1
|
Keyloun JW, Kelly EJ, Carney BC, Nisar S, Kolachana S, Moffatt LT, Orfeo T, Shupp JW. Plasmas From Patients With Burn Injury Induce Endotheliopathy Through Different Pathways. J Surg Res 2024; 304:90-100. [PMID: 39531984 DOI: 10.1016/j.jss.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION The contribution of endothelial injury to the pathogenesis of burn shock is not well characterized. This work investigates potential mechanisms underlying dysregulation of endothelial barrier function by burn patient plasmas. METHODS Plasma was collected from burn-injured patients (n = 8) within 4 h of admission. Demographic and injury characteristics were collected and markers of injury severity including international normalized ratio, activated partial thromboplastin time, and levels of syndecan-1 and interleukin (IL)-6, IL-1B, IL-10, Il-12p70, and tumor necrosis factor-α measured. Human umbilical vein endothelial cell monolayers (HUVEC-m) exposed to either burn patient plasma or multidonor plasma (HHP) were assessed for permeability (40 kDa fluorescein isothiocyanate (FITC)-Dextran diffusion), intercellular gap area (F-actin staining) and incidence of apoptosis (TUNEL assay). Post plasma exposure, RNA was isolated and used in polymerase chain reaction (PCR) arrays targeting genes relevant to cytoskeletal structure or apoptosis. Differences between HHP and burn plasma-treated HUVEC-m were analyzed. RESULTS Five plasmas promoted significant increases in HUVEC-m permeability. When plasmas were grouped based on their capacity to increase permeability, no differences in age, %total body surface area, gender, hospital mortality, international normalized ratio, activated partial thromboplastin time, or cytokine concentration were observed; however, significantly higher syndecan-1 levels were seen in the plasmas inducing increased permeability. Increases in intercellular gap area and apoptosis and relevant gene expression were observed after exposure to patient plasmas but none of these metrics correlated completely with the pattern or magnitude of the changes in permeability. CONCLUSIONS Burn patient plasmas variably disrupt HUVEC-m homeostasis, differentially inducing changes in permeability, intercellular gap area, and apoptosis. Neither increases in intercellular gap size nor apoptosis appear sufficient to explain the pattern of changes in permeability.
Collapse
Affiliation(s)
- John W Keyloun
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Edward J Kelly
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Departments of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, District of Columbia
| | - Saira Nisar
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia
| | - Sindhura Kolachana
- Georgetown University School of Medicine, Washington, District of Columbia
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Departments of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, District of Columbia
| | - Thomas Orfeo
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jeffrey W Shupp
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, District of Columbia; Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, District of Columbia; Departments of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, District of Columbia.
| |
Collapse
|
2
|
Zhang Q, Ruan H, Wang X, Luo A, Ran X. Ulinastatin attenuated cardiac ischaemia/reperfusion injury by suppressing activation of the tissue kallikrein-kinin system. Br J Pharmacol 2024; 181:4988-5008. [PMID: 39294926 DOI: 10.1111/bph.16477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 02/29/2024] [Accepted: 05/13/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Ulinastatin has beneficial effects in patients undergoing coronary artery bypass grafting (CABG) surgery due to its anti-inflammatory properties, but the underlying mechanism remains unclear. EXPERIMENTAL APPROACH We used samples from patients undergoing CABG, a model of cardiac ischaemia-reperfusion injury (IRI) in mice and murine cardiac endothelial cell cultures to investigate links between ulinastatin, the kallikrein-kinin system (KKS), endothelial dysfunction and cardiac inflammation in the response to ischaemia/reperfusion injury (IRI). These links were assessed using clinical investigations, in vitro and in vivo experiments and RNA sequencing analysis. KEY RESULTS Ulinastatin inhibited the activity of tissue kallikrein, a key enzyme of the KKS, at 24 h after CABG surgery, which was verified in our murine cardiac ischaemia-reperfusion model. Under normal conditions, ulinastatin only inhibited kallikrein activity but did not affect bradykinin (B1/B2) receptors. Ulinastatin protected against IRI, in vivo and in vitro, by suppressing activation of the kallikrein-kinin system and down-regulating B1/B2 receptor-related signalling pathways including ERK/ iNOS, which resulted in enhanced endothelial barrier function, mitigation of inflammation and oedema, decreased infarct size, improved cardiac function and decreased mortality. Inhibition of kallikrein and knockdown of B1, but not B2 receptors prevented ERK translocation into the nucleus, reducing reperfusion-induced injury in murine cardiac endothelial cells. CONCLUSIONS AND IMPLICATIONS Treatment with ulinastatin exerts a protective influence on cardiac reperfusion by suppressing activation of the kallikrein-kinin system. Our findings highlight the potential of targeting kallikrein /bradykinin receptors to alleviate endothelial dysfunction, thus improving cardiac IRI.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Ruan
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ailin Luo
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Ran
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cong X, Zhang Z, Li H, Yang YG, Zhang Y, Sun T. Nanocarriers for targeted drug delivery in the vascular system: focus on endothelium. J Nanobiotechnology 2024; 22:620. [PMID: 39396002 PMCID: PMC11470712 DOI: 10.1186/s12951-024-02892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Endothelial cells (ECs) are pivotal in maintaining vascular health, regulating hemodynamics, and modulating inflammatory responses. Nanocarriers hold transformative potential for precise drug delivery within the vascular system, particularly targeting ECs for therapeutic purposes. However, the complex interactions between vascular ECs and nanocarriers present significant challenges for the development and clinical translation of nanotherapeutics. This review assesses recent advancements and key strategies in employing nanocarriers for drug delivery to vascular ECs. It suggested that through precise physicochemical design and surface modifications, nanocarriers can enhance targeting specificity and improve drug internalization efficiency in ECs. Additionally, we elaborated on the applications of nanocarriers specifically designed for targeting ECs in the treatment of cardiovascular diseases, cancer metastasis, and inflammatory disorders. Despite these advancements, safety concerns, the complexity of in vivo processes, and the challenge of achieving subcellular drug delivery remain significant obstacles to the effective targeting of ECs with nanocarriers. A comprehensive understanding of endothelial cell biology and its interaction with nanocarriers is crucial for realizing the full potential of targeted drug delivery systems.
Collapse
Affiliation(s)
- Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - Zebin Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
| | - He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China
| | - Yuning Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, The First Hospital, Jilin University, Changchun, 130061, Jilin, China.
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, 130062, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, 130015, Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, Jilin, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, 100143, China.
| |
Collapse
|
4
|
Min L, Chen Y, Liu R, Li Z, Gu L, Mallipattu S, Das B, Lee K, He JC, Zhong F. Targeting Krüppel-Like Factor 2 as a Novel Therapy for Glomerular Endothelial Cell Injury in Diabetic Kidney Disease. J Am Soc Nephrol 2024:00001751-990000000-00437. [PMID: 39382984 DOI: 10.1681/asn.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024] Open
Abstract
Key Points
Krüppel-like factor 2 (KLF2) has emerged as a key endoprotective regulator by suppressing inflammatory and oxidative pathways, thrombotic activation, and angiogenesis.Our study now demonstrates that KLF2 protects against glomerular endothelial injury and attenuates diabetic kidney disease progression in mice.Compound 6 is a novel KLF2 activator that can potentially confer dual cardiorenal protection against diabetic complications.
Background
Diabetic kidney disease (DKD) is a microvascular disease, and glomerular endothelial cell injury is a key pathological event in DKD development. Through unbiased screening of glomerular transcriptomes, we previously identified Krüppel-like factor 2 (KLF2) as a highly regulated gene in diabetic kidneys. KLF2 exhibits protective effects in endothelial cells by inhibiting inflammation, thrombotic activation, and angiogenesis, all of which are protective for cardiovascular disease. We previously demonstrated that endothelial cell–specific ablation of Klf2 exacerbated diabetes-induced glomerular endothelial cell injury and DKD in mice. Therefore, in this study, we sought to assess the therapeutic potential of KLF2 activation in murine models of DKD.
Methods
We first examined the effects of endothelial cell–specific inducible overexpression of KLF2 (KLF2ov) in streptozotocin-induced diabetic mice. We developed small molecule KLF2 activators and tested whether higher KLF2 activity could impede DKD progression in type 2 diabetic db/db and BTBR ob/ob mice.
Results
Diabetic KLF2ov mice had attenuated albuminuria, glomerular endothelial cell injury, and diabetic glomerulopathy compared with control diabetic mice. A novel KLF2 activator, compound 6 (C-6), effectively induced downstream Nos3 expression and suppressed NF-kB activation in glomerular endothelial cells. The administration of C-6 improved albuminuria and glomerulopathy in db/db and BTBR ob/ob mice, which was associated with improved glomerular endothelial cell and podocyte injury.
Conclusions
These results validate KLF2 as a potential drug target and KLF2 activators, such as C-6, as a novel therapy for DKD.
Collapse
Affiliation(s)
- Lulin Min
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yixin Chen
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ruijie Liu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zhengzhe Li
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leyi Gu
- Department of Nephrology, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Sandeep Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Bhaskar Das
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - Kyung Lee
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- Renal Section, James J. Peters Veterans Affair Medical Center, Bronx, New York
| | - Fang Zhong
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
5
|
Chen L, Qu H, Liu B, Chen BC, Yang Z, Shi DZ, Zhang Y. Low or oscillatory shear stress and endothelial permeability in atherosclerosis. Front Physiol 2024; 15:1432719. [PMID: 39314624 PMCID: PMC11417040 DOI: 10.3389/fphys.2024.1432719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Endothelial shear stress is a tangential stress derived from the friction of the flowing blood on the endothelial surface of the arterial wall and is expressed in units of force/unit area (dyne/cm2). Branches and bends of arteries are exposed to complex blood flow patterns that generate low or oscillatory endothelial shear stress, which impairs glycocalyx integrity, cytoskeleton arrangement and endothelial junctions (adherens junctions, tight junctions, gap junctions), thus increasing endothelial permeability. The lipoproteins and inflammatory cells penetrating intima due to the increased endothelial permeability characterizes the pathological changes in early stage of atherosclerosis. Endothelial cells are critical sensors of shear stress, however, the mechanisms by which the complex shear stress regulate endothelial permeability in atherosclerosis remain unclear. In this review, we focus on the molecular mechanisms of the endothelial permeability induced by low or oscillatory shear stress, which will shed a novel sight in early stage of atherosclerosis.
Collapse
Affiliation(s)
- Li Chen
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China
| | - Bin Liu
- The First Affiliated Hospital, Hainan Medical University, Haikou, China
| | - Bing-Chang Chen
- Graduate school, Shanxi University of Chinese Medicine, Taiyuan, China
| | - Zhen Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Da-Zhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Ying Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|
6
|
Qi X, Hatami S, Bozso S, Wang X, Saleme B, Nagendran J, Michelakis E, Sutendra G, Freed DH. The Effects of Oxygen-Derived Free-Radical Scavengers During Normothermic Ex-Situ Heart Perfusion. ASAIO J 2024; 70:741-749. [PMID: 38457627 DOI: 10.1097/mat.0000000000002176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024] Open
Abstract
Oxidative stress occurs during ex-situ heart perfusion (ESHP) and may negatively affect functional preservation of the heart. We sought to assess the status of key antioxidant enzymes during ESHP, and the effects of augmenting these antioxidants on the attenuation of oxidative stress and improvement of myocardial and endothelial preservation in ESHP. Porcine hearts were perfused for 6 hours with oxygen-derived free-radical scavengers polyethylene glycol (PEG)-catalase or PEG-superoxide dismutase (SOD) or with naive perfusate (control). The oxidative stress-related modifications were determined in the myocardium and coronary vasculature, and contractile function, injury, and endothelial integrity were compared between the groups. The activity of key antioxidant enzymes decreased and adding catalase and SOD restored the enzyme activity. Cardiac function and endothelial integrity were preserved better with restored catalase activity. Catalase and SOD both decreased myocardial injury and catalase reduced ROS production and oxidative modification of proteins in the myocardium and coronary vasculature. The activity of antioxidant enzymes decrease in ESHP. Catalase may improve the preservation of cardiac function and endothelial integrity during ESHP. While catalase and SOD may both exert cardioprotective effects, unbalanced SOD and catalase activity may paradoxically increase the production of reactive species during ESHP.
Collapse
Affiliation(s)
- Xiao Qi
- From the Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sanaz Hatami
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sabin Bozso
- From the Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Xiuhua Wang
- From the Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Bruno Saleme
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jayan Nagendran
- From the Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, Edmonton, Alberta, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
| | - Evangelos Michelakis
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gopinath Sutendra
- Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Darren H Freed
- From the Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Alberta Transplant Institute, Edmonton, Alberta, Canada
- Canadian Donation and Transplantation Research Program, Edmonton, Alberta, Canada
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Campagna R, Mazzanti L, Pompei V, Alia S, Vignini A, Emanuelli M. The Multifaceted Role of Endothelial Sirt1 in Vascular Aging: An Update. Cells 2024; 13:1469. [PMID: 39273039 PMCID: PMC11394039 DOI: 10.3390/cells13171469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAD+-dependent deacetylase sirtuin-1 (Sirt1) belongs to the sirtuins family, known to be longevity regulators, and exerts a key role in the prevention of vascular aging. By aging, the expression levels of Sirt1 decline with a severe impact on vascular function, such as the rise of endothelial dysfunction, which in turn promotes the development of cardiovascular diseases. In this context, the impact of Sirt1 activity in preventing endothelial senescence is particularly important. Given the key role of Sirt1 in counteracting endothelial senescence, great efforts have been made to deepen the knowledge about the intricate cross-talks and interactions of Sirt1 with other molecules, in order to set up possible strategies to boost Sirt1 activity to prevent or treat vascular aging. The aim of this review is to provide a proper background on the regulation and function of Sirt1 in the vascular endothelium and to discuss the recent advances regarding the therapeutic strategies of targeting Sirt1 to counteract vascular aging.
Collapse
Affiliation(s)
- Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Laura Mazzanti
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Fondazione Salesi, Ospedale G. Salesi, 60100 Ancona, Italy
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Sonila Alia
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| | - Arianna Vignini
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
- Research Center of Health Education and Health Promotion, Università Politecnica delle Marche, 60100 Ancona, Italy
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60100 Ancona, Italy; (V.P.); (S.A.); (A.V.); (M.E.)
| |
Collapse
|
8
|
Zhang L, Ge T, Cui J. FLI-1-driven regulation of endothelial cells in human diseases. J Transl Med 2024; 22:740. [PMID: 39107790 PMCID: PMC11302838 DOI: 10.1186/s12967-024-05546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Endothelial cells (ECs) are widely distributed in the human body and play crucial roles in the circulatory and immune systems. ECs dysfunction contributes to the progression of various chronic cardiovascular, renal, and metabolic diseases. As a key transcription factor in ECs, FLI-1 is involved in the differentiation, migration, proliferation, angiogenesis and blood coagulation of ECs. Imbalanced FLI-1 expression in ECs can lead to various diseases. Low FLI-1 expression leads to systemic sclerosis by promoting fibrosis and vascular lesions, to pulmonary arterial hypertension by promoting a local inflammatory state and vascular lesions, and to tumour metastasis by promoting the EndMT process. High FLI-1 expression leads to lupus nephritis by promoting a local inflammatory state. Therefore, FLI-1 in ECs may be a good target for the treatment of the abovementioned diseases. This comprehensive review provides the first overview of FLI-1-mediated regulation of ECs processes, with a focus on its influence on the abovementioned diseases and existing FLI-1-targeted drugs. A better understanding of the role of FLI-1 in ECs may facilitate the design of more effective targeted therapies for clinical applications, particularly for tumour treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Tingwen Ge
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, No.1 Xinmin Street, Changchun, 130012, China.
| |
Collapse
|
9
|
Idouz K, Belhaj A, Rondelet B, Dewachter L, Flamion B, Kirschvink N, Dogné S. Cascading renal injury after brain death: Unveiling glycocalyx alteration and the potential protective role of tacrolimus. Front Cell Dev Biol 2024; 12:1449209. [PMID: 39165663 PMCID: PMC11333349 DOI: 10.3389/fcell.2024.1449209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Abstract
Brain death (BD) is a complex medical state that triggers systemic disturbances and a cascade of pathophysiological processes. This condition significantly impairs both kidney function and structural integrity, thereby presenting considerable challenges to graft viability and the long-term success of transplantation endeavors. Tacrolimus (FK506), an immunosuppressive drug, was used in this study to assess its impact as a pretreatment on brain death-induced renal injury. This study aimed to investigate changes associated with brain death-induced renal injury in a 4-month-old female porcine model. The experimental groups included brain death placebo-pretreated (BD; n = 9), brain death tacrolimus-pretreated using the clinical dose of 0.25 mg/kg the day before surgery, followed by 0.05 mg/kg/day 1 hour before the procedure (BD + FK506; n = 8), and control (ctrl, n = 7) piglets, which did not undergo brain death induction. Furthermore, we aimed to assess the effect of FK506 on these renal alterations through graft preconditioning. We hypothesized that immunosuppressive properties of FK506 reduce tissue inflammation and preserve the glycocalyx. Our findings revealed a series of interconnected events triggered by BD, leading to a deterioration of renal function and increased proteinuria, increased apoptosis in the vessels, glomeruli and tubules, significant leukocyte infiltration into renal tissue, and degradation of the glycocalyx in comparison with ctrl group. Importantly, treatment with FK506 demonstrated significant efficacy in attenuating these adverse effects. FK506 helped reduce apoptosis, maintain glycocalyx integrity, regulate neutrophil infiltration, and mitigate renal injury following BD. This study offers new insights into the pathophysiology of BD-induced renal injury, emphasizing the potential of FK506 pretreatment as a promising therapeutic intervention for organ preservation, through maintaining endothelial function with the additional benefit of limiting the risk of rejection.
Collapse
Affiliation(s)
- Kaoutar Idouz
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Asmae Belhaj
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Benoit Rondelet
- Department of Cardio-Vascular, Thoracic Surgery and Lung Transplantation, CHU UCL Namur, UCLouvain, Yvoir, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Université Libre de Bruxelles, Brussels, Belgium
| | - Bruno Flamion
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
- Clinical Development, Idorsia Pharmaceuticals Ltd., Allschwil, Switzerland
| | - Nathalie Kirschvink
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| | - Sophie Dogné
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur (Unamur), Namur, Belgium
| |
Collapse
|
10
|
Ishiko S, Koller A, Deng W, Huang A, Sun D. Liposomal nanocarriers of preassembled glycocalyx restore normal venular permeability and shear stress sensitivity in sepsis: assessed quantitatively with a novel microchamber system. Am J Physiol Heart Circ Physiol 2024; 327:H390-H398. [PMID: 38874615 PMCID: PMC11427114 DOI: 10.1152/ajpheart.00138.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
The endothelial glycocalyx (EG), covering the luminal side of endothelial cells, regulates vascular permeability and senses wall shear stress. In sepsis, EG undergoes degradation leading to increased permeability and edema formation. We hypothesized that restoring EG integrity using liposomal nanocarriers of preassembled glycocalyx (LNPG) will restore normal venular permeability in lipopolysaccharide (LPS)-induced sepsis model of mice. To test this hypothesis, we designed a unique perfusion microchamber in which the permeability of isolated venules could be assessed by measuring the concentration of Evans blue dye (EBD) in microliter samples of extravascular solution (ES). Histamine-induced time- and dose-dependent increases in EBD in the ES could be measured, confirming the sensitivity of the microchamber system. Notably, the histamine-induced increase in permeability was significantly attenuated by histamine receptor (H1) antagonist, triprolidine hydrochloride. Subsequently, mice were treated with LPS or LPS + LNPG. When compared with control mice, venules from LPS-treated mice showed a significant increased permeability, which was significantly reduced by LNPG administration. Moreover, in the presence of wall shear stress, intraluminal administration of LNPG significantly reduced the permeability in isolated venules from LPS-treated mice. We have found no sex differences. In conclusion, our newly developed microchamber system allows us to quantitatively measure the permeability of isolated venules. LPS-induced sepsis increases permeability of mesenteric venules that is attenuated by in vivo LNPG administration, which also reestablished endothelial responses to shear stress. Thus, LNPG presents a promising therapeutic potential for restoring EG function and thereby mitigating vasogenic edema due to increased permeability in sepsis.NEW & NOTEWORTHY In sepsis, the degradation of the endothelial glycocalyx leads to increased venular permeability. In this study, we developed a potentially new therapeutic approach by in vivo administration of liposomal nanocarriers of preassembled glycocalyx to mice, which restored venular sensitivity to wall shear stress and permeability in lipopolysaccharide-induced sepsis, likely by restoring the integrity of the endothelial glycocalyx. Using a new microchamber system, the permeability of Evans blue dye could be quantitatively determined.
Collapse
Affiliation(s)
- Shinya Ishiko
- Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Akos Koller
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Institute of Translational Medicine, HUN-RES-SE, Cerebrovascular and Neurocognitive Disorders Research Group, Semmelweis University, Budapest, Hungary
- Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
- Research Center for Sports Physiology, Hungarian University of Sports Science, Budapest, Hungary
| | - Wensheng Deng
- Department of General Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - An Huang
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Dong Sun
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
11
|
Balistreri CR, Di Giorgi L, Monastero R. Focus of endothelial glycocalyx dysfunction in ischemic stroke and Alzheimer's disease: Possible intervention strategies. Ageing Res Rev 2024; 99:102362. [PMID: 38830545 DOI: 10.1016/j.arr.2024.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
The integrity of the endothelial glycocalyx (eGCX), a mixture of carbohydrates attached to proteins expressed on the surface of blood vessel endothelial cells (EC), is critical for the maintenance of homeostasis of the cardiovascular system and all systems of the human body, the endothelium being the critical component of the stroma of all tissues. Consequently, dysfunction of eGCX results in a dysfunctional cardiovascular wall and severe downstream cardiovascular events, which contribute to the onset of cardio- and cerebrovascular diseases and neurodegenerative disorders, as well as other age-related diseases (ARDs). The key role of eGCX dysfunction in the onset of ARDs is examined here, with a focus on the most prevalent neurological diseases: ischemic stroke and Alzheimer's disease. Furthermore, the advantages and limitations of some treatment strategies for anti-eGCX dysfunction are described, ranging from experimental drug therapies, which need to be better tested and explored not only in animal models but also in humans, as well as reprogramming, the use of nutraceuticals, which are emerging as regenerative and new approaches. The promotion of these strategies is essential to keep eGCX and endothelium healthy, as is the development of intravital (e.g., intravascular) tools to estimate eGCX health status and treatment efficacy, which could lead to advanced solutions to address ARDs.
Collapse
Affiliation(s)
- Carmela Rita Balistreri
- Cellular, Molecular and Clinical Pathological Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo 90134, Italy.
| | - Lucia Di Giorgi
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy
| | - Roberto Monastero
- Memory and Parkinson's disease Center Policlinico "Paolo Giaccone", Palermo, and Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Via La Loggia 1, Palermo 90129, Italy.
| |
Collapse
|
12
|
Li N, Hao R, Ren P, Wang J, Dong J, Ye T, Zhao D, Qiao X, Meng Z, Gan H, Liu S, Sun Y, Dou G, Gu R. Glycosaminoglycans: Participants in Microvascular Coagulation of Sepsis. Thromb Haemost 2024; 124:599-612. [PMID: 38242171 PMCID: PMC11199054 DOI: 10.1055/a-2250-3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/23/2023] [Indexed: 01/21/2024]
Abstract
Sepsis represents a syndromic response to infection and frequently acts as a common pathway leading to fatality in the context of various infectious diseases globally. The pathology of severe sepsis is marked by an excess of inflammation and activated coagulation. A substantial contributor to mortality in sepsis patients is widespread microvascular thrombosis-induced organ dysfunction. Multiple lines of evidence support the notion that sepsis induces endothelial damage, leading to the release of glycosaminoglycans, potentially causing microvascular dysfunction. This review aims to initially elucidate the relationship among endothelial damage, excessive inflammation, and thrombosis in sepsis. Following this, we present a summary of the involvement of glycosaminoglycans in coagulation, elucidating interactions among glycosaminoglycans, platelets, and inflammatory cells. In this section, we also introduce a reasoned generalization of potential signal pathways wherein glycosaminoglycans play a role in clotting. Finally, we discuss current methods for detecting microvascular conditions in sepsis patients from the perspective of glycosaminoglycans. In conclusion, it is imperative to pay closer attention to the role of glycosaminoglycans in the mechanism of microvascular thrombosis in sepsis. Dynamically assessing glycosaminoglycan levels in patients may aid in predicting microvascular conditions, enabling the monitoring of disease progression, adjustment of clinical treatment schemes, and mitigation of both acute and long-term adverse outcomes associated with sepsis.
Collapse
Affiliation(s)
- Nanxi Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolin Hao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jingya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People Republic of China
| | - Jiahui Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Tong Ye
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Danyang Zhao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Xuan Qiao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, People Republic of China
| |
Collapse
|
13
|
Bender M, Abicht JM, Reichart B, Leuschen M, Wall F, Radan J, Neumann E, Mokelke M, Buttgereit I, Michel S, Ellgass R, Gieseke K, Steen S, Paskevicius A, Denner J, Godehardt AW, Tönjes RR, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Müller MB, Längin M. The Endothelial Glycocalyx in Pig-to-Baboon Cardiac Xenotransplantation-First Insights. Biomedicines 2024; 12:1336. [PMID: 38927543 PMCID: PMC11201800 DOI: 10.3390/biomedicines12061336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac xenotransplantation has seen remarkable success in recent years and is emerging as the most promising alternative to human cardiac allotransplantation. Despite these achievements, acute vascular rejection still presents a challenge for long-term xenograft acceptance and new insights into innate and adaptive immune responses as well as detailed characterizations of signaling pathways are necessary. In allotransplantation, endothelial cells and their sugar-rich surface-the endothelial glycocalyx-are known to influence organ rejection. In xenotransplantation, however, only in vitro data exist on the role of the endothelial glycocalyx so far. Thus, in the current study, we analyzed the changes of the endothelial glycocalyx components hyaluronan, heparan sulfate and syndecan-1 after pig-to-baboon cardiac xenotransplantations in the perioperative (n = 4) and postoperative (n = 5) periods. These analyses provide first insights into changes of the endothelial glycocalyx after pig-to-baboon cardiac xenotransplantation and show that damage to the endothelial glycocalyx seems to be comparable or even less pronounced than in similar human settings when current strategies of cardiac xenotransplantation are applied. At the same time, data from the experiments where current strategies, like non-ischemic preservation, growth inhibition or porcine cytomegalovirus (a porcine roseolovirus (PCMV/PRV)) elimination could not be applied indicate that damage of the endothelial glycocalyx also plays an important role in cardiac xenotransplantation.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Katja Gieseke
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 221 85 Lund, Sweden
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Martin B. Müller
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
Hauger PC, Hordijk PL. Shear Stress-Induced AMP-Activated Protein Kinase Modulation in Endothelial Cells: Its Role in Metabolic Adaptions and Cardiovascular Disease. Int J Mol Sci 2024; 25:6047. [PMID: 38892235 PMCID: PMC11173107 DOI: 10.3390/ijms25116047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction. Moreover, ECs show metabolic adaptions to physiological changes, such as metabolic shifts from quiescence to a proliferative state during angiogenesis. The AMP-activated protein kinase (AMPK) is at the center of these phenomena. AMPK has a central role as a metabolic sensor in several cell types. Moreover, in ECs, AMPK is mechanosensitive, linking mechanosensation with metabolic adaptions. Finally, recent studies indicate that AMPK dysregulation is at the center of cardiovascular disease (CVD) and that pharmacological targeting of AMPK is a promising and novel strategy to treat CVDs such as atherosclerosis or ischemic injury. In this review, we summarize the current knowledge relevant to this topic, with a focus on shear stress-induced AMPK modulation and its consequences for vascular health and disease.
Collapse
Affiliation(s)
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
15
|
Zhang X, Leng S, Liu X, Hu X, Liu Y, Li X, Feng Q, Guo W, Li N, Sheng Z, Wang S, Peng J. Ion channel Piezo1 activation aggravates the endothelial dysfunction under a high glucose environment. Cardiovasc Diabetol 2024; 23:150. [PMID: 38702777 PMCID: PMC11067304 DOI: 10.1186/s12933-024-02238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.
Collapse
MESH Headings
- Animals
- Humans
- Human Umbilical Vein Endothelial Cells/metabolism
- Human Umbilical Vein Endothelial Cells/pathology
- Mice, Knockout
- Diabetes Mellitus, Experimental/metabolism
- Oxidative Stress
- Ion Channels/metabolism
- Ion Channels/genetics
- Blood Glucose/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Mechanotransduction, Cellular
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/deficiency
- Cells, Cultured
- Cell Proliferation
- Apoptosis
- Male
- Diabetic Angiopathies/metabolism
- Diabetic Angiopathies/physiopathology
- Diabetic Angiopathies/pathology
- Diabetic Angiopathies/genetics
- Diabetic Angiopathies/etiology
- Cell Movement
- Mice, Inbred C57BL
- Reactive Oxygen Species/metabolism
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Mice
- Streptozocin
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Endothelium, Vascular/pathology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shaoqiu Leng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinyue Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiang Hu
- Advanced Medical Research Institute, Shandong University, Jinan, China
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Li
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Guo
- Institute of Hematology, the First Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China
| | - Nailin Li
- Department of Medicine-Solna, Cardiovascular Medicine Unit, Karolinska Institutet, Stockholm, Sweden
| | - Zi Sheng
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuwen Wang
- Shandong Key Laboratory of Immunochematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory; the Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
16
|
Rabia B, Thanigaimani S, Golledge J. The potential involvement of glycocalyx disruption in abdominal aortic aneurysm pathogenesis. Cardiovasc Pathol 2024; 70:107629. [PMID: 38461960 DOI: 10.1016/j.carpath.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm is a weakening and expansion of the abdominal aorta. Currently, there is no drug treatment to limit abdominal aortic aneurysm growth. The glycocalyx is the outermost layer of the cell surface, mainly composed of glycosaminoglycans and proteoglycans. OBJECTIVE The aim of this review was to identify a potential relationship between glycocalyx disruption and abdominal aortic aneurysm pathogenesis. METHODS A narrative review of relevant published research was conducted. RESULTS Glycocalyx disruption has been reported to enhance vascular permeability, impair immune responses, dysregulate endothelial function, promote extracellular matrix remodeling and modulate mechanotransduction. All these effects are implicated in abdominal aortic aneurysm pathogenesis. Glycocalyx disruption promotes inflammation through exposure of adhesion molecules and release of proinflammatory mediators. Glycocalyx disruption affects how the endothelium responds to shear stress by reducing nitric oxide availabilty and adversely affecting the storage and release of several antioxidants, growth factors, and antithromotic proteins. These changes exacerbate oxidative stress, stimulate vascular smooth muscle cell dysfunction, and promote thrombosis, all effects implicated in abdominal aortic aneurysm pathogenesis. Deficiency of key component of the glycocalyx, such as syndecan-4, were reported to promote aneurysm formation and rupture in the angiotensin-II and calcium chloride induced mouse models of abdominal aortic aneurysm. CONCLUSION This review provides a summary of past research which suggests that glycocalyx disruption may play a role in abdominal aortic aneurysm pathogenesis. Further research is needed to establish a causal link between glycocalyx disruption and abdominal aortic aneurysm development.
Collapse
Affiliation(s)
- Bibi Rabia
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; Department of Pharmacy, Hazara University, Mansehra 21300, Pakistan
| | - Shivshankar Thanigaimani
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland 4811, Australia; The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Queensland 4811, Australia; The Department of Vascular and Endovascular Surgery, The Townsville University Hospital, Townsville, Queensland 4810, Australia.
| |
Collapse
|
17
|
Li Z, Wu N, Wang J, Yue Y, Geng L, Zhang Q. Low molecular weight fucoidan restores diabetic endothelial glycocalyx by targeting neuraminidase2: A new therapy target in glycocalyx shedding. Br J Pharmacol 2024; 181:1404-1420. [PMID: 37994102 DOI: 10.1111/bph.16288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/16/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Diabetic vascular complication is a leading cause of disability and mortality in diabetes patients. Low molecular weight fucoidan (LMWF) is a promising drug candidate for vascular complications. Glycocalyx injury predates the occurrence of diabetes vascular complications. Protecting glycocalyx from degradation relieves diabetic vascular complications. LMWF has the potential to protect the diabetes endothelial glycocalyx from shedding. EXPERIMENTAL APPROACH The protective effect of LMWF on diabetic glycocalyx damage was investigated in db/db mice and Human Umbilical Vein Endothelial Cells (HUVEC) through transmission electron microscopy and WGA labelling. The effect of LMWF on glycocalyx degrading enzymes expression was investigated. Neuraminidase2 (NEU2) overexpression/knockdown was performed in HUVECs to verify the important role of NEU2 in glycocalyx homeostasis. The interaction between NEU2 and LMWF was detected by ELISA and surface plasmon resonance analysis (SPR). KEY RESULTS LMWF normalizes blood indexes including insulin, triglyceride, uric acid and reduces diabetes complications adverse events. LMWF alleviates diabetic endothelial glycocalyx damage in db/db mice kidney/aorta and high concentration glucose treated HUVECs. NEU2 is up-regulated in db/db mice and HUVECs with high concentration glucose. Overexpression/knockdown NEU2 results in glycocalyx shedding in HUVEC. Down-regulation and interaction of LMWF with NEU2 is a new therapy target in glycocalyx homeostasis. NEU2 was positively correlated with phosphorylated IR-β. CONCLUSION AND IMPLICATIONS NEU2 is an effective target for glycocalyx homeostasis and LMWF is a promising drug to alleviate vascular complications in diabetes by protecting endothelial glycocalyx.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital (Qingdao Municipal Hospital), School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yang Yue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lihua Geng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- Laboratory for Marine Drugs and Biological Products, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
18
|
Cui S, Chen X, Li J, Wang W, Meng D, Zhu S, Shen S. Endothelial CXCR2 deficiency attenuates renal inflammation and glycocalyx shedding through NF-κB signaling in diabetic kidney disease. Cell Commun Signal 2024; 22:191. [PMID: 38528533 PMCID: PMC10964613 DOI: 10.1186/s12964-024-01565-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/07/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND The incidence of diabetic kidney disease (DKD) continues to rapidly increase, with limited available treatment options. One of the hallmarks of DKD is persistent inflammation, but the underlying molecular mechanisms of early diabetic kidney injury remain poorly understood. C-X-C chemokine receptor 2 (CXCR2), plays an important role in the progression of inflammation-related vascular diseases and may bridge between glomerular endothelium and persistent inflammation in DKD. METHODS Multiple methods were employed to assess the expression levels of CXCR2 and its ligands, as well as renal inflammatory response and endothelial glycocalyx shedding in patients with DKD. The effects of CXCR2 on glycocalyx shedding, and persistent renal inflammation was examined in a type 2 diabetic mouse model with Cxcr2 knockout specifically in endothelial cells (DKD-Cxcr2 eCKO mice), as well as in glomerular endothelial cells (GECs), cultured in high glucose conditions. RESULTS CXCR2 was associated with early renal decline in DKD patients, and endothelial-specific knockout of CXCR2 significantly improved renal function in DKD mice, reduced inflammatory cell infiltration, and simultaneously decreased the expression of proinflammatory factors and chemokines in renal tissue. In DKD conditions, glycocalyx shedding was suppressed in endothelial Cxcr2 knockout mice compared to Cxcr2 L/L mice. Modulating CXCR2 expression also affected high glucose-induced inflammation and glycocalyx shedding in GECs. Mechanistically, CXCR2 deficiency inhibited the activation of NF-κB signaling, thereby regulating inflammation, restoring the endothelial glycocalyx, and alleviating DKD. CONCLUSIONS Taken together, under DKD conditions, activation of CXCR2 exacerbates inflammation through regulation of the NF-κB pathway, leading to endothelial glycocalyx shedding and deteriorating renal function. Endothelial CXCR2 deficiency has a protective role in inflammation and glycocalyx dysfunction, suggesting its potential as a promising therapeutic target for DKD treatment.
Collapse
Affiliation(s)
- Siyuan Cui
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
| | - Xin Chen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Nanjing Medical University, Nanjing, China
| | - Jiayu Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Wei Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Deqi Meng
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shenglong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Shiwei Shen
- Department of Endocrinology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.
- Department of Endocrinology, Jiangnan University Medical Center, Wuxi, China.
| |
Collapse
|
19
|
Kamenshchikov NO, Diakova ML, Podoksenov YK, Churilina EA, Rebrova TY, Akhmedov SD, Maslov LN, Mukhomedzyanov AV, Kim EB, Tokareva ES, Kravchenko IV, Boiko AM, Kozulin MS, Kozlov BN. Potential Mechanisms for Organoprotective Effects of Exogenous Nitric Oxide in an Experimental Study. Biomedicines 2024; 12:719. [PMID: 38672075 PMCID: PMC11048067 DOI: 10.3390/biomedicines12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Performing cardiac surgery under cardiopulmonary bypass (CPB) and circulatory arrest (CA) provokes the development of complications caused by tissue metabolism, microcirculatory disorders, and endogenous nitric oxide (NO) deficiency. This study aimed to investigate the potential mechanisms for systemic organoprotective effects of exogenous NO during CPB and CA based on the assessment of dynamic changes in glycocalyx degradation markers, deformation properties of erythrocytes, and tissue metabolism in the experiment. A single-center prospective randomized controlled study was conducted on sheep, n = 24, comprising four groups of six in each. In two groups, NO was delivered at a dose of 80 ppm during CPB ("CPB + NO" group) or CPB and CA ("CPB + CA + NO"). In the "CPB" and "CPB + CA" groups, NO supply was not carried out. NO therapy prevented the deterioration of erythrocyte deformability. It was associated with improved tissue metabolism, lower lactate levels, and higher ATP levels in myocardial and lung tissues. The degree of glycocalyx degradation and endothelial dysfunction, assessed by the concentration of heparan sulfate proteoglycan and asymmetric dimethylarginine, did not change when exogenous NO was supplied. Intraoperative delivery of NO provides systemic organoprotection, which results in reducing the damaging effects of CPB on erythrocyte deformability and maintaining normal functioning of tissue metabolism.
Collapse
Affiliation(s)
| | - Mariia L. Diakova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (N.O.K.); (Y.K.P.); (E.A.C.); (T.Y.R.); (S.D.A.); (L.N.M.); (A.V.M.); (E.B.K.); (E.S.T.); (I.V.K.); (A.M.B.); (M.S.K.); (B.N.K.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Aziz F, Khan MF, Moiz A. Gestational diabetes mellitus, hypertension, and dyslipidemia as the risk factors of preeclampsia. Sci Rep 2024; 14:6182. [PMID: 38486097 PMCID: PMC10940289 DOI: 10.1038/s41598-024-56790-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a known risk factor for gestational hypertension which further progress toward conditions like proteinuria, dyslipidemia, thrombocytopenia, pulmonary edema leading to Preeclampsia (PE). Pregnancy can be a challenging time for many women, especially those diagnosed with GDM and PE. Thus, the current prospective study investigates the association of OGTT glucose levels with systolic and diastolic blood pressure and lipid profile parameters in pregnant women diagnosed with GDM and PE. A total of 140 pregnant women were stratified into GDM (n = 50), PE (n = 40) and controls (n = 50). Two hour 75 g oral glucose tolerance test (OGTT) was performed for screening GDM. Biochemical parameters analysis of OGTT, total cholesterol (TC), triglyceride (Tg), high density lipoprotein-cholesterol (HDL-C), low density lipoprotein-cholesterol (LDL-C), urinary albumin and creatinine were tested to find urinary albumin creatinine ratio (uACR). Statistical analysis was performed using ANOVA followed by post hoc test and regression analysis. Among the studied groups, GDM and PE groups showed no significant difference in age and increased BMI. Increased 2 h OGTT & TC in GDM group; elevated uACR, systolic/diastolic blood pressure, Tg, HDL-C, LDL-C in PE group was observed and differ significantly (p < 0.0001) with other groups. A significant positive effect of 2 h OGTT was observed on blood pressure (R2: GDM = 0.85, PE = 0.71) and lipid profile determinants (R2: GDM = 0.85, PE = 0.33) at p < 0.0001. The current study concludes that glucose intolerance during the later weeks of pregnancy is associated with gestational hypertension and hyperlipidemia as a risk factor for PE. Further research is needed for a detailed assessment of maternal glucose metabolism at various pregnancy stages, including the use of more sensitive markers such as C-peptide and their relation to pregnancy-related hypertensive disorders.
Collapse
Affiliation(s)
- Farah Aziz
- Department of Basic Medical Science, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | - Mohammad Fareed Khan
- Department of Infection Prevention and Control, The Specialist Hospital, Abha, Saudi Arabia
| | - Amna Moiz
- Medical City, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
21
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. Orientin alleviates ox-LDL-induced oxidative stress, inflammation and apoptosis in human vascular endothelial cells by regulating Sestrin 1 (SESN1)-mediated autophagy. J Mol Histol 2024; 55:109-120. [PMID: 38165567 DOI: 10.1007/s10735-023-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/04/2023] [Indexed: 01/04/2024]
Abstract
Endothelial cells are a crucial component of the vessel-tissue wall and exert an important role in atherosclerosis (AS). To explore the role of Orientin in AS, human vascular endothelial cells (HUVECs) were induced by oxidized low-density lipoprotein (ox-LDL) to simulate the vascular endothelial injury during AS. Cell viability was detected by CCK-8 assay. Oxidative stress and inflammation related markers were measured using kits, RT-qPCR or western blot. Besides, cell apoptosis was assessed with TUNEL staining and cell autophagy was evaluated by LC3 immunofluorescent staining. Additionally, western blot was utilized to evaluate the expression of Sestrin 1 (SESN1) and proteins in AMPK/mTOR signaling. Afterwards, SESN1 was silenced to determine the expression of autophagy-related proteins. The further application of autophagy inhibitor 3-methyladenine (3-MA) was used to clarify the regulatory mechanism of Orientin on autophagy. Results showed that the decreased viability of HUVECs caused by ox-LDL induction was elevated by Orientin. Oxidative stress and inflammation were also attenuated after Orientin addition in HUVECs under ox-LDL condition. Moreover, Orientin suppressed apoptosis and induced autophagy of HUVECs stimulated by ox-LDL, accompanied by enhanced level of phospho (p)-AMPK and declined level of p-mTOR. Interestingly, SESN1 level was elevated by Orientin, and SESN1 depletion alleviated autophagy and reduced p-AMPK expression but enhanced p-mTOR expression. The further experiments indicated that SESN1 silencing or 3-MA addition reversed the inhibitory effects of Orientin on the oxidative stress, inflammation and apoptosis of HUVECs. Collectively, Orientin could induce autophagy by activating SESN1 expression, thereby regulating AMPK/mTOR signaling in ox-LDL-induced HUVECs.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China.
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, No. 131, Huancheng Road, Xuzhou, 221005, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Kelly EJ, Oliver MA, Carney BC, Kolachana S, Moffatt LT, Shupp JW. Neutrophil Extracellular Traps Are Induced by Coronavirus 2019 Disease-Positive Patient Plasma and Persist Longitudinally: A Possible Link to Endothelial Dysfunction as Measured by Syndecan-1. Surg Infect (Larchmt) 2023; 24:887-896. [PMID: 38011327 DOI: 10.1089/sur.2023.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: Neutrophil extracellular trap (NET) formation is a mechanism that neutrophils possess to respond to host infection or inflammation. However, dysregulation of NETosis has been implicated in many disease processes. Although the exact mechanisms of their involvement remain largely unknown, this study aimed to elucidate NET formation over the time course of coronavirus disease 2019 (COVID-19) infection and their possible role in endothelial injury. Patients and Methods: Plasma samples from COVID-19-positive patients were obtained at six timepoints during hospitalization. Neutrophils were extracted from healthy donors and treated with COVID-19-positive patient plasma. Myeloperoxidase (MPO) assay was used to assess for NETosis. Syndecan-1 (SDC-1) enzyme-linked immunosorbent assay (ELISA) was run using the same samples. Immunocytochemistry allowed for further quantification of NETosis byproducts MPO and citrullinated histone 3 (CitH3). The receiver operating characteristic (ROC) curve discriminated between admission levels of SDC-1 and MPO in predicting 30-day mortality and need for ventilator support. Results: Sixty-three patients with COVID-19 were analyzed. Myeloperoxidase was upregulated at day 3, 7, and 14 (p = 0.0087, p = 0.0144, p = 0.0421). Syndecan-1 levels were elevated at day 7 and 14 (p = 0.0188, p = 0.0026). Neutrophils treated with day 3, 7, and 14 plasma expressed increased levels of MPO (p < 0.001). Immunocytochemistry showed neutrophils treated with day 3, 7, and 14 plasma expressed higher levels of MPO (p < 0.001) and higher levels of CitH3 when treated with day 7 and 14 plasma (p < 0.01 and p < 0.05). Admission SDC-1 and MPO levels were found to be independent predictors of 30-day mortality and need for ventilator support. Conclusions: Neutrophil dysregulation can be detrimental to the host. Our study shows that COVID-19 plasma induces substantial amounts of NET formation that persists over the course of the disease. Patients also exhibit increased SDC-1 levels that implicate endothelial injury in the pathogenesis of COVID-19 infection. Furthermore, MPO and SDC-1 plasma levels are predictive of poor outcomes.
Collapse
Affiliation(s)
- Edward J Kelly
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
| | - Mary A Oliver
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Bonnie C Carney
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Sindhura Kolachana
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
| | - Lauren T Moffatt
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| | - Jeffrey W Shupp
- Firefighters' Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, USA
- The Burn Center, Department of Surgery, MedStar Washington Hospital Center, Washington, DC, USA
- Department of Surgery and Biochemistry, Georgetown University School of Medicine, Washington, DC, USA
| |
Collapse
|
23
|
Cao J, Chen Y. The impact of vascular endothelial glycocalyx on the pathogenesis and treatment of disseminated intravascular coagulation. Blood Coagul Fibrinolysis 2023; 34:465-470. [PMID: 37823419 PMCID: PMC10754481 DOI: 10.1097/mbc.0000000000001257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Disseminated intravascular coagulation (DIC) is a complex disorder characterized by widespread activation of blood clotting mechanisms throughout the body. Understanding the role of vascular endothelial glycocalyx in the pathogenesis and treatment of DIC is crucial for advancing our knowledge in this field. The vascular endothelial glycocalyx is a gel-like layer that coats the inner surface of blood vessels. It plays a significant role in maintaining vascular integrity, regulating fluid balance, and preventing excessive clotting. In the pathogenesis of DIC, the disruption of the vascular endothelial glycocalyx is a key factor. Pathological conditions trigger the activation of enzymes, including heparanase, hyaluronase, and matrix metalloproteinase. This activation leads to glycocalyx degradation, subsequently exposing endothelial cells to procoagulant stimuli. Additionally, the ANGPTs/Tie-2 signaling pathway plays a role in the imbalance between the synthesis and degradation of VEG, exacerbating endothelial dysfunction and DIC. Understanding the mechanisms behind glycocalyx degradation and its impact on DIC can provide valuable insights for the development of targeted therapies. Preservation of the glycocalyx integrity may help prevent the initiation and propagation of DIC. Strategies such as administration of exogenous glycocalyx components, anticoagulant agents, or Tie-2 antibody agents have shown promising results in experimental models. In conclusion, the vascular endothelial glycocalyx plays a crucial role in the pathogenesis and treatment of DIC. Further research in this field is warranted to unravel the complex interactions between the glycocalyx and DIC, ultimately leading to the development of novel therapies.
Collapse
Affiliation(s)
- Jingjing Cao
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | | |
Collapse
|
24
|
Locatelli M, Rottoli D, Mahmoud R, Abbate M, Corna D, Cerullo D, Tomasoni S, Remuzzi G, Zoja C, Benigni A, Macconi D. Endothelial Glycocalyx of Peritubular Capillaries in Experimental Diabetic Nephropathy: A Target of ACE Inhibitor-Induced Kidney Microvascular Protection. Int J Mol Sci 2023; 24:16543. [PMID: 38003732 PMCID: PMC10671403 DOI: 10.3390/ijms242216543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Peritubular capillary rarefaction is a recurrent aspect of progressive nephropathies. We previously found that peritubular capillary density was reduced in BTBR ob/ob mice with type 2 diabetic nephropathy. In this model, we searched for abnormalities in the ultrastructure of peritubular capillaries, with a specific focus on the endothelial glycocalyx, and evaluated the impact of treatment with an angiotensin-converting enzyme inhibitor (ACEi). Mice were intracardially perfused with lanthanum to visualise the glycocalyx. Transmission electron microscopy analysis revealed endothelial cell abnormalities and basement membrane thickening in the peritubular capillaries of BTBR ob/ob mice compared to wild-type mice. Remodelling and focal loss of glycocalyx was observed in lanthanum-stained diabetic kidneys, associated with a reduction in glycocalyx components, including sialic acids, as detected through specific lectins. ACEi treatment preserved the endothelial glycocalyx and attenuated the ultrastructural abnormalities of peritubular capillaries. In diabetic mice, peritubular capillary damage was associated with an enhanced tubular expression of heparanase, which degrades heparan sulfate residues of the glycocalyx. Heparanase was also detected in renal interstitial macrophages that expressed tumor necrosis factor-α. All these abnormalities were mitigated by ACEi. Our findings suggest that, in experimental diabetic nephropathy, preserving the endothelial glycocalyx is important in order to protect peritubular capillaries from damage and loss.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy; (M.L.); (D.R.); (R.M.); (M.A.); (D.C.); (D.C.); (S.T.); (G.R.); (C.Z.); (D.M.)
| | | |
Collapse
|
25
|
van Lanen RHGJ, Haeren RHL, Staals J, Dings JTA, Schijns OEMG, Hoogland G, van Kuijk SMJ, Kapsokalyvas D, van Zandvoort MAMJ, Vink H, Rijkers K. Cerebrovascular glycocalyx damage and microcirculation impairment in patients with temporal lobe epilepsy. J Cereb Blood Flow Metab 2023; 43:1737-1751. [PMID: 37231664 PMCID: PMC10581235 DOI: 10.1177/0271678x231179413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/02/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023]
Abstract
Temporal lobe epilepsy (TLE) is increasingly associated with blood-brain barrier dysfunction and microvascular alterations, yet the pathophysiological link is missing. An important barrier function is exerted by the glycocalyx, a gel-like layer coating the endothelium. To explore such associations, we used intraoperative videomicroscopy to quantify glycocalyx and microcirculation properties of the neocortex and hippocampus of 15 patients undergoing resective brain surgery as treatment for drug-resistant TLE, and 15 non-epileptic controls. Fluorescent lectin staining of neocortex and hippocampal tissue was used for blood vessel surface area quantification. Neocortical perfused boundary region, the thickness of the glycocalyx' impaired layer, was higher in patients (2.64 ± 0.52 µm) compared to controls (1.31 ± 0.29 µm), P < 0.01, indicative of reduced glycocalyx integrity in patients. Moreover, erythrocyte flow velocity analysis revealed an impaired ability of TLE patients to (de-)recruit capillaries in response to changing metabolic demands (R2 = 0.75, P < 0.01), indicating failure of neurovascular coupling mechanisms. Blood vessel quantification comparison between intraoperative measurements and resected tissue showed strong correlation (R2 = 0.94, P < 0.01). This is the first report on in vivo assessment of glycocalyx and microcirculation properties in TLE patients, confirming the pivotal role of cerebrovascular changes. Further assessment of the cerebral microcirculation in relation to epileptogenesis might open avenues for new therapeutic targets for drug-resistant epilepsy.
Collapse
Affiliation(s)
- Rick HGJ van Lanen
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Roel HL Haeren
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Julie Staals
- Department of Neurology, CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jim TA Dings
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Olaf EMG Schijns
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
| | - Sander MJ van Kuijk
- Department of Clinical Epidemiology and Medical Technology Assessment, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Dimitris Kapsokalyvas
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Interdisciplinary Center for Clinical Research (IZKF), University Hospital RWTH Aachen, Aachen, Germany
| | - Marc AMJ van Zandvoort
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Department of Genetics & Cell Biology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Institute for Molecular Cardiovascular Research IMCAR, Universitätsklinikum, Aachen University, Aachen, Germany
| | - Hans Vink
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Kim Rijkers
- Department of Neurosurgery, Maastricht University Medical Centre, Maastricht, The Netherlands
- School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands
- Academic Centre for Epileptology, Maastricht University Medical Centre and Kempenhaeghe, Maastricht/Heeze, The Netherlands
| |
Collapse
|
26
|
Angelov AK, Markov M, Ivanova M, Georgiev T. The genesis of cardiovascular risk in inflammatory arthritis: insights into glycocalyx shedding, endothelial dysfunction, and atherosclerosis initiation. Clin Rheumatol 2023; 42:2541-2555. [PMID: 37581758 DOI: 10.1007/s10067-023-06738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/16/2023]
Abstract
This narrative review provides a comprehensive examination of the complex interplay between inflammatory arthritis (IA) and cardiovascular pathology. It particularly illuminates the roles of atherosclerosis initiation, endothelial dysfunction, and glycocalyx shedding. IA not only provokes tissue-specific inflammatory responses, but also engenders a considerable degree of non-specific systemic inflammation. This review underscores the accelerating influence of the chronic inflammatory milieu of IA on cardiovascular disease (CVD) progression. A focal point of our exploration is the critical function of the endothelial glycocalyx (EG) in this acceleration process, which possibly characterizes the earliest phases of atherosclerosis. We delve into the influence of inflammatory mediators on microtubule dynamics, EG modulation, immune cell migration and activation, and lipid dysregulation. We also illuminate the impact of microparticles and microRNA on endothelial function. Further, we elucidate the role of systemic inflammation and sheddases in EG degradation, the repercussions of complement activation, and the essential role of syndecans in preserving EG integrity. Our review provides insight into the complex and dynamic interface between systemic circulation and the endothelium.
Collapse
Affiliation(s)
- Alexander Krasimirov Angelov
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Miroslav Markov
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria
- Clinic of Internal Medicine, University Hospital St. Marina - Varna, Varna, 9010, Bulgaria
| | - Mariana Ivanova
- Medical Faculty, Medical University - Sofia, Sofia, 1431, Bulgaria
- Clinic of Rheumatology, University Hospital St. Ivan Rilski - Sofia, Sofia, 1431, Bulgaria
| | - Tsvetoslav Georgiev
- Faculty of Medicine, Medical University - Varna, Varna, 9002, Bulgaria.
- Clinic of Rheumatology, University Hospital St. Marina - Varna, Varna, 9002, Bulgaria.
| |
Collapse
|
27
|
Sun L, Wang L, Ye KX, Wang S, Zhang R, Juan Z, Feng L, Min S. Endothelial Glycocalyx in Aging and Age-related Diseases. Aging Dis 2023; 14:1606-1617. [PMID: 37196119 PMCID: PMC10529737 DOI: 10.14336/ad.2023.0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/31/2023] [Indexed: 05/19/2023] Open
Abstract
The worldwide population is aging exponentially, creating burdens to patients, their families and society. Increasing age is associated with higher risk of a wide range of chronic diseases, and aging of the vascular system is closely linked to the development of many age-related diseases. Endothelial glycocalyx is a layer of proteoglycan polymers on the surface of the inner lumen of blood vessels. It plays an important role in maintaining vascular homeostasis and protecting various organ functions. Endothelial glycocalyx loss happens through the aging process and repairing the endothelial glycocalyx may alleviate the symptoms of age-related diseases. Given the important role of the glycocalyx and its regenerative properties, it is posited that the endothelial glycocalyx may be a potential therapeutic target for aging and age-related diseases and repairing endothelial glycocalyx could play a role in the promotion of healthy aging and longevity. Here, we review the composition, function, shedding, and manifestation of the endothelial glycocalyx in aging and age-related diseases, as well as regeneration of endothelial glycocalyx.
Collapse
Affiliation(s)
- Lina Sun
- School of Anesthesiology, Weifang Medical University, Weifang, China.
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Lingyan Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Kaisy Xinhong Ye
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Shoushi Wang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Rui Zhang
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Zhaodong Juan
- School of Anesthesiology, Weifang Medical University, Weifang, China.
| | - Lei Feng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Hernández-Jiménez C, Martínez-Cortés J, Olmos-Zuñiga JR, Jasso-Victoria R, López-Pérez MT, Díaz-Martínez NE, Alonso-Gómez M, Guzmán-Cedillo AE, Baltazares-Lipp M, Gaxiola-Gaxiola M, Méndez-Bernal A, Polo-Jeréz A, Vázquez-Minero JC, Hernández-Pérez O, Fernández-Solís CO. Changes in the levels of free sialic acid during ex vivo lung perfusion do not correlate with pulmonary function. Experimental model. BMC Pulm Med 2023; 23:326. [PMID: 37667267 PMCID: PMC10478437 DOI: 10.1186/s12890-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Ex vivo lung perfusion (EVLP) constitutes a tool with great research potential due to its advantages over in vivo and in vitro models. Despite its important contribution to lung reconditioning, this technique has the disadvantage of incurring high costs and can induce pulmonary endothelial injury through perfusion and ventilation. The pulmonary endothelium is made up of endothelial glycocalyx (EG), a coating of proteoglycans (PG) on the luminal surface. PGs are glycoproteins linked to terminal sialic acids (Sia) that can affect homeostasis with responses leading to edema formation. This study evaluated the effect of two ex vivo perfusion solutions on lung function and endothelial injury. METHODS We divided ten landrace swine into two groups and subjected them to EVLP for 120 min: Group I (n = 5) was perfused with Steen® solution, and Group II (n = 5) was perfused with low-potassium dextran-albumin solution. Ventilatory mechanics, histology, gravimetry, and sialic acid concentrations were evaluated. RESULTS Both groups showed changes in pulmonary vascular resistance and ventilatory mechanics (p < 0.05, Student's t-test). In addition, the lung injury severity score was better in Group I than in Group II (p < 0.05, Mann-Whitney U); and both groups exhibited a significant increase in Sia concentrations in the perfusate (p < 0.05 t-Student) and Sia immunohistochemical expression. CONCLUSIONS Sia, as a product of EG disruption during EVLP, was found in all samples obtained in the system; however, the changes in its concentration showed no apparent correlation with lung function.
Collapse
Affiliation(s)
- Claudia Hernández-Jiménez
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico.
| | - Javier Martínez-Cortés
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - J Raúl Olmos-Zuñiga
- Experimental Lung Transplant Unit of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Rogelio Jasso-Victoria
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - María Teresa López-Pérez
- Nursing Research Coordination of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Néstor Emmanuel Díaz-Martínez
- Department of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of the State of Jalisco, Jalisco, Mexico
| | - Marcelino Alonso-Gómez
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Axel Edmundo Guzmán-Cedillo
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Matilde Baltazares-Lipp
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Miguel Gaxiola-Gaxiola
- Laboratory of Morphology of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Adriana Méndez-Bernal
- Electron Microscopy Unit, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, Mexico City, Mexico
| | - Adrián Polo-Jeréz
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan Carlos Vázquez-Minero
- Cardiothoracic Surgery Service of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| | - Oscar Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Christopher O Fernández-Solís
- Department of Surgery Research of National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
29
|
Zhang L, Li J, Chen J, Lei J, Yuan Z, Zhang J, Liu Z, Yu C, Ma L. Oscillatory shear stress-mediated aberrant O-GlcNAc SIRT3 accelerates glycocalyx inflammatory injury via LKB1/p47 phox/Hyal2 signaling. Cell Signal 2023:110790. [PMID: 37392860 DOI: 10.1016/j.cellsig.2023.110790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/07/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Glycocalyx coating on endothelial surface layer helps to sense shear forces and maintain endothelial function. However, the underlying mechanism of endothelial glycocalyx degradation upon disordered shear stress stimulation is not fully understood. SIRT3, a major NAD+-dependent protein deacetylases, is required for protein stability during vascular homeostasis and partly involved in atherosclerotic process. While few studies showed that SIRT3 is responsible for endothelial glycocalyx homeostasis under shear stress, the underlying mechanisms remain largely unknown. Here, we demonstrated that oscillatory shear stress (OSS) induces glycocalyx injury by activating LKB1/p47phox/Hyal2 axis both in vivo and in vitro. And O-GlcNAc modification served to prolong SIRT3 deacetylase activity and stabilized p47/Hyal2 complex. OSS could decrease SIRT3 O-GlcNAcylation to activate LKB1, further accelerated endothelial glycocalyx injury in inflammatory microenvironment. SIRT3Ser329 mutation or inhibition of SIRT3 O-GlcNAcylation strongly promoted glycocalyx degradation. On the contrary, overexpression of SIRT3 reverse glycocalyx damage upon OSS treatment. Together, our findings indicated that targeting O-GlcNAcylation of SIRT3 could prevent and/or treat diseases whereby glycocalyx injured.
Collapse
Affiliation(s)
- Lei Zhang
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jiajia Li
- Hechuan District People's Hospital, Chongqing, China
| | - Jun Chen
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jin Lei
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhiyi Yuan
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jun Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Zhaohong Liu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Chao Yu
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| | - Limei Ma
- Chongqing Key Research Laboratory of Drug Metabolism, College of Pharmacy, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
30
|
Li Z, Zhang Q, Sun YY, Wu N. Effects of different dehydration methods on the preservation of aortic and renal glycocalyx structures in mice. Heliyon 2023; 9:e15197. [PMID: 37095921 PMCID: PMC10121396 DOI: 10.1016/j.heliyon.2023.e15197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Glycocalyx is located outside the vascular endothelial cells playing an important role in vascular homeostasis. However, lacking efficient detection methods is one of the biggest obstacles to study the glycocalyx. In this study, three dehydration methods were used to compare the preservation of HUVEC, aorta and kidney glycocalyx by transmission electron microscope. The chemical pre-fixation was performed by lanthanum nitrate staining, and the mice aorta and renal glycocalyx were prepared by different dehydration methods such as ethanol gradient, acetone gradient and low temperature dehydration. HUVEC glycocalyx was prepared by acetone gradient and low temperature dehydration. Low temperature dehydration method preserves HUVEC and mice aortic glycocalyx completely, which had a certain thickness and presented a needle-like structure. But for mice kidney, the acetone gradient dehydration preparation method could better preserve the glycocalyx integrity than other two methods. In conclusion, low temperature dehydration method is suitable for HUVEC and aortic glycocalyx preservation, acetone gradient dehydration method is more suitable for kidney glycocalyx preservation.
Collapse
Affiliation(s)
- Zhi Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Quanbin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yuan-yuan Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Corresponding author.
| | - Ning Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Department of Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Nantong Zhongke Marine Science and Technology Research and Development Center, Nantong, China
- Corresponding author. Institute of Oceanology Chinese Academy of Sciences, China,
| |
Collapse
|
31
|
Vahldieck C, Cianflone E, Fels B, Löning S, Depelmann P, Sabatino J, Salerno N, Karsten CM, Torella D, Weil J, Sun D, Goligorsky MS, Kusche-Vihrog K. Endothelial Glycocalyx and Cardiomyocyte Damage Is Prevented by Recombinant Syndecan-1 in Acute Myocardial Infarction. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:474-492. [PMID: 36669683 PMCID: PMC10123521 DOI: 10.1016/j.ajpath.2022.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
The outer layer of endothelial cells (ECs), consisting of the endothelial glycocalyx (eGC) and the cortex (CTX), provides a protective barrier against vascular diseases. Structural and functional impairments of their mechanical properties are recognized as hallmarks of endothelial dysfunction and can lead to cardiovascular events, such as acute myocardial infarction (AMI). This study investigated the effects of AMI on endothelial nanomechanics and function and the use of exogenous recombinant syndecan-1 (rSyn-1), a major component of the eGC, as recovering agent. ECs were exposed in vitro to serum samples collected from patients with AMI. In addition, in situ ECs of ex vivo aorta preparations derived from a mouse model for AMI were employed. Effects were quantified by using atomic force microscopy-based nanoindentation measurements, fluorescence staining, and histologic examination of the mouse hearts. AMI serum samples damaged eGC/CTX and augmented monocyte adhesion to the endothelial surface. In particular, the anaphylatoxins C3a and C5a played an important role in these processes. The impairment of endothelial function could be prevented by rSyn-1 treatment. In the mouse model of myocardial infarction, pretreatment with rSyn-1 alleviated eGC/CTX deterioration and reduced cardiomyocyte damage in histologic analyses. However, echocardiographic measurements did not indicate a functional benefit. These results provide new insights into the underlying mechanisms of AMI-induced endothelial dysfunction and perspectives for future studies on the benefit of rSyn-1 in post-AMI treatment.
Collapse
Affiliation(s)
- Carl Vahldieck
- Institute of Physiology, University of Luebeck, Luebeck, Germany; Department of Anesthesiology and Intensive Care Medicine, University Medical Centre Schleswig-Holstein Campus Luebeck, University of Luebeck, Luebeck, Germany.
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Benedikt Fels
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| | - Samuel Löning
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Patrik Depelmann
- Institute of Physiology, University of Luebeck, Luebeck, Germany
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy; Division of Pediatric Cardiology, Department of Women's and Children's Health, University Hospital Padua, Padua, Italy; Pediatric Research Institute "Città della Speranza", Padua, Italy
| | - Nadia Salerno
- Department of Medical and Surgical Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Christian M Karsten
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Joachim Weil
- Medizinische Klinik II, Sana Kliniken Luebeck, Luebeck, Germany
| | - Dong Sun
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Michael S Goligorsky
- Renal Research Institute and Departments of Medicine, Pharmacology and Physiology, New York Medical College, Valhalla, New York
| | - Kristina Kusche-Vihrog
- Institute of Physiology, University of Luebeck, Luebeck, Germany; DZHK (German Research Centre for Cardiovascular Research), Partner Site Hamburg/Luebeck/Kiel, Luebeck, Germany
| |
Collapse
|
32
|
Vinaiphat A, Pazhanchamy K, JebaMercy G, Ngan SC, Leow MKS, Ho HH, Gao YG, Lim KL, Richards AM, de Kleijn DPV, Chen CP, Kalaria RN, Liu J, O'Leary DD, McCarthy NE, Sze SK. Endothelial Damage Arising From High Salt Hypertension Is Elucidated by Vascular Bed Systematic Profiling. Arterioscler Thromb Vasc Biol 2023; 43:427-442. [PMID: 36700429 DOI: 10.1161/atvbaha.122.318439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023]
Abstract
BACKGROUND Considerable evidence links dietary salt intake with the development of hypertension, left ventricular hypertrophy, and increased risk of stroke and coronary heart disease. Despite extensive epidemiological and basic science interrogation of the relationship between high salt (HS) intake and blood pressure, it remains unclear how HS impacts endothelial cell (EC) and vascular structure in vivo. This study aims to elucidate HS-induced vascular pathology using a differential systemic decellularization in vivo approach. METHODS We performed systematic molecular characterization of the endothelial glycocalyx and EC proteomes in mice with HS (8%) diet-induced hypertension versus healthy control animals. Isolation of eGC and EC compartments was achieved using differential systemic decellularization in vivo methodology. Altered protein expression in hypertensive compared to normal mice was characterized by liquid chromatography tandem mass spectrometry. Proteomic results were validated using functional assays, microscopic imaging, and histopathologic evaluation. RESULTS Proteomic analysis revealed a significant downregulation of eGC and associated proteins in HS diet-induced hypertensive mice (among 1696 proteins identified in this group, 723 were markedly decreased in abundance, while only 168 were increased in abundance. Bioinformatic analysis indicated substantial derangement of the eGC layer, which was subsequently confirmed by fluorescent and electron microscopy assessment of vessel damage ex vivo. In the EC fraction, HS-induced hypertension significantly altered protein mediators of contractility, metabolism, mechanotransduction, renal function, and the coagulation cascade. In particular, we observed dysregulation of integrin subunits α2, α2b, and α5, which was associated with arterial wall inflammation and substantial infiltration of CD68+ monocyte-macrophages. Consequently, HS-induced hypertensive mice also displayed reduced vascular integrity of multiple organs including lungs, kidneys, and heart. CONCLUSIONS These findings provide novel molecular insight into HS-induced structural changes in eGC and EC composition that may increase cardiovascular risk and potentially guide the development of new diagnostics and therapeutic interventions.
Collapse
Affiliation(s)
- Arada Vinaiphat
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kalailingam Pazhanchamy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Gnanasekaran JebaMercy
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - SoFong Cam Ngan
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Melvin Khee-Shing Leow
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Hee Hwa Ho
- Tan Tock Seng Hospital, Singapore (M.K.-S.L., H.H.H.)
| | - Yong-Gui Gao
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine (M.K.-S.L., K.L.L.), Nanyang Technological University, Singapore
| | - A Mark Richards
- Department of Cardiology, National University Heart Centre, Singapore (A.M.R.)
- Department of Cardiology, University of Otago, Christchurch, New Zealand (A.M.R.)
| | | | - Christopher P Chen
- Memory Aging and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.P.C.)
| | - Raj N Kalaria
- Translational and Clinical Research Institute, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom (R.N.K.)
| | - Jian Liu
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Deborah D O'Leary
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| | - Neil E McCarthy
- Centre for Immunobiology, The Blizard Institute, Bart's and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (N.E.M.)
| | - Siu Kwan Sze
- School of Biological Sciences (A.V., K.P., G.J., S.C.N., Y.-G.G., S.K.S.), Nanyang Technological University, Singapore
- Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada (S.C.N., J.L., D.D.O., S.K.S.)
| |
Collapse
|
33
|
Boorsma EM, ter Maaten JM, Damman K, van Essen BJ, Zannad F, van Veldhuisen DJ, Samani NJ, Dickstein K, Metra M, Filippatos G, Lang CC, Ng L, Anker SD, Cleland JG, Pellicori P, Gansevoort RT, Heerspink HJL, Voors AA, Emmens JE. Albuminuria as a marker of systemic congestion in patients with heart failure. Eur Heart J 2023; 44:368-380. [PMID: 36148485 PMCID: PMC9890244 DOI: 10.1093/eurheartj/ehac528] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 02/05/2023] Open
Abstract
AIMS Albuminuria is common in patients with heart failure and associated with worse outcomes. The underlying pathophysiological mechanism of albuminuria in heart failure is still incompletely understood. The association of clinical characteristics and biomarker profile with albuminuria in patients with heart failure with both reduced and preserved ejection fractions were evaluated. METHODS AND RESULTS Two thousand three hundred and fifteen patients included in the index cohort of BIOSTAT-CHF were evaluated and findings were validated in the independent BIOSTAT-CHF validation cohort (1431 patients). Micro-albuminuria and macro-albuminuria were defined as urinary albumincreatinine ratio (UACR) 30 mg/gCr and 300 mg/gCr in spot urines, respectively. The prevalence of micro- and macro-albuminuria was 35.4 and 10.0, respectively. Patients with albuminuria had more severe heart failure, as indicated by inclusion during admission, higher New York Heart Association functional class, more clinical signs and symptoms of congestion, and higher concentrations of biomarkers related to congestion, such as biologically active adrenomedullin, cancer antigen 125, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) (all P 0.001). The presence of albuminuria was associated with increased risk of mortality and heart failure (re)hospitalization in both cohorts. The strongest independent association with log UACR was found for log NT-proBNP (standardized regression coefficient 0.438, 95 confidence interval 0.350.53, P 0.001). Hierarchical clustering analysis demonstrated that UACR clusters with markers of congestion and less with indices of renal function. The validation cohort yielded similar findings. CONCLUSION In patients with new-onset or worsening heart failure, albuminuria is consistently associated with clinical, echocardiographic, and circulating biomarkers of congestion.
Collapse
Affiliation(s)
- Eva M Boorsma
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jozine M ter Maaten
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Kevin Damman
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Bart J van Essen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Faiez Zannad
- Department of Cardiovascular Disease, Université de Lorraine, Inserm INI-CRCT, CHRU, 30 rue Lionnois, 54000 Nancy, France
| | - Dirk J van Veldhuisen
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University Road, Leicester LE1 7RH, UK
| | - Kenneth Dickstein
- Stavanger University Hospital, Gerd-Ragna Bloch Thorsens Gate 8, 4011 Stavanger, Norway
| | - Marco Metra
- Division of Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazza Mercato, 15, 25122 Brescia, Italy
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens, School of Medicine, Department of Cardiology, Heart Failure Unit, Athens University Hospital Attikon, 13Α, Navarinou str., 10680 Athens, Greece
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, James Arrott Drive, Dundee DD2 1UB, UK
| | - Leong Ng
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, University Road, Leicester LE1 7RH, UK
| | - Stefan D Anker
- Department of Cardiology (CVK), Charité Universitätsmedizin, Charite Square 1, Berlin 10117, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin, Friedrichstr. 134, Berlin 10117, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Charité Universitätsmedizin, Potsdamer Str., Berlin 5810785, Germany
| | - John G Cleland
- National Heart and Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, Guy Dovehouse Street, London SW3 6LY, UK
| | - Pierpaolo Pellicori
- National Heart and Lung Institute, Royal Brompton & Harefield Hospitals, Imperial College, Guy Dovehouse Street, London SW3 6LY, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Hiddo J L Heerspink
- Department of Clinical Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Johanna E Emmens
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
34
|
Doganci S, Ince ME, Demeli M, Ors Yildirim N, Pehlivanoglu B, Yildirim AK, Gianesini S, Chi YW, Yildirim V. Sulodexide Develops Contraction in Human Saphenous Vein via Endothelium-Dependent Nitric Oxide Pathway. J Clin Med 2023; 12:jcm12031019. [PMID: 36769668 PMCID: PMC9918083 DOI: 10.3390/jcm12031019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/01/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Chronic venous disease (CVD) is a proqgressive and underestimated condition related to a vicious circle established by venous reflux and endothelial inflammation, leading to vein dilation and histology distortion, including loss of media tone. Sulodexide (SDX) is a drug restoring the glycocalyx that demonstrated endothelial protection and permeability regulation, together with anti-thrombotic and anti-inflammatory roles. In the lab it also exhibited vein contractility function. The aim of the present study was to show the possible role of endothelium and nitric oxide pathway on SDX's veno-contractile effect on human saphenous veins. The remnants of great saphenous vein (GSV) segments (n = 14) were harvested during coronary artery bypass graft surgery. They were dissected as endothelium-intact (n = 8) and denuded rings (n = 6). First, a viability test was carried out in bath with Krebs-Henseleit solution to investigate a control and basal tension value. After this, cumulative doses of SDX were applied to rings and contraction values were studied in endothelium-intact phenylephrine (PheE, 6 × 10-7 M) pre-contracted vein rings. Finally, endothelium-intact PheE pre-contacted vein rings were treated by nitric oxide synthase inhibitor Nω-nitro-L-arginine methyl ester (L-NAME, 10-4 M) for 10 min. Contraction protocol was applied, and contraction values were measured in cumulative doses of SDX. The same protocol was applied to endothelium-denuded vein rings to investigate the effect of SDX. Saphenous vein rings showed an increase in contraction to cumulative doses of SDX. In endothel-intact rings, KCL-induced contraction from 92.6% ± 0.3 to 112.9% ± 0.4 with cumulative SDX doses. However, SDX did not show any veno-contractile effect on endothel-denuded rings. In denuded rings contraction responses measured from 94.9% ± 0.3 to 85.2% ± 0.3 with increasing doses of SDX, indicating no significant change. Nitric oxide synthase inhibitor (L-NAME) prohibited the contraction response of the sulodexide in all dosages, indicating that the contractile function of SDX was mediated by endothelial derived nitric oxide. Results of endothel-intact and denuded rings with L-NAME showed a similar incline with denuded rings with SDX only. The results confirmed SDX's veno-contractile effect in human samples, by means of nitric oxide synthase pathways involvement.
Collapse
Affiliation(s)
- Suat Doganci
- Department of Cardiovascular Surgery, Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkey
- Correspondence:
| | - Mehmet Emin Ince
- Department of Anesthesiology and Reanimation, Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkey
| | - Meric Demeli
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Nadide Ors Yildirim
- Department of Anesthesiology and Reanimation, Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkey
| | - Bilge Pehlivanoglu
- Department of Physiology, Hacettepe University Faculty of Medicine, Ankara 06100, Turkey
| | - Alperen Kutay Yildirim
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara 06560, Turkey
| | - Sergio Gianesini
- Translational Medicine Department, University of Ferrara, 44121 Ferrara, Italy
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Yung-Wei Chi
- Vascular Center, University of California, Sacramento, CA 95817, USA
| | - Vedat Yildirim
- Department of Anesthesiology and Reanimation, Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkey
| |
Collapse
|
35
|
Kerch G. Severe COVID-19-A Review of Suggested Mechanisms Based on the Role of Extracellular Matrix Stiffness. Int J Mol Sci 2023; 24:1187. [PMID: 36674700 PMCID: PMC9861790 DOI: 10.3390/ijms24021187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The severity of COVID-19 commonly depends on age-related tissue stiffness. The aim was to review publications that explain the effect of microenvironmental extracellular matrix stiffness on cellular processes. Platelets and endothelial cells are mechanosensitive. Increased tissue stiffness can trigger cytokine storm with the upregulated expression of pro-inflammatory cytokines, such as tumor necrosis factor alpha and interleukin IL-6, and tissue integrity disruption, leading to enhanced virus entry and disease severity. Increased tissue stiffness in critically ill COVID-19 patients triggers platelet activation and initiates plague formation and thrombosis development. Cholesterol content in cell membrane increases with aging and further enhances tissue stiffness. Membrane cholesterol depletion decreases virus entry to host cells. Membrane cholesterol lowering drugs, such as statins or novel chitosan derivatives, have to be further developed for application in COVID-19 treatment. Statins are also known to decrease arterial stiffness mitigating cardiovascular diseases. Sulfated chitosan derivatives can be further developed for potential use in future as anticoagulants in prevention of severe COVID-19. Anti-TNF-α therapies as well as destiffening therapies have been suggested to combat severe COVID-19. The inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells pathway must be considered as a therapeutic target in the treatment of severe COVID-19 patients. The activation of mechanosensitive platelets by higher matrix stiffness increases their adhesion and the risk of thrombus formation, thus enhancing the severity of COVID-19.
Collapse
Affiliation(s)
- Garry Kerch
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, 1048 Riga, Latvia
| |
Collapse
|
36
|
Fatmi A, Saadi W, Beltrán-García J, García-Giménez JL, Pallardó FV. The Endothelial Glycocalyx and Neonatal Sepsis. Int J Mol Sci 2022; 24:364. [PMID: 36613805 PMCID: PMC9820255 DOI: 10.3390/ijms24010364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Sepsis carries a substantial risk of morbidity and mortality in newborns, especially preterm-born neonates. Endothelial glycocalyx (eGC) is a carbohydrate-rich layer lining the vascular endothelium, with important vascular barrier function and cell adhesion properties, serving also as a mechano-sensor for blood flow. eGC shedding is recognized as a fundamental pathophysiological process generating microvascular dysfunction, which in turn contributes to multiple organ failure and death in sepsis. Although the disruption of eGC and its consequences have been investigated intensively in the adult population, its composition, development, and potential mechanisms of action are still poorly studied during the neonatal period, and more specifically, in neonatal sepsis. Further knowledge on this topic may provide a better understanding of the molecular mechanisms that guide the sepsis pathology during the neonatal period, and would increase the usefulness of endothelial glycocalyx dysfunction as a diagnostic and prognostic biomarker. We reviewed several components of the eGC that help to deeply understand the mechanisms involved in the eGC disruption during the neonatal period. In addition, we evaluated the potential of eGC components as biomarkers and future targets to develop therapeutic strategies for neonatal sepsis.
Collapse
Affiliation(s)
- Ahlam Fatmi
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
| | - Wiam Saadi
- Department of Biology, Faculty of Nature, Life and Earth Sciences, University of Djillali Bounaama, Khemis Miliana 44225, Algeria
| | - Jesús Beltrán-García
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, CA 92093, USA
| | - José Luis García-Giménez
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| | - Federico V. Pallardó
- INCLIVA Health Research Institute, Mixed Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
37
|
Li L, Cook C, Liu Y, Li J, Jiang J, Li S. Endothelial glycocalyx in hepatopulmonary syndrome: An indispensable player mediating vascular changes. Front Immunol 2022; 13:1039618. [PMID: 36618396 PMCID: PMC9815560 DOI: 10.3389/fimmu.2022.1039618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatopulmonary syndrome (HPS) is a serious pulmonary vascular complication that causes respiratory insufficiency in patients with chronic liver diseases. HPS is characterized by two central pathogenic features-intrapulmonary vascular dilatation (IPVD) and angiogenesis. Endothelial glycocalyx (eGCX) is a gel-like layer covering the luminal surface of blood vessels which is involved in a variety of physiological and pathophysiological processes including controlling vascular tone and angiogenesis. In terms of lung disorders, it has been well established that eGCX contributes to dysregulated vascular contraction and impaired blood-gas barrier and fluid clearance, and thus might underlie the pathogenesis of HPS. Additionally, pharmacological interventions targeting eGCX are dramatically on the rise. In this review, we aim to elucidate the potential role of eGCX in IPVD and angiogenesis and describe the possible degradation-reconstitution equilibrium of eGCX during HPS through a highlight of recent literature. These studies strongly underscore the therapeutic rationale in targeting eGCX for the treatment of HPS.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| | - Christopher Cook
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, United States
| | - Yale Liu
- Department of Dermatology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianzhong Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jiantao Jiang
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shaomin Li
- Department of Thoracic Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China,*Correspondence: Liang Li, ; Shaomin Li,
| |
Collapse
|
38
|
Shock-Driven Endotheliopathy in Trauma Patients Is Associated with Leucocyte Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms232415990. [PMID: 36555630 PMCID: PMC9782606 DOI: 10.3390/ijms232415990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Endotheliopathy following trauma is associated with poor outcome, but the underlying mechanisms are unknown. This study hypothesized that an increased extracellular vesicle (EV) concentration is associated with endotheliopathy after trauma and that red blood cell (RBC) transfusion could further enhance endotheliopathy. In this post hoc sub study of a multicentre observational trial, 75 trauma patients were stratified into three groups based on injury severity score or shock. In patient plasma obtained at hospital admission and after transfusion of four RBC transfusions, markers for endotheliopathy were measured and EVs were labelled with anti CD41 (platelet EVs), anti CD235a (red blood cell EVs), anti CD45 (leucocyte EVs), anti CD144 (endothelial EVs) or anti CD62e (activated endothelial EVs) and EV concentrations were measured with flow cytometry. Statistical analysis was performed by a Kruskall Wallis test with Bonferroni correction or Wilcoxon rank test for paired data. In patients with shock, syndecan-1 and von Willebrand Factor (vWF) were increased compared to patients without shock. Additionally, patients with shock had increased red blood cell EV and leucocyte EV concentrations compared to patients without shock. Endotheliopathy markers correlated with leucocyte EVs (ρ = 0.263, p = 0.023), but not with EVs derived from other cells. Injury severity score had no relation with EV release. RBC transfusion increased circulating red blood cell EVs but did not impact endotheliopathy. In conclusion, shock is (weakly) associated with EVs from leucocytes, suggesting an immune driven pathway mediated (at least in part) by shock.
Collapse
|
39
|
Liu Y, Chen S, Liu S, Sun G, Sun Z, Liu H. Association of endothelial glycocalyx shedding and coronary microcirculation assessed by an angiography-derived index of microcirculatory resistance in patients with suspected coronary artery disease. Front Cardiovasc Med 2022; 9:950102. [PMID: 36158787 PMCID: PMC9493183 DOI: 10.3389/fcvm.2022.950102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 08/23/2022] [Indexed: 11/30/2022] Open
Abstract
Background The endothelial glycocalyx (EG) is essential for maintaining microvascular homeostasis. However, the relationship between the EG and coronary microcirculation remains to be elucidated. One of the main components of EG is syndecan-1, and its shedding has been claimed to represent the state of the EG. In this study, we aimed to analyze the association between syndecan-1 and the coronary microcirculation. Methods We enrolled suspected coronary artery disease (CAD) patients who consecutively underwent coronary angiography (CAG) and angiography-based analysis of physiological indices in the left anterior descending artery (LAD). Serum syndecan-1 was measured by enzyme-linked immunosorbent assay (ELISA). The coronary microcirculation was evaluated by the presence of coronary microvascular dysfunction (CMD) and an impaired microvascular vasodilatory capacity (IMVC), which were quantified by an angiography-derived index of microcirculatory resistance (IMRangio) in the maximum hyperemic state (H-IMRangio) induced by adenosine triphosphate and the ratio (RRRangio) of IMRangio in the non-hyperemic phase to H-IMRangio, respectively. Results A total of 528 patients were enrolled in this study. There was no difference in epicardial coronary complexity between patients with high syndecan-1 (HSG) and low syndecan-1 (LSG) levels grouped by the median concentration of syndecan-1 (SYNTAX: 7[3, 10] vs. 9[4, 12], P = 0.15). However, H-IMRangio and RRRangio were different between the LSG and HSG groups (H-IMRangio: 23.64 ± 6.28 vs. 27.67 ± 5.59, P < 0.01; RRRangio: 1.74[1.46, 2.08] vs. 1.55[1.34, 1.72], P < 0.01). Patients with CMD (H-IMRangio > 25) and patients with IMVC (RRRangio below the median value) both had higher syndecan-1 levels (CMD: 86.44 ± 54.15 vs. 55.2 ± 43.72, P < 0.01; IMVC: 83.86 ± 55.41 vs. 59.68 ± 45.06, P < 0.01). After adjustment for confounding factors, HSG remained associated with the presence of CMD and IMVC (CMD: odds ratio [OR]: 2.769, P < 0.01; IMVC: OR: 1.908, P < 0.01). Conclusion High levels of syndecan-1 are independently associated with the presence of CMD and IMVC among patients with suspected CAD.
Collapse
Affiliation(s)
- Yang Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Si Chen
- Department of Cardiology, First Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Shaoyan Liu
- Department of Cardiology, Yantai Municipal Laiyang Central Hospital, Yantai, China
| | - Guoqiang Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Zhijun Sun
- Department of Cardiology, Sixth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Hongbin Liu
- Medical School of Chinese People’s Liberation Army, Beijing, China
- Department of Cardiology, Second Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Chronic Heart Failure Precision Medicine, Beijing, China
- *Correspondence: Hongbin Liu,
| |
Collapse
|
40
|
Goligorsky MS. Emerging Insights into Glomerular Vascular Pole and Microcirculation. J Am Soc Nephrol 2022; 33:1641-1648. [PMID: 35853715 PMCID: PMC9529196 DOI: 10.1681/asn.2022030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 01/14/2023] Open
Abstract
The glomerular vascular pole is the gate for the afferent and efferent arterioles and mesangial cells and a frequent location of peripolar cells with an unclear function. It has been studied in definitive detail for >30 years, and functionally interrogated in the context of signal transduction from the macula densa to the mesangial cells and afferent arteriolar smooth muscle cells from 10 to 20 years ago. Two recent discoveries shed additional light on the vascular pole, with possibly far-reaching implications. One, which uses novel serial section electron microscopy, reveals a shorter capillary pathway between the basins of the afferent and efferent arterioles. Such a pathway, when patent, may short-circuit the multitude of capillaries in the glomerular tuft. Notably, this shorter capillary route is enclosed within the glomerular mesangium. The second study used anti-Thy1.1-induced mesangiolysis and intravital microscopy to unequivocally establish in vivo the long-suspected contractile function of mesangial cells, which have the ability to change the geometry and curvature of glomerular capillaries. These studies led me to hypothesize the existence of a glomerular perfusion rheostat, in which the shorter path periodically fluctuates between being more and less patent. This action reduces or increases blood flow through the entire glomerular capillary tuft. A corollary is that the GFR is a net product of balance between the states of capillary perfusion, and that deviations from the balanced state would increase or decrease GFR. Taken together, these studies may pave the way to a more profound understanding of glomerular microcirculation under basal conditions and in progression of glomerulopathies.
Collapse
Affiliation(s)
- Michael S. Goligorsky
- Renal Research Institute, New York Medical College at the Touro University, Valhalla, New York
| |
Collapse
|
41
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
42
|
On non-Kolmogorov turbulence in blood flow and its possible role in mechanobiological stimulation. Sci Rep 2022; 12:13166. [PMID: 35915207 PMCID: PMC9343407 DOI: 10.1038/s41598-022-16079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 01/09/2023] Open
Abstract
The study of turbulence in physiologic blood flow is important due to its strong relevance to endothelial mechanobiology and vascular disease. Recently, Saqr et al. (Sci Rep 10, 15,492, 2020) discovered non-Kolmogorov turbulence in physiologic blood flow in vivo, traced its origins to the Navier–Stokes equation and demonstrated some of its properties using chaos and hydrodynamic-stability theories. The present work extends these findings and investigates some inherent characteristics of non-Kolmogorov turbulence in monoharmonic and multiharmonic pulsatile flow under ideal physiologic conditions. The purpose of this work is to propose a conjecture for the origins for picoNewton forces that are known to regulate endothelial cells’ functions. The new conjecture relates these forces to physiologic momentum-viscous interactions in the near-wall region of the flow. Here, we used high-resolution large eddy simulation (HRLES) to study pulsatile incompressible flow in a straight pipe of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L/D=20$$\end{document}L/D=20. The simulations presented Newtonian and Carreau–Yasuda fluid flows, at \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$R{e}_{m}\approx 250$$\end{document}Rem≈250, each represented by one, two and three boundary harmonics. Comparison was established based on maintaining constant time-averaged mass flow rate in all simulations. First, we report the effect of primary harmonics on the global power budget using primitive variables in phase space. Second, we describe the non-Kolmogorov turbulence in frequency domain. Third, we investigate the near-wall coherent structures in time and space domains. Finally, we propose a new conjecture for the role of turbulence in endothelial cells’ mechanobiology. The proposed conjecture correlates near-wall turbulence to a force field of picoNewton scale, suggesting possible relevance to endothelial cells mechanobiology.
Collapse
|
43
|
Richter RP, Payne GA, Ambalavanan N, Gaggar A, Richter JR. The endothelial glycocalyx in critical illness: A pediatric perspective. Matrix Biol Plus 2022; 14:100106. [PMID: 35392182 PMCID: PMC8981764 DOI: 10.1016/j.mbplus.2022.100106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 12/18/2022] Open
Abstract
The vascular endothelium is the interface between circulating blood and end organs and thus has a critical role in preserving organ function. The endothelium is lined by a glycan-rich glycocalyx that uniquely contributes to endothelial function through its regulation of leukocyte and platelet interactions with the vessel wall, vascular permeability, coagulation, and vasoreactivity. Degradation of the endothelial glycocalyx can thus promote vascular dysfunction, inflammation propagation, and organ injury. The endothelial glycocalyx and its role in vascular pathophysiology has gained increasing attention over the last decade. While studies characterizing vascular glycocalyx injury and its downstream consequences in a host of adult human diseases and in animal models has burgeoned, studies evaluating glycocalyx damage in pediatric diseases are relatively few. As children have unique physiology that differs from adults, significant knowledge gaps remain in our understanding of the causes and effects of endothelial glycocalyx disintegrity in pediatric critical illness. In this narrative literature overview, we offer a unique perspective on the role of the endothelial glycocalyx in pediatric critical illness, drawing from adult and preclinical data in addition to pediatric clinical experience to elucidate how marked derangement of the endothelial surface layer may contribute to aberrant vascular biology in children. By calling attention to this nascent field, we hope to increase research efforts to address important knowledge gaps in pediatric vascular biology that may inform the development of novel therapeutic strategies.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CD, cell differentiation marker
- COVID-19, coronavirus disease 2019
- CPB, cardiopulmonary bypass
- CT, component therapy
- Children
- Critical illness
- DENV NS1, dengue virus nonstructural protein 1
- DM, diabetes mellitus
- ECLS, extracorporeal life support
- ECMO, extracorporeal membrane oxygenation
- EG, endothelial glycocalyx
- Endothelial glycocalyx
- FFP, fresh frozen plasma
- GAG, glycosaminoglycan
- GPC, glypican
- HPSE, heparanase
- HSV, herpes simplex virus
- IV, intravenous
- MIS-C, multisystem inflammatory syndrome in children
- MMP, matrix metalloproteinase
- Pragmatic, Randomized Optimal Platelet and Plasma Ratios
- RHAMM, receptor for hyaluronan-mediated motility
- S protein, spike protein
- SAFE, Saline versus Albumin Fluid Evaluation
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SDC, syndecan
- SDF, sidestream darkfield
- SIRT1, sirtuin 1
- TBI, traumatic brain injury
- TBSA, total body surface area
- TMPRSS2, transmembrane protease serine 2
- Th2, type 2 helper T cell
- VSMC, vascular smooth muscle cell
- Vascular biology
- WB+CT, whole blood and component therapy
- eNOS, endothelial nitric oxide synthase
Collapse
Affiliation(s)
- Robert P. Richter
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory A. Payne
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Namasivayam Ambalavanan
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Translational Research in Normal and Disordered Development Program, University of Alabama, Birmingham, AL, USA
| | - Amit Gaggar
- Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jillian R. Richter
- Center for Injury Science, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
44
|
Milusev A, Rieben R, Sorvillo N. The Endothelial Glycocalyx: A Possible Therapeutic Target in Cardiovascular Disorders. Front Cardiovasc Med 2022; 9:897087. [PMID: 35647072 PMCID: PMC9136230 DOI: 10.3389/fcvm.2022.897087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
The physiological, anti-inflammatory, and anti-coagulant properties of endothelial cells (ECs) rely on a complex carbohydrate-rich layer covering the luminal surface of ECs, called the glycocalyx. In a range of cardiovascular disorders, glycocalyx shedding causes endothelial dysfunction and inflammation, underscoring the importance of glycocalyx preservation to avoid disease initiation and progression. In this review we discuss the physiological functions of the glycocalyx with particular focus on how loss of endothelial glycocalyx integrity is linked to cardiovascular risk factors, like hypertension, aging, diabetes and obesity, and contributes to the development of thrombo-inflammatory conditions. Finally, we consider the role of glycocalyx components in regulating inflammatory responses and discuss possible therapeutic interventions aiming at preserving or restoring the endothelial glycocalyx and therefore protecting against cardiovascular disease.
Collapse
Affiliation(s)
- Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
- *Correspondence: Nicoletta Sorvillo
| |
Collapse
|
45
|
Effect of Sulodexide on Circulating Blood Cells in Patients with Mild COVID-19. J Clin Med 2022; 11:jcm11071995. [PMID: 35407602 PMCID: PMC8999543 DOI: 10.3390/jcm11071995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Background. Despite the fact that COVID-19 usually manifests with severe pneumonia, there is a growing body of evidence that life-threatening multiorgan damage is caused by vascular and hemostatic abnormalities. Since there is no established therapy, assessing antithrombotics is indeed important. Sulodexide, a compound derived from porcine intestinal mucosa is a mixture of fast-moving heparin fraction (80%) and dermatan sulfate (20%), is approved in Europe and currently in trials for COVID-19 indication. Methods. This single-center, prospective, observational study included 28 patients with mild COVID-19 hospitalized in the Central Clinical Hospital of the Presidential Administration of the Russian Federation. Patients in the control group (n = 14) were treated using routine therapy according to current guidelines, while patients in the experimental group (n = 14) had the routine treatment supplemented with daily intravenous injections of sulodexide in 600-unit doses. Scanning electron microscopy was utilized to examine the blood specimens derived from the cubital vein at admission and at 10 days after hospitalization, which was approximately the average duration of patients’ treatment in the hospital (11.6 ± 0.4 days). Results. Sulodexide significantly (by 40%) diminished the score of circulating endothelial cells, potentially indicating its antiviral endothelium-protective properties. It also prevented the extra activation of the platelets and the formation of erythrocytic sludges. Among patients in the control group, the share of activated platelets rose from 37 ± 5% to 45 ± 6% (p = 0.04) over the course of the study period, whereas among patients in the experimental group, the share of activated platelets remained practically unchanged (43 ± 6% vs. 38 ± 4%, p = 0.22). The score of erythrocytic sludges in the control group remained practically the same (4.8 ± 1.1 at admission vs. 3.9 ± 0.9 after 10 days, p = 0.67), whereas in the experimental group, it significantly decreased (from 5.7 ± 1.7 to 2.4 ± 0.9, p = 0.03). Conclusions. Sulodexide is able to defend endothelium, normalize blood, and, seemingly, prevent thrombosis. Therefore, it may be considered as a promising and effective agent for the treatment of patients with mild COVID-19. Broader randomized trials are needed to assess whether the observed findings will transform into sustained long-term clinical benefit.
Collapse
|
46
|
Molecular dynamics simulation: A new way to understand the functionality of the endothelial glycocalyx. Curr Opin Struct Biol 2022; 73:102330. [DOI: 10.1016/j.sbi.2022.102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
|
47
|
Gao F, Zhao Y, Zhang B, Xiao C, Sun Z, Gao Y, Dou X. SESN1 attenuates the Ox‑LDL‑induced inflammation, apoptosis and endothelial‑mesenchymal transition of human umbilical vein endothelial cells by regulating AMPK/SIRT1/LOX1 signaling. Mol Med Rep 2022; 25:161. [PMID: 35293601 PMCID: PMC8941522 DOI: 10.3892/mmr.2022.12678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/10/2022] [Indexed: 11/06/2022] Open
Abstract
Endothelial cells are an important component of the heart and vasculature and form a crucial link between the cardiovascular system and the immune system. Sestrin 1 (SESN1) has an important role in atherosclerosis by inhibiting NOD-like receptor family pyrin domain containing 3 inflammasome activation. However, whether SESN1 is involved in human umbilical vein endothelial cell (HUVEC) injury caused by atherosclerosis has remained to be elucidated. The present study aimed to investigate the functions of SESN1 in the inflammatory response, apoptosis and endothelial-mesenchymal transition (EndMT) of HUVECs following stimulation with oxidized low-density lipoprotein (Ox-LDL). SESN1 expression at the mRNA and protein levels was detected using reverse transcription-quantitative PCR (RT-qPCR) and western blot analysis. Following SESN1 overexpression in Ox-LDL-stimulated HUVECs, cell viability was determined using a Cell Counting Kit-8 assay. Terminal deoxynucleotidyl transferase-mediated nick-end labeling staining was employed to detect cell apoptosis and western blot analysis was used to determine the levels of apoptosis-related proteins. RT-qPCR, ELISA and western blot were utilized to determine the levels of inflammatory factors. Immunofluorescence staining, RT-qPCR and western blot analysis were employed to assess the EndMT of Ox-LDL-stimulated HUVECs. The results revealed that SESN1 exhibited a low expression in HUVECs following Ox-LDL stimulation. SESN1 overexpression suppressed inflammation, apoptosis and EndMT in Ox-LDL-induced HUVECs. In addition, SESN1 stimulated adenosine monophosphate-activated protein kinase catalytic subunit α1/sirtuin 1 signaling to suppress Ox-LDL receptor-1 expression. An AMPK and SIRT1 inhibitor reversed the effects of SESN1 overexpression on the inflammatory response, apoptosis and EndMT of HUVECs exposed to Ox-LDL. Taken together, the present study demonstrated that SENS1 exerts a suppressive effect on Ox-LDL-induced inflammation, apoptosis and EndMT of HUVECs, suggesting that SENS1 may be used as a novel biomarker for endothelial injury-related disorders.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Yongcheng Zhao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Bin Zhang
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Chunwei Xiao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Zhanfa Sun
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Yuan Gao
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| | - Xueyong Dou
- Department of Cardiovascular Surgery, Xuzhou Cancer Hospital, Xuzhou, Jiangsu 221005, P.R. China
| |
Collapse
|
48
|
Targeting Arginine in COVID-19-Induced Immunopathology and Vasculopathy. Metabolites 2022; 12:metabo12030240. [PMID: 35323682 PMCID: PMC8953281 DOI: 10.3390/metabo12030240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) represents a major public health crisis that has caused the death of nearly six million people worldwide. Emerging data have identified a deficiency of circulating arginine in patients with COVID-19. Arginine is a semi-essential amino acid that serves as key regulator of immune and vascular cell function. Arginine is metabolized by nitric oxide (NO) synthase to NO which plays a pivotal role in host defense and vascular health, whereas the catabolism of arginine by arginase to ornithine contributes to immune suppression and vascular disease. Notably, arginase activity is upregulated in COVID-19 patients in a disease-dependent fashion, favoring the production of ornithine and its metabolites from arginine over the synthesis of NO. This rewiring of arginine metabolism in COVID-19 promotes immune and endothelial cell dysfunction, vascular smooth muscle cell proliferation and migration, inflammation, vasoconstriction, thrombosis, and arterial thickening, fibrosis, and stiffening, which can lead to vascular occlusion, muti-organ failure, and death. Strategies that restore the plasma concentration of arginine, inhibit arginase activity, and/or enhance the bioavailability and potency of NO represent promising therapeutic approaches that may preserve immune function and prevent the development of severe vascular disease in patients with COVID-19.
Collapse
|
49
|
Wang B, Liu Y, Jiang R, Liu Z, Gao H, Chen F, Mei J. Emodin relieves the inflammation and pyroptosis of lipopolysaccharide-treated 1321N1 cells by regulating methyltransferase-like 3 -mediated NLR family pyrin domain containing 3 expression. Bioengineered 2022; 13:6740-6749. [PMID: 35246004 PMCID: PMC8973593 DOI: 10.1080/21655979.2022.2045836] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sepsis brain injury (SBI) is a major cause of death in critically ill patients. The present study aimed to investigate the role of emodin in SBI development. Human astrocyte 1321N1 cells were stimulated with 100 ng/mL lipopolysaccharide (LPS) to establish an SBI model in vitro. Flow cytometry was performed to measure the cell pyroptosis. The protein expression levels of syndecan-1 (SDC-1), NLR family pyrin domain containing 3 (NLRP3), Caspase-1, and the N-terminal fragment of gasdermin D (GSDMD-N) were measured using Western blotting. Interleukin (IL)-1β, IL-6, IL-10, and tumor necrosis factor (TNF)-α levels in cells were measured using enzyme-linked immunosorbent assay kits. The N6-methyladenosine (m6A) modification was analyzed using the methylated RNA immunoprecipitation assay. NLRP3 activator, nigericin, was used to overexpress NLRP3. LPS treatment significantly enhanced the pyroptosis in 1321N1 cells, increased the levels of TNF-α, IL-1β, and IL-6, and decreased the levels of IL-10. The protein expression levels of NLRP3, SDC-1, GSDMD-N, and Caspase-1 were also increased. Emodin treatment decreased the levels of TNF-α, IL-1β, IL-6, NLRP3, SDC-1, GSDMD-N, and Caspase-1, while increasing the levels of IL-10 in LPS-treated 1321N1 cells. Nigericin reversed the effects of emodin. Furthermore, emodin upregulated m6A levels in NLRP3 by increasing the expression of methyltransferase-like 3 (METTL3). Meanwhile, knockdown of METTL3 reversed the effects of emodin on the mRNA expression and stability of NLRP3. Therefore, emodin inhibits the inflammation and pyroptosis of LPS-treated 1321N1 cells by inactivating METTL3-mediated NLRP3 expression.
Collapse
Affiliation(s)
- Bu Wang
- Department of Emergency, The First Affiliated Hospital of Hebei Traditional Chinese Medicine University, Shijiazhuang, Hebei, China.,Department of Emergency Critical Care Medicine, East Branch of the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yuan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Hebei Traditional Chinese Medicine University, Shijiazhuang, Hebei, China
| | - Rui Jiang
- Department of Basic Nursing, School of Nursing, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiliang Liu
- Department of Emergency, Hebei Yiling Hospital, Shijiazhuang, Hebei, China
| | - Haiyun Gao
- Department of Emergency, The First Affiliated Hospital of Hebei Traditional Chinese Medicine University, Shijiazhuang, Hebei, China
| | - Fenqiao Chen
- Department of Emergency, The First Affiliated Hospital of Hebei Traditional Chinese Medicine University, Shijiazhuang, Hebei, China
| | - Jianqiang Mei
- Department of Emergency, The First Affiliated Hospital of Hebei Traditional Chinese Medicine University, Shijiazhuang, Hebei, China
| |
Collapse
|
50
|
Barry M, Pati S. Targeting repair of the vascular endothelium and glycocalyx after traumatic injury with plasma and platelet resuscitation. Matrix Biol Plus 2022; 14:100107. [PMID: 35392184 PMCID: PMC8981767 DOI: 10.1016/j.mbplus.2022.100107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/10/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Endothelial glycocalyx shedding is a key instigator of the endotheliopathy of trauma. Plasma and platelet transfusions preserve vascular integrity in pre-clinical models. However, platelets may be less effective than plasma in preserving the glycocalyx.
Severely injured patients with hemorrhagic shock can develop endothelial dysfunction, systemic inflammation, and coagulation disturbances collectively known as the endotheliopathy of trauma (EOT). Shedding of the endothelial glycocalyx occurs early after injury, contributes to breakdown of the vascular barrier, and plays a critical role in the pathogenesis of multiple organ dysfunction, leading to poor outcomes in trauma patients. In this review we discuss (i) the pathophysiology of endothelial glycocalyx and vascular barrier breakdown following hemorrhagic shock and trauma, and (ii) the role of plasma and platelet transfusion in maintaining the glycocalyx and vascular endothelial integrity.
Collapse
Affiliation(s)
- Mark Barry
- University of California, San Francisco, Department of Surgery. 513 Parnassus Ave., San Francisco, CA 94143, United States
- Corresponding author.
| | - Shibani Pati
- University of California, San Francisco, Department of Surgery. 513 Parnassus Ave., San Francisco, CA 94143, United States
- University of California, San Francisco, Department of Laboratory Medicine. 513 Parnassus Ave., San Francisco, CA 94143, United States
| |
Collapse
|