a national scale. In this review, we summarized the characteristics, sources and transport pathways of MPs in Chinese freshwater systems including surface water and sediment. Results showed that current research mainly focused on the middle and lower reaches of the Yangtze River and its tributaries, as well as lakes and reservoirs along the Yangtze River. Large-scale reservoirs, rivers and lakes located in densely populated areas usually showed higher abundances of MPs. The majority of MPs in Chinese surface water and sediment mainly consisted of polyethylene and polypropylene, and the most common morphologies were fibers and fragments. To identify the sources and pathways, we introduced the source-sink-pathway model, and found that sewage system, farmland and aquaculture area were the three most prevalent sinks in freshwater systems in China. The source-sink-pathway model will help to further identify the migration of MPs from sources to freshwater systems.
Collapse
Affiliation(s)
- Mengjie Zhao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yanxiao Cao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| | - Tiantian Chen
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Honghu Li
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yifei Tong
- Wuhan Ecologic Environmental Carbon Technology Co., Ltd, Wuhan, 430073, China
| | - Wenbo Fan
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Yuwei Xie
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Ye Tao
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China
| | - Jingcheng Zhou
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, 430073, China; School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, 430073, China.
| |
Collapse
|
34
|
Jeevanandam M, Talelign W, Biru A, Sakthi JS, Silva JD, Saravanan P, Jonathan MP. Evidences of microplastics in Hawassa Lake, Ethiopia: A first-hand report. CHEMOSPHERE 2022; 296:133979. [PMID: 35182535 DOI: 10.1016/j.chemosphere.2022.133979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/01/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Investigation on freshwater MPs has increased gradually across the world, since they are main trajectory for the transportation of MPs from inland to ocean. The present study aims to identify the presence, distribution and the type of MPs in the lake Hawassa, Ethiopia. Twenty-five shoreline surface sediments were separated using ZnCl2 solution and was microphotographed using SEM and type of MP was identified using FTIR spectra. The abundance of MPs was in range of 11-74 items/m3 near the catchment area of the lake in the eastern side. Fiber (90%), fragments (5%) and pellets (5%) were the commonly observed form with varied colour such as white, black, blue, red and others. Our results infer that the common polymer detected in the study area were polyester (82%), polyethylene (15%) and polystyrene (3%) infer their origin from fishing nets, ropes and plastics bags. The industries near the lake contributes more MPs, where the waste water effluents are drained directly into the lake. Spearman's correlation matrix applied among the MPs characters endorses the fate of MPs in the lake environment indicating the weathering process (especially due to bleaching process). Comparative studies with other lake regions around the globe indicate higher values which is entirely and it depends on various factors surrounding the study area. Being, highly polluted lake in Ethiopia, this study extremely acclaims that some monitoring studies in fresh water components in the lake Hawassa helps to mitigate the prevailing MPs pollution.
Collapse
Affiliation(s)
- M Jeevanandam
- Department of Geology, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia
| | - Wegene Talelign
- Department of Geology, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia
| | - Adane Biru
- Department of Geology, College of Natural and Computational Sciences, Hawassa University, Hawassa, Ethiopia
| | - J S Sakthi
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México (CDMX), Mexico
| | - Judith D Silva
- Tamil Nadu Irrigated Agricultural Modernization Project, Multi-Disciplinary Project Unit (World Bank Funded), Public Works Department, Chepauk, Chennai, 600005, India
| | - P Saravanan
- Department of Geology, University of Madras, Guindy Campus, Chennai, 600 025, India
| | - M P Jonathan
- Centro Interdisciplinario de Investigaciones y Estudios Sobre Medio Ambiente y Desarrollo, (CIIEMAD), Instituto Politécnico Nacional (IPN), Calle 30 de Junio de 1520, Barrio La Laguna Ticomán, Del. Gustavo A. Madero, C.P.07340, Ciudad de México (CDMX), Mexico.
| |
Collapse
|
35
|
Maghsodian Z, Sanati AM, Tahmasebi S, Shahriari MH, Ramavandi B. Study of microplastics pollution in sediments and organisms in mangrove forests: A review. ENVIRONMENTAL RESEARCH 2022; 208:112725. [PMID: 35063433 DOI: 10.1016/j.envres.2022.112725] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 11/05/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Microplastics (MP) are an emerging and lesser-known pollutant that has attracted the attention of researchers around the world in recent decades. Size of PM is smaller than 5 mm and can be entered in different ways into marine environments like mangrove forests and interfere with the health of the environment and organisms. The present study reviews 53 studies in the field of microplastics in different parts (sediments and organisms) of mangrove forests. About 26% of the 53 studies was published in 2020. In most studies, MP particles were categorized based on the shape, color, size, and polymer genus. The number of microplastics per kilogram of mangrove sediments has been reported as 1.22-6390. The effect of sediment texture on the frequency of microplastic particles and the relationship between sediment pH and MP abundance were also discussed. The fiber and bright color PMs were more common in living organisms (mollusks, crustaceans, and fish). The PM particles with different genus (polypropylene, polyethylene, polystyrene, and polyethylene terephthalate) were reported for sediment samples. In sediments with smaller sizes and lower pH, microplastics have been detected more frequently. It was reported that sediments and roots of mangrove forests act as livestock and retain microplastics for a long time. The highest concentration of MP in different parts of mangrove forests (sediment and organisms) has been reported for China. Few reports were observed on microplastics in water in mangrove forests. Also, the concentration of microplastics in sediments and organisms in mangrove forests exposed to fishing, coastal tourism, urban, and industrial wastewater was higher than those in pristine areas. It is necessary to conduct comprehensive studies to monitor, control, and evaluate the MP pollution in sediments and various organisms in mangrove forests worldwide.
Collapse
Affiliation(s)
- Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran.
| | - Saeed Tahmasebi
- Department of Statistics, Persian Gulf University, Bushehr, Iran
| | | | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
36
|
Deposition and Mobilization of Microplastics in a Low-Energy Fluvial Environment from a Geomorphological Perspective. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Though microplastic (MP/MiP) pollution of the environment is a popular research topic, a relatively limited number of studies are investigating its geomorphological context. However, site-specific hydrological and morphological parameters fundamentally affect the MP transport, deposition and mobilization. Therefore, we aimed to evaluate the geomorphological influencing factors on MP deposition in the fluvial sediments of the Tisza River (Central Europe). Between the two surveys (in 2019 and 2020), small flood waves rearranged the MP pollution, as in the sediments of the Tisza it decreased by 30% and in the tributaries by 48%. The previously highly polluted upstream and downstream sections became moderately polluted, but the contamination increased in the Middle Tisza, and the hot-spots were rearranged. The increasing longitudinal trend in the MP content exists if the minimum values of the hydrologically uniform sections are considered. The tributaries are important MP sources, as 80% of them had a higher (by 20%) MP content in their sediments than the Tisza had near the confluence, and they increased the MP content of the Tisza by 52% on average. The point-bars were the most polluted in-channel forms, while the side-bars and sediment sheets had less MP content, by 18 and 23%, respectively. The spatial trend of the MP content of these forms was not the same. Therefore, during the planning of sampling campaigns, it is very important to consider the geomorphological setting of a sampling site: we suggest sampling side-bars. No clear connection between the particle size of the sediments and their MP content was found.
Collapse
|
37
|
Mixture of Toxic Metals and Volatile Organic Compounds in a River Induces Cytotoxicity. J CHEM-NY 2022. [DOI: 10.1155/2022/1285826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Pollution of aquatic ecosystems due to toxic mixtures is a worldwide problem associated with the increase of wastewater discharges that causes problems to human health and biodiversity. This study aims to evaluate the cytotoxic potential of water from the Atoyac River. Meristems of Allium cepa L. were exposed to water samples from the Atoyac River with different concentrations for 120 hours. Pearson correlation was used to investigate the relationship between contaminants and cytotoxicity. The results corroborated the cytotoxic effect of the mixture of agents such as toxic metals and volatile organic compounds found in all river sampling sites. The Allium cepa test showed decreased mitotic alterations in prophase and metaphase indices. There was a strong negative association between the concentration of toxic metals and volatile organic compounds and the cytotoxic effect. The observations of cytotoxic effects show that the contaminant mixture contains aneugenic agents which prevent the synthesis and fixation of fibers of the mitotic spindle to the kinetochore, which prevents the displacement of the chromosomes. This study shows the need to study the effects at the cellular and molecular level in heavily polluted rivers to prevent negative effects on exposed ecosystems and populations.
Collapse
|
38
|
Zhang T, Jiang B, Xing Y, Ya H, Lv M, Wang X. Current status of microplastics pollution in the aquatic environment, interaction with other pollutants, and effects on aquatic organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16830-16859. [PMID: 35001283 DOI: 10.1007/s11356-022-18504-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Microplastics, as emerging pollutants, have received great attention in the past few decades due to its adverse effects on the environment. Microplastics are ubiquitous in the atmosphere, soil, and water bodies, and mostly reported in aqueous environment. This paper summarizes the abundance and types of microplastics in different aqueous environments and discusses the interactions of microplastics with other contaminants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), antibiotics, and heavy metals. The toxicity of microplastics to aquatic organisms and microorganisms is addressed. Particularly, the combined toxic effects of microplastics and other pollutants are discussed, demonstrating either synergetic or antagonistic effects. Future prospectives should be focused on the characterization of different types and shapes of microplastics, the standardization of microplastic units, exploring the interaction and toxicity of microplastics with other pollutants, and the degradation of microplastics, for a better understanding of the ecological risks of microplastics.
Collapse
Affiliation(s)
- Tian Zhang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- National Engineering Laboratory for Site Remediation Technologies, Beijing, 100015, People's Republic of China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haobo Ya
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Mingjie Lv
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Xin Wang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| |
Collapse
|
39
|
Lu J, Wu J, Gong L, Cheng Y, Yuan Q, He Y. Combined toxicity of polystyrene microplastics and sulfamethoxazole on zebrafish embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19273-19282. [PMID: 34714475 DOI: 10.1007/s11356-021-17198-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Despite extensive investigation on the toxicity of microplastics (MPs), an emerging global concern, little is known about the combined toxicity of MPs and co-occurring pollutants in aquatic environments. In this study, the combined toxicity of polystyrene MPs and sulfamethoxazole (SMZ) antibiotics was explored in zebrafish embryos in terms of the developmental, physiological, and endocrine toxicities. Exposure to PS and SMZ induced mortality (rate: 25.0 ± 7.5%) and malformation (rate: 20~35%) at multiple regions and stages of zebrafish development. Physiological toxicity was also induced as shown by the significant decrease in fetal movement (by 31.1~37.0%) and swimming frequency (by 26.9~36.8%) and the increase in heartbeat rate (by 19.0~20.9%). Finally, PS and SMZ exposure also induced extensive endocrine toxicities in zebrafish as confirmed by increases in various biomarkers including vitellogenin, 17β-estradiol, testosterone, and triiodothyronine. The combination index showed that antagonistic effects were present between PS and SMZ toxicity, which slightly decreased their combined toxicity. This study aims to further understand the combined toxicity of MPs and co-occurring pollutants in aquatic environments.
Collapse
Affiliation(s)
- Jiarui Lu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Jie Wu
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Lulin Gong
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Yuan Cheng
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Qingbin Yuan
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| | - Yide He
- College of Environmental Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.
| |
Collapse
|
40
|
Bian P, Liu Y, Zhao K, Hu Y, Zhang J, Kang L, Shen W. Spatial variability of microplastic pollution on surface of rivers in a mountain-plain transitional area: A case study in the Chin Ling-Wei River Plain, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113298. [PMID: 35152111 DOI: 10.1016/j.ecoenv.2022.113298] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Inland lakes and rivers are large reservoirs of microplastics. But currently, not too much research was done on microplastics of mountain rivers. The protection of water sources from microplastics is extremely significant for the safety of human drinking water. We quantified the distribution and variation of microplastics in the surface water from tributary (upstream water-source regions) to main stream (human settlements) in the Chin Ling-Wei River Plain Rivers, and assessed the pollution risk. Rivers in the Chin Ling-Wei River Plain contained various levels of microplastics (2.30-21.05 items/L), and the main stream of the river contained higher concentrations most commonly of microplastics than tributaries. The microplastics were fragments and films; they constituted 82.3% of the total abundance of microplastics. Microplastics with a particle size < 500 µm accounted for 64.3% of all the samples. As rivers flow from the mountains to the plains, the land-use types along the rivers become more multifunctional. Thus, the risk of river microplastic pollution increases sharply with distance downstream. Our research explored the microplastics pollution in the Chin Ling mountains based on topography and land-use types and thus provides a reference for further studies exploring the spatial distribution characteristics of microplastics in small-scale rivers and for pollution risk assessments.
Collapse
Affiliation(s)
- Pengyang Bian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Yixuan Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kaihui Zhao
- Shaanxi Foping National Nature Reserve, Foping, Shaanxi 723400, PR China
| | - Yue Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jie Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Le Kang
- School of Environment, Education and Development the University of Manchester, Manchester M13 9PL, United Kingdom
| | - Weibo Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
41
|
Sulistyowati L, Riani E, Cordova MR. The occurrence and abundance of microplastics in surface water of the midstream and downstream of the Cisadane River, Indonesia. CHEMOSPHERE 2022; 291:133071. [PMID: 34838842 DOI: 10.1016/j.chemosphere.2021.133071] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/27/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
This study investigates microplastic contamination in the midstream to downstream of the Cisadane River and its confluence with the Java Sea. The abundance ranged between 13.33 and 113.33 particles m-3 in surface water samples. Microplastic abundance in the downstream area was higher than midstream. We discovered 11 microplastic polymer types, with polyethylene, polystyrene, and polypropylene dominating (>70%) the chemical composition study result, which we hypothesized was owing to their ubiquitous use in daily household and industrial activities. Microplastic fragments with a diameter of 500-1000 m predominated in surface water samples. This study identifies possible microplastics pollution hotspots throughout the Cisadane rivers and selects sites that require additional sampling. Runoff from cities and landfills has the potential to have a significant impact on the accumulation and movement of microplastics from the inland to the Cisadane estuarine area. Additional research is necessary to determine how and where these microplastics particles enter rivers.
Collapse
Affiliation(s)
- Lilik Sulistyowati
- Environmental Studies Graduate Program, Universitas Terbuka, Jl. Cabe Raya, Pondok Cabe, Pamulang Tangerang Selatan, 15418, Indonesia.
| | - Etty Riani
- Department of Aquatic Resources Management, Faculty of Fishery and Marine Science, Bogor Agricultural University, Bogor, Indonesia.
| | - Muhammad Reza Cordova
- Research Center for Oceanography, Indonesian Institute of Sciences, Jl. Pasir Putih 1, Ancol, 14430, Jakarta, Indonesia; Research Center for Oceanography, National Research and Innovation Agency, Jl. Pasir Putih 1, Ancol, 14430, Jakarta, Indonesia.
| |
Collapse
|
42
|
Tamminga M, Hengstmann E, Deuke AK, Fischer EK. Microplastic concentrations, characteristics, and fluxes in water bodies of the Tollense catchment, Germany, with regard to different sampling systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:11345-11358. [PMID: 34533749 PMCID: PMC8794927 DOI: 10.1007/s11356-021-16106-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/19/2021] [Indexed: 05/26/2023]
Abstract
The widespread presence of microplastics in multiple environmental compartments has largely been demonstrated. Assessing the ecological risk that microplastics pose is, at the present stage, hindered due to methodical differences. Moreover, different methods hamper meaningful comparisons between studies and data on microplastics <300 μm is scarce. Therefore, we focused on microplastics >20 μm in freshwater and sampling-related aspects in this concern. Sampling was conducted between 2018 and 2020 in the Tollense catchment in northeastern Germany and was carried out by in situ pump filtration. Two different sampling systems (cutoff sizes 20 μm and 63 μm) were applied to filter water volumes of 0.075-1.836 m3. Retained particles were analyzed by a combination of Nile red staining and micro-Raman spectroscopy. Thereby, we found microplastic concentrations between 123 and 1728 particles m-3 using the 63-μm cut-off size and between 1357 and 2146 particles m-3 using the 20-μm cut-off size. Local hydrodynamics (discharge and flow velocity) and land cover are likely influencing the observed microplastic concentrations and fluxes. The variability between both sampling systems cannot fully be explained by the different mesh sizes used. We argue that differentiation between a theoretical cut-off size (finest mesh) and a factual cut-off size (reliable quantification) can help to understand sampling related differences between studies.
Collapse
Affiliation(s)
- Matthias Tamminga
- Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany.
| | - Elena Hengstmann
- Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
| | - Ann-Kristin Deuke
- Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
| | - Elke Kerstin Fischer
- Center for Earth System Research and Sustainability (CEN), Universität Hamburg, Bundesstraße 55, 20146, Hamburg, Germany
| |
Collapse
|
43
|
Yu X, Zhao Y, Zhang C, Yang C, Ouyang Z, Liu P, Guo X, Zhu L. Abundance and characteristics of microplastics in the surface water and sediment of parks in Xi'an city, Northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150953. [PMID: 34656580 DOI: 10.1016/j.scitotenv.2021.150953] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/09/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs), as a new type of pollutants, have attracted wide attention especially in recent years, but there was insufficient research on the distribution and characteristics of MPs in urban park water body. In this study, the pollution of MPs in water and sediment of Xi'an, the largest city in northwest China, was investigated. The MPs concentration in the surface water and sediment was 2900-6970 items/m3 and 940-3560 items/kg, respectively. According to the urban functions, the parks were divided into residential areas, commercial areas, tourism areas and industrial areas, and the highest abundance of MPs was observed in the tourism and residential areas, suggesting the impacts of human activities. MPs in these parks were mainly in four kinds of shapes, namely fiber, pellet, fragment and film, and dominated by fibers and fragments. Most of the extracted MPs were small in size, and 63-92% of them were smaller than 0.5 mm. Polypropylene and polyethylene terephthalate were the main polymer types in surface water and sediments, respectively. This study showed that the park water and sediment can be used as an important "sink" in MPs, which is of great significance for monitoring and alleviating the pollution of urban MPs. This study provided important reference for better understanding MPs levels in inland freshwaters.
Collapse
Affiliation(s)
- Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yimo Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chutian Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Chengfang Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221000, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Peng Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| |
Collapse
|
44
|
Ain Bhutto SU, You X. Spatial distribution of microplastics in Chinese freshwater ecosystem and impacts on food webs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118494. [PMID: 34780753 DOI: 10.1016/j.envpol.2021.118494] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Over the past two decades, there has been a lot of discussion about the rapid increase of microplastics (MPs) due to their persistence, ubiquity, and toxicity. The widespread distribution of MPs in various freshwater ecosystems makes them available for different trophic levels biota. The ingestion and trophic transfer of MPs may induce potential impacts on freshwater food webs. Therefore, this systematic review is an in-depth review of 51 recent studies to confirm the spatial distribution of MPs in the Chinese freshwater ecosystem including water, sediment and biota, exposure pathways, and impacts on freshwater food webs. The result suggested the white, transparent and colored, Polypropylene (PP) and Polyethylene (PE) of <1 mm fibers were dominant in Chinese freshwaters. The uptake of MPs by various freshwater organisms as well as physiological, biological and chemical impacts on food webs were also elucidated. At last, some limitations were discussed for future studies to better understand the effects of MPs on food webs.
Collapse
Affiliation(s)
- Seerat Ul Ain Bhutto
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China
| | - Xueyi You
- School of Environmental Science and Engineering, Tianjin University, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
45
|
Tagorti G, Kaya B. Genotoxic effect of microplastics and COVID-19: The hidden threat. CHEMOSPHERE 2022; 286:131898. [PMID: 34411929 DOI: 10.1016/j.chemosphere.2021.131898] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/26/2021] [Accepted: 08/12/2021] [Indexed: 05/10/2023]
Abstract
Microplastics (MPs) are ubiquitous anthropogenic contaminants, and their abundance in the entire ecosystem raises the question of how far is the impact of these MPs on the biota, humans, and the environment. Recent research has overemphasized the occurrence, characterization, and direct toxicity of MPs; however, determining and understanding their genotoxic effect is still limited. Thus, the present review addresses the genotoxic potential of these emerging contaminants in aquatic organisms and in human peripheral lymphocytes and identified the research gaps in this area. Several genotoxic endpoints were implicated, including the frequency of micronuclei (MN), nucleoplasmic bridge (NPB), nuclear buds (NBUD), DNA strand breaks, and the percentage of DNA in the tail (%Tail DNA). In addition, the mechanism of MPs-induced genotoxicity seems to be closely associated with reactive oxygen species (ROS) production, inflammatory responses, and DNA repair interference. However, the gathered information urges the need for more studies that present environmentally relevant conditions. Taken into consideration, the lifestyle changes within the COVID-19 pandemic, we discussed the impact of the pandemic on enhancing the genotoxic potential of MPs whether through increasing human exposure to MPs via inappropriate disposal and overconsumption of plastic-based products or by disrupting the defense system owing to unhealthy food and sleep deprivation as well as stress. Overall, this review provided a reference for the genotoxic effect of MPs, their mechanism of action, as well as the contribution of COVID-19 to increase the genotoxic risk of MPs.
Collapse
Affiliation(s)
- Ghada Tagorti
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey
| | - Bülent Kaya
- Akdeniz University, Faculty of Sciences, Department of Biology, 07058-Campus, Antalya, Turkey.
| |
Collapse
|
46
|
Zainuddin AH, Aris AZ, Zaki MRM, Yusoff FM, Wee SY. Occurrence, potential sources and ecological risk estimation of microplastic towards coastal and estuarine zones in Malaysia. MARINE POLLUTION BULLETIN 2022; 174:113282. [PMID: 34995888 DOI: 10.1016/j.marpolbul.2021.113282] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Extensive global plastic production has led to microplastic (MP) pollution of marine ecosystems. This study analysed the abundance of MPs in the surface water of tropical coastal and estuarine zones in Malaysia affected by rapid urbanisation and intense human activity. It also estimated the risk posed by MPs to the marine environment. Mean MP abundance ranged from 2.10 to 6.80 particles/L. Fourier-transform infrared spectroscopic analysis found that the MP polymers were dominated by cellophane (54%), followed by polyester (33%) and polyethylene (2%). The risk posed by MPs was estimated with the risk quotient (RQ) method which found no potential ecological risk to both coastal and estuarine areas (RQ < 1). This study will serve as a baseline for future monitoring of MP pollution of marine water to assess the impact of heavily urbanised coastal and estuarine zones.
Collapse
Affiliation(s)
- Azim Haziq Zainuddin
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Health, Faculty of Public Health, Airlangga University, Surabaya 60115, Indonesia.
| | - Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Fatimah Md Yusoff
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia; Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
47
|
Wu J, Jiang Z, Liu Y, Zhao X, Liang Y, Lu W, Song J. Microplastic contamination assessment in water and economic fishes in different trophic guilds from an urban water supply reservoir after flooding. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113667. [PMID: 34482108 DOI: 10.1016/j.jenvman.2021.113667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Rain and floods events are responsible for the transport of microplastics in freshwater ecosystems, yet to date, rare study has examined microplastics pollution in urban water supply reservoirs during such events. In this study, we investigated the concentrations and characteristics of microplastic in water and economic fish species with different feeding guilds in the Dafangying Reservoir, an important source of drinking water for Hefei city. Microplastic concentrations in water were relatively higher than that in natural lakes, indicating abundant microplastic contaminants input through overland runoff triggered by flooding. Our results detected five types (fiber, debris, film, microbead and particle) and six colors (black, transparent, blue, yellow, red and green) of microplastics in water samples. Fiber accounted for the dominant shape, which may result from the household sewage from washing clothes and desquamated fiber transported by wind and overland runoff. Meanwhile, transparent was the predominant microplastic color, which can be ascribe to the widely use of intentionally manufactured transparent disposable plastic commodities in cities. Then in fish samples, the microplastic concentrations ranged from 8.75 to 51.3 items/individual in fish guts, and 9.5-52.6 items/individual in fish gills. Our results demonstrated significant higher microplastic concentrations in planktivorous and herbivorous species. The filter feeding capture mode, i.e., engulfing floating prey through frequently drawing in large volume of water confused with microplastics, may result in the higher microplastic concentrations of planktivorous fishes. Due to the dense microplastics adhering on plant surface, herbivorous fishes can concentrate higher microplastics abundance through the ingestion of macrophytes. According to the biological concentration factor (BCF), all the determined microplastics gave BCF far below 1, suggesting the low bioaccumulation capacity of microplastics in fish species.
Collapse
Affiliation(s)
- Jiajun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Zhongguan Jiang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Hefei, 230601, PR China.
| | - Yunzhao Liu
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, PR China
| | - Xianfu Zhao
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, 430072, PR China
| | - Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, PR China
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230001, PR China
| | - Jin Song
- Fengyang Xiaogang Village Water Source Environmental Technology Limited Company, Chuzhou, 233124, PR China
| |
Collapse
|
48
|
Wang Z, Zhang Y, Kang S, Yang L, Shi H, Tripathee L, Gao T. Research progresses of microplastic pollution in freshwater systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148888. [PMID: 34328911 DOI: 10.1016/j.scitotenv.2021.148888] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/03/2021] [Accepted: 07/03/2021] [Indexed: 05/07/2023]
Abstract
Microplastics (MPs) have received widespread attention as an emerging environmental pollutant. They are ubiquitous in the freshwater system, causing a global environmental issue. The current features and perspectives of MPs in the freshwater systems can provide the concerns of their ecological effects, which has not been addressed widely. Therefore, in this study, we reviewed the characteristics of MPs in freshwater environments and discussed their sources and potential impacts. The abundance of MPs in freshwater system ranged from approximately 3-6 orders of magnitude in different regions. There colors were mainly white and transparent, with polypropylene (PP) and polyethylene (PE) as the major polymers. The main shape of these MPs was fibers with dominant size of less than 1 mm. Analysis indicated MPs in freshwater system mostly originated from human activities such as sewage discharge in highly contaminated areas, while atmospheric long-distance transport and precipitation deposition played an important role in remote areas. Freshwater MPs pollutants also affected drinking water and aquatic organisms. Because the abundance of MPs in organisms was relatively balanced, the pollution level of biological MP pollution cannot accurately characterize the pollution status in the watershed currently. Future research should focus and strengthen on periodic monitoring to characterize the temporal and spatial changes of MPs, and enhance toxicological research to explore MPs pollution impact on biota and humans.
Collapse
Affiliation(s)
- Zhaoqing Wang
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yulan Zhang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shichang Kang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yang
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Lekhendra Tripathee
- State Key Laboratory of Cryosphere Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Tanguang Gao
- College of Earth and Environment Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Impacts of COVID-19 on the Aquatic Environment and Implications on Aquatic Food Production. SUSTAINABILITY 2021. [DOI: 10.3390/su132011281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulted in ecological changes of aquatic ecosystems, affected the aquatic food supply chain, and disrupted the socio-economy of global populations. Due to reduced human activities during the pandemic, the aquatic environment was reported to improve its water quality, wild fishery stocks, and biodiversity. However, the sudden surge of plastics and biomedical wastes during the COVID-19 pandemic masked the positive impacts and increased the risks of aquatic pollution, especially microplastics, pharmaceuticals, and disinfectants. The transmission of SARS-CoV-2 from wastewater treatment plants to natural water bodies could have serious impacts on the environment and human health, especially in developing countries with poor waste treatment facilities. The presence and persistence of SARS-CoV-2 in human excreta, wastewaters, and sludge and its transmission to aquatic ecosystems could have negative impacts on fisheries and aquaculture industries, which have direct implications on food safety and security. COVID-19 pandemic-related environmental pollution showed a high risk to aquatic food security and human health. This paper reviews the impacts of COVID-19, both positive and negative, and assesses the causes and consequences of anthropogenic activities that can be managed through effective regulation and management of eco-resources for the revival of biodiversity, ecosystem health, and sustainable aquatic food production.
Collapse
|
50
|
Hu H, Jin D, Yang Y, Zhang J, Ma C, Qiu Z. Distinct profile of bacterial community and antibiotic resistance genes on microplastics in Ganjiang River at the watershed level. ENVIRONMENTAL RESEARCH 2021; 200:111363. [PMID: 34048747 DOI: 10.1016/j.envres.2021.111363] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Microplastics are of great public concern due to their wide distribution and the potential risk to humans and animals. In this study, the microplastic pollution associated with bacterial communities, human pathogenic bacteria, and antibiotic resistance genes (ARGs) were investigated compared to water, sediment, and natural wood particles. Microplastics were widely distributed in surface water of the Ganjiang River at a watershed level with an average value of 407 particles m-3. The fragment was the main microplastic shape found in the basin. Microplastics had significantly higher observed species and Chao1 index of bacterial communities than those in water, but comparable to wood particles. However, there was no difference in the microplastics pollution and alpha diversity indices of bacterial between different reaches along the Ganjiang River. Flavobacterium, Rhodoferax, Pseudomonas, and Janthinobacterium on the microplastics were all found to be enriched compared with water and sediment. Principal component analysis of the composition and function profile of bacterial communities showed that microplastics provide a new microbial niche in the Ganjiang River, which was distinct from water, sediment, and natural wood. Pseudomonas genus dominated the composition of human pathogenic bacteria on the microplastics, which was significantly different from water and sediment. No difference was observed in the relative abundance of total ARGs among the four media. However, microplastic and wood particles showed similar composition patterns of ARGs compared with water and sediment.
Collapse
Affiliation(s)
- Hua Hu
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China; Nanchang Environmental Engineering and Technology, Co., Ltd., Nanchang, 330096, China
| | - Danfeng Jin
- The Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Jian Zhang
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Changpo Ma
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Zumin Qiu
- School of Resources Environmental and Chemical Engineering, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|