1
|
Gallitelli L, Cera A, Scalici M, Sodo A, Di Gioacchino M, Luzi B, Hortas F, Green AJ, Coccia C. Plastic ingestion in aquatic insects: Implications of waterbirds and landfills and association with stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176707. [PMID: 39378951 DOI: 10.1016/j.scitotenv.2024.176707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Wetlands provide numerous ecosystem services including freshwater purification. Nonetheless, their functionality is continuously impacted by many pollutants. Plastics are considered as an emerging threat for these ecosystems, but only recently have studies began to focus on plastic and microplastic (MP) contamination in wetlands, especially in biota. This study aims to investigate the abundance of MPs in two ubiquitous aquatic insect taxa (i.e. Corixidae (Hemiptera) and Chironomidae (Diptera)) collected in twelve zones within Mediterranean wetlands belonging to three basins located in Andalusia (south-west Spain). We compared MP contamination across basins and tested the proximity to landfills and presence of colonial waterbirds [i.e. white storks (Ciconia ciconia) and gulls (Larus michahellis and L. fuscus)] on MP abundance in aquatic insects. We also performed stable isotope analyses of nitrogen and carbon (δ15N and δ13C) to evaluate the potential association between MP abundance and isotopic values. We detected 571 suspected MPs (mostly blue fibers) in insects of different developmental stages (i.e., larvae, pupae, nymphs and adults). Polyesters and polypropylene were the most frequent polymers detected. The generalized linear mixed models indicated that MP abundance decreased with increasing distance from landfills; but it also increased in sites with birds that fed on landfills and roost in wetlands. When controlling for landfill effects, sites in the smallest basin (Guadalete) had lower MP contamination than those in Odiel-Tinto and the much larger (>15×) Guadalquivir. Moreover, we found a negative association between MPs items/g (or mean MPs) and 15N isotopes in adult corixids. Our findings showed that MP pollution is present in all the study areas, including strictly protected wetlands. The use of aquatic insects for biomonitoring of MP pollution can help identify priority areas for management actions to mitigate plastic pollution.
Collapse
Affiliation(s)
- L Gallitelli
- Department of Sciences, University of Rome Tre, Rome, Italy.
| | - A Cera
- Institute of Freshwater Biology, Nagano University, 1088 Komaki, Ueda, Nagano 386-0031, Japan
| | - M Scalici
- Department of Sciences, University of Rome Tre, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy
| | - A Sodo
- Department of Sciences, University of Rome Tre, Rome, Italy
| | | | - B Luzi
- Department of Sciences, University of Rome Tre, Rome, Italy
| | - F Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510 Puerto Real, Cádiz, Spain
| | - A J Green
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana, EBD-CSIC, Américo Vespucio 26, 41092 Sevilla, Spain
| | - C Coccia
- Department of Sciences, University of Rome Tre, Rome, Italy; National Biodiversity Future Center (NBFC), Università di Palermo, Piazza Marina 61, 90133 Palermo, Italy; Bahia Lomas Research Centre, Universidad Santo Tomás, Santiago, Chile
| |
Collapse
|
2
|
Ehrampush MH, Abouee E, Arfaeinia H, soltanian Z, Ghorbanian M, Ghalehaskari S. Occurrence, distribution and risk assessment of phthalate esters in dust deposited in the outdoor environment of Yazd industrial park using Monte Carlo simulation. Heliyon 2024; 10:e37500. [PMID: 39309782 PMCID: PMC11416271 DOI: 10.1016/j.heliyon.2024.e37500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, the distribution of eight phthalate esters (PAEs), namely (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)) were examined across fifteen sampling stations in Yazd industrial Park. All the PAEs in dust deposited in the outdoor environment were analyzed using a Gas-mass chromatography (GC-MS/MS) device. Both probabilistic and deterministic approaches were utilized to assess the non-carcinogenic and carcinogenic health risks for adult occupational population groups. These risks were associated with three exposure pathways: inhalation, ingestion, and dermal exposure to six phthalates in the dust samples. The findings revealed, among the fifteen sampling stations, highest and lowest concentrations of the PAEs in dust deposited in the outdoor environment were observed in S8 and S6, with BEHP (326.21 ± 4.35) μg/g and DMP (0.00 ± 0.02) μg/g, respectively. The total hazard index (HI) values were below one in all samples, indicating that the combined non-carcinogenic health risk from exposure to phthalates via inhalation, ingestion, and dermal pathways is within acceptable levels in each studied area. The total cancer risk (CR) values for BBP across all exposure routes were consistently low, with magnitudes ranging from 10- x 10-15to 10 x 10-11. The order of cancer risk from phthalate exposure in outdoor environments was ingestion > dermal > inhalation. The sensitivity analysis (SA) results indicated that the influential parameters in the carcinogenic risk in adult occupational population groups were concentration for inhalation and dermal pathways, as well as ingestion rate for the ingestion pathway. The result of this study provides new insight in to PAEs pollution and risk assessments related to the dust deposited in the outdoor environment of industrial Park. Furthermore, this finding is beneficial to the controlling the exposure and promoting steps to reduce PAEs contamination and manage health in the industrial area.
Collapse
Affiliation(s)
- Mohammad Hasan Ehrampush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Abouee
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra soltanian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Ghorbanian
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Iran
- Vector-borne diseases research center, North Khorasan University of Medical Sciences, Bojnoord, Iran
| | - Sahar Ghalehaskari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
3
|
Razeghi N, Hamidian AH, Abbasi S, Mirzajani A. Distribution, flux, and risk assessment of microplastics at the Anzali Wetland, Iran, and its tributaries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54815-54831. [PMID: 39214944 DOI: 10.1007/s11356-024-34847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastic pollution has raised significant concerns among scientific communities and society in recent years due to its increase and lesser-known effects on the environment. To improve the knowledge of microplastic pollution in freshwater, we investigated microplastics in Anzali Wetland, a Ramsar site in northern Iran, as well as its nine main entering rivers. The extracted microplastics were characterized via visual identification, SEM-EDX, and μ-Raman methods. Microplastics (size range: 50-5000 μm) were found in all water and sediment samples with concentration of fibrous particles as well as polypropylene and polyethylene polymers. The mean concentration of microplastics in bottom sediment and surface water samples of the wetland was 301 ± 222 particles∙kg-1 d.w. and 235 ± 115 particles∙m-3 (0.23 particles∙L-1), respectively. The microplastic concentration in the central and eastern parts of the wetland was higher than in other areas; however, the mean concentrations revealed homogeneity across the wetland area. Water properties (dissolved oxygen, pH, temperature, electrical conductivity, and salinity in water) did not affect the concentration of microplastic particles, though correlational analysis revealed a strong positive association between microplastic quantity and turbidity. There was a significant positive relationship between microplastic concentration and the percentage of clay in sediment samples. The quantity of microplastics in river water was higher than in wetland water, but the difference between the results was not significant. However, the quantity of microplastics in the river's littoral sediment was higher than in the bottom sediment of the wetland where the difference between the results was significant. Microplastic ecological risk assessment showed high potential ecological risk. The findings underscore the importance of effective management strategies and the implementation of policies to mitigate the negative impact of MP pollution on ecosystems and human health.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University College of Agriculture & Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran
- Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, 714545, Iran
| | - Alireza Mirzajani
- Inland Waters Aquaculture Research Center, Agricultural Research Education and Extension Organization (AREEO), Iranian Fisheries Science Research Institute, P.O. Box 66, Bandar-E Anzali, Iran
| |
Collapse
|
4
|
Feizi F, Akhbarizadeh R, Hamidian AH. Microplastics in urban water systems, Tehran Metropolitan, Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:643. [PMID: 38904869 DOI: 10.1007/s10661-024-12815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Urban water systems are potential sources of secondary microplastics (MPs) as well as a distributor of MPs in the environment. In the present study, the presence of MPs in the urban water systems of the Tehran Metropolitan (Capital of Iran) was investigated. In addition, the probable relationship of MPs with different land uses (i.e., residential-commercial, forest, military, and highway) was assessed. The results showed that all parts of Tehran's urban water system in the study area were contaminated with MPs (107.1 ± 39, 37.8 ± 10.5, 48.3 ± 3.1, 46.9 ± 5.6, 59.4 ± 26.5, 1.7, 2.0 ± 0.6, 7.9 ± 1, 1.8 ± 0.2 particles/liter at the residential, integrated, military, forest, highway runoffs, drinking water, groundwater, seasonal river, and the effluent of the wastewater treatment plants; respectively). However, significant differences were found between different land uses. As expected, the residential runoff had the highest rate of MPs pollution, with 107.1 ± 39 particles/liter. According to the obtained results and our estimation, more than five million MPs/day can enter into the water bodies and soil of the study area through the wastewater treatment plants. While there are significant differences in MPs in the different land uses, our findings suggest that residential areas and highways need further attention in controlling the spread of MPs in urban areas.
Collapse
Affiliation(s)
- Farzaneh Feizi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | | | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| |
Collapse
|
5
|
Aghadadashi V, Mehdinia A, Rezaei M, Molaei S, Seyed Hashtroudi M, Ahmadian F, Hamzehpour A, Rahnama R. Basin scale monitoring of microplastics and phthalates in sediments from the Persian Gulf and the Gulf of Makran using GIS-based algorithms: Insights towards spatial variation and potential risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171950. [PMID: 38537822 DOI: 10.1016/j.scitotenv.2024.171950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Information on sedimentary microplastics and phthalates has been restricted to the coastal regions of the Persian Gulf and the Gulf of Makran. Our basin-wide study monitored their levels, spatial behaviors, and potential risks using GIS-based techniques. Microplastics and phthalates ranged from 5 to 75 particles/kg d.w and 0.004-1.219 μg g-1 d.w, respectively. Microplastics were in the size category of 100 μm to 3 mm, and black microfibers (< 1 mm) and high-density polymers were dominant. The total number of microplastics was between 356.333 × 1012 and 469.075 × 1012 particles in the surface sediments of the studied regions (confidence interval = 99 %). Diethylhexyl phthalate (DEHP) and Di-isobutyl phthalate contributed 88 % of detected phthalates. Significant correlations among microplastic abundance, total phthalates, and DEHP were distinguished (p < 0.05). Overall, the findings reiterated the widespread presence of microplastics and a potential link between phthalates and microplastics. Semi-variogram, cluster Voronoi polygons, and Trend analysis identified spatial outliers and major deposition sites of microplastics and phthalates and consequently outlined the localities where upcoming studies should be concentrated. A hotspot of potential risks was marked using Fuzzy logic and GIS-based algorithms in the Sea of Makran, covering an area equal to 342. 99 km2.
Collapse
Affiliation(s)
- Vahid Aghadadashi
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran.
| | - Ali Mehdinia
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Mahdie Rezaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Saeideh Molaei
- Department of Chemistry, Kharazmi University, Tehran, Iran
| | - Mehri Seyed Hashtroudi
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Fatemeh Ahmadian
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Ali Hamzehpour
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| | - Reza Rahnama
- Department of Marine Living Science, Ocean Science Research Center, Iranian National Institute for Oceanography and Atmospheric Sciences, INIOA, Tehran, Iran
| |
Collapse
|
6
|
Jokar Z, Banavi N, Taghizadehfard S, Hassani F, Solimani R, Azarpira N, Dehghani H, Dezhgahi A, Sanati AM, Farjadfard S, Ramavandi B. Marine litter along the shores of the Persian Gulf, Iran. Heliyon 2024; 10:e30853. [PMID: 38765091 PMCID: PMC11101852 DOI: 10.1016/j.heliyon.2024.e30853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/21/2024] Open
Abstract
Plastic wastes -including cigarette butts (CBs)- are dangerous for marine ecosystems not only because they contain hazardous chemicals but also because they can finally turn into micro- or even nano-particles that may be ingested by micro- and macro-fauna. Even large pieces of plastics can trap animals. In this research, the pollution status of macroplastics (abundance, size, type, and colour) and cigarette butts (CBs, number/m2) on the northern coasts of the Persian Gulf has been investigated. A total of 19 stations were explored in Bushehr province (Iran), which covers a length equivalent to 160 km of the Persian Gulf coastline. Among the collected plastic waste (2992 items), disposable mugs were the most frequent (18 %). Plastics with sizes 5-15 cm were the most abundant, and the most common type of plastic was PET (P-value <0.05). The origin of most macroplastics was domestic (2269 items). According to the Index of Clean Coasts (ICC), most surveyed beaches were extremely dirty. The average number and density of CBs in this study were 220 and 2.45 items/m2, respectively. Household litter was the most abundant type of waste in the studied beaches, and this problem can be better managed by training and improving the waste disposal culture. In general, it is suggested that an integrated and enhanced management for fishing, sewage and surface water disposal, and sandy recreational beaches be implemented in Bushehr to control plastic waste.
Collapse
Affiliation(s)
- Zahra Jokar
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nafiseh Banavi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Sara Taghizadehfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Fatemeh Hassani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Rezvan Solimani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Nahid Azarpira
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Hanieh Dehghani
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Atefeh Dezhgahi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Sima Farjadfard
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, 7518759577, Iran
| |
Collapse
|
7
|
Lin HT, Schneider F, Aziz MA, Wong KY, Arunachalam KD, Praveena SM, Sethupathi S, Chong WC, Nafisyah AL, Parthasarathy P, Chelliapan S, Kunz A. Microplastics in Asian rivers: Geographical distribution, most detected types, and inconsistency in methodologies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123985. [PMID: 38621450 DOI: 10.1016/j.envpol.2024.123985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
Microplastics pose a significant environmental threat, with potential implications for toxic chemical release, aquatic life endangerment, and human food chain contamination. In Asia, rapid economic growth coupled with inadequate waste management has escalated plastic pollution in rivers, positioning them as focal points for environmental concern. Despite Asia's rivers being considered the most polluted with plastics globally, scholarly attention to microplastics in the region's freshwater environments is a recent development. This study undertakes a systematic review of 228 scholarly articles to map microplastic hotspots in Asian freshwater systems and synthesize current research trends within the continent. Findings reveal a concentration of research in China and Japan, primarily investigating riverine and surface waters through net-based sampling methods. Polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) emerge as the predominant microplastic types, frequently observed as fibers or fragments. However, the diversity of sampling methodologies and reporting metrics complicates data synthesis, underscoring the need for standardized analytical frameworks to facilitate comparative analysis. This paper delineates the distribution of microplastic hotspots and outlines the prevailing challenges and prospects in microplastic research within Asian freshwater contexts.
Collapse
Affiliation(s)
- Hsin-Tien Lin
- National Cheng Kung University, Department of Environmental Engineering, No.1 University Road, Tainan City 701, Taiwan.
| | - Falk Schneider
- National Cheng Kung University, Department of Environmental Engineering, No.1 University Road, Tainan City 701, Taiwan
| | - Muhamad Afiq Aziz
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Keng Yinn Wong
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | | | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia 43400 Serdang, Selangor, Malaysia
| | - Sumathi Sethupathi
- Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar Perak, Malaysia
| | - Woon Chan Chong
- Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Ayu Lana Nafisyah
- Department of Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya, East Java, 60115, Indonesia
| | - Purushothaman Parthasarathy
- Department of Civil Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603 203, India
| | - Shreeshivadasan Chelliapan
- Department of Engineering & Technology, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Alexander Kunz
- Research Center for Environmental Changes, Academia Sinica, No. 128, Sec. 2, Academia Road, 115201 Taipei City, Taiwan
| |
Collapse
|
8
|
Li NY, Zhong B, Guo Y, Li XX, Yang Z, He YX. Non-negligible impact of microplastics on wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171252. [PMID: 38423326 DOI: 10.1016/j.scitotenv.2024.171252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
There has been much concern about microplastic (MP) pollution in marine and soil environments, but attention is gradually shifting towards wetland ecosystems, which are a transitional zone between aquatic and terrestrial ecosystems. This paper comprehensively reviews the sources of MPs in wetland ecosystems, as well as their occurrence characteristics, factors influencing their migration, and their effects on animals, plants, microorganisms, and greenhouse gas (GHG) emissions. It was found that MPs in wetland ecosystems originate mainly from anthropogenic sources (sewage discharge, and agricultural and industrial production) and natural sources (rainfall-runoff, atmospheric deposition, and tidal effects). The most common types and forms of MPs identified in the literature were polyethylene and polypropylene, fibers, and fragments. The migration of MPs in wetlands is influenced by both non-biological factors (the physicochemical properties of MPs, sediment characteristics, and hydrodynamic conditions) and biological factors (the adsorption and growth interception by plant roots, ingestion, and animal excretion). Furthermore, once MPs enter wetland ecosystems, they can impact the resident microorganisms, animals, and plants. They also have a role in global warming because MPs act as unique exogenous carbon sources, and can also influence GHG emissions in wetland ecosystems by affecting the microbial community structure in wetland sediments and abundance of genes associated with GHG emissions. However, further investigation is needed into the influence of MP type, size, and concentration on the GHG emissions in wetlands and the underlying mechanisms. Overall, the accumulation of MPs in wetland ecosystems can have far-reaching consequences for the local ecosystem, human health, and global climate regulation. Understanding the effects of MPs on wetland ecosystems is essential for developing effective management and mitigation strategies to safeguard these valuable and vulnerable environments.
Collapse
Affiliation(s)
- Na-Ying Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bo Zhong
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Yun Guo
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xian-Xiang Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; School of Geography and Tourism, Chongqing Normal University, Chongqing 400047, China
| | - Zao Yang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yi-Xin He
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
9
|
Priya AK, Muruganandam M, Imran M, Gill R, Vasudeva Reddy MR, Shkir M, Sayed MA, AlAbdulaal TH, Algarni H, Arif M, Jha NK, Sehgal SS. A study on managing plastic waste to tackle the worldwide plastic contamination and environmental remediation. CHEMOSPHERE 2023; 341:139979. [PMID: 37659517 DOI: 10.1016/j.chemosphere.2023.139979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023]
Abstract
Over the past 50 years, the emergence of plastic waste as one of the most urgent environmental problems in the world has given rise to several proposals to address the rising levels of contaminants associated with plastic debris. Worldwide plastic production has increased significantly over the last 70 years, reaching a record high of 359 million tonnes in 2020. China is currently the world's largest plastic producer, with a share of 17.5%. Of the total marine waste, microplastics account for 75%, while land-based pollution accounts for responsible for 80-90%, and ocean-based pollution 10-20% only in overall pollution problems. Even at small dosages (10 μg/mL), microplastics have been found to cause toxic effects on human and animal health. This review examines the sources of microplastic contamination, the prevalent reaches of microplastics, their impacts, and the remediation methods for microplastic contamination. This review explains the relationship between the community composition and the presence of microplastic particulate matter in aquatic ecosystems. The interaction between microplastics and emerging pollutants, including heavy metals, has been linked to enhanced toxicity. The review article provided a comprehensive overview of microplastic, including its fate, environmental toxicity, and possible remediation strategies. The results of our study are of great value as they illustrate a current perspective and provide an in-depth analysis of the current status of microplastics in development, their test requirements, and remediation technologies suitable for various environments.
Collapse
Affiliation(s)
- A K Priya
- Department of Chemical Engineering, KPR Institute of Engineering and Technology, Tamilnadu, India; Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India.
| | - M Muruganandam
- Project Prioritization, Monitoring & Evaluation and Knowledge Management Unit, ICAR-Indian Institute of Soil & Water Conservation (ICAR-IISWC), Dehradun, India
| | - Muhammad Imran
- Saudi Basic Industries Corporation (SABIC) Technology and Innovation Center, Riyadh 11551, Saudi Arabia
| | - Rana Gill
- University Centre for Research & Development, Electronics & Communication Department Chandigarh University Gharuan, Mohali, Punjab, India
| | | | - Mohd Shkir
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - M A Sayed
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - T H AlAbdulaal
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - H Algarni
- Department of Physics, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Mohd Arif
- Applied Science and Humanities Section, University Polytechnic, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201310, India.
| | - Satbir S Sehgal
- Division of Research Innovation, Uttaranchal University, Dehradun, India
| |
Collapse
|
10
|
Dalu T, Themba NN, Dondofema F, Cuthbert RN. Nowhere to go! Microplastic Abundances in Freshwater Fishes Living Near Wastewater Plants. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104210. [PMID: 37399852 DOI: 10.1016/j.etap.2023.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Microplastic presence in aquatic environments is a major problem globally. This study quantified microplastic abundances in fish species across two systems in South Africa around wastewater treatment works. Fish (n=163) were examined for microplastic on gills and in gastrointestinal tracts. Microplastic levels were generally low during the cool-dry season (mean 11.0 - 34.0 particles per fish taxon), and high during the hot-wet season (mean 10.0 - 119.0 particles per fish taxon). The microplastic concentrations per fish were similar between these systems, with downstream of wastewater treatment plants having high microplastic abundances. Although benthopelagic feeders were dominant, pelagic feeders had high microplastic abundances (range 20-119 particles), followed by benthopelagic (range 10-110 particles) and demersal (22 particles) feeders. Multiple regression analysis revealed a significant positive relationship between fish standard length and total microplastic levels, which suggests fish consume more microplastics due to increased food demand as a result of growth.
Collapse
Affiliation(s)
- Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch 7600, South Africa.
| | - Nombuso N Themba
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit 1200, South Africa
| | - Farai Dondofema
- Department of Geography and Environmental Sciences, University of Venda, Thohoyandou 0950, South Africa
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, United Kingdom
| |
Collapse
|
11
|
Carvalho Ferreira H, Lôbo-Hajdu G. Microplastics in coastal and oceanic surface waters and their role as carriers of pollutants of emerging concern in marine organisms. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106021. [PMID: 37257340 DOI: 10.1016/j.marenvres.2023.106021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023]
Abstract
Microplastics (Mps) pose a significant environmental challenge with global implications. To examine the effect of Mps on coastal and oceanic surface waters, as well as in marine organisms, 167 original research papers published between January 2013 and September 2022 were analyzed. The study revealed an unequal distribution of research efforts across the world. Fragments and fibers were the most frequently detected particles in ocean surface waters and marine biota, which mainly consisted of colored and transparent microparticles. Sampling of Mps was primarily done using collecting nets with a mesh size of 330 μm. Most articles used a stereomicroscope and Fourier-Transform Infrared spectroscopy for identification and composition determination, respectively. Polyethylene and polypropylene were the most frequent polymers found, both in coastal waters and in marine organisms. The major impact observed on marine organisms was a reduction in growth rate, an increase in mortality, and reduced food consumption. The hydrophobic nature of plastics encourages the formation of biofilms called the "plastisphere," which can carry pollutants that are often toxic and can enter the food chain. To better define management measures, it is necessary to standardize investigations that assess Mp pollution, considering not only the geomorphological and oceanographic features of each region but also the urban and industrial occupation of the studied marine environments.
Collapse
Affiliation(s)
- Hudson Carvalho Ferreira
- Laboratory of Marine Genetics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PHLC, Office 205, Rio de Janeiro, 20550-013, Brazil; Graduate Program in Oceanography (PPGOCN), State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PJLF, Bl. E, Office 4018, Rio de Janeiro, 20550-013, Brazil
| | - Gisele Lôbo-Hajdu
- Laboratory of Marine Genetics, Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro (UERJ), Rua São Francisco Xavier 524, PHLC, Office 205, Rio de Janeiro, 20550-013, Brazil.
| |
Collapse
|
12
|
Mozafarjalali M, Hamidian AH, Sayadi MH. Microplastics as carriers of iron and copper nanoparticles in aqueous solution. CHEMOSPHERE 2023; 324:138332. [PMID: 36893866 DOI: 10.1016/j.chemosphere.2023.138332] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In recent years, microplastics have attracted a lot of attention due to their excessive spread in the environment, especially in aquatic ecosystems. By sorbing metal nanoparticles on their surface, microplastics can act as carriers of these pollutants in aquatic environments and thus cause adverse effects on the health of living organisms and humans. This study, investigated the adsorption of iron and copper nanoparticles on three different microplastics i.e. polypropylene (PP), polyvinyl chloride (PVC) and polystyrene (PS). In this regard, the effects of parameters such as; pH, duration of contact and initial concentration of nanoparticle solution were investigated. By using atomic absorption spectroscopic analysis, the amount of adsorption of metal nanoparticles by microplastics was measured. The maximum amount of adsorption occurred at pH = 11, after a duration time of 60 min and at the initial concentration of 50 mg L-1. Scanning electron microscope (SEM) images showed that microplastics have different surface characteristics. The spectra obtained from Fourier transform infrared analysis (FTIR) before and after the adsorption of iron and copper nanoparticles on microplastics were not different, which showed that the adsorption of iron and copper nanoparticles on microplastics was physically and no new functional group was formed. X-ray energy diffraction spectroscopy (EDS) showed the adsorption of iron and copper nanoparticles on microplastics. By examining Langmuir and Freundlich adsorption isotherms and adsorption kinetics, it was found that the adsorption of iron and copper nanoparticles on microplastics is more consistent with the Freundlich adsorption isotherm. Also, pseudo-second-order kinetics is more suitable than pseudo-first-order kinetics. The adsorption ability of microplastics was as follows: PVC > PP > PS, and in general copper nanoparticles were adsorbed more than iron nanoparticles on microplastics.
Collapse
Affiliation(s)
- Malihe Mozafarjalali
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878, Iran.
| | - Mohammad Hossein Sayadi
- Department of Environmental Engineering, Faculty of Natural Resources and Environment, University of Birjand, Birjand, Iran
| |
Collapse
|
13
|
Malli A, Shehayeb A, Yehya A. Occurrence and risks of microplastics in the ecosystems of the Middle East and North Africa (MENA). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64800-64826. [PMID: 37086319 PMCID: PMC10122206 DOI: 10.1007/s11356-023-27029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The ubiquitous nature of microplastics (MPs) in nature and the risks they pose on the environment and human health have led to an increased research interest in the topic. Despite being an area of high plastic production and consumption, studies on MPs in the Middle East and North Africa (MENA) region have been limited. However, the region witnessed a research surge in 2021 attributed to the COVID-19 pandemic. In this review, a total of 97 studies were analyzed based on their environmental compartments (marine, freshwater, air, and terrestrial) and matrices (sediments, water columns, biota, soil, etc.). Then, the MP concentrations and polymer types were utilized to conduct a risk assessment to provide a critical analysis of the data. The highest MP concentrations recorded in the marine water column and sediments were in the Mediterranean Sea in Tunisia with 400 items/m3 and 7960 items/kg of sediments, respectively. The number of MPs in biota ranged between 0 and 7525 per individual across all the aquatic compartments. For the air compartment, a school classroom had 56,000 items/g of dust in Iran due to the confined space. Very high risks in the sediment samples (Eri > 1500) were recorded in the Caspian Sea and Arab/Persian Gulf due to their closed or semi-closed nature that promotes sedimentation. The risk factors obtained are sensitive to the reference concentration which calls for the development of more reliable risk assessment approaches. Finally, more studies are needed in understudied MENA environmental compartments such as groundwater, deserts, and estuaries.
Collapse
Affiliation(s)
- Ali Malli
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, Brooklyn, NY, 11201, USA.
| | - Ameed Shehayeb
- Baha and Walid Bassatne Department of Chemical Engineering and Advanced Energy, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- CIRAIG, Department of Chemical Engineering, Polytechnique Montréal, Montréal, Canada
| | - Alissar Yehya
- Department of Civil and Environmental Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, Lebanon
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, MA, Cambridge, USA
| |
Collapse
|
14
|
Thiele CJ, Grange LJ, Haggett E, Hudson MD, Hudson P, Russell AE, Zapata-Restrepo LM. Microplastics in European sea salts - An example of exposure through consumer choice and of interstudy methodological discrepancies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114782. [PMID: 36934543 DOI: 10.1016/j.ecoenv.2023.114782] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are contaminants of emerging concern, not least due to their global presence in marine surface waters. Unsurprisingly, microplastics have been reported in salts harvested from numerous locations. We extracted microplastics from 13 European sea salts through 30% H2O2 digestion and filtration over 5-µm filters. Filters were visually inspected at magnifications to x100. A subsample of potential microplastics was subjected to Raman spectroscopy. Particle mass was estimated, and human dose exposure calculated. After blank corrections, median concentrations were 466 ± 152 microplastics kg-1 ranging from 74 to 1155 items kg-1. Traditionally harvested salts contained fewer microplastics than most industrially harvested ones (t-test, p < 0.01). Approximately 14 µg of microplastics (< 12 particles) may be absorbed by the human body annually, of which a quarter may derive from a consumer choosing sea salt. We reviewed existing studies, showing that targeting different particle sizes and incomplete filtrations hinder interstudy comparison, indicating the importance of method harmonisation for future studies. Excess salt consumption is detrimental to human health; the hazardousness of ingesting microplastics on the other hand has yet to be shown. A portion of microplastics may enter sea salts through production processes rather than source materials.
Collapse
Affiliation(s)
- Christina J Thiele
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK.
| | - Laura J Grange
- School of Ocean and Earth Science, Faculty of Environment and Life Sciences, University of Southampton Waterfront Campus, European Way, Southampton SO14 3ZH, UK; Currently at School of Ocean Sciences, Bangor University, Bangor, Gwynedd LL57 2DG, UK
| | - Emily Haggett
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Malcolm D Hudson
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Philippa Hudson
- Philippa Hudson, Bournemouth University, Talbot Campus, Fern Barrow, Poole BH12 5BB, UK
| | - Andrea E Russell
- School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Lina M Zapata-Restrepo
- Centre for Environmental Science, Faculty of Environment and Life Sciences, University of Southampton, University Road, Southampton SO17 1BJ, UK
| |
Collapse
|
15
|
Kor K, Jannat B, Ershadifar H, Ghazilou A. Microplastic occurrence in finfish and shellfish from the mangroves of the northern Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 189:114788. [PMID: 36871342 DOI: 10.1016/j.marpolbul.2023.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess microplastic (MP) pollution in some aquatic animals inhabiting planted and natural mangrove swamps in the northern Gulf of Oman. The KOH-NaI solution was used to retrieve MPs from the gastrointestinal tracts of animals. The highest MP prevalence was recorded in crabs (41.65 %) followed by fish (33.89 %) and oysters (20.8 %). The abundance of MPs in examined animals varied from zero in Sphyraena putnamae to 11 particles in a Rhinoptera javanica specimen. When polluted-only animals were considered, the mean abundance of MPs significantly varied among species and between locations. The mean density of ingested MPs was higher in the planted mangrove animals (1.79 ± 2.89 vs. 1.21 ± 2.25 n/individual; mean ± SD). Among the examined fish species, R. javanica ingested the highest number of MPs (3.83 ± 3.93 n/individual; mean ± SD). The polyethylene/ polypropylene fragments or fibers of average 1900 μm size were recorded as predominant (>50 % occurrence) MP particles.
Collapse
Affiliation(s)
- Kamalodin Kor
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Behrooz Jannat
- Halal Research Center of IRI, Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran
| | - Hamid Ershadifar
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran
| | - Amir Ghazilou
- Iranian National Institute for Oceanography and Atmospheric Science (INIOAS), Tehran, Iran.
| |
Collapse
|
16
|
Hassoun A, Pasti L, Chenet T, Rusanova P, Smaoui S, Aït-Kaddour A, Bono G. Detection methods of micro and nanoplastics. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:175-227. [PMID: 36863835 DOI: 10.1016/bs.afnr.2022.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Plastics and related contaminants (including microplastics; MPs and nanoplastics; NPs) have become a serious global safety issue due to their overuse in many products and applications and their inadequate management, leading to possible leakage into the environment and eventually to the food chain and humans. There is a growing literature reporting on the occurrence of plastics, (MPs and NPs) in both marine and terrestrial organisms, with many indications about the harmful impact of these contaminants on plants and animals, as well as potential human health risks. The presence of MPs and NPs in many foods and beverages including seafood (especially finfish, crustaceans, bivalves, and cephalopods), fruits, vegetables, milk, wine and beer, meat, and table salts, has become popular research areas in recent years. Detection, identification, and quantification of MPs and NPs have been widely investigated using a wide range of traditional methods, such as visual and optical methods, scanning electron microscopy, and gas chromatography-mass spectrometry, but these methods are burdened with a number of limitations. In contrast, spectroscopic techniques, especially Fourier-transform infrared spectroscopy and Raman spectroscopy, and other emerging techniques, such as hyperspectral imaging are increasingly being applied due to their potential to enable rapid, non-destructive, and high-throughput analysis. Despite huge research efforts, there is still an overarching need to develop reliable analytical techniques with low cost and high efficiency. Mitigation of plastic pollution requires establishing standard and harmonized methods, adopting holistic approaches, and raising awareness and engaging the public and policymakers. Therefore, this chapter focuses mainly on identification and quantification techniques of MPs and NPs in different food matrices (mostly seafood).
Collapse
Affiliation(s)
- Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France; Syrian Academic Expertise (SAE), Gaziantep, Turkey.
| | - Luisa Pasti
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Tatiana Chenet
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy
| | - Polina Rusanova
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Department of Biological, Geological and Environmental Sciences (BiGeA) - Marine Biology and Fisheries Laboratory of Fano (PU), University of Bologna (BO), Bologna, Italy
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | | | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Mazara del Vallo, TP, Italy; Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Di Palermo, Palermo, Italy
| |
Collapse
|
17
|
Dalvand M, Hamidian AH. Occurrence and distribution of microplastics in wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160740. [PMID: 36496018 DOI: 10.1016/j.scitotenv.2022.160740] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Presence of microplastic particles has been reported in all over the world, even in remote areas with no human activities. Wetlands are important transitional areas between terrestrial and aquatic systems. However, microplastic pollution in wetlands is less studied than other aquatic ecosystems. In this review, documented researches about microplastic occurrence and distribution in different components of wetland systems (except constructed wetlands) were investigated. In this regard, all available articles from different science databases with the keywords microplastic, wetland and lagoon in title were examined and results were proposed by text, table and diagram, after standardization of data express units. Based on results, wetland ecosystems are prone to microplastic pollution. Based on particle properties, PE/PP and fiber/fragment were the most dominant reported chemical composition and particle shapes, respectively.
Collapse
Affiliation(s)
- Mahdieh Dalvand
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj 31587-77878, Iran.
| |
Collapse
|
18
|
Birami FA, Keshavarzi B, Moore F, Busquets R, Zafarani SGG, Golshani R, Cheshmvahm H. Microplastics in surface sediments of a highly urbanized wetland. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120276. [PMID: 36180006 DOI: 10.1016/j.envpol.2022.120276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the incidence of MPs in surface sediment samples, collected from the Anzali Wetland, Gillan province, North of Iran. This natural habitat receives municipal wastewater effluents and hosts industries and recreational activities that could release plastic to the wetland. There is need for studies to understand MPs pollution in wetlands. A total of 40 superficial sediment samples were taken covering potential pollution hotspots in the wetland. The average level of MPs was 362 ± 327.6 MP/kg: the highest MPs levels were near the outlet of a highly urbanized river (Pirbazar River) (1380 MP/kg), which runs through Rasht city. This was followed by 1255 MP/kg where there was intense fishing, boating and tourism activities in the vicinity of Bandar-e Anzali city. Fibers were the most common type of MPs (80% of the total MPs detected). The MPs polluting the wetland were predominantly white/transparent (42%), and about 40% of them were >1000 μm. Polypropylene (PP) and polyethylene (PE) prevailed in MPs found. MPs were characterized with polarized light microscopy, Raman spectroscopy, Scanning Electron Microscopy coupled with Energy-Dispersive X-ray spectroscopy. Microplastics levels were found to correlate significantly (p > 0.7) with electrical conductivity (EC) and sand-size fraction of the sediments. Coarse-grained sediments presented large capacity to lodge the MPs. This study can be used to establish protection policies in wetlands and newly highlights the opportunity of intercepting MPs in the Anzali Wetland, which are generally >250 μm, before they fragment further.
Collapse
Affiliation(s)
- Farideh Amini Birami
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Behnam Keshavarzi
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran.
| | - Farid Moore
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| | - Rosa Busquets
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston Upon Thames, Surrey, KT1 2EE, UK
| | | | - Reza Golshani
- Marine Environment and Wetlands, Department of the Environment, Iran
| | - Hamidreza Cheshmvahm
- Department of Earth Sciences, College of Science, Shiraz University, 71454, Shiraz, Iran
| |
Collapse
|
19
|
Tadsuwan K, Babel S. Unraveling microplastics removal in wastewater treatment plant: A comparative study of two wastewater treatment plants in Thailand. CHEMOSPHERE 2022; 307:135733. [PMID: 35870611 DOI: 10.1016/j.chemosphere.2022.135733] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 05/09/2023]
Abstract
Wastewater treatment plants (WWTPs) are considered as a problematic pathway for microplastics (MPs) entering the oceans. This study compares the efficiency of MP removal in two different WWTPs (A1 and A2) with a conventional treatment system located in Bangkok, Thailand. WWTP-A2 is equipped with a pilot-scale ultrafiltration (UF) as a final polishing step. The number of MPs in the influent entering A1 and A2 was 16.55 ± 9.92 and 77.00 ± 7.21 MP/L, respectively. The average of 3.52 ± 1.43 and 10.67 ± 3.51 particles per L was found in the effluent discharged from A1 and A2, respectively, to nearby canals. The removal efficiency of WWTP-A2 built as a closed underground system was shown to be up to 86.14% which is more efficient than the conventional WWTP (A1). MPs were subsequently removed by a UF unit which resulted in a removal efficiency of 96.97%. However, when a large volume of treated wastewater volume is considered, a high concentration of MPs is discharged daily with the final effluent if the efficiency remains the same. The size fraction of 0.5-0.05 mm contributed to the largest proportion of MPs, and fibers were detected as the dominant group at both study sites. Results from a Fourier Transform Infrared Spectroscopy (FT-IR) confirmed that most fibers were polyethylene terephthalate (PET) derived from clothes. MPs retained in the sludge ranged from 2.63 × 104 to 4.74 × 104 particles per kilogram of dry sludge. A significant number of MPs can spread further to the environment by soil application. The results of the study indicate that the design of WWTPs and the addition of advanced tertiary treatment can improve MP removal efficiency of a WWTP. Moreover, the absence of a primary sedimentation tank in both treatment plants may influence the removal efficiency.
Collapse
Affiliation(s)
- Katekanya Tadsuwan
- School of Bio-chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Moo 18, Klong Luang, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Bio-chemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, 99 Moo 18, Klong Luang, Pathum Thani, 12121, Thailand.
| |
Collapse
|
20
|
Li Y, Huang R, Hu L, Zhang C, Xu X, Song L, Wang Z, Pan X, Christakos G, Wu J. Microplastics distribution in different habitats of Ximen Island and the trapping effect of blue carbon habitats on microplastics. MARINE POLLUTION BULLETIN 2022; 181:113912. [PMID: 35870383 DOI: 10.1016/j.marpolbul.2022.113912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Sediments are considered to be important sinks of microplastics, but the enrichment process of microplastics by blue carbon ecosystems is poorly studied. This study analyzed the spatial distribution and temporal changes, assessed the polymer types and morphological characteristics of microplastics in sediments of five ecosystems, i.e. forests, paddy fields, mangroves, saltmarshes and bare beaches on Ximen Island, Yueqing Bay, China. The trapping effect of blue carbon (mangrove and saltmarsh) sediments on microplastic was further explored. Temporal trends in microplastic abundance showed a significant increase over the last 20 years, with the enrichment of microplastics in mangrove and saltmarsh sediments being 1.7 times as high as that in bare beach, exhibiting blue carbon vegetations have strong enrichment effect on microplastics. The dominant color, shape, size, and polymer type of microplastics in sediments were transparent, fibers and fragments, <1 mm, and polyethylene, respectively. Significant differences in the abundance and characteristics of microplastics between intertidal sediments and terrestrial soils reveal that runoff input is the main source of microplastics. This study provided the evidence of blue carbon habitats as traps of microplastics.
Collapse
Affiliation(s)
- Yaxin Li
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Runqiu Huang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Lingling Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chunfang Zhang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangrong Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Li Song
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhiyin Wang
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | - Jiaping Wu
- Ocean College, Zhejiang University, Zhoushan 316021, China.
| |
Collapse
|
21
|
Zhang X, Jin Z, Shen M, Chang Z, Yu G, Wang L, Xia X. Accumulation of polyethylene microplastics induces oxidative stress, microbiome dysbiosis and immunoregulation in crayfish. FISH & SHELLFISH IMMUNOLOGY 2022; 125:276-284. [PMID: 35526797 DOI: 10.1016/j.fsi.2022.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have become a worldwide pollutant, widely discovered in soil, air and aquatic environment. Microplastics have been found in habitats where crayfish (Procambarus clarkii) cultivated, but the impact of microplastics on crayfish remains unclear. In this study, after 21-day dietary exposure, polyethylene (PE) particles were found to accumulate in intestine, hepatopancreas, gills and hemolymph of crayfish. Furthermore, PE particles can still be detected in these tissues after a 7-day depuration in clean water. PE retained in these tissues caused oxidative stress responses, as indicated by the change of oxidative-stress-related index, such as the increase of H2O2 level and SOD activity. PE exposure also caused hemocytic encapsulation in crayfish hepatopancreas and increase of mucus secretion in intestine. Moreover, PE exposure affected the microbiota balance in crayfish, by reducing the total microbiota abundance and altering the proportions of many bacterial families. Interestingly, results showed that PE exposure led to of lower numbers of hemocytes and declination of phenoloxidase activity. Finally, PE exposure induced the expression of immune-related genes, including transcription factors and antimicrobial peptides. Taken these together, we conclude that PE microplastics exert considerable toxic effects on crayfish and are a potential threat to crayfish aquaculture and consumption. This study provides basic toxicological data toward quantifying and illuminating the impact of PE microplastics on freshwater animals.
Collapse
Affiliation(s)
- Xiaowen Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, Henan, China.
| | - Zeyu Jin
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Manli Shen
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhongjie Chang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Lan Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, College of Life Science, Institute of Biomedical Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiaohua Xia
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, 453007, China; The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Province, Xinxiang, 453007, Henan, China.
| |
Collapse
|
22
|
Gündogdu S, Rathod N, Hassoun A, Jamroz E, Kulawik P, Gokbulut C, Aït-Kaddour A, Özogul F. The impact of nano/micro-plastics toxicity on seafood quality and human health: facts and gaps. Crit Rev Food Sci Nutr 2022; 63:6445-6463. [PMID: 35152807 DOI: 10.1080/10408398.2022.2033684] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Contamination of the food and especially marine environment with nano/micro-plastic particles has raised serious concern in recent years. Environmental pollution and the resulting seafood contamination with microplastic (MP) pose a potential threat to consumers. The absorption rate of the MP by fish is generally considered low, although the bioavailability depends on the physical and chemical properties of the consumed MP. The available safety studies are inconclusive, although there is an indication that prolonged exposure to high levels of orally administered MP can be hazardous for consumers. This review details novel findings about the occurrence of MP, along with its physical and chemical properties, in the marine environment and seafood. The effect of processing on the content of MP in the final product is also reviewed. Additionally, recent findings regarding the impact of exposure of MP on human health are discussed. Finally, gaps in current knowledge are underlined, and the possibilities for future research are indicated in the review. There is an urgent need for further research on the absorption and bioavailability of consumed MP and in vivo studies on chronic exposure. Policymakers should also consider the implementation of novel legislation related to MP presence in food.
Collapse
Affiliation(s)
- Sedat Gündogdu
- Department of Basic Sciences, Cukurova University Faculty of Fisheries, Adana, Turkey
| | - Nikheel Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, Post Graduate Institute of Post-harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Dapoli, Maharashtra State, India
| | - Abdo Hassoun
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
- Syrian Academic Expertise (SAE), Gaziantep, Turkey
| | - Ewelina Jamroz
- Department of Animal Products Technology, Faculty of Food Technology, University of Agriculture, Karakow, Poland
| | - Piotr Kulawik
- Department of Pharmacology and Toxicology, University of Adnan Menderes, Isikli Koyu, Aydin, Turkey
| | - Cengiz Gokbulut
- Faculty of Medicine, Department of Pharmacology, Balikesir University, Cagis Campus, Balikesir, Turkey
| | | | - Fatih Özogul
- Department of Seafood Processing Technology, Cukurova University Faculty of Fisheries, Adana, Turkey
| |
Collapse
|
23
|
Seafood Processing, Preservation, and Analytical Techniques in the Age of Industry 4.0. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031703] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fish and other seafood products are essential dietary components that are highly appreciated and consumed worldwide. However, the high perishability of these products has driven the development of a wide range of processing, preservation, and analytical techniques. This development has been accelerated in recent years with the advent of the fourth industrial revolution (Industry 4.0) technologies, digitally transforming almost every industry, including the food and seafood industry. The purpose of this review paper is to provide an updated overview of recent thermal and nonthermal processing and preservation technologies, as well as advanced analytical techniques used in the seafood industry. A special focus will be given to the role of different Industry 4.0 technologies to achieve smart seafood manufacturing, with high automation and digitalization. The literature discussed in this work showed that emerging technologies (e.g., ohmic heating, pulsed electric field, high pressure processing, nanotechnology, advanced mass spectrometry and spectroscopic techniques, and hyperspectral imaging sensors) are key elements in industrial revolutions not only in the seafood industry but also in all food industry sectors. More research is still needed to explore how to harness the Industry 4.0 innovations in order to achieve a green transition toward more profitable and sustainable food production systems.
Collapse
|
24
|
Pashaei R, Loiselle SA, Leone G, Tamasi G, Dzingelevičienė R, Kowalkowski T, Gholizadeh M, Consumi M, Abbasi S, Sabaliauskaitė V, Buszewski B. Determination of nano and microplastic particles in hypersaline lakes by multiple methods. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:668. [PMID: 34553268 DOI: 10.1007/s10661-021-09470-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanoplastics have a range of impacts on the aquatic environment and present major challenges to their mitigation and management. Their transport and fate depend on their composition, form, and the characteristics of the receiving environment. We explore the spatial and temporal dynamics of plastic particles in the world's second-largest hypersaline lake, combining information from microscopic, thermal gravimetric, and fractional methods. Studies on microplastic and nanoplastic pollution in these important environments are scarce, and there is limited understanding of their dynamics and fate. Our results for Urmia Lake (Iran) in 2016 and 2019 show a discrepancy in the composition and quantity of microplastics measured in river tributaries to the lake and the lake itself, suggesting an active microplastic sink. Potential sink mechanisms in hypersaline lakes are explored. The present study indicates that microplastics have different transport mechanisms and fate in these extreme environments, compared to lake and ocean environments.
Collapse
Affiliation(s)
- Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania.
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland.
| | | | - Gemma Leone
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Gabriella Tamasi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | | | - Tomasz Kowalkowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Torun, Poland
| | - Mortaza Gholizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Marco Consumi
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz, Iran
- Department of Radiochemistry and Environmental Chemistry, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Boguslaw Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
25
|
Palaniappan S, Sadacharan CM, Rostama B. Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells In Vitro. EXPOSURE AND HEALTH 2021; 14:75-85. [PMID: 34337190 PMCID: PMC8310682 DOI: 10.1007/s12403-021-00419-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 05/09/2023]
Abstract
Microplastics are ubiquitous environmental pollutants that are a growing concern to many ecosystems, as well as human health. Many of the effects of microplastics on mammalian cells and tissues remain unknown. To address this, we treated L929 murine fibroblasts and Madin-Darby canine kidney (MDCK) epithelial cell lines with 1 μg/mL, 10 μg/mL, or 20 μg/mL of polyethylene (PE) or polystyrene (PS) microspheres in vitro for 6 and 24 h and measured the resulting changes in cell viability, metabolism, and transcriptional expression of inflammatory cytokines and antioxidant enzymes. We observed dose-dependent decreases in cell viability corresponding to increases in doses of both PE and PS. We conducted cell metabolism assays and observed dose-dependent increases in metabolism per cell with increasing doses of both PE and PS. Similarly, we also observed increased expression of the superoxide dismutase-3 gene (SOD3), indicating oxidative stress caused by the microplastics treatments. We also observed increased expression of TNFα, but decreased expression of IFNβ, suggesting different mechanisms by which the microplastics regulate inflammatory responses in mammalian cells. Our results contribute new data to the growing understanding of the effects of microplastics on mammalian cells and indicate complex cellular stress responses to microplastics in the environment.
Collapse
Affiliation(s)
| | | | - Bahman Rostama
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, ME 04005 USA
- 11 Hills Beach Road, Stella Maris #408, Biddeford, ME 04005-9526 USA
| |
Collapse
|
26
|
The Potential for PE Microplastics to Affect the Removal of Carbamazepine Medical Pollutants from Aqueous Environments by Multiwalled Carbon Nanotubes. TOXICS 2021; 9:toxics9060139. [PMID: 34204690 PMCID: PMC8231597 DOI: 10.3390/toxics9060139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Microplastics are ubiquitous in aquatic environments and interact with other kinds of pollutants, which affects the migration, transformation, and fate of those other pollutants. In this study, we employ carbamazepine (CBZ) as the contaminant to study the influence of polyethylene (PE) microplastics on the adsorption of CBZ pollutants by multiwalled carbon nanotubes (MCNTs) in aqueous solution. The adsorption capacity of CBZ by MCNTs in the presence of PE microplastics was obviously lower than that by MCNTs alone. The influencing factors, including the dose of microplastics, pH, and CBZ solution concentration, on the adsorption of CBZ by MCNTs and MCNTs-PE were thoroughly investigated. The adsorption rate of CBZ by MCNTs decreased from 97.4% to 90.6% as the PE microplastics dose increased from 2 g/L to 20 g/L. This decrease occurred because the MCNTs were coated on the surface of the PE microplastics, which further decreased the effective adsorption area of the MCNTs. This research provides a framework for revealing the effect of microplastics on the adsorption of pollutants by carbon materials in aqueous environments.
Collapse
|
27
|
Razeghi N, Hamidian AH, Wu C, Zhang Y, Yang M. Microplastic sampling techniques in freshwaters and sediments: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:4225-4252. [PMID: 34025333 PMCID: PMC8130988 DOI: 10.1007/s10311-021-01227-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/13/2021] [Indexed: 05/09/2023]
Abstract
Pollution by microplastics is of increasing concern due to their ubiquitous presence in most biological and environmental media, their potential toxicity and their ability to carry other contaminants. Knowledge on microplastics in freshwaters is still in its infancy. Here we reviewed 150 investigations to identify the common methods and tools for sampling microplastics, waters and sediments in freshwater ecosystems. Manta trawls are the main sampling tool for microplastic separation from surface water, whereas shovel, trowel, spade, scoop and spatula are the most frequently used devices in microplastic studies of sediments. Van Veen grab is common for deep sediment sampling. There is a need to develop optimal methods for reducing identification time and effort and to detect smaller-sized plastic particles.
Collapse
Affiliation(s)
- Nastaran Razeghi
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878 Iran
| | - Amir Hossein Hamidian
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878 Iran
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - Chenxi Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
- University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 PR China
| | - Min Yang
- Department of Environmental Science and Engineering, Faculty of Natural Resources, University of Tehran, P.O. Box 4314, Karaj, 31587-77878 Iran
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
- University of Chinese Academy of Sciences, Beijing, 100049 PR China
| |
Collapse
|