1
|
Niijima R, Otani K, Kodama T, Okada M, Yamawaki H. Minocycline prevents monocrotaline-induced pulmonary hypertension through the attenuation of endothelial dysfunction and vascular wall thickening. J Pharmacol Sci 2025; 157:39-44. [PMID: 39706644 DOI: 10.1016/j.jphs.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
Pulmonary hypertension (PH) is a progressive disease with a poor prognosis in which high pulmonary artery pressure leads to right heart failure, therefore, there is an urgent need to elucidate pathological mechanisms and to develop new treatment for PH. Minocycline has not only antibacterial effects but also anti-inflammatory effects in various tissues. We hypothesize that minocycline could prevent PH development in rats. PH was induced by a single intraperitoneal injection of monocrotaline (MCT, 60 mg/kg), and minocycline (20 mg/kg) was treated daily for 14 days from the day of MCT injection. Minocycline inhibited the rise in mean pulmonary arterial pressure of MCT-induced PH rats and improved the attenuation of acetylcholine-induced relaxation in isolated intrapulmonary artery from MCT-induced PH rats. Minocycline further inhibited vascular wall thickening of pulmonary arterioles and showed a tendency to inhibit the muscularization of pulmonary arterioles in MCT-induced PH rats. PH-preventing effect of minocycline does not seem to be mediated via the actions on matrix metalloproteinase, inflammatory cytokines, and mast cells migration in lung. In summary, we revealed for the first time that minocycline ameliorated the MCT-induced PH in rats, at least partly through preventing pulmonary artery endothelial dysfunction and wall thickening.
Collapse
Affiliation(s)
- Ryo Niijima
- Kitasato University Veterinary Teaching Hospital, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Kosuke Otani
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Tomoko Kodama
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Muneyoshi Okada
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan
| | - Hideyuki Yamawaki
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine, Kitasato University, Higashi 23 Bancho 35-1, Towada, Aomori, 034-8628, Japan.
| |
Collapse
|
2
|
Flores-Conner N, Brazil M, Whittle M, Shah A, Jelly C. Severe Reversible Pulmonary Hypertension in a Patient with Shone Complex Presenting for Heart Transplantation. J Cardiothorac Vasc Anesth 2024:S1053-0770(24)01010-3. [PMID: 39799048 DOI: 10.1053/j.jvca.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025]
Affiliation(s)
- Nicholas Flores-Conner
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN; Department of Anesthesiology, Emory University Hospital, Atlanta, GA
| | - Molly Brazil
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Maggie Whittle
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Ashish Shah
- Department of Cardiac Surgery. Vanderbilt University Medical Center, Nashville, TN
| | - Christina Jelly
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
3
|
He M, Zeng Q. Comment on "Implication of heart rhythm complexity in predicting long-term outcomes in pulmonary hypertension". J Formos Med Assoc 2024:S0929-6646(24)00584-9. [PMID: 39721839 DOI: 10.1016/j.jfma.2024.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Miao He
- Cardiopulmonary Rehabilitation Center, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Guangxi Zhuang Autonomous Region, China
| | - Qing Zeng
- Department of Cardiology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
4
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
5
|
DeVaughn H, Rich HE, Shadid A, Vaidya PK, Doursout MF, Shivshankar P. Complement Immune System in Pulmonary Hypertension-Cooperating Roles of Circadian Rhythmicity in Complement-Mediated Vascular Pathology. Int J Mol Sci 2024; 25:12823. [PMID: 39684535 DOI: 10.3390/ijms252312823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Originally discovered in the 1890s, the complement system has traditionally been viewed as a "compliment" to the body's innate and adaptive immune response. However, emerging data have shown that the complement system is a much more complex mechanism within the body involved in regulating inflammation, gene transcription, attraction of macrophages, and many more processes. Sustained complement activation contributes to autoimmunity and chronic inflammation. Pulmonary hypertension is a disease with a poor prognosis and an average life expectancy of 2-3 years that leads to vascular remodeling of the pulmonary arteries; the pulmonary arteries are essential to host homeostasis, as they divert deoxygenated blood from the right ventricle of the heart to the lungs for gas exchange. This review focuses on direct links between the complement system's involvement in pulmonary hypertension, along with autoimmune conditions, and the reliance on the complement system for vascular remodeling processes of the pulmonary artery. Furthermore, circadian rhythmicity is highlighted as the disrupted homeostatic mechanism in the inflammatory consequences in the vascular remodeling within the pulmonary arteries, which could potentially open new therapeutic cues. The current treatment options for pulmonary hypertension are discussed with clinical trials using complement inhibitors and potential therapeutic targets that impact immune cell functions and complement activation, which could alleviate symptoms and block the progression of the disease. Further research on complement's involvement in interstitial lung diseases and pulmonary hypertension could prove beneficial for our understanding of these various diseases and potential treatment options to prevent vascular remodeling of the pulmonary arteries.
Collapse
Affiliation(s)
- Hunter DeVaughn
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Haydn E Rich
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Anthony Shadid
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Priyanka K Vaidya
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Marie-Francoise Doursout
- Department of Anesthesiology, Critical Care and Pain Medicine, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| | - Pooja Shivshankar
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
- Center for Immunology and Autoimmune Diseases, The Brown Foundation Institute of Molecular Medicine for Prevention of Human Diseases, UTHealth-McGovern Medical School, Houston, TX 77030, USA
| |
Collapse
|
6
|
Tang J, Yang R, Li H, Wei X, Yang Z, Cai W, Jiang Y, Zhuo G, Meng L, Xu Y. Derivation and internal validation of prediction models for pulmonary hypertension risk assessment in a cohort inhabiting Tibet, China. eLife 2024; 13:RP98169. [PMID: 39526735 PMCID: PMC11554304 DOI: 10.7554/elife.98169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Individuals residing in plateau regions are susceptible to pulmonary hypertension (PH) and there is an urgent need for a prediction nomogram to assess the risk of PH in this population. A total of 6603 subjects were randomly divided into a derivation set and a validation set at a ratio of 7:3. Optimal predictive features were identified through the least absolute shrinkage and selection operator regression technique, and nomograms were constructed using multivariate logistic regression. The performance of these nomograms was evaluated and validated using the area under the curve (AUC), calibration curves, the Hosmer-Lemeshow test, and decision curve analysis. Comparisons between nomograms were conducted using the net reclassification improvement (NRI) and integrated discrimination improvement (IDI) indices. NomogramI was established based on independent risk factors, including gender, Tibetan ethnicity, age, incomplete right bundle branch block (IRBBB), atrial fibrillation (AF), sinus tachycardia (ST), and T wave changes (TC). The AUCs for NomogramI were 0.716 in the derivation set and 0.718 in the validation set. NomogramII was established based on independent risk factors, including Tibetan ethnicity, age, right axis deviation, high voltage in the right ventricle, IRBBB, AF, pulmonary P waves, ST, and TC. The AUCs for NomogramII were 0.844 in the derivation set and 0.801 in the validation set. Both nomograms demonstrated satisfactory clinical consistency. The IDI and NRI indices confirmed that NomogramII outperformed NomogramI. Therefore, the online dynamic NomogramII was established to predict the risks of PH in the plateau population.
Collapse
Affiliation(s)
- Junhui Tang
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Rui Yang
- Department of High Mountain Sickness, the General Hospital of Tibet Military CommandTibetChina
| | - Hui Li
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Xiaodong Wei
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Zhen Yang
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Wenbin Cai
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Yao Jiang
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Ga Zhuo
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Li Meng
- Department of Ultrasound, the General Hospital of Tibet Military CommandTibetChina
| | - Yali Xu
- Department of Ultrasound, Xinqiao Hospital, Army Medical UniversityChongqingChina
| |
Collapse
|
7
|
Liu A, Wang Y, Zheng S, Bao Z, Zhu H, Yin L, Liu C, Zhao X, Zhao Z, Zhu D, Yu H. Endonuclear Circ-calm4 regulates ferroptosis via a circR-Loop of the COMP gene in pulmonary artery smooth muscle cells. Eur J Pharmacol 2024; 982:176944. [PMID: 39187041 DOI: 10.1016/j.ejphar.2024.176944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Pulmonary hypertension (PH) is a serious pulmonary vascular disease characterized by vascular remodeling. Circular RNAs (CircRNAs) play important roles in pulmonary hypertension, but the mechanism of PH is not fully understood, particularly the roles of circRNAs located in the nucleus. Circ-calmodulin 4 (circ-calm4) is expressed in both the cytoplasm and the nucleus of pulmonary arterial smooth muscle cells (PASMCs). This study aimed to investigate the role of endonuclear circ-calm4 in PH and elucidate its underlying signaling pathway in ferroptosis. Immunoblotting, quantitative real-time polymerase chain reaction (PCR), malondialdehyde (MDA) assay, immunofluorescence, iron assay, dot blot, and chromatin immunoprecipitation (ChIP) were performed to investigate the role of endonuclear circ-calm4 in PASMC ferroptosis. Increased endonuclear circ-calm4 facilitated ferroptosis in PASMCs under hypoxic conditions. We further identified the cartilage oligomeric matrix protein (COMP) as a downstream effector of circ-calm4 that contributed to the occurrence of hypoxia-induced ferroptosis in PASMCs. Importantly, we confirmed that endonuclear circ-calm4 formed circR-loops with the promoter region of the COMP gene and negatively regulated its expression. Inhibition of COMP restored the phenotypes related to ferroptosis under hypoxia stimulation combined with antisense oligonucleotide (ASO)-circ-calm4 treatment. We conclude that the circ-calm4/COMP axis contributed to hypoxia-induced ferroptosis in PASMCs and that circ-calm4 formed circR-loops with the COMP promoter in the nucleus and negatively regulated its expression. The circ-calm4/COMP axis may be useful for the design of therapeutic strategies for protecting cellular functionality against ferroptosis and pulmonary hypertension.
Collapse
MESH Headings
- Animals
- Male
- Mice
- Cartilage Oligomeric Matrix Protein/genetics
- Cartilage Oligomeric Matrix Protein/metabolism
- Cell Hypoxia/genetics
- Cell Nucleus/metabolism
- Cells, Cultured
- Ferroptosis/genetics
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Aijing Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Yingqi Wang
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Shuang Zheng
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Zhitu Bao
- Department of Chest Surgery, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - He Zhu
- Department of Oncology, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang Province, China
| | - Lulu Yin
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Chunmiao Liu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Xiaoxu Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Ziru Zhao
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), China; College of Pharmacy, Harbin Medical University, China.
| | - Hang Yu
- Department of Basic Medicine, Harbin Medical University (Daqing), Heilongjiang Province, China.
| |
Collapse
|
8
|
Fang SC, Huang CY, Huang SM, Shao YJ. Associations and relative risks of pulmonary hypertension and lung diseases in individuals with methamphetamine use disorder. Pulmonology 2024; 30:577-585. [PMID: 36907811 DOI: 10.1016/j.pulmoe.2023.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE Methamphetamine causes considerable short- and long-term adverse health effects. Our aim was to assess the effects of methamphetamine use on pulmonary hypertension and lung diseases at the population level. METHODS This population-based retrospective study used data from the Taiwan National Health Insurance Research Database between 2000 and 2018 that included 18,118 individuals with methamphetamine use disorder (MUD) and 90,590 matched participants of the same age and sex without substance use disorder as the non-exposed group. A conditional logistic regression model was used to estimate associations of methamphetamine use with pulmonary hypertension and lung diseases such as lung abscess, empyema, pneumonia, emphysema, pleurisy, pneumothorax, or pulmonary hemorrhage. Incidence rate ratios (IRRs) of pulmonary hypertension and hospitalization due to lung diseases were determined between the methamphetamine group and non-methamphetamine group using negative binomial regression models. RESULTS During an 8-year observation period, 32 (0.2%) individuals with MUD and 66 (0.1%) non-methamphetamine participants suffered from pulmonary hypertension, and 2652 (14.6%) individuals with MUD and 6157 (6.8%) non-methamphetamine participants suffered from lung diseases. After adjusting for demographic characteristics and comorbidities, individuals with MUD were 1.78 times (95% confidence interval (CI) = 1.07-2.95) more likely to have pulmonary hypertension and 1.98 times (95% CI = 1.88-2.08) more likely to have a lung disease, especially emphysema, lung abscess, and pneumonia in descending order. Furthermore, compared to the non-methamphetamine group, the methamphetamine group was associated with higher risks of hospitalization caused by pulmonary hypertension and lung diseases. The respective IRRs were 2.79 and 1.67. Individuals with polysubstance use disorder were associated with higher risks of empyema, lung abscess, and pneumonia compared to individuals with MUD alone, with respective adjusted odds ratios of 2.96, 2.21, and 1.67. However, pulmonary hypertension and emphysema did not differ significantly between MUD individuals with or without polysubstance use disorder. CONCLUSIONS Individuals with MUD were associated with higher risks of pulmonary hypertension and lung diseases. Clinicians need to ensure that a methamphetamine exposure history is obtained as part of the workup for these pulmonary diseases and provide timely management for this contributing factor.
Collapse
Affiliation(s)
- S C Fang
- Department of Nursing, Mackay Medical College, New Taipei City, Taiwan
| | - C Y Huang
- Department of Community Psychiatry, Bali Psychiatric Center, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - S M Huang
- Department of Nursing, Mackay Medical College, New Taipei City, Taiwan
| | - Y J Shao
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
9
|
Li H, Huang Z, Zhang G, Shen Q, Fei H, Luo D, Yang Z, Zhang B, Zhang C. Echocardiographic Screening Model for Improved Assessment of Atrial Septal Defect Closure: A Multicenter Retrospective Study. Echocardiography 2024; 41:e70023. [PMID: 39469758 DOI: 10.1111/echo.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Atrial septal defect (ASD) is a prevalent congenital heart condition in adults, which finally leads to pulmonary hypertension and right heart failure if left untreated. Right heart catheterization (RHC), the current gold standard for determining ASD closure feasibility, is invasive. Thus, a noninvasive prescreening tool is urgently needed. METHODS AND RESULTS In a multicenter, retrospective study, we assessed 924 ASD patients (2012-2022) to determine their suitability for ASD closure. Using LASSO regression, we identified predictors for a correctable shunt, enabling us to create the ASD model. The ASD model, comprising of estimated pulmonary artery systolic pressure (ePASP), peak velocity through the pulmonary valve (PV), peak E-wave velocity through the tricuspid valve (TVE), and right atrial longitudinal dimension (RA) by echocardiography, was constructed and exhibited favorable discriminative capability with an area under the curve (AUC) of 0.941 (95% CI: 0.920-0.961) in the derivation group. The model also demonstrated good calibration and discriminative abilities in the validation cohort. When juxtaposed with the earlier congenital heart disease (CHD) model, the newly developed ASD model demonstrated superior predictive capabilities for correctable shunt, supported by the net reclassification index (NRI) [0.063 (95% CI: 0.001-0.127, p = 0.047)] and integrated discrimination improvement (IDI) [0.023 (95% CI: 0.011-0.036, p < 0.001)]. CONCLUSION In summary, our research advocates the ASD model as a superior tool for screening suitable ASD defect closure candidates.
Collapse
Affiliation(s)
- Hezhi Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zehan Huang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Gangcheng Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qunshan Shen
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan, China
| | - Hongwen Fei
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Dongling Luo
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ziyang Yang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Bin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Caojin Zhang
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
10
|
Xiang S, Wang X. A Review of the Effectiveness and Safety of Catheter-Directed Thrombolysis for Venous Thromboembolism. J Endovasc Ther 2024:15266028241284470. [PMID: 39463058 DOI: 10.1177/15266028241284470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
CLINICAL IMPACT Catheter-directed thrombolysis reduces the thrombolytic time and dose of thrombolytic drugs without affecting the thrombolytic effect to ensure that bleeding does not occur. This helps clinicians choose safer CDT treatments for their patients. We combine the historical process of catheter-directed thrombolytic therapy for VTE and prospect the future development of CDT.
Collapse
Affiliation(s)
- Sai Xiang
- Zhejiang Chinese Medical University, Hangzhou City, Zhejiang, MI, China
| | - Xiaodong Wang
- Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang province, MI, China
| |
Collapse
|
11
|
Gill NK, Sohi SK, Joseph G, Bhatti N. Hormone Replacement Therapy and Pulmonary Hypertension: A Review of the Literature. Cureus 2024; 16:e71908. [PMID: 39564039 PMCID: PMC11576071 DOI: 10.7759/cureus.71908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/21/2024] Open
Abstract
Pulmonary hypertension (PH) is a multifactorial condition that encompasses a group of diseases characterized by a progressive increase in pulmonary vascular resistance and pulmonary arterial pressure, ultimately leading to right heart failure and death. The primary goals of PH treatment are to lower pulmonary arterial pressure, alleviate symptoms such as shortness of breath and chest pain, address modifiable risk factors, and manage the underlying cause, often a common advanced disease like chronic obstructive lung disease or left heart disease. While sex is an unchangeable risk factor for PH development, the presence or absence of estrogens has a significant influence on its progression. Hormone replacement therapy (HRT) is the recommended form of estrogen therapy for postmenopausal women, but only in carefully selected cases. However, a paradox arises, as some research suggests HRT benefits women, while other studies highlight its risks. This review provides a comprehensive analysis of the literature on the role of HRT in PH.
Collapse
Affiliation(s)
- Natasha K Gill
- Internal Medicine, University Hospitals Parma Medical Center, Parma, USA
| | - Supreet K Sohi
- Medicine, Rajendra Institute of Medical Sciences, Patiala, IND
| | - Girish Joseph
- Pharmacology, Christian Medical College and Hospital, Ludhiana, IND
| | - Neena Bhatti
- Pharmacology, Christian Medical College and Hospital, Ludhiana, IND
| |
Collapse
|
12
|
Simeone B, Maggio E, Schirone L, Rocco E, Sarto G, Spadafora L, Bernardi M, Ambrosio LD, Forte M, Vecchio D, Valenti V, Sciarretta S, Vizza CD. Chronic thromboembolic pulmonary hypertension: the diagnostic assessment. Front Cardiovasc Med 2024; 11:1439402. [PMID: 39309600 PMCID: PMC11412851 DOI: 10.3389/fcvm.2024.1439402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/25/2024] Open
Abstract
Chronic Thromboembolic Pulmonary Hypertension (CTEPH) presents a significant diagnostic challenge due to its complex and often nonspecific clinical manifestations. This review outlines a comprehensive approach to the diagnostic assessment of CTEPH, emphasizing the importance of a high index of suspicion in patients with unexplained dyspnea or persistent symptoms post-acute pulmonary embolism. We discuss the pivotal role of multimodal imaging, including echocardiography, ventilation/perfusion scans, CT pulmonary angiography, and magnetic resonance imaging, in the identification and confirmation of CTEPH. Furthermore, the review highlights the essential function of right heart catheterization in validating the hemodynamic parameters indicative of CTEPH, establishing its definitive diagnosis. Advances in diagnostic technologies and the integration of a multidisciplinary approach are critical for the timely and accurate diagnosis of CTEPH, facilitating early therapeutic intervention and improving patient outcomes. This manuscript aims to equip clinicians with the knowledge and tools necessary for the efficient diagnostic workflow of CTEPH, promoting awareness and understanding of this potentially treatable cause of pulmonary hypertension.
Collapse
Affiliation(s)
- Beatrice Simeone
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Enrico Maggio
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Erica Rocco
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Gianmarco Sarto
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luigi Spadafora
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Marco Bernardi
- Department of Cardiology, ICOT Istituto Marco Pasquali, Latina, Italy
| | - Luca D’ Ambrosio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Maurizio Forte
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
| | - Daniele Vecchio
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Valentina Valenti
- Department of Cardiology, Santa Maria Goretti Hospital, Latina, Italy
- Department of Cardiology, Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Sebastiano Sciarretta
- Department of Angiocardioneurology, IRCCS Neuromed, Pozzilli, Italy
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Carmine Dario Vizza
- Department of Cardiovascular and Respiratory Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Friedman SH, Long KJ, Sexauer S, Menon AA, Kilb EF. Role of Artificial Intelligence in Assisting Pulmonary and Critical Care Clinical Decision-Making. Am J Respir Crit Care Med 2024; 210:662-664. [PMID: 38924771 DOI: 10.1164/rccm.202402-0331rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Affiliation(s)
- Samuel H Friedman
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kathryn J Long
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen Sexauer
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Aravind A Menon
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Edward F Kilb
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
14
|
Cereser L, Zussino G, Cicciò C, Tullio A, Montanaro C, Driussi M, Di Poi E, Patruno V, Zuiani C, Girometti R. Impact of an expert-derived, quick hands-on tool on classifying pulmonary hypertension in chest computed tomography: a study on inexperienced readers using RAPID-CT-PH. LA RADIOLOGIA MEDICA 2024; 129:1313-1328. [PMID: 39048761 PMCID: PMC11379776 DOI: 10.1007/s11547-024-01852-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 07/27/2024]
Abstract
PURPOSE To test the inter-reader agreement in classifying pulmonary hypertension (PH) on chest contrast-enhanced computed tomography (CECT) between a consensus of two cardio-pulmonary-devoted radiologists (CRc) and inexperienced readers (radiology residents, RRs) when using a CECT-based quick hands-on tool built upon PH imaging literature, i.e., the "Rapid Access and Practical Information Digest on Computed Tomography for PH-RAPID-CT-PH". MATERIAL AND METHODS The observational study retrospectively included 60 PH patients who underwent CECT between 2015 and 2022. Four RRs independently reviewed all CECTs and classified each case into one of the five PH groups per the 2022 ESC/ERS guidelines. While RR3 and RR4 (RAPID-CT-PH group) used RAPID-CT-PH, RR1 and RR2 (control group) did not. RAPID-CT-PH and control groups' reports were compared with CRc using unweighted Cohen's Kappa (k) statistics. RRs' report completeness and reporting time were also compared using the Wilcoxon-Mann-Whitney test. RESULTS The inter-reader agreement in classifying PH between the RAPID-CT-PH group and CRc was substantial (k = 0.75 for RR3 and k = 0.65 for RR4); while, it was only moderate for the control group (k = 0.57 for RR1 and k = 0.49 for RR2). Using RAPID-CT-PH resulted in significantly higher report completeness (all p < 0.0001) and significantly lower reporting time (p < 0.0001) compared to the control group. CONCLUSION RRs using RAPID-CT-PH showed a substantial agreement with CRc on CECT-based PH classification. RAPID-CT-PH improved report completeness and reduced reporting time. A quick hands-on tool for classifying PH on chest CECT may help inexperienced radiologists effectively contribute to the PH multidisciplinary team.
Collapse
Affiliation(s)
- Lorenzo Cereser
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy.
| | - Gaia Zussino
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Carmelo Cicciò
- Department of Diagnostic Imaging and Interventional Radiology, IRCCS Sacro Cuore Don Calabria Hospital, via don A. Sempreboni, 5, 37024, Negrar di Valpolicella, Verona, Italy
| | - Annarita Tullio
- Department of Medicine, Institute of Hygiene and Clinical Epidemiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Chiara Montanaro
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Mauro Driussi
- Cardiology, Cardiothoracic Department, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Emma Di Poi
- Department of Medicine, Rheumatology Clinic, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Vincenzo Patruno
- Pulmonology Department, University Hospital S. Maria della Misericordia, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Chiara Zuiani
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| | - Rossano Girometti
- Department of Medicine, Institute of Radiology, University of Udine, University Hospital S. Maria della Misericordia, Azienda Sanitaria-Universitaria Friuli Centrale (ASUFC), p.le S. Maria della Misericordia, 15, 33100, Udine, Italy
| |
Collapse
|
15
|
Meng Q, Song L, Wang H, Wang G, Zhou G. Levosimendan mediates the BMP/Smad axis through upregulation of circUSP34-targeted miR-1298 to alleviate pulmonary hypertension. Respir Res 2024; 25:316. [PMID: 39160536 PMCID: PMC11334555 DOI: 10.1186/s12931-024-02945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a long-term disease that impacts approximately 1% of the world's population. Currently, levosimendan (Lev) is proposed for PH treatment. However, the mechanism of Lev in the treatment of PH is unknown. METHODS We used hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) to establish a PH cell model. A number of cell biology methods were performed to assay alterations in cell proliferation, migration and apoptosis after Lev treatment. qRT-PCR and WB were performed to test the levels of circUSP34 and miR-1298, and BMP/Smad protein respectively. In addition, the regulatory relationship between circUSP34 or BMPR2 with miR-1298 was verified through the use of double luciferase as well as RIP assay. In addition, we explored the regulatory effect of Lev on the circUSP34/miR-1298/BMP/Smad axis using a rat PH model. RESULTS Our results demonstrate that Lev inhibited PASMCs cell proliferation, migration and promoted apoptosis exposed to hypoxia. In hypoxia-treated PASMCs, circUSP34 expression got downregulated while miR-1298 upregulated, whereas the addition with Lev resulted in upregulation of circUSP34 expression and downregulation of miR-1298 expression, indicating that circUSP34 can target and regulate miR-1298. In addition, miR-1298 targets and regulates the expression of BMPR2. In a rat PH model induced by hypoxia combined with SU5416, Lev upregulated circUSP34 targeting miR-1298-mediated BMP/Smad axis to alleviate the PH phenotype. CONCLUSION We have shown that Lev can be used as a therapeutic drug for PH patients, which works through the circUSP34/miR-1298/BMP/Smad axis to alleviate PH symptoms.
Collapse
MESH Headings
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Animals
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Rats
- Up-Regulation/drug effects
- Rats, Sprague-Dawley
- Simendan/pharmacology
- Male
- Cells, Cultured
- Smad Proteins/metabolism
- Bone Morphogenetic Proteins/metabolism
- Bone Morphogenetic Proteins/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Cell Proliferation/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Signal Transduction/drug effects
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Apoptosis/drug effects
Collapse
Affiliation(s)
- Qiang Meng
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Linhong Song
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, P.R. China
| | - Hui Wang
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Gang Wang
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China
| | - Gengxu Zhou
- Department of Pediatric Cardiac Surgery, The Seventh Medical Center of the PLA General Hospital, Beijing, 10010, P.R. China.
| |
Collapse
|
16
|
Chen D, Jin Q, Yang L, Zhang X, Li M, Zhang L, Pan W, Zhou D, Ge J, Guan L. Mendelian randomization study on causal association of TEF and circadian rhythm with pulmonary arterial hypertension. Respir Res 2024; 25:301. [PMID: 39113039 PMCID: PMC11308427 DOI: 10.1186/s12931-024-02934-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/01/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Previous research has revealed the potential impact of circadian rhythms on pulmonary diseases; however, the connection between circadian rhythm-associated Thyrotroph Embryonic Factor (TEF) and Pulmonary Arterial Hypertension (PAH) remains unclear. We aim to assess the genetic causal relationship between TEF and PAH by utilizing two sets of genetic instrumental variables (IV) and publicly available Pulmonary Arterial Hypertension Genome-Wide Association Studies (GWAS). METHODS Total of 23 independent TEF genetic IVs from recent MR reports and PAH GWAS including 162,962 European individuals were used to perform this two-sample MR study. Gain- and loss-of-function experiments were used to demonstrate the role of TEF in PAH. RESULTS Our analysis revealed that as TEF levels increased genetically, there was a corresponding increase in the risk of PAH, as evidenced by IVW (OR = 1.233, 95% CI: 1.054-1.441; P = 0.00871) and weighted median (OR = 1.292, 95% CI for OR: 1.064-1.568; P = 0.00964) methods. Additionally, the up-regulation of TEF expression was associated with a significantly higher likelihood of abnormal circadian rhythm (IVW: P = 0.0024733, β = 0.05239). However, we did not observe a significant positive correlation between circadian rhythm and PAH (IVW: P = 0.3454942, β = 1.4980398). In addition, our in vitro experiments demonstrated that TEF is significantly overexpressed in pulmonary artery smooth muscle cells (PASMCs). And overexpression of TEF promotes PASMC viability and migratory capacity, as well as upregulates the levels of inflammatory cytokines. CONCLUSION Our analysis suggests a causal relationship between genetically increased TEF levels and an elevated risk of both PAH and abnormal circadian rhythm. Consequently, higher TEF levels may represent a risk factor for individuals with PAH.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Qi Jin
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Lifan Yang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Xiaochun Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Mingfei Li
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Wenzhi Pan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Daxin Zhou
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Lihua Guan
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Fudan University, 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
17
|
Ganta A, Merrell LA, Esper GW, Gibbons K, Egol KA, Konda SR. Under pressure: symptomatic pulmonary hypertension is a predictor of poor outcome following hip fracture. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY : ORTHOPEDIE TRAUMATOLOGIE 2024; 34:3145-3154. [PMID: 38987403 DOI: 10.1007/s00590-024-04028-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/09/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION Pulmonary hypertension (PHTN) is associated with increased morbidity and mortality in noncardiac surgery and elective surgery. This population of patients has a low physiological reserve and is prone to cardiac arrest as a result. This study aims to identify the impact that PHTN has on outcomes among geriatric hip fracture patients. METHODS A 3:1 propensity-score-matched retrospective case (PHTN)-control (no PHTN [N]) study of hip fracture patients from 2014 to 2022 was performed. Patients were matched utilizing propensity score matching of a validated geriatric trauma risk assessment tool (STTGMA). All patients were reviewed for hospital quality measures and outcomes. Comparative univariable and multivariable analyses were conducted between the two matched cohorts. A sub-analysis compared patients across PHTN severity levels (mild, moderate, severe) based on pulmonary artery systolic pressures (PASP) as measured by transthoracic echocardiogram. RESULTS PHTN patients (n = 67) experienced a higher rate of inpatient, 30-day, and 1-year mortality, major complications, and 90-day readmissions as compared to the N cohort (n = 201). PHTN patients with a PASP > 60 experienced a significantly higher rate of major complications, need for ICU, longer admission length, and worse 1-year functional outcomes. Pulmonary hypertension was found to be independently associated with a 3.5 × higher rate of 30-day mortality (p = 0.016), 2.7 × higher rate of 1-year mortality (p = 0.008), 2.5 × higher rate of a major inpatient complication (p = 0.028), and 1.2 × higher rate of 90-day readmission (p = 0.044). CONCLUSION Patients who had a prior diagnosis of pulmonary hypertension before sustaining their hip fracture experienced significantly worse inpatient and post-discharge outcomes. Those with a PASP > 60 mmHg had worse outcomes within the PHTN cohort. Providers must recognize these at-risk patients at the time of arrival to adjust care planning accordingly. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Abhishek Ganta
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA
- Department of Orthopedic Surgery, Medisys Health Network, Jamaica Hospital Medical Center, Richmond Hill, NY, USA
- NYU Grossman School of Medicine, New York, USA
| | - Lauren A Merrell
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA
| | - Garrett W Esper
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA
| | - Kester Gibbons
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA
| | - Kenneth A Egol
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA
- Department of Orthopedic Surgery, Medisys Health Network, Jamaica Hospital Medical Center, Richmond Hill, NY, USA
- NYU Grossman School of Medicine, New York, USA
| | - Sanjit R Konda
- Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital, 301 E. 17th Street, 14th Floor, New York, NY, 10003, USA.
- Department of Orthopedic Surgery, Medisys Health Network, Jamaica Hospital Medical Center, Richmond Hill, NY, USA.
- NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
18
|
Ning S, Guo X, Zhu Y, Li C, Li R, Meng Y, Luo W, Lu D, Yin Y. The mechanism of NRF2 regulating cell proliferation and mesenchymal transformation in pulmonary hypertension. Int J Biol Macromol 2024; 275:133514. [PMID: 38944076 DOI: 10.1016/j.ijbiomac.2024.133514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Pulmonary hypertension (PH) is a fatal disease with no existing curative drugs. NF-E2-related factor 2 (NRF2) a pivotal molecular in cellular protection, was investigated in PH models to elucidate its role in regulating abnormal phenotypes in pulmonary artery cells. We examined the expression of NRF2 in PH models and explored the role of NRF2 in regulating abnormal phenotypes in pulmonary artery cells. We determined the expression level of NRF2 in lung tissues of PH model decreased significantly. We found that NRF2 was reduced in rat pulmonary artery endothelial cells (rPAEC) under hypoxia, while it was overexpressed in rat pulmonary artery smooth muscle cells (rPASMC) under hypoxia. Next, the results showed that knockdown NRF2 in rPAEC promoted endothelial-mesenchymal transformation and upregulated reactive oxygen species level. After the rPASMC was treated with siRNA or activator, we found that NRF2 could accelerate cell migration by affecting MMP2/3/7, and promote cell proliferation by regulating PDGFR/ERK1/2 and mTOR/P70S6K pathways. Therefore, the study has shown that the clinical application of NRF2 activator in the treatment of pulmonary hypertension may cause side effects of promoting the proliferation and migration of rPASMC. Attention should be paid to the combination of NRF2 activators.
Collapse
Affiliation(s)
- Shasha Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Xinyue Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanan Zhu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Chenghui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Ruixue Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yinan Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Weiwei Luo
- Military Mental Cognition, Strategic Support Force Medical Center, No. 9 Anxiangbeili, Chaoyang District, Beijing 100101, China.
| | - Dezhang Lu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yupeng Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
19
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
20
|
Ait‐Oudhia S, Jaworowicz D, Hu Z, Bihorel S, Hu S, Balasubrahmanyam B, Mistry B, de Oliveira Pena J, Wenning L, Gheyas F. Population pharmacokinetic modeling of sotatercept in healthy participants and patients with pulmonary arterial hypertension. CPT Pharmacometrics Syst Pharmacol 2024; 13:1380-1393. [PMID: 38812074 PMCID: PMC11330185 DOI: 10.1002/psp4.13166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/31/2024] Open
Abstract
Sotatercept is a breakthrough, first-in-class biologic, that is FDA-approved for the treatment of pulmonary arterial hypertension (PAH). A population pharmacokinetic (PopPK) model was developed using data from two phase 1 studies in healthy participants, and two phase 2 studies and one phase 3 study in participants with PAH. The pooled sotatercept PK data encompassed single intravenous (IV) or subcutaneous (SC) doses ranging from 0.01 to 3.0 mg/kg, as well as multiple SC doses ranging from 0.03 to 1.0 mg/kg, with PK samples collected up to a maximum of ~150 weeks following Q3W and Q4W dosing regimens. The final PopPK analysis included 350 participants, with 30 and 320 participants receiving sotatercept IV and SC, respectively. A two-compartment model with a first-order absorption rate constant and a linear disposition from central compartment well-described sotatercept PK. The estimated bioavailability is ~66%; bioavailability, clearance (CL), and central volume (VC) have low to moderate inter-individual variability. Time-varying body weight and baseline albumin concentration were statistically significant predictors of PK; CL and VC were predicted to increase with increasing body weight, while CL was predicted to decrease with increasing baseline albumin concentration. However, the magnitude of covariate effects is not predicted to meaningfully alter the disposition of sotatercept. Altogether, the PopPK modeling results demonstrate favorable PK characteristics (low to moderate variability and typical bioavailability), supporting sotatercept as a SC biological agent for the treatment of patients with PAH.
Collapse
Affiliation(s)
| | | | - Ziheng Hu
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | | - Shuai Hu
- Merck & Co., Inc.RahwayNew JerseyUSA
| | | | - Bipin Mistry
- Acceleron Pharma, a subsidiary of Merck & Co., Inc.RahwayNew JerseyUSA
| | | | | | | |
Collapse
|
21
|
Bridglal RAM. Cardiopulmonary Complications of Klippel-Feil Syndrome: A Case Report. Cureus 2024; 16:e67303. [PMID: 39301374 PMCID: PMC11412157 DOI: 10.7759/cureus.67303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
Klippel-Feil syndrome is characterized by the congenital synostosis of multiple cervical vertebrae and commonly presents with a multitude of congenital abnormalities, mainly including cardiac and respiratory defects. We present the case of a 39-year-old male with a prolonged history of cardiopulmonary symptoms whose investigations revealed restrictive lung disease, ventricular trigeminy and bigeminy, cervical vertebrae fusion, thoracic lumbar scoliosis, and mild-to-moderate pulmonary hypertension, all consistent with a diagnosis of Klippel-Feil syndrome. His management focused on preventing the progression of these findings while minimizing the effects of his extrinsic pulmonary restriction. Given the lack of guidelines in the management of such patients, this report highlights the role of early diagnosis and adequate management of such patients to reduce its progression and prevent the development of complications.
Collapse
Affiliation(s)
- Ranjiv-A M Bridglal
- Faculty of Medical Sciences, The University of the West Indies, St. Augustine, TTO
| |
Collapse
|
22
|
Al Yazeedi S, Abokor AF, Brussow J, Thiam F, Phogat S, Osei ET. The effect of the mechanodynamic lung environment on fibroblast phenotype via the Flexcell. BMC Pulm Med 2024; 24:362. [PMID: 39068387 PMCID: PMC11282647 DOI: 10.1186/s12890-024-03167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/15/2024] [Indexed: 07/30/2024] Open
Abstract
The lung is a highly mechanical organ as it is exposed to approximately 109 strain cycles, (where strain is the length change of tissue structure per unit initial length), with an approximately 4% amplitude change during quiet tidal breathing or 107 strain cycles at a 25% amplitude during heavy exercises, sighs, and deep inspirations. These mechanical indices have been reported to become aberrant in lung diseases such as acute respiratory distress syndrome (ARDS), pulmonary hypertension, bronchopulmonary dysplasia (BPD), idiopathic pulmonary fibrosis (IPF), and asthma. Through recent innovations, various in vitro systems/bioreactors used to mimic the lung's mechanical strain have been developed. Among these, the Flexcell tension system which is composed of bioreactors that utilize a variety of programs in vitro to apply static and cyclic strain on different cell-types established as 2D monolayer cultures or cell-embedded 3D hydrogel models, has enabled the assessment of the response of different cells such as fibroblasts to the lung's mechanical strain in health and disease. Fibroblasts are the main effector cells responsible for the production of extracellular matrix (ECM) proteins to repair and maintain tissue homeostasis and are implicated in the excessive deposition of matrix proteins that leads to lung fibrosis. In this review, we summarise, studies that have used the Flexcell tension bioreactor to assess effects of the mechanical lung on the structure, function, and phenotype of lung fibroblasts in homeostatic conditions and abnormal environments associated with lung injury and disease. We show that these studies have revealed that different strain conditions regulate fibroblast proliferation, ECM protein production, and inflammation in normal repair and the diseased lung.
Collapse
Affiliation(s)
- S Al Yazeedi
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - A F Abokor
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - J Brussow
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - F Thiam
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - S Phogat
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada
| | - E T Osei
- Department of Biology, University of British Columbia - Okanagan Campus, 3187 University Way, ASC366, Kelowna, BC, V1V1V7, Canada.
- Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
23
|
Sun M, Lu F, Yu D, Wang Y, Chen P, Liu S. Respiratory diseases and gut microbiota: relevance, pathogenesis, and treatment. Front Microbiol 2024; 15:1358597. [PMID: 39081882 PMCID: PMC11286581 DOI: 10.3389/fmicb.2024.1358597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Preclinical evidence has firmly established a bidirectional interaction among the lung, gut, and gut microbiome. There are many complex communication pathways between the lung and intestine, which affect each other's balance. Some metabolites produced by intestinal microorganisms, intestinal immune cells, and immune factors enter lung tissue through blood circulation and participate in lung immune function. Altered gut-lung-microbiome interactions have been identified in rodent models and humans of several lung diseases such as pulmonary fibrosis, chronic obstructive pulmonary disease, lung cancer, asthma, etc. Emerging evidence suggests that microbial therapies can prevent and treat respiratory diseases, but it is unclear whether this association is a simple correlation with the pathological mechanisms of the disease or the result of causation. In this review, we summarize the complex and critical link between the gut microbiota and the lung, as well as the influence and mechanism of the gut microbiota on respiratory diseases, and discuss the role of interventions such as prebiotics and fecal bacteria transplantation on respiratory diseases. To provide a reference for the rational design of large-scale clinical studies, the direct application of microbial therapy to respiratory-related diseases can reduce the incidence and severity of diseases and accompanying complications.
Collapse
Affiliation(s)
- Mengdi Sun
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
24
|
Mattesi G, Pergola V, Bariani R, Martini M, Motta R, Perazzolo Marra M, Rigato I, Bauce B. Multimodality imaging in arrhythmogenic cardiomyopathy - From diagnosis to management. Int J Cardiol 2024; 407:132023. [PMID: 38583594 DOI: 10.1016/j.ijcard.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Arrhythmogenic Cardiomyopathy (AC), an inherited cardiac disorder characterized by myocardial fibrofatty replacement, carries a significant risk of sudden cardiac death (SCD) due to ventricular arrhythmias. A comprehensive multimodality imaging approach, including echocardiography, cardiac magnetic resonance imaging (CMR), and cardiac computed tomography (CCT), allows for accurate diagnosis, effective risk stratification, vigilant monitoring, and appropriate intervention, leading to improved patient outcomes and the prevention of SCD. Echocardiography is primary tool ventricular morphology and function assessment, CMR provides detailed visualization, CCT is essential in early stages for excluding congenital anomalies and coronary artery disease. Echocardiography is preferred for follow-up, with CMR capturing changes over time. The strategic use of these imaging methods aids in confirming AC, differentiating it from other conditions, tracking its progression, managing complications, and addressing end-stage scenarios.
Collapse
Affiliation(s)
| | | | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Marika Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
25
|
Yu X, Huang J, Liu X, Li J, Yu M, Li M, Xie Y, Li Y, Qiu J, Xu Z, Zhu T, Zhang W. LncRNAH19 acts as a ceRNA of let-7 g to facilitate endothelial-to-mesenchymal transition in hypoxic pulmonary hypertension via regulating TGF-β signalling pathway. Respir Res 2024; 25:270. [PMID: 38987833 PMCID: PMC11238495 DOI: 10.1186/s12931-024-02895-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a challenging lung arterial disorder with remarkably high incidence and mortality rates, and the efficiency of current HPH treatment strategies is unsatisfactory. Endothelial-to-mesenchymal transition (EndMT) in the pulmonary artery plays a crucial role in HPH. Previous studies have shown that lncRNA-H19 (H19) is involved in many cardiovascular diseases by regulating cell proliferation and differentiation but the role of H19 in EndMT in HPH has not been defined. METHODS In this research, the expression of H19 was investigated in PAH human patients and rat models. Then, we established a hypoxia-induced HPH rat model to evaluate H19 function in HPH by Echocardiography and hemodynamic measurements. Moreover, luciferase reporter gene detection, and western blotting were used to explore the mechanism of H19. RESULTS Here, we first found that the expression of H19 was significantly increased in the endodermis of pulmonary arteries and that H19 deficiency obviously ameliorated pulmonary vascular remodelling and right heart failure in HPH rats, and these effects were associated with inhibition of EndMT. Moreover, an analysis of luciferase activity indicated that microRNA-let-7 g (let-7 g) was a direct target of H19. H19 deficiency or let-7 g overexpression can markedly downregulate the expression of TGFβR1, a novel target gene of let-7 g. Furthermore, inhibition of TGFβR1 induced similar effects to H19 deficiency. CONCLUSIONS In summary, our findings demonstrate that the H19/let-7 g/TGFβR1 axis is crucial in the pathogenesis of HPH by stimulating EndMT. Our study may provide new ideas for further research on HPH therapy in the near future.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Rats
- Disease Models, Animal
- Epithelial-Mesenchymal Transition/physiology
- Epithelial-Mesenchymal Transition/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/pathology
- Hypoxia/metabolism
- Hypoxia/genetics
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats, Sprague-Dawley
- Receptor, Transforming Growth Factor-beta Type I/metabolism
- Receptor, Transforming Growth Factor-beta Type I/genetics
- RNA, Competitive Endogenous/genetics
- RNA, Competitive Endogenous/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Xin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Jiabing Huang
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xu Liu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, P.R. China
| | - Juan Li
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Miao Yu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Minghui Li
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Yuliang Xie
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China
| | - Ye Li
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Junyu Qiu
- Queen Mary School, Medical Department, Nanchang University, Nanchang, 330031, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Zhu
- College of Pharmacy, Xinxiang Medical University, No. 601 Jin-sui Road, Xinxiang, 453003, Henan, P.R. China.
- Henan International Joint Laboratory of Cardiovascular Remodelling and Drug Intervention, Xinxiang, 453003, Henan, P.R. China.
| | - Weifang Zhang
- Department of Pharmacy, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, P.R. China.
- Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
26
|
Sun L, Zhao X, Guo Y, Hou X, Li J, Ren X, Dong L, Liang R, Nie J, Shi Y, Qin X. Predictive Value of Smoking Index Combined with NT-proBNP for Patients with Pulmonary Hypertension Due to Chronic Lung Disease: A Retrospective Study. Int J Chron Obstruct Pulmon Dis 2024; 19:1233-1245. [PMID: 38854590 PMCID: PMC11162191 DOI: 10.2147/copd.s448496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Purpose Smoking is a major risk factor for the group 3 PH. NT-proBNP is a biomarker for risk stratification in PH. This study aims to investigate the effects of smoking status and smoking index (SI) on group 3 PH and to evaluate the value of SI and SI combined with NT-proBNP in early diagnosis and prediction of disease severity. Patients and Methods Four hundred patients with group 3 PH at the First Hospital of Shanxi Medical University between January 2020 and December 2021 were enrolled and divided into two groups: mild (30 mmHg ≤ pulmonary artery systolic pressure (PASP)≤50 mmHg) and non-mild (PASP >50 mmHg). The effect of smoking on group 3 PH was analyzed using univariate analysis, and logistic analysis was conducted to evaluate the risk of group 3 PH according to smoking status and SI. Spearman correlation coefficient was used to test the correlation between SI and the index of group 3 PH severity. The predictive value of SI was evaluated using a receiver operating characteristic (ROC) curve. Results Correlation and logistic analyses showed that SI was associated with PH severity. Smoking status (P=0.009) and SI (P=0.039) were independent risk factors for non-mild group 3 PH, and ROC showed that the predictive value of SI (AUC:0.596) for non-mild PH was better than that of the recognized pro-brain natriuretic peptide (NT-proBNP) (AUC:0.586). SI can be used as a single predictive marker. SI and NT-proBNP can be formulated as prediction models for screening non-mild clinical cases (AUC:0.628). Conclusion SI is a potentially ideal non-invasive predictive marker for group 3 PH. SI and NT-proBNP could be used to develop a prediction model for screening non-mild PH cases. This can greatly improve the predictive specificity of the established PH marker, NT-proBNP.
Collapse
Affiliation(s)
- Lin Sun
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xu Zhao
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunting Guo
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaomin Hou
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
| | - Jieru Li
- Department of Foreign Languages, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaoxia Ren
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Lin Dong
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Ruifeng Liang
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Jisheng Nie
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yiwei Shi
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Xiaojiang Qin
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
- China Key Laboratory of Cellular Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Environmental Exposures Vascular Disease Institute, Taiyuan, Shanxi, People’s Republic of China
- Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
27
|
Li S, Ding H, Li Q, Zeng X, Zhang Y, Lai C, Xie X, Tang Y, Lan J. Association between plasma proteome and pulmonary heart disease: A two-stage Mendelian randomization analysis. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e13775. [PMID: 38830831 PMCID: PMC11147680 DOI: 10.1111/crj.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/23/2024] [Accepted: 04/27/2024] [Indexed: 06/05/2024]
Abstract
Pulmonary heart disease (PHD) involves altered structure and function of the right ventricle caused by an abnormal respiratory system that causes pulmonary hypertension. However, the association between changes in plasma proteomics and PHD remains unclear. Hence, we aimed to identify causal associations between genetically predicted plasma protein levels and PHD. Mendelian randomization was performed to test the target proteins associated with PHD. Summary statistics for the human plasma proteome and pulmonary heart disease were acquired from the UK Biobank (6038 cases and 426 977 controls) and the FinnGen study (6753 cases and 302 401 controls). Publicly available pQTLs datasets for human plasma proteins were obtained from a largescale genome-wide association study in the INTERVAL study. The results were validated using a case-control cohort. We first enrolled 3622 plasma proteins with conditionally independent genetic variants; three proteins (histo-blood group ABO system transferase, activating signal cointegration 1 complex subunit 1, and calcium/calmodulin-dependent protein kinase I [CAMK1]) were significantly associated with the risk of pulmonary heart disease in the UK Biobank cohort. Only CAMK1 was successfully replicated (odds ratio: 1.1056, 95% confidence interval: 1.019-1.095, p = 0.0029) in the FinnGen population. In addition, the level of CAMK1 in 40 patients with PHD was significantly higher (p = 0.023) than that in the control group. This work proposes that CAMK1 is associated with PHD, underscoring the importance of the calcium signaling pathway in the pathophysiology to improve therapies for PHD.
Collapse
Affiliation(s)
- Shiyang Li
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
- Dali UniversityDaliChina
- Department of GenealogyPanzhihua Central HospitalPanzhihuaChina
| | - Haifeng Ding
- Division of CardiologyThe First Affiliated Hospital of Shihezi UniversityShiheziChina
| | - Qi Li
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Xiaobin Zeng
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Yanyu Zhang
- Clinical Laboratory CenterPanzhihua Central HospitalPanzhihuaChina
| | - Chengyi Lai
- Department of Vascular DiseasesPanzhihua Central HospitalPanzhihuaChina
| | - Xiaoshuang Xie
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
| | - Yongjiang Tang
- Department of Vascular DiseasesPanzhihua Central HospitalPanzhihuaChina
| | - Jianjun Lan
- Division of CardiologyPanzhihua Central HospitalPanzhihuaChina
- Dali UniversityDaliChina
| |
Collapse
|
28
|
Zhang JJ, Mao-Mao, Shao MM, Wang MC. Therapeutic potential of natural flavonoids in pulmonary arterial hypertension: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155535. [PMID: 38537442 DOI: 10.1016/j.phymed.2024.155535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/06/2024] [Accepted: 03/12/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a fatal disease caused by pulmonary vascular remodeling, with a high incidence and mortality. At present, many clinical drugs for treating PAH mainly exert effects by relaxing the pulmonary artery, with limited therapeutic effects, so the search for viable therapeutic agents continues uninterrupted. In recent years, natural flavonoids have shown promising potential in the treatment of cardiovascular diseases. It is necessary to comprehensively elucidate the potential of natural flavonoids to combat PAH. PURPOSE To evaluate the potential of natural flavonoids to hinder or slow down the occurrence and development of PAH, and to identify promising drug discovery candidates. METHODS Literature was collected from PubMed, Science Direct, Web of science, CNKI databases and Google scholar. The search terms used included "pulmonary arterial hypertension", "pulmonary hypertension", "natural products", "natural flavonoids", "traditional chinese medicine", etc., and several combinations of these keywords. RESULTS The resources, structural characteristics, mechanisms, potential and prospect strategies of natural flavonoids for treating PAH were summarized. Natural flavonoids offer different solutions as possible treatments for PAH. These mechanisms may involve various pathways and molecular targets related to the pathogenesis of PAH, such as inflammation, oxidative stress, vascular remodeling, genetic, ion channels, cell proliferation and autophagy. In addition, prospect strategies of natural flavonoids for anti-PAH including structural modification and nanomaterial delivery systems have been explored. This review suggests that the potential of natural flavonoids as alternative therapeutic agents in the prevention and treatment of PAH holds promise for future research and clinical applications. CONCLUSION Despite displaying the enormous potential of flavonoids in PAH, some limitations need to be further explored. Firstly, using advanced drug discovery tools, including computer-aided design and high-throughput screening, to further investigate the safety, biological activity, and precise mechanism of action of flavonoids. Secondly, exploring the structural modifications of these compounds is expected to optimize their efficacy. Lastly, it is necessary to conduct well controlled clinical trials and a comprehensive evaluation of potential side effects to determine their effectiveness and safety.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Mao-Mao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Min-Min Shao
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China
| | - Meng-Chuan Wang
- Department of pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, China.
| |
Collapse
|
29
|
Sun Y, Chen C, Yan Q, Wang S, Tan Y, Long J, Lin Y, Ning S, Wang J, Zhang S, Ai Q, Liu S. A peripheral system disease-Pulmonary hypertension. Biomed Pharmacother 2024; 175:116787. [PMID: 38788548 DOI: 10.1016/j.biopha.2024.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disorder characterized by substantial morbidity and mortality rates. It is a chronic condition characterized by intricate pathogenesis and uncontrollable factors. We summarized the pathological effects of estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification on PH. PH is not only a pulmonary vascular disease, but also a systemic disease. The findings emphasize that the onset of PH is not exclusively confined to the pulmonary vasculature, consequently necessitating treatment approaches that extend beyond targeting pulmonary blood vessels. Hence, the research on the pathological mechanism of PH is not limited to target organs such as pulmonary vessels, but also focuses on exploring other fields (such as estrogen, genetics, neuroinflammation, intestinal microbiota, metabolic reorganization, and histone modification).
Collapse
Affiliation(s)
- Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Siying Wang
- Pharmacy Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Yong Tan
- Nephrology Department, Xiangtan Central Hospital, Xiangtan 411100, China
| | - Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Shuangcheng Ning
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Jin Wang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China
| | - Shusheng Zhang
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China.
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha 410007, China.
| |
Collapse
|
30
|
Liu W, Xu Y, Yang L, Zhan S, Pang K, Lin H, Qin H, Zhang P. Risk factors associated with pulmonary hypertension in patients with active tuberculosis and tuberculous destroyed lung: a retrospective study. Sci Rep 2024; 14:10108. [PMID: 38698005 PMCID: PMC11066008 DOI: 10.1038/s41598-024-59679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/13/2024] [Indexed: 05/05/2024] Open
Abstract
Pulmonary tuberculosis (TB) can result in irreversible damage and lead to tuberculous destructive lung (TDL), a severe chronic lung disease that is associated with a high mortality rate. Additionally, pulmonary hypertension (PH) is a hemodynamic disorder that can be caused by lung diseases. The objective of this study is to investigate the risk factors associated with PH in active TB patients diagnosed with TDL. We conducted a retrospective review of the medical records of 237 patients who were diagnosed with TDL, active pulmonary tuberculosis, and underwent echocardiography at the Third People' Hospital of Shenzhen from January 1, 2016, to June 30, 2023. Univariate and multivariate logistic regression analyses were performed to identify factors that correlated with the development of pulmonary hypertension. Univariate and multivariate logistic regression analyses revealed that several factors were associated with an increased risk of pulmonary hypertension (PH) in individuals with tuberculosis destroyed lung (TDL). These factors included age (OR = 1.055), dyspnea (OR = 10.728), D-dimer (OR = 1.27), PaCO2 (OR = 1.040), number of destroyed lung lobes (OR = 5.584), bronchiectasis (OR = 3.205), and chronic pleuritis (OR = 2.841). When age, D-dimer, PaCO2, and number of destroyed lung lobes were combined, the predictive value for PH in patients with TDL was found to be 80.6% (95% CI 0.739-0.873),with a sensitivity of 76.6% and specificity of 73.2%. Advanced age, elevated D-dimer levels, hypercapnia, and severe lung damage were strongly correlated with the onset of PH in individuals with active pulmonary tuberculosis (PTB) and TDL. Furthermore, a model incorporating age, D-dimer, PaCO2, and the number of destroyed lung lobes might be valuable in predicting the occurrence of PH in patients with active PTB and TDL.
Collapse
Affiliation(s)
- Weijian Liu
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Yuxiang Xu
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Liangzi Yang
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Senlin Zhan
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Kaihua Pang
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Hao Lin
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China
| | - Hongjuan Qin
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China.
| | - Peize Zhang
- Department of Pulmonary Medicine and Tuberculosis, The Third People's Hospital of Shenzhen, National Clinical Research Center for Infectious Disease, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
31
|
Stącel T, Kegler K, Mędrala A, Sybila P, Ochman M, Nęcki M, Pasek P, Gummenyi I, Pióro A, Przybyłowski P, Hrapkowicz T, Urlik M. Lung Transplantation in Patients With Pulmonary Hypertension With Extracorporeal Membrane Oxygenation (ECMO) Support: 5-Year Experience. Transplant Proc 2024; 56:898-903. [PMID: 38580513 DOI: 10.1016/j.transproceed.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 04/07/2024]
Abstract
Lung transplantation (LTx) is the only treatment option of patients (pts) with pulmo-nary hypertension (PH) when pharmacologic treatment is unsatisfactory. ECMO is essential during LTx in every patient with pulmonary arterial hypertension and in most patients with sec-ondary PH. This is a retrospective, single-center study comparing LTx outcomes in patients with and without PH covering a 5-year experience. In the years 2018-2023, 219 LTx were performed, of which 56 (25.6%) with ECMO support, among which PH was diagnosed in 34pts (60.7%) in WHO groups 1,3,4: 19pts, 14pts. and 1pt respectively. The veno-arterial type of ECMO was used in patients with PH as intraoperative support (n = 34; 100%). The early (30-day) and long-term survival (1 year) of patients with and without PH did not differ statistically: 91.2% (95% CI: 82.1%-100%) vs. 77.3% (95% CI: 82.1%-100%)(P = .48) and 53.0% (95% CI: 36.6%-76.7 %) vs. 41.3% (95%CI: 23.1-74.0) (P = .48) respectively and the median hospitalization time from ECMO weaning to dis-charge was also comparable: 31 days (Q1-Q3: 21-40; IQR 20) vs. 28 days (Q1-Q3: 24-42; IQR :18) (P = .99). Patients with or without PH undergoing LTx with ECMO have comparable survival and hospital stay outcomes despite being the most challenging of all lung diseases treated with lung transplantation.
Collapse
Affiliation(s)
- Tomasz Stącel
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Kamil Kegler
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland.
| | - Agata Mędrala
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Pawel Sybila
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Marek Ochman
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Mirosłąw Nęcki
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Piotr Pasek
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Igor Gummenyi
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Anna Pióro
- Department of Cardiac Anaesthesia and Intensive Care, Silesian Centre for Heart Diseases in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Piotr Przybyłowski
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Tomasz Hrapkowicz
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| | - Maciej Urlik
- Department of Cardiac, Silesian Centre for Heart Diseases in Zabrze, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
32
|
Shim YD, Chen MC, Ha S, Chang HJ, Baek S, Lee EH. Multi-scaled temporal modeling of cardiovascular disease progression: An illustration of proximal arteries in pulmonary hypertension. J Biomech 2024; 168:112059. [PMID: 38631187 PMCID: PMC11096051 DOI: 10.1016/j.jbiomech.2024.112059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
The progression of cardiovascular disease is intricately influenced by a complex interplay between physiological pathways, biochemical processes, and physical mechanisms. This study aimed to develop an in-silico physics-based approach to comprehensively model the multifaceted vascular pathophysiological adaptations. This approach focused on capturing the progression of proximal pulmonary arterial hypertension, which is significantly associated with the irreversible degradation of arterial walls and compensatory stress-induced growth and remodeling. This study incorporated critical characteristics related to the distinct time scales for the deformation, thus reflecting the impact of mean pressure on artery growth and tissue damage. The in-silico simulation of the progression of pulmonary hypertension was realized based on computational code combined with the finite element method (FEM) for the simulation of disease progression. The parametric studies further explored the consequences of these irreversible processes. This computational modeling approach may advance our understanding of pulmonary hypertension and its progression.
Collapse
Affiliation(s)
- Young-Dae Shim
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Mei-Cen Chen
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| | - Seongmin Ha
- Biomedical Engineering, Yonsei University College of Medicine 250, Seoul, Republic of Korea.
| | - Hyuk-Jae Chang
- Division of Cardiology, Yonsei University College of Medicine 250, Seoul, Republic of Korea.
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, United States.
| | - Eun-Ho Lee
- Department of Smart Fabrication Technology, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea; School of Mechanical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea; Department of Intelligent Robotics, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
33
|
Chen X, Yu X, Lian G, Tang H, Yan Y, Gao G, Huang B, Luo L, Xie L. Canagliflozin inhibits PASMCs proliferation via regulating SGLT1/AMPK signaling and attenuates artery remodeling in MCT-induced pulmonary arterial hypertension. Biomed Pharmacother 2024; 174:116505. [PMID: 38574614 DOI: 10.1016/j.biopha.2024.116505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) was a devastating disease characterized by artery remodeling, ultimately resulting in right heart failure. The aim of this study was to investigate the effects of canagliflozin (CANA), a sodium-glucose cotransporter 2 inhibitor (SGLT2i) with mild SGLT1 inhibitory effects, on rats with PAH, as well as its direct impact on pulmonary arterial smooth muscle cells (PASMCs). PAH rats were induced by injection of monocrotaline (MCT) (40 mg/kg), followed by four weeks of treatment with CANA (30 mg/kg/day) or saline alone. Pulmonary artery and right ventricular (RV) remodeling and dysfunction in PAH were alleviated with CANA, as assessed by echocardiography. Hemodynamic parameters and structural of pulmonary arteriole, including vascular wall thickness and wall area, were reduced by CANA. RV hypertrophy index, cardiomyocyte hypertrophy, and fibrosis were decreased with CANA treatment. PASMCs proliferation was inhibited by CANA under stimulation by platelet-derived growth factor (PDGF)-BB or hypoxia. Activation of AMP kinase (AMPK) was induced by CANA treatment in cultured PASMCs in a time- and concentration-dependent manner. These effects of CANA were attenuated when treatment with compound C, an AMPK inhibitor. Abundant expression of SGLT1 was observed in PASMCs and pulmonary arteries, while SGLT2 expression was undetectable. SGLT1 increased in response to PDGF-BB or hypoxia stimulation, while PASMCs proliferation was inhibited and beneficial effects of CANA were counteracted by knockdown of SGLT1. Our research demonstrated for the first time that CANA inhibited the proliferation of PASMCs by regulating SGLT1/AMPK signaling and thus exerted an anti-proliferative effect on MCT-induced PAH.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xing Yu
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Guili Lian
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Huibin Tang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yan Yan
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Gufeng Gao
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bangbang Huang
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Li Luo
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Liangdi Xie
- Department of Geriatrics, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Fujian Hypertension Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Clinical Research Center for Geriatric Hypertension Disease of Fujian Province, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Branch of National Clinical Research Center for Aging and Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China; Department of Geriatrics, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
34
|
Kadoglou NPE, Khattab E, Velidakis N, Gkougkoudi E, Myrianthefs MM. The Role of Echocardiography in the Diagnosis and Prognosis of Pulmonary Hypertension. J Pers Med 2024; 14:474. [PMID: 38793056 PMCID: PMC11122427 DOI: 10.3390/jpm14050474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The right heart catheterisation constitutes the gold standard for pulmonary hypertension (PH) diagnosis. However, echocardiography remains a reliable, non-invasive, inexpensive, convenient, and easily reproducible modality not only for the preliminary screening of PH but also for PH prognosis. The aim of this review is to describe a cluster of echocardiographic parameters for the detection and prognosis of PH and analyse the challenges of echocardiography implementation in patients with suspected or established PH. The most important echocardiographic index is the calculation of pulmonary arterial systolic pressure (PASP) through the tricuspid regurgitation (TR). It has shown high correlation with invasive measurement of pulmonary pressure, but several drawbacks have questioned its accuracy. Besides this, the right ventricular outflow track acceleration time (RVOT-AT) has been proposed for PH diagnosis. A plethora of echocardiographic indices: right atrial area, pericardial effusion, the tricuspid annular plane systolic excursion (TAPSE), the TAPSE/PASP ratio, tricuspid annular systolic velocity (s'), can reflect the severity and prognosis of PH. Recent advances in echocardiography with 3-dimensional right ventricular (RV) ejection fraction, RV free wall strain and right atrial strain may further assist the prognosis of PH.
Collapse
Affiliation(s)
- Nikolaos P. E. Kadoglou
- Medical School, University of Cyprus, 215/6 Old Road Lefkosias-Lemesou, Aglatzia, Nicosia 2029, Cyprus; (E.K.); (N.V.); (E.G.)
- Cardiology Department, Nicosia General Hospital, Lemesou 215, Strovolos, Nicosia 2029, Cyprus;
| | - Elina Khattab
- Medical School, University of Cyprus, 215/6 Old Road Lefkosias-Lemesou, Aglatzia, Nicosia 2029, Cyprus; (E.K.); (N.V.); (E.G.)
- Cardiology Department, Nicosia General Hospital, Lemesou 215, Strovolos, Nicosia 2029, Cyprus;
| | - Nikolaos Velidakis
- Medical School, University of Cyprus, 215/6 Old Road Lefkosias-Lemesou, Aglatzia, Nicosia 2029, Cyprus; (E.K.); (N.V.); (E.G.)
| | - Evaggelia Gkougkoudi
- Medical School, University of Cyprus, 215/6 Old Road Lefkosias-Lemesou, Aglatzia, Nicosia 2029, Cyprus; (E.K.); (N.V.); (E.G.)
| | - Michael M. Myrianthefs
- Cardiology Department, Nicosia General Hospital, Lemesou 215, Strovolos, Nicosia 2029, Cyprus;
| |
Collapse
|
35
|
Wilson BK, Sadowski CK, Baeten RG. A clinician's guide to pulmonary hypertension. JAAPA 2024; 37:12-18. [PMID: 38484294 DOI: 10.1097/01.jaa.0001007360.09090.5f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
ABSTRACT Despite advances in diagnosis and treatment, pulmonary hypertension has high morbidity and mortality. The presenting symptoms often are vague and may mimic other more common diseases, so patients can be misdiagnosed or missed early in the disease process. Early detection of pulmonary hypertension by primary care providers can play an important role in patient outcomes and survival. Identifying signs and symptoms, understanding the causes and classifications, and knowing the systematic approach to evaluating and diagnosing patients with suspected pulmonary hypertension are key to preventing premature patient decline.
Collapse
Affiliation(s)
- Bailey K Wilson
- Bailey K. Wilson practices at Wellstar Colon Rectal in Roswell, Ga. Catherine K. Sadowski is a clinical associate professor in the PA program at Mercer University in Atlanta, Ga. Robert G. Baeten is a clinical assistant professor in the PA program at Mercer University and practices in cardiac critical care at Northside Hospital in Canton, Ga. The authors have disclosed no potential conflicts of interest, financial or otherwise
| | | | | |
Collapse
|
36
|
Yang Y, Zhang H, Wang Y, Xu J, Shu S, Wang P, Ding S, Huang Y, Zheng L, Yang Y, Xiong C. Promising dawn in the management of pulmonary hypertension: The mystery veil of gut microbiota. IMETA 2024; 3:e159. [PMID: 38882495 PMCID: PMC11170974 DOI: 10.1002/imt2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota is a complex community of microorganisms inhabiting the intestinal tract, which plays a vital role in human health. It is intricately involved in the metabolism, and it also affects diverse physiological processes. The gut-lung axis is a bidirectional pathway between the gastrointestinal tract and the lungs. Recent research has shown that the gut microbiome plays a crucial role in immune response regulation in the lungs and the development of lung diseases. In this review, we present the interrelated factors concerning gut microbiota and the associated metabolites in pulmonary hypertension (PH), a lethal disease characterized by elevated pulmonary vascular pressure and resistance. Our research team explored the role of gut-microbiota-derived metabolites in cardiovascular diseases and established the correlation between metabolites such as putrescine, succinate, trimethylamine N-oxide (TMAO), and N, N, N-trimethyl-5-aminovaleric acid with the diseases. Furthermore, we found that specific metabolites, such as TMAO and betaine, have significant clinical value in PH, suggesting their potential as biomarkers in disease management. In detailing the interplay between the gut microbiota, their metabolites, and PH, we underscored the potential therapeutic approaches modulating this microbiota. Ultimately, we endeavor to alleviate the substantial socioeconomic burden associated with this disease. This review presents a unique exploratory analysis of the link between gut microbiota and PH, intending to propel further investigations in the gut-lung axis.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hanwen Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yaoyao Wang
- State Key Laboratory of Cardiovascular Disease, Department of Nephrology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Department of Genetics University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Center for Molecular Cardiology University of Zurich Zurich Switzerland
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, School of Basic Medical Sciences, Health Science Center The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Beijing China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Changming Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
37
|
Nassar GM, Jameson R, Sathiyaraj S, Bidikian N, Villasmil Hernandez N, Sahay S. Recovery from kidney failure associated with chronic thromboembolic pulmonary hypertension following pulmonary thomboendarterectomy. Clin Kidney J 2024; 17:sfae047. [PMID: 38572501 PMCID: PMC10986204 DOI: 10.1093/ckj/sfae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 04/05/2024] Open
Abstract
The occurrence of renal failure in pulmonary hypertension (PH) is an ominous sign and implies excessive adverse hemodynamic factors. Pharmacologic agents to treat the PH are the mainstay of management, whereas diuretics assist in management of fluid overload. However, when such measures fail, dialysis and ultrafiltration (UF) become necessary to manage progressive azotemia and hypervolemia. Reversal of PH is essential to interrupt this vicious cycle of multisystem failure; otherwise, the need for renal replacement therapy would be permanent.
Collapse
Affiliation(s)
- George M Nassar
- Houston Methodist Hospital – Department of Internal Medicine, Houston, TX, USA
- Weill Cornell – Medical College – Department of Internal Medicine, New York, NY, USA
- Panoramic Health, a Management Service Organization, Tempe, Arizona, USA
| | - Robert Jameson
- Houston Methodist Hospital – Department of Internal Medicine, Houston, TX, USA
- Weill Cornell – Medical College – Department of Internal Medicine, New York, NY, USA
| | - Steffi Sathiyaraj
- Houston Methodist Hospital – Department of Internal Medicine, Houston, TX, USA
- Weill Cornell – Medical College – Department of Internal Medicine, New York, NY, USA
| | - Nayda Bidikian
- American University of Beirut – Department of Internal Medicine, Beirut, Lebanon
- Harvard Medical School – Department of Internal Medicine, Boston, MA, USA
| | - Nelson Villasmil Hernandez
- Houston Methodist Hospital – Department of Internal Medicine, Houston, TX, USA
- Weill Cornell – Medical College – Department of Internal Medicine, New York, NY, USA
| | - Sandeep Sahay
- Houston Methodist Hospital – Department of Internal Medicine, Houston, TX, USA
- Weill Cornell – Medical College – Department of Internal Medicine, New York, NY, USA
| |
Collapse
|
38
|
Zheng S, Ye L. Hemodynamic Melody of Postnatal Cardiac and Pulmonary Development in Children with Congenital Heart Diseases. BIOLOGY 2024; 13:234. [PMID: 38666846 PMCID: PMC11048247 DOI: 10.3390/biology13040234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Hemodynamics is the eternal theme of the circulatory system. Abnormal hemodynamics and cardiac and pulmonary development intertwine to form the most important features of children with congenital heart diseases (CHDs), thus determining these children's long-term quality of life. Here, we review the varieties of hemodynamic abnormalities that exist in children with CHDs, the recently developed neonatal rodent models of CHDs, and the inspirations these models have brought us in the areas of cardiomyocyte proliferation and maturation, as well as in alveolar development. Furthermore, current limitations, future directions, and clinical decision making based on these inspirations are highlighted. Understanding how CHD-associated hemodynamic scenarios shape postnatal heart and lung development may provide a novel path to improving the long-term quality of life of children with CHDs, transplantation of stem cell-derived cardiomyocytes, and cardiac regeneration.
Collapse
Affiliation(s)
- Sixie Zheng
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China;
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, National Children’s Medical Center, Shanghai 200127, China
| |
Collapse
|
39
|
Diallo TH, Nana Yeboah F, Djafarou Boubacar R, Faraj R, Boui-Issoui K, sidi Mhamed ES, El Ghiati H, Diallo ID, Mouine N, Benyass A. Severe pulmonary hypertension associated with hypothyroidism and mixed aortic valve disease: A case report. SAGE Open Med Case Rep 2024; 12:2050313X241237405. [PMID: 38476569 PMCID: PMC10929027 DOI: 10.1177/2050313x241237405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Pulmonary hypertension is a condition characterised by elevated pulmonary arterial pressures secondary to various aetiologies; the most common ones are left heart diseases. Similarly, an association between thyroid diseases and pulmonary hypertension has been reported in some cases, but the pathophysiological relationship has not been fully elucidated. Etiological investigation is an important step in the management of pulmonary hypertension and determines the appropriate treatment. In this report, we present a case of severe pulmonary hypertension in a 57-year-old woman, in which mixed aortic valve disease and hypothyroidism were involved.
Collapse
Affiliation(s)
- Thierno Hamidou Diallo
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Frederick Nana Yeboah
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Raynatou Djafarou Boubacar
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Raid Faraj
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Keltoum Boui-Issoui
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Ely Sidi sidi Mhamed
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Hanaa El Ghiati
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Ibrahima Dokal Diallo
- Ibn Sina University Hospital Center, Rabat, Morocco
- Department of Radiology, Ibn Sina University Hospital Center, Rabat, Morocco
| | - Najat Mouine
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| | - Aatif Benyass
- Ibn Sina University Hospital Center, Rabat, Morocco
- Clinical cardiology department, Cardiology Center, Mohammed V Military Instruction Hospital of Rabat, Mohammed V University, Rabat, Morocco
| |
Collapse
|
40
|
Chen D, Yang J, Zhang T, Li X, Xiong Q, Jiang S, Yi C. Mechanistic Investigation of Calcium Channel Regulation-Associated Genes in Pulmonary Arterial Hypertension and Signatures for Diagnosis. Mol Biotechnol 2024:10.1007/s12033-024-01112-x. [PMID: 38461180 DOI: 10.1007/s12033-024-01112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a severe cardiopulmonary disorder with complex causes. Calcium channel blockers have long been used in its treatment. Our study aimed to validate experimental results showing increased calcium ion concentration in PAH patients. We investigated the impact of genes related to calcium channel regulation on PAH development and developed an accurate diagnostic model. Clinical trial data from serum of 18 healthy individuals and 18 patients with PAH were retrospectively analyzed. Concentrations of calcium and potassium ions were determined and compared. Datasets were retrieved, selecting genes associated with calcium ion release. R packages processed the datasets, filtering 174 common genes, and conducting Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Six hub genes were identified, and nomogram and logistic regression prediction models were constructed. Random forest filtered cross genes, and a diagnostic model was developed and validated using an artificial neural network. The 174 intersection genes related to calcium ions showed significant correlations with biological processes, cellular components, and molecular functions. Six key genes were obtained by constructing a protein-protein interaction network. A diagnostic model with high accuracy (> 90%) and diagnostic capability (AUC = 0.98) was established using a neural network algorithm. This study validated the experimental results, identified key genes associated with calcium ions, and developed a highly accurate diagnostic model using a neural network algorithm. These findings provide insights into the role of calcium release genes in PAH and demonstrate the potential of the diagnostic model for clinical application. However, due to limitations in sample size and a lack of prognosis data, the regulatory mechanisms of calcium ions in PAH patients and their impact on the clinical prognosis of PAH patients still need further exploration in the future.
Collapse
Affiliation(s)
- Dongjuan Chen
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Jun Yang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Ting Zhang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Xuemei Li
- Department of Laboratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Qiliang Xiong
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Shaofeng Jiang
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China
| | - Chen Yi
- Department of Biomedical Engineering, Nanchang Hangkong University, Jiangxi, 330063, China.
| |
Collapse
|
41
|
Salazar AM, Panama G, Kim AG, Rayamajhi S, Abela GS. Clinical outcomes between direct oral anticoagulants versus vitamin K antagonists in chronic thromboembolic pulmonary hypertension: A systematic review and meta-analysis. Curr Probl Cardiol 2024; 49:102377. [PMID: 38184126 DOI: 10.1016/j.cpcardiol.2024.102377] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Pulmonary hypertension (PH) is a known chronic condition that can lead to increased morbidity and mortality. Patients who develop PH due to thromboembolic disease are catalogued as chronic thromboembolic pulmonary hypertension (CTEPH). Anticoagulation remains a topic of interest in these patients. PUBMED, EMBASE and COCHRANE databases were searched by two investigators until December 2023. Information was analyzed for all-cause mortality, venous thromboembolism and major bleeding. We included a total of 10 studies in this meta-analysis. Our pooled analysis demonstrated that DOACs were non-inferior in all-cause mortality [OR 0.88, 95 % CI (0.48, 1.61)], venous thromboembolism [OR 1.00, 95 % CI (0.50, 1.98)] and major bleeding [OR 0.78, 95 % CI (0.43, 1.40)] when compared to VKAs. In conclusion, our meta-analysis supports the use of DOACs in patients with CTEPH. Further randomized trials are still needed to confirm our results in terms of safety and mortality.
Collapse
Affiliation(s)
- Adolfo Martinez Salazar
- Department of Medicine, Division of Internal Medicine, Michigan State University, East Lansing, MI, USA.
| | - Gabriel Panama
- Department of Medicine, Division of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - Andrew Geunwon Kim
- Department of Medicine, Division of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - Supratik Rayamajhi
- Department of Medicine, Division of Internal Medicine, Michigan State University, East Lansing, MI, USA
| | - George S Abela
- Department of Cardiology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
42
|
Zanotto TM, Gonçalves AEDSS, Saad MJA. Pulmonary hypertension and insulin resistance: a mechanistic overview. Front Endocrinol (Lausanne) 2024; 14:1283233. [PMID: 38239990 PMCID: PMC10794542 DOI: 10.3389/fendo.2023.1283233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024] Open
Abstract
Pulmonary arterial hypertension (PAH) is a vascular remodeling disease, characterized by increased blood pressure levels in pulmonary circulation, leading to a restriction in the circulation flow and heart failure. Although the emergence of new PAH therapies has increased survival rates, this disease still has a high mortality and patients that receive diagnosis die within a few years. The pathogenesis of PAH involves multiple pathways, with a complex interaction of local and distant cytokines, hormones, growth factors, and transcription factors, leading to an inflammation that changes the vascular anatomy in PAH patients. These abnormalities involve more than just the lungs, but also other organs, and between these affected organs there are different metabolic dysfunctions implied. Recently, several publications demonstrated in PAH patients a disturbance in glucose metabolism, demonstrated by higher levels of glucose, insulin, and lipids in those patients. It is possible that a common molecular mechanism can have a significant role in this connection. In this regard, this narrative review intends to focus on the recent papers that mainly discuss the molecular determinants between insulin resistance (IR) associated PAH, which included obesity subclinical inflammation induced IR, PPAR gamma and Adiponectin, BMPR2, mitochondrial dysfunction and endoplasmic reticulum stress. Therefore, the following review will summarize some of the existing data for IR associated PAH, focusing on the better understanding of PAH molecular mechanisms, for the development of new translational therapies.
Collapse
Affiliation(s)
- Tamires M. Zanotto
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Mario J. A. Saad
- Department of Internal Medicine, State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Departament of Medical Clinics, Obesity and Comorbidities Research Centre (O.C.R.C.), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
43
|
Jakobsen SS, Frøkjaer JB, Fisker RV, Kristensen SR, Thorlacius-Ussing O, Larsen AC. Monocyte recruitment in venous pulmonary embolism at time of cancer diagnosis in upper gastrointestinal cancer patients. J Thromb Thrombolysis 2024; 57:11-20. [PMID: 37792208 PMCID: PMC10830795 DOI: 10.1007/s11239-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/05/2023]
Abstract
Upper gastrointestinal cancer is frequently complicated by venous thromboembolisms (VTE), especially pulmonary embolisms (PE) increase the mortality rate. Monocytes are a part of the innate immune system and up-regulation may indicate an ongoing inflammatory response or infectious disease and has lately been associated with a moderate risk of suffering from VTE. This prospectively study aims to compare the incidence of pulmonary embolism with markers of coagulation and compare it to the absolute monocyte count. A consecutive cohort of 250 patients with biopsy proven upper gastrointestinal cancer (i.e. pancreas, biliary tract, esophagus and gastric cancer) where included at the time of cancer diagnosis and before treatment. All patients underwent bilateral compression ultrasonography for detection of deep vein thrombosis (DVT). Of these 143 had an additionally pulmonary angiografi (CTPA) with the staging computer tomography. 13 of 250 patients (5.2%) had a DVT and 11 of 143 (7.7%) had CTPA proven PE. PE was significantly more common among patients with elevated D-dimer (OR 11.62, 95%CI: 1.13-119, P = 0.039) and elevated absolute monocyte count (OR 7.59, 95%CI: 1.37-41.98, P = 0.020). Only patients with pancreatic cancer had a significantly higher risk of DVT (OR 11.03, 95%CI: 1.25-97.43, P = 0.031). The sensitivity of absolute monocyte count was 63.6 (95%CI: 30.8-89.1) and specificity 80.3 (95%CI: 72.5-86.7), with a negative predictive value of 96.4 (95%CI: 91-99) in PE. An increased absolute monocyte count was detected in patients suffering from PE but not DVT, suggesting a possible interaction with the innate immune system.
Collapse
Affiliation(s)
- Sarah S Jakobsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Jens B Frøkjaer
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Rune V Fisker
- Department of Radiology, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Nuclear Medicine, Aalborg University Hospital, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
| | - Søren R Kristensen
- Department of Biochemistry, Aalborg University Hospital, 9000, Aalborg, Denmark
- Cardiovascular Research Center, Aalborg University, 9000, Aalborg, Denmark
| | - Ole Thorlacius-Ussing
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark
| | - Anders C Larsen
- Department of Gastrointestinal Surgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.
- Clinical Cancer Research Center, Aalborg University Hospital, 9000, Aalborg, Denmark.
- Department of Clinical Medicine, Aalborg University, 9000, Aalborg, Denmark.
| |
Collapse
|
44
|
Nimal S, Palaniswamy G, Pillikunte Doddareddy N, Talacheru S, Jadhav S, Mareedu T, Parmar MP, Banur A. Hemoptysis Secondary to Anomalous Origin of Right Pulmonary Artery From Ascending Aorta in a Young Male: A Case Report. Cureus 2024; 16:e51634. [PMID: 38313938 PMCID: PMC10837743 DOI: 10.7759/cureus.51634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
We report a rare case of a 24-year-old male with a rare anatomic variant of patent ductus arteriosus (PDA). The patient presented with symptoms of productive cough with recurrent and severe bouts of hemoptysis and grade I dyspnea. There were no prior episodes reported. The patient was vitally stable with bilateral clubbing. On cardiopulmonary auscultation, a prominent parasternal heave, loud P2, and right lung crepitus were noted. A complete blood count revealed an elevated hemoglobin and RBC count. An ECG revealed sinus tachycardia and right ventricle (RV) strain. ECHO confirmed these findings, as dilated right atrium (RA) and RV, mild tricuspid valve regurgitation (TR), and severe pulmonary hypertension were noted. CT of the chest demonstrated multiple ground glass opacities, right lung consolidation, and volume loss suggestive of right-sided pneumonia with atelectasis. CT also proved the presence of PDA and an anomalous origin of the right pulmonary artery from the right ascending aorta, causing compression of the right main bronchus. We show the clinical and radiological findings and discuss the implications and approach to this rare congenital cardiovascular malformation, as well as how a patient-centered approach is necessary for its management.
Collapse
Affiliation(s)
- Simran Nimal
- Internal Medicine, Byramjee Jeejeebhoy Government Medical College, Pune, IND
| | | | | | - Sahithi Talacheru
- Internal Medicine, MediCiti Institute of Medical Sciences, Hyderabad, IND
| | - Shraddha Jadhav
- Internal Medicine, Teaching University Geomedi, Tbilisi, GEO
| | - Tanmayee Mareedu
- Internal Medicine, Mamata Academy of Medical Sciences, Hyderabad, IND
| | - Mihirkumar P Parmar
- Internal Medicine, Gujarat Medical Education and Research Society, Vadodara, IND
| | - Anup Banur
- Pulmonology, S. S. Institute of Medical Sciences and Research Centre, Davanagere, IND
| |
Collapse
|
45
|
Salahuddin M, Shahid S, Tariq U, Aqeel M, Arif AU, Aslam M, Sattar S. Outcomes of patients with elevated pulmonary artery systolic pressure on echocardiography due to chronic lung diseases. Respir Investig 2024; 62:69-74. [PMID: 37952288 DOI: 10.1016/j.resinv.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Pulmonary hypertension is associated with increased mortality, and lung diseases are the second most common cause of pulmonary hypertension. We aimed to evaluate the prognostic value of echocardiography in low-middle income countries where right heart catheterization is difficult to perform. METHODS This retrospective chart review study included adult patients hospitalized from June 2012 to May 2021, with a pulmonary artery systolic pressure (PASP) of ≥35 mmHg on echocardiography. The control arm consisted of patients with similar lung diseases who did not have an elevated PASP. RESULTS The study and control arm consisted of 128 patients each, with both groups having similar lung diseases. Obesity hypoventilation syndrome was the most common etiology of elevated PASP (28.1 %), followed by pulmonary embolism (20.3 %). The overall 1-year mortality of the study cohort, after diagnosis of elevated PASP, was 20.3 %. The control cohort with normal PASP had a 1-year mortality of 4.7 %. In the study cohort, patients with bronchiectasis had the highest cause-specific 1-year mortality (45.5 %). In the normal PASP cohort, the highest cause-specific 1-year mortality was observed in patients with interstitial lung disease (13.0 %). One-year hospital readmission was observed in 46.9 % and 33.6 % of patients in the study and control arms, respectively. On multivariate analysis, increased odds of 1-year mortality were observed in patients with elevated PASP, patients with 1-year hospital readmission, and in patients with interstitial lung disease or bronchiectasis. CONCLUSION Elevated PASP on echocardiography may be a prognostic factor for mortality in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Moiz Salahuddin
- Department of Medicine, Aga Khan University, Karachi, Pakistan.
| | - Shayan Shahid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Umar Tariq
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Masooma Aqeel
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ali Usman Arif
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Mehwish Aslam
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Saadia Sattar
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
46
|
Huang P, Wang Y, Liu C, Zhang Q, Ma Y, Liu H, Wang X, Wang Y, Wei M, Ma L. Exploring the Mechanism of Zhishi-Xiebai-Guizhi Decoction for the Treatment of Hypoxic Pulmonary Hypertension based on Network Pharmacology and Experimental Analyses. Curr Pharm Des 2024; 30:2059-2074. [PMID: 38867532 DOI: 10.2174/0113816128293601240523063527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Hypoxic Pulmonary Hypertension (HPH), a prevalent disease in highland areas, is a crucial factor in various complex highland diseases with high mortality rates. Zhishi-Xiebai-Guizhi decoction (ZXGD), traditional Chinese medicine with a long history of use in treating heart and lung diseases, lacks a clear understanding of its pharmacological mechanism. OBJECTIVE This study aimed to investigate the pharmacological effects and mechanisms of ZXGD on HPH. METHODS We conducted a network pharmacological prediction analysis and molecular docking to predict the effects, which were verified through in vivo experiments. RESULTS Network pharmacological analysis revealed 51 active compounds of ZXGD and 701 corresponding target genes. Additionally, there are 2,116 targets for HPH, 311 drug-disease co-targets, and 17 core-targets. GO functional annotation analysis revealed that the core targets primarily participate in biological processes such as apoptosis and cellular response to hypoxia. Furthermore, KEGG pathway enrichment analysis demonstrated that the core targets are involved in several pathways, including the phosphatidylinositol-3 kinase/protein kinase B (PI3K/Akt) signaling pathway and Hypoxia Inducible Factor 1 (HIF1) signaling pathway. In vivo experiments, the continuous administration of ZXGD demonstrated a significant improvement in pulmonary artery pressure, right heart function, pulmonary vascular remodeling, and pulmonary vascular fibrosis in HPH rats. Furthermore, ZXGD was found to inhibit the expression of PI3K, Akt, and HIF1α proteins in rat lung tissue. CONCLUSION In summary, this study confirmed the beneficial effects and mechanism of ZXGD on HPH through a combination of network pharmacology and in vivo experiments. These findings provided a new insight for further research on HPH in the field of traditional Chinese medicine.
Collapse
Affiliation(s)
- Pan Huang
- Qinghai University Medical College, Xining 810016, China
| | - Yuxiang Wang
- Qinghai University Medical College, Xining 810016, China
| | - Chuanchuan Liu
- Hydatidosis Laboratory, Affiliated Hospital of Qinghai University, Xining 810012, China
| | - Qingqing Zhang
- Qinghai University Medical College, Xining 810016, China
| | - Yougang Ma
- Qinghai University Medical College, Xining 810016, China
| | - Hong Liu
- Qinghai University Medical College, Xining 810016, China
| | - Xiaobo Wang
- Qinghai University Medical College, Xining 810016, China
| | - Yating Wang
- Qinghai University Medical College, Xining 810016, China
| | - Minmin Wei
- Qinghai University Medical College, Xining 810016, China
- Qinghai Provincial Hospital of Traditional Chinese Medicine, Xining 810099, China
| | - Lan Ma
- Qinghai University Medical College, Xining 810016, China
| |
Collapse
|
47
|
Lin J, Zhang Y, Lin S, Ding H, Liu W. Integrating Network Pharmacology and Experimental Verification to Explore the Pharmacological Mechanisms of Cordycepin against Pulmonary Arterial Hypertension in Rats. Comb Chem High Throughput Screen 2024; 27:2776-2789. [PMID: 38299286 DOI: 10.2174/0113862073267432230925112002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Pulmonary Arterial Hypertension (PAH) is a fatal disease with high morbidity and mortality. Cordycepin has anti-inflammatory, antioxidant and immune enhancing effects. However, the role of Cordycepin in the treatment of PAH and its mechanism is not clear. METHODS The Cordycepin structure and PAH-related gene targets were obtained from public databases. The KEGG and GO enrichment analysis of common targets was performed in DAVID. PPI networks were also mapped using the STRING platform. AutoDock Vina, AutoDockTools, ChemBio3D and Pymol tools were selected for molecular docking of key targets. The therapeutic effects of Cordycepin on PAH were observed in Monocrotaline (MCT)-induced PAH rats and platelet-derived growth factor BB (PDGFBB)-induced rat pulmonary artery smooth muscle cells (PASMCs). The right ventricular systolic pressure (RVSP) was detected. HE staining, Western Blot, Scratch assay, EDU and TUNEL assays were used, respectively. RESULTS Through Network Pharmacology and molecular docking, the Cordycepin-PAH core genes were found to be TP53, AKT1, CASP3, BAX and BCL2L1. In MCT-induced PAH rats, the administration of Cordycepin significantly reduced RVSP, and inhibited pulmonary vascular remodeling. In PDGFBB-induced PASMCs, Cordycepin reduced the migration and proliferation of PASMCs and promoted apoptosis. After the Cordycepin treatment, the protein expressions of TP53, Cleaved CASP3 and BAX were significantly increased, while the protein expressions of p-AKT1 and BCL2L1 were significantly decreased in MCT-PAH rats and PDGFBB-induced PASMCs. CONCLUSION This study identified that TP53, AKT1, CASP3, BAX, and BCL2L1 were the potential targets of Cordycepin against PAH by ameliorating pulmonary vascular remodeling, inhibiting the abnormal proliferation and migration of PASMCs and increasing apoptosis of PASMCs. which provided a new understanding of the pharmacological mechanisms of Cordycepin in the treatment of PAH.
Collapse
Affiliation(s)
- Jiangpeng Lin
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Yuzhuo Zhang
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| | - Shuangfeng Lin
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Haiming Ding
- Department of Laboratory Medicine, Panyu Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weihua Liu
- Department of Cardiology, Guangzhou Institute of Cardiovascular Disease, Guangdong Key Laboratory of Vascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China
| |
Collapse
|
48
|
Reghelin CK, Bastos MS, de Souza Basso B, Costa BP, Lima KG, de Sousa AC, Haute GV, Diz FM, Dias HB, Luft C, Rodrigues KF, Garcia MCR, Matzenbacher LS, Adami BS, Xavier LL, Donadio MVF, de Oliveira JR, da Silva Melo DA. Bezafibrate reduces the damage, activation and mechanical properties of lung fibroblast cells induced by hydrogen peroxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3857-3866. [PMID: 37358795 DOI: 10.1007/s00210-023-02595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023]
Abstract
In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.
Collapse
Affiliation(s)
- Camille Kirinus Reghelin
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Matheus Scherer Bastos
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil.
- Laboratório de Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Ave., Porto Alegre, RS, Zip Code: 90619-900, Brazil.
| | - Bruno de Souza Basso
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruna Pasqualotto Costa
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kelly Goulart Lima
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Arieli Cruz de Sousa
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul (UFRGS), Rua Ramiro Barcelos, 2600-Anexo I, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Gabriela Viegas Haute
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Fernando Mendonça Diz
- Programa de Pós-Graduação Em Engenharia E Tecnologia de Materiais, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Henrique Bregolin Dias
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Carolina Luft
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Kétlin Fernanda Rodrigues
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Maria Cláudia Rosa Garcia
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Lucas Strassburger Matzenbacher
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Bruno Silveira Adami
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Léder Leal Xavier
- Laboratório Central de Microscopia E Microanálise (LabCEMM), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Márcio Vinícius Fagundes Donadio
- Laboratório de Atividade Física Pediátrica, Centro Infantil, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Denizar Alberto da Silva Melo
- Laboratório de Pesquisa Em Biofísica Celular E Inflamação, Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), Porto Alegre, RS, Brazil
| |
Collapse
|
49
|
Cangialosi P, Wojtaszek E, Omar A, Gopalan R, Abel D, Tinuoye E, Contreras JP, Love BA, Trivieri MG. Riociguat for the treatment of pulmonary hypertension in patients with end stage renal disease. Respir Med 2023; 220:107454. [PMID: 37940061 DOI: 10.1016/j.rmed.2023.107454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Affiliation(s)
| | | | - Alaa Omar
- Department of Cardiology, Mount Sinai Morningside, New York, NY, USA
| | - Radha Gopalan
- Advanced Heart Failure/Mechanical Circulatory Support and Transplant, Banner University of Arizona College of Medicine, Phoenix, AZ, USA
| | | | | | - Johanna P Contreras
- Advanced Heart Failure/Mechanical Circulatory Support and Transplant, Mount Sinai Hospital, New York, NY, USA
| | - Barry A Love
- Department of Pediatric Cardiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria Giovanna Trivieri
- Pulmonary Hypertension- Advanced Heart Failure/Mechanical Circulatory Support and Transplant, Mount Sinai Hospital, New York, NY, USA.
| |
Collapse
|
50
|
Abdeen AMZ, Alagha Z, Clark C, Al-Astal A. Paradoxical Worsening of Pulmonary Hypertension Following Closure of Arteriovenous Fistula: A Case Report and Literature Review. Cureus 2023; 15:e50064. [PMID: 38186503 PMCID: PMC10767446 DOI: 10.7759/cureus.50064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
This case report presents the atypical instance of a 59-year-old female patient with end-stage renal disease (ESRD) who was initially referred to the pulmonary clinic for evaluation due to a low diffusing capacity of the lung for carbon monoxide (DLCO). Pulmonary hypertension (PH) was suspected, and a subsequent right heart catheterization (RHC) confirmed PH attributed to group 5 PH, leading to the decision to close the unused arteriovenous fistula (AVF) to manage PH. Unexpectedly, a follow-up RHC showed a worsening of PH with elevated pulmonary capillary wedge pressure (PCWP), revealing an additional component of post-capillary group 2 PH. This case emphasizes the significance of recognizing a low DLCO as a potential trigger for PH assessment, especially in patients with comorbidities like ESRD. Furthermore, it highlights the unusual yet critical occurrence of PH exacerbation following AVF closure.
Collapse
Affiliation(s)
- Abdul Muhsen Z Abdeen
- Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Zakaria Alagha
- Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Caleb Clark
- Internal Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| | - Amro Al-Astal
- Internal Medicine/Pulmonology, Marshall University Joan C. Edwards School of Medicine, Huntington, USA
| |
Collapse
|