1
|
Loedy N, Coletti P, Wambua J, Hermans L, Willem L, Jarvis CI, Wong KLM, Edmunds W, Robert A, Leclerc QJ, Gimma A, Molenberghs G, Beutels P, Faes C, Hens N. Longitudinal social contact data analysis: insights from 2 years of data collection in Belgium during the COVID-19 pandemic. BMC Public Health 2023; 23:1298. [PMID: 37415096 PMCID: PMC10326964 DOI: 10.1186/s12889-023-16193-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND During the COVID-19 pandemic, the CoMix study, a longitudinal behavioral survey, was designed to monitor social contacts and public awareness in multiple countries, including Belgium. As a longitudinal survey, it is vulnerable to participants' "survey fatigue", which may impact inferences. METHODS A negative binomial generalized additive model for location, scale, and shape (NBI GAMLSS) was adopted to estimate the number of contacts reported between age groups and to deal with under-reporting due to fatigue within the study. The dropout process was analyzed with first-order auto-regressive logistic regression to identify factors that influence dropout. Using the so-called next generation principle, we calculated the effect of under-reporting due to fatigue on estimating the reproduction number. RESULTS Fewer contacts were reported as people participated longer in the survey, which suggests under-reporting due to survey fatigue. Participant dropout is significantly affected by household size and age categories, but not significantly affected by the number of contacts reported in any of the two latest waves. This indicates covariate-dependent missing completely at random (MCAR) in the dropout pattern, when missing at random (MAR) is the alternative. However, we cannot rule out more complex mechanisms such as missing not at random (MNAR). Moreover, under-reporting due to fatigue is found to be consistent over time and implies a 15-30% reduction in both the number of contacts and the reproduction number ([Formula: see text]) ratio between correcting and not correcting for under-reporting. Lastly, we found that correcting for fatigue did not change the pattern of relative incidence between age groups also when considering age-specific heterogeneity in susceptibility and infectivity. CONCLUSIONS CoMix data highlights the variability of contact patterns across age groups and time, revealing the mechanisms governing the spread/transmission of COVID-19/airborne diseases in the population. Although such longitudinal contact surveys are prone to the under-reporting due to participant fatigue and drop-out, we showed that these factors can be identified and corrected using NBI GAMLSS. This information can be used to improve the design of similar, future surveys.
Collapse
Affiliation(s)
- Neilshan Loedy
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - Pietro Coletti
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - James Wambua
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - Lisa Hermans
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - Lander Willem
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christopher I. Jarvis
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kerry L. M. Wong
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - W. John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Alexis Robert
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Quentin J. Leclerc
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Epidemiology and Modelling of Bacterial Escape to Antimicrobials, Institut Pasteur, Paris, France
| | - Amy Gimma
- Centre for Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, Faculty of Epidemiology & Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Geert Molenberghs
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
- L-BioStat, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| | - Christel Faes
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
| | - Niel Hens
- Data Science Institute, I-BioStat, Hasselt University, Hasselt, Belgium
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Luebben G, González-Parra G, Cervantes B. Study of optimal vaccination strategies for early COVID-19 pandemic using an age-structured mathematical model: A case study of the USA. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:10828-10865. [PMID: 37322963 PMCID: PMC11216547 DOI: 10.3934/mbe.2023481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this paper we study different vaccination strategies that could have been implemented for the early COVID-19 pandemic. We use a demographic epidemiological mathematical model based on differential equations in order to investigate the efficacy of a variety of vaccination strategies under limited vaccine supply. We use the number of deaths as the metric to measure the efficacy of each of these strategies. Finding the optimal strategy for the vaccination programs is a complex problem due to the large number of variables that affect the outcomes. The constructed mathematical model takes into account demographic risk factors such as age, comorbidity status and social contacts of the population. We perform simulations to assess the performance of more than three million vaccination strategies which vary depending on the vaccine priority of each group. This study focuses on the scenario corresponding to the early vaccination period in the USA, but can be extended to other countries. The results of this study show the importance of designing an optimal vaccination strategy in order to save human lives. The problem is extremely complex due to the large amount of factors, high dimensionality and nonlinearities. We found that for low/moderate transmission rates the optimal strategy prioritizes high transmission groups, but for high transmission rates, the optimal strategy focuses on groups with high CFRs. The results provide valuable information for the design of optimal vaccination programs. Moreover, the results help to design scientific vaccination guidelines for future pandemics.
Collapse
Affiliation(s)
- Giulia Luebben
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| | | | - Bishop Cervantes
- Department of Mathematics, New Mexico Tech, New Mexico, 87801, USA
| |
Collapse
|
3
|
Hoang TV, Willem L, Coletti P, Van Kerckhove K, Minnen J, Beutels P, Hens N. Exploring human mixing patterns based on time use and social contact data and their implications for infectious disease transmission models. BMC Infect Dis 2022; 22:954. [PMID: 36536314 PMCID: PMC9764639 DOI: 10.1186/s12879-022-07917-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The increasing availability of data on social contact patterns and time use provides invaluable information for studying transmission dynamics of infectious diseases. Social contact data provide information on the interaction of people in a population whereas the value of time use data lies in the quantification of exposure patterns. Both have been used as proxies for transmission risks within in a population and the combination of both sources has led to investigate which contacts are more suitable to describe these transmission risks. METHODS We used social contact and time use data from 1707 participants from a survey conducted in Flanders, Belgium in 2010-2011. We calculated weighted exposure time and social contact matrices to analyze age- and gender-specific mixing patterns and to quantify behavioral changes by distance from home. We compared the value of both separate and combined data sources for explaining seroprevalence and incidence data on parvovirus-B19, Varicella-Zoster virus (VZV) and influenza like illnesses (ILI), respectively. RESULTS Assortative mixing and inter-generational interaction is more pronounced in the exposure matrix due to the high proportion of time spent at home. This pattern is less pronounced in the social contact matrix, which is more impacted by the reported contacts at school and work. The average number of contacts declined with distance. On the individual-level, we observed an increase in the number of contacts and the transmission potential by distance when travelling. We found that both social contact data and time use data provide a good match with the seroprevalence and incidence data at hand. When comparing the use of different combinations of both data sources, we found that the social contact matrix based on close contacts of at least 4 h appeared to be the best proxy for parvovirus-B19 transmission. Social contacts and exposure time were both on their own able to explain VZV seroprevalence data though combining both scored best. Compared with the contact approach, the time use approach provided the better fit to the ILI incidence data. CONCLUSIONS Our work emphasises the common and complementary value of time use and social contact data for analysing mixing behavior and analysing infectious disease transmission. We derived spatial, temporal, age-, gender- and distance-specific mixing patterns, which are informative for future modelling studies.
Collapse
Affiliation(s)
- Thang Van Hoang
- grid.12155.320000 0001 0604 5662I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Lander Willem
- grid.5284.b0000 0001 0790 3681Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Pietro Coletti
- grid.12155.320000 0001 0604 5662I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Kim Van Kerckhove
- grid.12155.320000 0001 0604 5662I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Joeri Minnen
- grid.8767.e0000 0001 2290 8069Vrije Universiteit Brussel, Brussel, Belgium
| | - Philippe Beutels
- grid.5284.b0000 0001 0790 3681Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium ,grid.1005.40000 0004 4902 0432School of Public health and Community Medicine, University of New South Wales, 2052 Sydney, Australia
| | - Niel Hens
- grid.12155.320000 0001 0604 5662I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium ,grid.5284.b0000 0001 0790 3681Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
4
|
McCreesh N, Mohlamonyane M, Edwards A, Olivier S, Dikgale K, Dayi N, Gareta D, Wood R, Grant AD, White RG, Middelkoop K. Improving Estimates of Social Contact Patterns for Airborne Transmission of Respiratory Pathogens. Emerg Infect Dis 2022; 28:2016-2026. [PMID: 36048756 PMCID: PMC9514345 DOI: 10.3201/eid2810.212567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Data on social contact patterns are widely used to parameterize age-mixing matrices in mathematical models of infectious diseases. Most studies focus on close contacts only (i.e., persons spoken with face-to-face). This focus may be appropriate for studies of droplet and short-range aerosol transmission but neglects casual or shared air contacts, who may be at risk from airborne transmission. Using data from 2 provinces in South Africa, we estimated age mixing patterns relevant for droplet transmission, nonsaturating airborne transmission, and Mycobacterium tuberculosis transmission, an airborne infection where saturation of household contacts occurs. Estimated contact patterns by age did not vary greatly between the infection types, indicating that widespread use of close contact data may not be resulting in major inaccuracies. However, contact in persons >50 years of age was lower when we considered casual contacts, and therefore the contribution of older age groups to airborne transmission may be overestimated.
Collapse
|
5
|
Chipeta MG, Kumaran EPA, Browne AJ, Hamadani BHK, Haines-Woodhouse G, Sartorius B, Reiner RC, Dolecek C, Hay SI, Moore CE. Mapping local variation in household overcrowding across Africa from 2000 to 2018: a modelling study. Lancet Planet Health 2022; 6:e670-e681. [PMID: 35932787 PMCID: PMC9364142 DOI: 10.1016/s2542-5196(22)00149-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Household overcrowding is a serious public health threat associated with high morbidity and mortality. Rapid population growth and urbanisation contribute to overcrowding and poor sanitation in low-income and middle- income countries, and are risk factors for the spread of infectious diseases, including COVID-19, and antimicrobial resistance. Many countries do not have adequate surveillance capacity to monitor household overcrowding. Geostatistical models are therefore useful tools for estimating household overcrowding. In this study, we aimed to estimate household overcrowding in Africa between 2000 and 2018 by combining available household survey data, population censuses, and other country-specific household surveys within a geostatistical framework. METHODS We used data from household surveys and population censuses to generate a Bayesian geostatistical model of household overcrowding in Africa for the 19-year period between 2000 and 2018. Additional sociodemographic and health-related covariates informed the model, which covered 54 African countries. FINDINGS We analysed 287 surveys and population censuses, covering 78 695 991 households. Spatial and temporal variability arose in household overcrowding estimates over time. In 2018, the highest overcrowding estimates were observed in the Horn of Africa region (median proportion 62% [IQR 57-63]); the lowest regional median proportion was estimated for the north of Africa region (16% [14-19]). Overall, 474·4 million (95% uncertainty interval [UI] 250·1 million-740·7 million) people were estimated to be living in overcrowded conditions in Africa in 2018, a 62·7% increase from the estimated 291·5 million (180·8 million-417·3 million) people who lived in overcrowded conditions in the year 2000. 48·5% (229·9 million) of people living in overcrowded conditions came from six African countries (Nigeria, Ethiopia, Democratic Republic of the Congo, Sudan, Uganda, and Kenya), with a combined population of 538·3 million people. INTERPRETATION This study incorporated survey and population censuses data and used geostatistical modelling to estimate continent-wide overcrowding over a 19-year period. Our analysis identified countries and areas with high numbers of people living in overcrowded conditions, thereby providing a benchmark for policy planning and the implementation of interventions such as in infectious disease control. FUNDING UK Department of Health and Social Care, Wellcome Trust, Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Michael G Chipeta
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; African Institute for Development Policy, Lilongwe, Malawi
| | - Emmanuelle P A Kumaran
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Annie J Browne
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Bahar H Kashef Hamadani
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Georgina Haines-Woodhouse
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Benn Sartorius
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Robert C Reiner
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Christiane Dolecek
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Simon I Hay
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA
| | - Catrin E Moore
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Centre for Neonatal and Paediatric Infection, St George's, University of London, London, UK.
| |
Collapse
|
6
|
Luan N, Cao H, Wang Y, Cunbao Liu KL. LNP-CpG ODN-adjuvanted varicella-zoster virus glycoprotein E induced comparable levels of immunity with Shingrix TM in VZV-primed mice. Virol Sin 2022; 37:731-739. [PMID: 35671982 PMCID: PMC9167804 DOI: 10.1016/j.virs.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/01/2022] [Indexed: 11/26/2022] Open
Abstract
Latent varicella-zoster virus (VZV) may be reactivated to cause herpes zoster, which affects one in three people during their lifetime. The currently available subunit vaccine ShingrixTM is superior to the attenuated vaccine Zostavax® in terms of both safety and efficacy, but the supply of its key adjuvant component QS21 is limited. With Ionizable lipid nanoparticles (LNPs) that were recently approved by the FDA for COVID-19 mRNA vaccines as carriers, and oligodeoxynucleotides containing CpG motifs (CpG ODNs) approved by the FDA for a subunit hepatitis B vaccine as immunostimulators, we developed a LNP vaccine encapsulating VZV-glycoprotein E (gE) and CpG ODN, and compared its immunogenicity with ShingrixTM in C57BL/6J mice. The results showed that the LNP vaccine induced comparable levels of gE-specific IgG antibodies to ShingrixTM as determined by enzyme-linked immunosorbent assay (ELISA). Most importantly, the LNP vaccine induced comparable levels of cell-mediated immunity (CMI) that plays decisive roles in the efficacy of zoster vaccines to ShingrixTM in a VZV-primed mouse model that was adopted for preclinical studies of ShingrixTM. Number of IL-2 and IFN-γ secreting splenocytes and proportion of T helper 1 (Th1) cytokine-expressing CD4+ T cells in LNP-CpG-adjuvanted VZV-gE vaccinated mice were similar to that of ShingrixTM boosted mice. All of the components in this LNP vaccine can be artificially and economically synthesized in large quantities, indicating the potential of LNP-CpG-adjuvanted VZV-gE as a more cost-effective zoster vaccine.
Collapse
Affiliation(s)
- Ning Luan
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Han Cao
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Yunfei Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kangyang Lin Cunbao Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| |
Collapse
|
7
|
Lee T, Suh J, Choi JK, Lee J, Park SH. Estimating the basic reproductive number of varicella in South Korea incorporating social contact patterns and seroprevalence. Hum Vaccin Immunother 2021; 17:2488-2493. [PMID: 33829948 DOI: 10.1080/21645515.2021.1898917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Varicella, which is caused by the varicella zoster virus (VZV), is a common infectious disease affecting children. Varicella vaccines have been used for decades; however, vaccination policies vary across countries because of differences in VZV epidemiology. The basic reproductive number R0 a transmissibility measure parameter, also differs from country to country. In this study R0 for varicella was estimated in South Korea using the contact rate matrix derived from averaged POLYMOD contact data, the Korean population, and proportionality factor fitted to the Korean VZV seroprevalence R0 for varicella in South Korea was estimated to be 5.67 (95% CI: 5.33, 6.33). Therefore, to reach the herd immunity threshold, the critical vaccine coverage should be greater than 82.4% with a perfect vaccine, or the primary vaccine failure proportion should be less than 17.6% with 100% coverage. Because of the relatively low seroconversion rate and rapidly waning immunity after one-dose vaccination in South Korea, the herd immunity threshold is difficult to attain with only a one-dose vaccine. Two doses of vaccination may be necessary to effectively interrupt varicella transmission and maintain herd immunity in South Korea. The study results can help guide the decision-making on an effective varicella vaccination policy in South Korea.
Collapse
Affiliation(s)
- Taeyong Lee
- School of Mathematics and Computing (Mathematics), Yonsei University, Seoul, Republic of Korea
| | - Jiyeon Suh
- School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| | - Jae-Ki Choi
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeehyun Lee
- School of Mathematics and Computing (Mathematics), Yonsei University, Seoul, Republic of Korea.,School of Mathematics and Computing (Computational Science and Engineering), Yonsei University, Seoul, Republic of Korea
| | - Sun Hee Park
- Division of Infectious Diseases, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
8
|
Hoang TV, Coletti P, Kifle YW, Kerckhove KV, Vercruysse S, Willem L, Beutels P, Hens N. Close contact infection dynamics over time: insights from a second large-scale social contact survey in Flanders, Belgium, in 2010-2011. BMC Infect Dis 2021; 21:274. [PMID: 33736606 PMCID: PMC7971398 DOI: 10.1186/s12879-021-05949-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
Background In 2010-2011, we conducted a social contact survey in Flanders, Belgium, aimed at improving and extending the design of the first social contact survey conducted in Belgium in 2006. This second social contact survey aimed to enable, for the first time, the estimation of social mixing patterns for an age range of 0 to 99 years and the investigation of whether contact rates remain stable over this 5-year time period. Methods Different data mining techniques are used to explore the data, and the age-specific number of social contacts and the age-specific contact rates are modelled using a generalized additive models for location, scale and shape (GAMLSS) model. We compare different matrices using assortativeness measures. The relative change in the basic reproduction number (R0) and the ratio of relative incidences with 95% bootstrap confidence intervals (BCI) are employed to investigate and quantify the impact on epidemic spread due to differences in sex, day of the week, holiday vs. regular periods and changes in mixing patterns over the 5-year time gap between the 2006 and 2010-2011 surveys. Finally, we compare the fit of the contact matrices in 2006 and 2010-2011 to Varicella serological data. Results All estimated contact patterns featured strong homophily in age and sex, especially for small children and adolescents. A 30% (95% BCI [17%; 37%]) and 29% (95% BCI [14%; 40%]) reduction in R0 was observed for weekend versus weekdays and for holiday versus regular periods, respectively. Significantly more interactions between people aged 60+ years and their grandchildren were observed on holiday and weekend days than on regular weekdays. Comparing contact patterns using different methods did not show any substantial differences over the 5-year time period under study. Conclusions The second social contact survey in Flanders, Belgium, endorses the findings of its 2006 predecessor and adds important information on the social mixing patterns of people older than 60 years of age. Based on this analysis, the mixing patterns of people older than 60 years exhibit considerable heterogeneity, and overall, the comparison of the two surveys shows that social contact rates can be assumed stable in Flanders over a time span of 5 years. Supplementary Information The online version contains supplementary material available at (10.1186/s12879-021-05949-4).
Collapse
Affiliation(s)
- Thang Van Hoang
- I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium.
| | - Pietro Coletti
- I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Yimer Wasihun Kifle
- The Janssen Pharmaceutical Companies of Johnson & Johnson, Antwerpen, Belgium
| | - Kim Van Kerckhove
- I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Sarah Vercruysse
- I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium
| | - Lander Willem
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Philippe Beutels
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium.,School of Public health and Community Medicine, University of New South Wales, Sydney, 2052, Australia
| | - Niel Hens
- I-Biostat, Data Science Institute, Hasselt University, Martelarenlaan 42, Hasselt, 3500, Belgium.,Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Diseases Institute, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| |
Collapse
|
9
|
Janiak A, Machado C, Turén J. Covid-19 contagion, economic activity and business reopening protocols. JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION 2021; 182:264-284. [PMID: 33390632 PMCID: PMC7759096 DOI: 10.1016/j.jebo.2020.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
This paper studies the impact of sanitary protocols aimed at reducing the contagion by Covid-19 during the production and consumption of goods and services. We augment a heterogeneous SIR model with a two-way feedback between contagion and economic activity, allowing for firm and sector heterogeneity. While protocols are a burden for firms (especially SMEs), they may enhance economic activity by avoiding infections that reduce the labor supply. Using Chilean data, we calibrate the model and assess the impact of recommended firm protocols on contagion and economic activity in the after-lockdown period. Our quantitative results suggest that: (i) A second wave of infections is likely in the absence of protocols; (ii) Protocols targeted at some sectors can reduce deaths while at the same time improving economic conditions; (iii) Protocols applied widely have a negative effect on the economy. We also find that applying strict protocols to a few sectors is generally preferable to applying milder protocols to a larger number of sectors, both in terms of health and economic benefits.
Collapse
Affiliation(s)
- Alexandre Janiak
- Instituto de Economía, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Caio Machado
- Instituto de Economía, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| | - Javier Turén
- Instituto de Economía, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile
| |
Collapse
|
10
|
Grantz KH, Cummings DAT, Zimmer S, Vukotich Jr. C, Galloway D, Schweizer ML, Guclu H, Cousins J, Lingle C, Yearwood GMH, Li K, Calderone P, Noble E, Gao H, Rainey J, Uzicanin A, Read JM. Age-specific social mixing of school-aged children in a US setting using proximity detecting sensors and contact surveys. Sci Rep 2021; 11:2319. [PMID: 33504823 PMCID: PMC7840989 DOI: 10.1038/s41598-021-81673-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/23/2020] [Indexed: 01/30/2023] Open
Abstract
Comparisons of the utility and accuracy of methods for measuring social interactions relevant to disease transmission are rare. To increase the evidence base supporting specific methods to measure social interaction, we compared data from self-reported contact surveys and wearable proximity sensors from a cohort of schoolchildren in the Pittsburgh metropolitan area. Although the number and type of contacts recorded by each participant differed between the two methods, we found good correspondence between the two methods in aggregate measures of age-specific interactions. Fewer, but longer, contacts were reported in surveys, relative to the generally short proximal interactions captured by wearable sensors. When adjusted for expectations of proportionate mixing, though, the two methods produced highly similar, assortative age-mixing matrices. These aggregate mixing matrices, when used in simulation, resulted in similar estimates of risk of infection by age. While proximity sensors and survey methods may not be interchangeable for capturing individual contacts, they can generate highly correlated data on age-specific mixing patterns relevant to the dynamics of respiratory virus transmission.
Collapse
Affiliation(s)
- Kyra H. Grantz
- grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, FL 32611 USA ,grid.15276.370000 0004 1936 8091Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA ,grid.21107.350000 0001 2171 9311Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Derek A. T. Cummings
- grid.15276.370000 0004 1936 8091Department of Biology, University of Florida, Gainesville, FL 32611 USA ,grid.15276.370000 0004 1936 8091Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611 USA ,grid.21107.350000 0001 2171 9311Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Shanta Zimmer
- grid.21925.3d0000 0004 1936 9000Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA ,grid.241116.10000000107903411Department of Medicine, University of Colorado School of Medicine, Denver, CO 80045 USA
| | - Charles Vukotich Jr.
- grid.21925.3d0000 0004 1936 9000Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - David Galloway
- grid.21925.3d0000 0004 1936 9000Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Mary Lou Schweizer
- grid.21925.3d0000 0004 1936 9000Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Hasan Guclu
- grid.21925.3d0000 0004 1936 9000Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.411776.20000 0004 0454 921XPresent Address: Department of Biostatistics and Medical Informatics, School of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Jennifer Cousins
- grid.21925.3d0000 0004 1936 9000Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213 USA ,grid.21925.3d0000 0004 1936 9000Present Address: Department of Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Carrie Lingle
- grid.21925.3d0000 0004 1936 9000Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213 USA ,Present Address: Toledo Lucas County Health Department, Toledo, OH USA
| | - Gabby M. H. Yearwood
- grid.21925.3d0000 0004 1936 9000Department of Anthropology, University of Pittsburgh, Pittsburgh, PA 15213 USA
| | - Kan Li
- grid.21925.3d0000 0004 1936 9000Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213 USA ,Present Address: Merck Pharmaceuticals, Philadelphia, PA USA
| | - Patti Calderone
- grid.21925.3d0000 0004 1936 9000Division of General Internal Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Eva Noble
- grid.21107.350000 0001 2171 9311Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Hongjiang Gao
- grid.416738.f0000 0001 2163 0069Division of Global Migration and Quarantine, US Centers for Disease Control and Prevention, Atlanta, GA 30033 USA
| | - Jeanette Rainey
- grid.416738.f0000 0001 2163 0069Division of Global Migration and Quarantine, US Centers for Disease Control and Prevention, Atlanta, GA 30033 USA ,grid.416738.f0000 0001 2163 0069Present Address: Division of Global Health Protection, US Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Amra Uzicanin
- grid.416738.f0000 0001 2163 0069Division of Global Migration and Quarantine, US Centers for Disease Control and Prevention, Atlanta, GA 30033 USA
| | - Jonathan M. Read
- grid.9835.70000 0000 8190 6402Centre for Health Informatics Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, LA1 4YW UK ,grid.10025.360000 0004 1936 8470Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE UK
| |
Collapse
|
11
|
Grantz KH, Cummings DAT, Zimmer S, Vukotich C, Galloway D, Schweizer ML, Guclu H, Cousins J, Lingle C, Yearwood GMH, Li K, Calderone PA, Noble E, Gao H, Rainey J, Uzicanin A, Read JM. Age-specific social mixing of school-aged children in a US setting using proximity detecting sensors and contact surveys. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.07.12.20151696. [PMID: 32699859 PMCID: PMC7373148 DOI: 10.1101/2020.07.12.20151696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Comparisons of the utility and accuracy of methods for measuring social interactions relevant to disease transmission are rare. To increase the evidence base supporting specific methods to measure social interaction, we compared data from self-reported contact surveys and wearable proximity sensors from a cohort of schoolchildren in the Pittsburgh metropolitan area. Although the number and type of contacts recorded by each participant differed between the two methods, we found good correspondence between the two methods in aggregate measures of age-specific interactions. Fewer, but longer, contacts were reported in surveys, relative to the generally short proximal interactions captured by wearable sensors. When adjusted for expectations of proportionate mixing, though, the two methods produced highly similar, assortative age-mixing matrices. These aggregate mixing matrices, when used in simulation, resulted in similar estimates of risk of infection by age. While proximity sensors and survey methods may not be interchangeable for capturing individual contacts, they can generate highly correlated data on age-specific mixing patterns relevant to the dynamics of respiratory virus transmission.
Collapse
|
12
|
Aleta A, Ferraz de Arruda G, Moreno Y. Data-driven contact structures: From homogeneous mixing to multilayer networks. PLoS Comput Biol 2020; 16:e1008035. [PMID: 32673307 PMCID: PMC7386617 DOI: 10.1371/journal.pcbi.1008035] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022] Open
Abstract
The modeling of the spreading of communicable diseases has experienced significant advances in the last two decades or so. This has been possible due to the proliferation of data and the development of new methods to gather, mine and analyze it. A key role has also been played by the latest advances in new disciplines like network science. Nonetheless, current models still lack a faithful representation of all possible heterogeneities and features that can be extracted from data. Here, we bridge a current gap in the mathematical modeling of infectious diseases and develop a framework that allows to account simultaneously for both the connectivity of individuals and the age-structure of the population. We compare different scenarios, namely, i) the homogeneous mixing setting, ii) one in which only the social mixing is taken into account, iii) a setting that considers the connectivity of individuals alone, and finally, iv) a multilayer representation in which both the social mixing and the number of contacts are included in the model. We analytically show that the thresholds obtained for these four scenarios are different. In addition, we conduct extensive numerical simulations and conclude that heterogeneities in the contact network are important for a proper determination of the epidemic threshold, whereas the age-structure plays a bigger role beyond the onset of the outbreak. Altogether, when it comes to evaluate interventions such as vaccination, both sources of individual heterogeneity are important and should be concurrently considered. Our results also provide an indication of the errors incurred in situations in which one cannot access all needed information in terms of connectivity and age of the population.
Collapse
Affiliation(s)
| | | | - Yamir Moreno
- ISI Foundation, Turin, Italy
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
13
|
Willem L, Van Hoang T, Funk S, Coletti P, Beutels P, Hens N. SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res Notes 2020; 13:293. [PMID: 32546245 PMCID: PMC7296890 DOI: 10.1186/s13104-020-05136-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Objective Establishing a social contact data sharing initiative and an interactive tool to assess mitigation strategies for COVID-19. Results We organized data sharing of published social contact surveys via online repositories and formatting guidelines. We analyzed this social contact data in terms of weighted social contact matrices, next generation matrices, relative incidence and R\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$_{0}$$\end{document}0. We incorporated location-specific physical distancing measures (e.g. school closure or at work) and capture their effect on transmission dynamics. All methods have been implemented in an online application based on R Shiny and applied to COVID-19 with age-specific susceptibility and infectiousness. Using our online tool with the available social contact data, we illustrate that physical distancing could have a considerable impact on reducing transmission for COVID-19. The effect itself depends on assumptions made about disease-specific characteristics and the choice of intervention(s).
Collapse
Affiliation(s)
- Lander Willem
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium.
| | - Thang Van Hoang
- Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Pietro Coletti
- Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Philippe Beutels
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium.,School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Niel Hens
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium.,Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
14
|
Willem L, Van Hoang T, Funk S, Coletti P, Beutels P, Hens N. SOCRATES: an online tool leveraging a social contact data sharing initiative to assess mitigation strategies for COVID-19. BMC Res Notes 2020. [PMID: 32546245 DOI: 10.1101/2020.03.03.20030627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE Establishing a social contact data sharing initiative and an interactive tool to assess mitigation strategies for COVID-19. RESULTS We organized data sharing of published social contact surveys via online repositories and formatting guidelines. We analyzed this social contact data in terms of weighted social contact matrices, next generation matrices, relative incidence and R[Formula: see text]. We incorporated location-specific physical distancing measures (e.g. school closure or at work) and capture their effect on transmission dynamics. All methods have been implemented in an online application based on R Shiny and applied to COVID-19 with age-specific susceptibility and infectiousness. Using our online tool with the available social contact data, we illustrate that physical distancing could have a considerable impact on reducing transmission for COVID-19. The effect itself depends on assumptions made about disease-specific characteristics and the choice of intervention(s).
Collapse
Affiliation(s)
- Lander Willem
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium.
| | - Thang Van Hoang
- Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Sebastian Funk
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Pietro Coletti
- Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| | - Philippe Beutels
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| | - Niel Hens
- Centre for Health Economic Research and Modelling Infectious Diseases, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute of Biostatistics and Statistical Bioinformatics, Data Science Institute, Hasselt University, Hasselt, Belgium
| |
Collapse
|
15
|
Goeyvaerts N, Santermans E, Potter G, Torneri A, Van Kerckhove K, Willem L, Aerts M, Beutels P, Hens N. Household members do not contact each other at random: implications for infectious disease modelling. Proc Biol Sci 2019; 285:20182201. [PMID: 30963910 PMCID: PMC6304037 DOI: 10.1098/rspb.2018.2201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Airborne infectious diseases such as influenza are primarily transmitted from human to human by means of social contacts, and thus easily spread within households. Epidemic models, used to gain insight into infectious disease spread and control, typically rely on the assumption of random mixing within households. Until now, there has been no direct empirical evidence to support this assumption. Here, we present the first social contact survey specifically designed to study contact networks within households. The survey was conducted in Belgium (Flanders and Brussels) from 2010 to 2011. We analysed data from 318 households totalling 1266 individuals with household sizes ranging from two to seven members. Exponential-family random graph models (ERGMs) were fitted to the within-household contact networks to reveal the processes driving contact between household members, both on weekdays and weekends. The ERGMs showed a high degree of clustering and, specifically on weekdays, decreasing connectedness with increasing household size. Furthermore, we found that the odds of a contact between older siblings and between father and child are smaller than for any other pair. The epidemic simulation results suggest that within-household contact density is the main driver of differences in epidemic spread between complete and empirical-based household contact networks. The homogeneous mixing assumption may therefore be an adequate characterization of the within-household contact structure for the purpose of epidemic simulations. However, ignoring the contact density when inferring based on an epidemic model will result in biased estimates of within-household transmission rates. Further research regarding the implementation of within-household contact networks in epidemic models is necessary.
Collapse
Affiliation(s)
- Nele Goeyvaerts
- 1 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt , Hasselt , Belgium
| | - Eva Santermans
- 1 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt , Hasselt , Belgium
| | - Gail Potter
- 2 The Emmes Corporation , Rockville, MD , USA
| | - Andrea Torneri
- 3 Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp , Belgium
| | - Kim Van Kerckhove
- 1 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt , Hasselt , Belgium
| | - Lander Willem
- 3 Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp , Belgium
| | - Marc Aerts
- 1 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt , Hasselt , Belgium
| | - Philippe Beutels
- 3 Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp , Belgium
| | - Niel Hens
- 1 Interuniversity Institute for Biostatistics and Statistical Bioinformatics, UHasselt , Hasselt , Belgium.,3 Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp , Antwerp , Belgium
| |
Collapse
|
16
|
Rafferty E, McDonald W, Qian W, Osgood ND, Doroshenko A. Evaluation of the effect of chickenpox vaccination on shingles epidemiology using agent-based modeling. PeerJ 2018; 6:e5012. [PMID: 29942688 PMCID: PMC6015493 DOI: 10.7717/peerj.5012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 05/30/2018] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Biological interactions between varicella (chickenpox) and herpes zoster (shingles), two diseases caused by the varicella zoster virus (VZV), continue to be debated including the potential effect on shingles cases following the introduction of universal childhood chickenpox vaccination programs. We investigated how chickenpox vaccination in Alberta impacts the incidence and age-distribution of shingles over 75 years post-vaccination, taking into consideration a variety of plausible theories of waning and boosting of immunity. METHODS We developed an agent-based model representing VZV disease, transmission, vaccination states and coverage, waning and boosting of immunity in a stylized geographic area, utilizing a distance-based network. We derived parameters from literature, including modeling, epidemiological, and immunology studies. We calibrated our model to the age-specific incidence of shingles and chickenpox prior to vaccination to derive optimal combinations of duration of boosting (DoB) and waning of immunity. We conducted paired simulations with and without implementing chickenpox vaccination. We computed the count and cumulative incidence rate of shingles cases at 10, 25, 50, and 75 years intervals, following introduction of vaccination, and compared the difference between runs with vaccination and without vaccination using the Mann-Whitney U-test to determine statistical significance. We carried out sensitivity analyses by increasing and lowering vaccination coverage and removing biological effect of boosting. RESULTS Chickenpox vaccination led to a decrease in chickenpox cases. The cumulative incidence of chickenpox had dropped from 1,254 cases per 100,000 person-years pre chickenpox vaccination to 193 cases per 100,000 person-years 10 years after the vaccine implementation. We observed an increase in the all-ages shingles cumulative incidence at 10 and 25 years post chickenpox vaccination and mixed cumulative incidence change at 50 and 75 years post-vaccination. The magnitude of change was sensitive to DoB and ranged from an increase of 22-100 per 100,000 person-years at 10 years post-vaccination for two and seven years of boosting respectively (p < 0.001). At 75 years post-vaccination, cumulative incidence ranged from a decline of 70 to an increase of 71 per 100,000 person-years for two and seven years of boosting respectively (p < 0.001). Sensitivity analyses had a minimal impact on our inferences except for removing the effect of boosting. DISCUSSION Our model demonstrates that over the longer time period, there will be a reduction in shingles incidence driven by the depletion of the source of shingles reactivation; however in the short to medium term some age cohorts may experience an increase in shingles incidence. Our model offers a platform to further explore the relationship between chickenpox and shingles, including analyzing the impact of different chickenpox vaccination schedules and cost-effectiveness studies.
Collapse
Affiliation(s)
- Ellen Rafferty
- School of Public Health, University of Saskatchewan, Saskatoon, SK, Canada
| | - Wade McDonald
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Weicheng Qian
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Nathaniel D. Osgood
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alexander Doroshenko
- Faculty of Medicine and Dentistry, Department of Medicine, Division of Preventive Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
17
|
Yaari R, Dattner I, Huppert A. A two-stage approach for estimating the parameters of an age-group epidemic model from incidence data. Stat Methods Med Res 2017; 27:1999-2014. [PMID: 29260611 DOI: 10.1177/0962280217746443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Age-dependent dynamics is an important characteristic of many infectious diseases. Age-group epidemic models describe the infection dynamics in different age-groups by allowing to set distinct parameter values for each. However, such models are highly nonlinear and may have a large number of unknown parameters. Thus, parameter estimation of age-group models, while becoming a fundamental issue for both the scientific study and policy making in infectious diseases, is not a trivial task in practice. In this paper, we examine the estimation of the so-called next-generation matrix using incidence data of a single entire outbreak, and extend the approach to deal with recurring outbreaks. Unlike previous studies, we do not assume any constraints regarding the structure of the matrix. A novel two-stage approach is developed, which allows for efficient parameter estimation from both statistical and computational perspectives. Simulation studies corroborate the ability to estimate accurately the parameters of the model for several realistic scenarios. The model and estimation method are applied to real data of influenza-like-illness in Israel. The parameter estimates of the key relevant epidemiological parameters and the recovered structure of the estimated next-generation matrix are in line with results obtained in previous studies.
Collapse
Affiliation(s)
- Rami Yaari
- 1 Department of Statistics, University of Haifa, Israel.,2 The Biostatistics & BIomathematics Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Israel
| | - Itai Dattner
- 1 Department of Statistics, University of Haifa, Israel
| | - Amit Huppert
- 2 The Biostatistics & BIomathematics Unit, The Gertner Institute for Epidemiology and Health Policy Research, Chaim Sheba Medical Center, Israel.,3 School of Public Health, the Sackler Faculty of Medicine, Tel-Aviv University, Israel
| |
Collapse
|
18
|
Leung K, Jit M, Lau EHY, Wu JT. Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Sci Rep 2017. [PMID: 28801623 DOI: 10.5281/zenodo.3874808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The spread of many respiratory infections is determined by contact patterns between infectious and susceptible individuals in the population. There are no published data for quantifying social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong which is a hotspot for emerging infectious diseases due to its high population density and connectivity in the air transportation network. We adopted a commonly used diary-based design to conduct a social contact survey in Hong Kong in 2015/16 using both paper and online questionnaires. Participants using paper questionnaires reported more contacts and longer contact duration than those using online questionnaires. Participants reported 13 person-hours of contact and 8 contacts per day on average, which decreased over age but increased with household size, years of education and income level. Prolonged and frequent contacts, and contacts at home, school and work were more likely to involve physical contacts. Strong age-assortativity was observed in all age groups. We evaluated the characteristics of social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Our findings could help to improve the design of future social contact surveys, parameterize transmission models of respiratory infectious diseases, and inform intervention strategies based on model outputs.
Collapse
Affiliation(s)
- Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Mark Jit
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Modelling and Economics Unit, Public Health England, London, United Kingdom
| | - Eric H Y Lau
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
19
|
Social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Sci Rep 2017; 7:7974. [PMID: 28801623 PMCID: PMC5554254 DOI: 10.1038/s41598-017-08241-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/10/2017] [Indexed: 11/08/2022] Open
Abstract
The spread of many respiratory infections is determined by contact patterns between infectious and susceptible individuals in the population. There are no published data for quantifying social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong which is a hotspot for emerging infectious diseases due to its high population density and connectivity in the air transportation network. We adopted a commonly used diary-based design to conduct a social contact survey in Hong Kong in 2015/16 using both paper and online questionnaires. Participants using paper questionnaires reported more contacts and longer contact duration than those using online questionnaires. Participants reported 13 person-hours of contact and 8 contacts per day on average, which decreased over age but increased with household size, years of education and income level. Prolonged and frequent contacts, and contacts at home, school and work were more likely to involve physical contacts. Strong age-assortativity was observed in all age groups. We evaluated the characteristics of social contact patterns relevant to the spread of respiratory infectious diseases in Hong Kong. Our findings could help to improve the design of future social contact surveys, parameterize transmission models of respiratory infectious diseases, and inform intervention strategies based on model outputs.
Collapse
|
20
|
Tang X, Zhao S, Chiu APY, Ma H, Xie X, Mei S, Kong D, Qin Y, Chen Z, Wang X, He D. Modelling the transmission and control strategies of varicella among school children in Shenzhen, China. PLoS One 2017; 12:e0177514. [PMID: 28542182 PMCID: PMC5436677 DOI: 10.1371/journal.pone.0177514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 04/29/2017] [Indexed: 11/19/2022] Open
Abstract
Objectives Varicella (chickenpox) is a highly transmissible childhood disease. Between 2010 and 2015, it displayed two epidemic waves annually among school populations in Shenzhen, China. However, their transmission dynamics remain unclear and there is no school-based vaccination programme in Shenzhen to-date. In this study, we developed a mathematical model to compare a school-based vaccination intervention scenario with a baseline (i.e. no intervention) scenario. Methods Data on varicella reported cases were downloaded from the Infectious Disease Reporting Information Management System. We obtained the population size, age structure of children aged 15 or under, the class and school distribution from Shenzhen Education Bureau. We developed an Agent-Based Susceptible-Exposed-Infectious-Recovered (ABM-SEIR) Model that considered within-class, class-to-class and out-of-school transmission modes. The intervention scenario was that school-wide vaccination intervention occurred when an outbreak threshold was reached within a school. We varied this threshold level from five to ten cases. We compared the reduction of disease outbreak size and estimated the key epidemiological parameters under the intervention strategy. Results Our ABM-SEIR model provided a good model fit to the two annual varicella epidemic waves from 2013 to 2015. The transmission dynamics displayed strong seasonality. Our results suggested that a school-based vaccination strategy could effectively prevent large outbreaks at different thresholds. Conclusions There was a considerable increase in reported varicella cases from 2013 to 2015 in Shenzhen. Our modelling study provided important theoretical support for disease control decision making during school outbreaks and the development of a school-based vaccination programme.
Collapse
Affiliation(s)
- Xiujuan Tang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shi Zhao
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
| | - Alice P. Y. Chiu
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
- * E-mail: (AC); (DH)
| | - Hanwu Ma
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xu Xie
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shujiang Mei
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Dongfeng Kong
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Yanmin Qin
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Zhigao Chen
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Daihai He
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China
- * E-mail: (AC); (DH)
| |
Collapse
|
21
|
Hogea C, Van Effelterre T, Vyse A. Exploring the population-level impact of MenB vaccination via modeling: Potential for serogroup replacement. Hum Vaccin Immunother 2016; 12:451-66. [PMID: 26308796 PMCID: PMC5049729 DOI: 10.1080/21645515.2015.1080400] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Various meningococcal conjugate vaccines exist against serogroups A, C, W and Y. A new protein-based vaccine targeting serogroup B (MenB) is also now available. The potential of such vaccines to drive serogroup replacement is considered a possible public health concern when implementing nationwide routine immunization programmes. The aim of this work was to investigate if and how serogroup replacement may occur following widespread vaccination with a MenB vaccine that may protect against carriage. To that end, we built a dynamic transmission model with age and serogroup stratification, focusing on European settings where most invasive meningococcal disease (IMD) cases are caused by serogroups B and C. For illustration purposes, the model was employed in 2 such settings: UK (England and Wales) and Czech Republic. Preliminary model-based projections suggest that, under strong serogroup competition for colonization, vaccine-induced serogroup replacement may occur even with a relatively low vaccine efficacy against serogroup B carriage (e.g., 20%), with potential subsequent increase in serogroup C IMD. The magnitude and speed of the model-projected serogroup C IMD increase depend on the MenB vaccination strategy, vaccine efficacy against carriage and the extent of any potential cross-protection against other serogroups. These analyses are neither exhaustive nor definitive, and focused on simulating potential population-level trends in IMD post-vaccination, under certain assumptions. Due to present inherent limitations and uncertainties, this study has limited quantitative value and is best regarded as an explorative qualitative modeling approach, to complement and challenge the current status quo, and suggest areas where collecting additional data may be essential.
Collapse
Affiliation(s)
- Cosmina Hogea
- a GSK Vaccines; Vaccine Value & Health Science Epidemiology ; Philadelphia , PA USA.,c Present affiliation: GSK Vaccines; Health Outcomes ; Philadelphia , PA USA
| | | | - Andrew Vyse
- b GSK Vaccines; Vaccine Value & Health Science Epidemiology ; Wavre , Belgium
| |
Collapse
|
22
|
Xiao X, van Hoek AJ, Kenward MG, Melegaro A, Jit M. Clustering of contacts relevant to the spread of infectious disease. Epidemics 2016; 17:1-9. [PMID: 27639116 DOI: 10.1016/j.epidem.2016.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE Infectious disease spread depends on contact rates between infectious and susceptible individuals. Transmission models are commonly informed using empirically collected contact data, but the relevance of different contact types to transmission is still not well understood. Some studies select contacts based on a single characteristic such as proximity (physical/non-physical), location, duration or frequency. This study aimed to explore whether clusters of contacts similar to each other across multiple characteristics could better explain disease transmission. METHODS Individual contact data from the POLYMOD survey in Poland, Great Britain, Belgium, Finland and Italy were grouped into clusters by the k medoids clustering algorithm with a Manhattan distance metric to stratify contacts using all four characteristics. Contact clusters were then used to fit a transmission model to sero-epidemiological data for varicella-zoster virus (VZV) in each country. RESULTS AND DISCUSSION Across the five countries, 9-15 clusters were found to optimise both quality of clustering (measured using average silhouette width) and quality of fit (measured using several information criteria). Of these, 2-3 clusters were most relevant to VZV transmission, characterised by (i) 1-2 clusters of age-assortative contacts in schools, (ii) a cluster of less age-assortative contacts in non-school settings. Quality of fit was similar to using contacts stratified by a single characteristic, providing validation that single stratifications are appropriate. However, using clustering to stratify contacts using multiple characteristics provided insight into the structures underlying infection transmission, particularly the role of age-assortative contacts, involving school age children, for VZV transmission between households.
Collapse
Affiliation(s)
- Xiong Xiao
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom; Department of Epidemiology and Biostatistics, West China School of Public Health, Sichuan University, Chengdu, China.
| | - Albert Jan van Hoek
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | - Michael G Kenward
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom.
| | - Alessia Melegaro
- DONDENA Centre for Research on Social Dynamics & Public Policy, Università Bocconi, Via Guglielmo Röntgen n. 1, 20136 Milan, Italy.
| | - Mark Jit
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom; Modelling and Economics Unit, Public Health England, 61 Colindale Avenue, London NW9 5EQ, United Kingdom.
| |
Collapse
|
23
|
Pandemic Risk Assessment Model (PRAM): a mathematical modeling approach to pandemic influenza planning. Epidemiol Infect 2016; 144:3400-3411. [PMID: 27545901 DOI: 10.1017/s0950268816001850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Pandemic Risk Assessment Model (PRAM) is a mathematical model developed to analyse two pandemic influenza control measures available to public health: antiviral treatment and immunization. PRAM is parameterized using surveillance data from Alberta, Canada during pandemic H1N1. Age structure and risk level are incorporated in the compartmental, deterministic model through a contact matrix. The model characterizes pandemic influenza scenarios by transmissibility and severity properties. Simulating a worst-case scenario similar to the 1918 pandemic with immediate stockpile release, antiviral demand is 20·3% of the population. With concurrent, effective and timely immunization strategies, antiviral demand would be significantly less. PRAM will be useful in informing policy decisions such as the size of the Alberta antiviral stockpile and can contribute to other pandemic influenza planning activities and scenario analyses.
Collapse
|
24
|
Abstract
Pertussis remains a challenging public health problem with many aspects of infection, disease and immunity poorly understood. Initially controlled by mass vaccination, pertussis resurgence has occurred in some countries with well-established vaccination programs, particularly among adolescents and young adults. Several studies have used mathematical models to investigate drivers of pertussis epidemiology and predict the likely impact of different vaccination strategies. We reviewed a number of these models to evaluate their suitability to answer questions of public health importance regarding optimal vaccine scheduling. We critically discuss the approaches adopted and the impact of chosen model structures and assumptions on study conclusions. Common limitations were a lack of contemporary, population relevant data for parameterization and a limited understanding of the relationship between infection and disease. We make recommendations for future model development and suggest epidemiologic data collections that would facilitate efforts to reduce uncertainty and improve the robustness of model-derived conclusions.
Collapse
Key Words
- AIC, Akaike information criterion
- E, infected but not yet infectious compartment
- I, infectious compartment
- POLYMOD, European Union funded project
- R, removed/immune compartment
- S, susceptible compartment
- UK, United Kingdom
- US, United States
- W, waned immunity compartment
- WAIFW, who acquires infection from whom
- WHO, World Health Organization
- infectious disease dynamics
- mathematical modeling
- pertussis
- transmission
- vaccines
- λ or FOI, force of infection
Collapse
Affiliation(s)
- Patricia T Campbell
- a Melbourne School of Population and Global Health; The University of Melbourne ; Parkville , Australia
| | | | | |
Collapse
|
25
|
Duan W, Fan Z, Zhang P, Guo G, Qiu X. Mathematical and computational approaches to epidemic modeling: a comprehensive review. FRONTIERS OF COMPUTER SCIENCE 2015; 9:806-826. [PMID: 32288946 PMCID: PMC7133607 DOI: 10.1007/s11704-014-3369-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 08/04/2014] [Indexed: 05/28/2023]
Abstract
Mathematical and computational approaches are important tools for understanding epidemic spread patterns and evaluating policies of disease control. In recent years, epidemiology has become increasingly integrated with mathematics, sociology, management science, complexity science, and computer science. The cross of multiple disciplines has caused rapid development of mathematical and computational approaches to epidemic modeling. In this article, we carry out a comprehensive review of epidemic models to provide an insight into the literature of epidemic modeling and simulation. We introduce major epidemic models in three directions, including mathematical models, complex network models, and agent-based models. We discuss the principles, applications, advantages, and limitations of these models. Meanwhile, we also propose some future research directions in epidemic modeling.
Collapse
Affiliation(s)
- Wei Duan
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Zongchen Fan
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Peng Zhang
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Gang Guo
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| | - Xiaogang Qiu
- Center of Computational Experiments and Parallel Systems Technology, College of Information Systems and Management, National University of Defense Technology, Changsha, 410073 China
| |
Collapse
|
26
|
Tang JW, Wilson P, Shetty N, Noakes CJ. Aerosol-Transmitted Infections-a New Consideration for Public Health and Infection Control Teams. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2015; 7:176-201. [PMID: 32226323 PMCID: PMC7100085 DOI: 10.1007/s40506-015-0057-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the emergence of the 2003 severe acute respiratory syndrome (SARS), the 2003 reemergence of avian A/H5N1, the emergence of the 2009 pandemic influenza A/H1N1, the 2012 emergence of Middle East respiratory syndrome (MERS), the 2013 emergence of avian A/H7N9 and the 2014 Ebola virus outbreaks, the potential for the aerosol transmission of infectious agents is now routinely considered in the investigation of any outbreak. Although many organisms have traditionally been considered to be transmitted by only one route (e.g. direct/indirect contact and/or faecal-orally), it is now apparent that the aerosol transmission route is also possible and opportunistic, depending on any potentially aerosol-generating procedures, the severity of illness and the degree and duration of pathogen-shedding in the infected patient, as well as the environment in which these activities are conducted.This article reviews the evidence and characteristics of some of the accepted (tuberculosis, measles, chickenpox, whooping cough) and some of the more opportunistic (influenza, Clostridium difficile, norovirus) aerosol-transmitted infectious agents and outlines methods of detecting and quantifying transmission.
Collapse
Affiliation(s)
- Julian W. Tang
- Clinical Microbiology, Leicester Royal Infirmary, University Hospitals Leicester, Leicester NHS Trust, Leicester, LE1 5WW UK
| | - Peter Wilson
- Clinical Microbiology, University College London Hospitals NHS Trust, London, UK
| | - Nandini Shetty
- Clinical Microbiology, University College London Hospitals NHS Trust, London, UK
| | - Catherine J. Noakes
- Institute for Public Health and Environmental Engineering, School of Civil Engineering, University of Leeds, Leeds, UK
| |
Collapse
|
27
|
Kifle YW, Goeyvaerts N, Van Kerckhove K, Willem L, Faes C, Leirs H, Hens N, Beutels P. Animal Ownership and Touching Enrich the Context of Social Contacts Relevant to the Spread of Human Infectious Diseases. PLoS One 2015; 10:e0133461. [PMID: 26193480 PMCID: PMC4508096 DOI: 10.1371/journal.pone.0133461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/29/2015] [Indexed: 11/19/2022] Open
Abstract
Many human infectious diseases originate from animals or are transmitted through animal vectors. We aimed to identify factors that are predictive of ownership and touching of animals, assess whether animal ownership influences social contact behavior, and estimate the probability of a major zoonotic outbreak should a transmissible influenza-like pathogen be present in animals, all in the setting of a densely populated European country. A diary-based social contact survey (n = 1768) was conducted in Flanders, Belgium, from September 2010 until February 2011. Many participants touched pets (46%), poultry (2%) or livestock (2%) on a randomly assigned day, and a large proportion of participants owned such animals (51%, 15% and 5%, respectively). Logistic regression models indicated that larger households are more likely to own an animal and, unsurprisingly, that animal owners are more likely to touch animals. We observed a significant effect of age on animal ownership and touching. The total number of social contacts during a randomly assigned day was modeled using weighted-negative binomial regression. Apart from age, household size and day type (weekend versus weekday and regular versus holiday period), animal ownership was positively associated with the total number of social contacts during the weekend. Assuming that animal ownership and/or touching are at-risk events, we demonstrate a method to estimate the outbreak potential of zoonoses. We show that in Belgium animal-human interactions involving young children (0-9 years) and adults (25-54 years) have the highest potential to cause a major zoonotic outbreak.
Collapse
Affiliation(s)
- Yimer Wasihun Kifle
- Center for Health Economics Research & Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Nele Goeyvaerts
- Center for Health Economics Research & Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Kim Van Kerckhove
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Lander Willem
- Center for Health Economics Research & Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
- Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Christel Faes
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Center for Health Economics Research & Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat), Hasselt University, Diepenbeek, Belgium
| | - Philippe Beutels
- Center for Health Economics Research & Modeling of Infectious Diseases (CHERMID), Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
- * E-mail:
| |
Collapse
|
28
|
The French Connection: The First Large Population-Based Contact Survey in France Relevant for the Spread of Infectious Diseases. PLoS One 2015; 10:e0133203. [PMID: 26176549 PMCID: PMC4503306 DOI: 10.1371/journal.pone.0133203] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/24/2015] [Indexed: 01/25/2023] Open
Abstract
Background Empirical social contact patterns are essential to understand the spread of infectious diseases. To date, no such data existed for France. Although infectious diseases are frequently seasonal, the temporal variation of contact patterns has not been documented hitherto. Methods COMES-F is the first French large-scale population survey, carried out over 3 different periods (February-March, April, April-May) with some participants common to the first and the last period. Participants described their contacts for 2 consecutive days, and reported separately on professional contacts when typically over 20 per day. Results 2033 participants reported 38 881 contacts (weighted median [first quartile-third quartile]: 8[5–14] per day), and 54 378 contacts with supplementary professional contacts (9[5–17]). Contrary to age, gender, household size, holidays, weekend and occupation, period of the year had little influence on the number of contacts or the mixing patterns. Contact patterns were highly assortative with age, irrespective of the location of the contact, and gender, with women having 8% more contacts than men. Although most contacts occurred at home and at school, the inclusion of professional contacts modified the structure of the mixing patterns. Holidays and weekends reduced dramatically the number of contacts, and as proxies for school closure, reduced R0 by 33% and 28%, respectively. Thus, school closures could have an important impact on the spread of close contact infections in France. Conclusions Despite no clear evidence for temporal variation, trends suggest that more studies are needed. Age and gender were found important determinants of the mixing patterns. Gender differences in mixing patterns might help explain gender differences in the epidemiology of infectious diseases.
Collapse
|
29
|
Ogunjimi B, Willem L, Beutels P, Hens N. Integrating between-host transmission and within-host immunity to analyze the impact of varicella vaccination on zoster. eLife 2015; 4. [PMID: 26259874 PMCID: PMC4530225 DOI: 10.7554/elife.07116] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/17/2015] [Indexed: 01/22/2023] Open
Abstract
Varicella-zoster virus (VZV) causes chickenpox and reactivation of latent VZV causes herpes zoster (HZ). VZV reactivation is subject to the opposing mechanisms of declining and boosted VZV-specific cellular mediated immunity (CMI). A reduction in exogenous re-exposure ‘opportunities’ through universal chickenpox vaccination could therefore lead to an increase in HZ incidence. We present the first individual-based model that integrates within-host data on VZV-CMI and between-host transmission data to simulate HZ incidence. This model allows estimating currently unknown pivotal biomedical parameters, including the duration of exogenous boosting at 2 years, with a peak threefold to fourfold increase of VZV-CMI; the VZV weekly reactivation probability at 5% and VZV subclinical reactivation having no effect on VZV-CMI. A 100% effective chickenpox vaccine given to 1 year olds would cause a 1.75 times peak increase in HZ 31 years after implementation. This increase is predicted to occur mainly in younger age groups than is currently assumed. DOI:http://dx.doi.org/10.7554/eLife.07116.001 The itchy-scratchy misery of a chickenpox was until recently a rite of passage for children around the world. The varicella-zoster virus causes chickenpox infections. This virus persists in small numbers in nerve cells for many years after infection, and can reactivate from these cells. Often this reactivation causes no symptoms, but sometimes it results in a painful skin condition called shingles (or herpes zoster), especially in older adults. Some countries—including the United States, Australia, Taiwan and Greece—have virtually wiped out childhood cases of chickenpox by requiring that children be vaccinated against the varicella-zoster virus. But some countries have hesitated. One reason for this hesitation is that exposure to individuals with a chickenpox infection helps boost the immunity of individuals who have previously been infected. This may help reduce the likelihood of these people developing shingles later in life. So, some countries have worried that chickenpox vaccinations might inadvertently increase the number of shingles cases. To assess this risk, many scientists have created computer models, but the models have some limitations. Now, Ogunjimi et al. report a new individual-based model to assess the effect of childhood varicella vaccination on shingles cases that factors in the immune responses to varicella infection. The model suggests that re-exposure to the varicella virus through contact with infected people would only provide extra protection for about two years; this is much shorter than previous predictions that suggested it might last 20 years. The model also predicts that implementing a varicella vaccination program for children would almost double the number of shingles cases 31 years later. But this increase would be temporary. The predicted increase in shingles cases is likely to disproportionately occur among 31- to 40-year-olds. This is unexpected because most previous models predict that older age groups would bear the brunt of a rise in shingles, but this younger population would be less likely to develop lasting complications of shingles. Together, these findings may allay some fears about implementing childhood varicella vaccination programs by showing that the benefits of re-exposure are limited. DOI:http://dx.doi.org/10.7554/eLife.07116.002
Collapse
Affiliation(s)
- Benson Ogunjimi
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Lander Willem
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
30
|
Abstract
Public health vaccination guidelines cannot be easily transferred to elite athletes. An enhanced benefit from preventing even mild diseases is obvious but stronger interference from otherwise minor side effects has to be considered as well. Thus, special vaccination guidelines for adult elite athletes are required. In most of them, protection should be strived for against tetanus, diphtheria, pertussis, influenza, hepatitis A, hepatitis B, measles, mumps and varicella. When living or traveling to endemic areas, the athletes should be immune against tick-borne encephalitis, yellow fever, Japanese encephalitis, poliomyelitis, typhoid fever, and meningococcal disease. Vaccination against pneumococci and Haemophilus influenzae type b is only relevant in athletes with certain underlying disorders. Rubella and papillomavirus vaccination might be considered after an individual risk–benefit analysis. Other vaccinations such as cholera, rabies, herpes zoster, and Bacille Calmette–Guérin (BCG) cannot be universally recommended for athletes at present. Only for a very few diseases, a determination of antibody titers is reasonable to avoid unnecessary vaccinations or to control efficacy of an individual’s vaccination (especially for measles, mumps, rubella, varicella, hepatitis B and, partly, hepatitis A). Vaccinations should be scheduled in a way that possible side effects are least likely to occur in periods of competition. Typically, vaccinations are well tolerated by elite athletes, and resulting antibody titers are not different from the general population. Side effects might be reduced by an optimal selection of vaccines and an appropriate technique of administration. Very few discipline-specific considerations apply to an athlete’s vaccination schedule mainly from the competition and training pattern as well as from the typical geographical distribution of competitive sites.
Collapse
Affiliation(s)
- Barbara C Gärtner
- Institute for Microbiology and Hygiene, Saarland University, Faculty of Medicine and Medical Center, Building 43, 66421, Homburg/Saar, Germany,
| | | |
Collapse
|
31
|
Goeyvaerts N, Willem L, Van Kerckhove K, Vandendijck Y, Hanquet G, Beutels P, Hens N. Estimating dynamic transmission model parameters for seasonal influenza by fitting to age and season-specific influenza-like illness incidence. Epidemics 2015; 13:1-9. [PMID: 26616037 DOI: 10.1016/j.epidem.2015.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022] Open
Abstract
Dynamic transmission models are essential to design and evaluate control strategies for airborne infections. Our objective was to develop a dynamic transmission model for seasonal influenza allowing to evaluate the impact of vaccinating specific age groups on the incidence of infection, disease and mortality. Projections based on such models heavily rely on assumed 'input' parameter values. In previous seasonal influenza models, these parameter values were commonly chosen ad hoc, ignoring between-season variability and without formal model validation or sensitivity analyses. We propose to directly estimate the parameters by fitting the model to age-specific influenza-like illness (ILI) incidence data over multiple influenza seasons. We used a weighted least squares (WLS) criterion to assess model fit and applied our method to Belgian ILI data over six influenza seasons. After exploring parameter importance using symbolic regression, we evaluated a set of candidate models of differing complexity according to the number of season-specific parameters. The transmission parameters (average R0, seasonal amplitude and timing of the seasonal peak), waning rates and the scale factor used for WLS optimization, influenced the fit to the observed ILI incidence the most. Our results demonstrate the importance of between-season variability in influenza transmission and our estimates are in line with the classification of influenza seasons according to intensity and vaccine matching.
Collapse
Affiliation(s)
- Nele Goeyvaerts
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, B3590 Diepenbeek, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium.
| | - Lander Willem
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, B3590 Diepenbeek, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium; Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B2020 Antwerp, Belgium
| | - Kim Van Kerckhove
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, B3590 Diepenbeek, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Yannick Vandendijck
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, B3590 Diepenbeek, Belgium
| | - Germaine Hanquet
- KCE - Belgian Health Care Knowledge Centre, Boulevard du Jardin Botanique 55, B1000 Brussels, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| | - Niel Hens
- Interuniversity Institute for Biostatistics and statistical Bioinformatics, Hasselt University, Agoralaan Gebouw D, B3590 Diepenbeek, Belgium; Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
| |
Collapse
|
32
|
Grijalva CG, Goeyvaerts N, Verastegui H, Edwards KM, Gil AI, Lanata CF, Hens N. A household-based study of contact networks relevant for the spread of infectious diseases in the highlands of Peru. PLoS One 2015; 10:e0118457. [PMID: 25734772 PMCID: PMC4348542 DOI: 10.1371/journal.pone.0118457] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/06/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Few studies have quantified social mixing in remote rural areas of developing countries, where the burden of infectious diseases is usually the highest. Understanding social mixing patterns in those settings is crucial to inform the implementation of strategies for disease prevention and control. We characterized contact and social mixing patterns in rural communities of the Peruvian highlands. METHODS AND FINDINGS This cross-sectional study was nested in a large prospective household-based study of respiratory infections conducted in the province of San Marcos, Cajamarca-Peru. Members of study households were interviewed using a structured questionnaire of social contacts (conversation or physical interaction) experienced during the last 24 hours. We identified 9015 reported contacts from 588 study household members. The median age of respondents was 17 years (interquartile range [IQR] 4-34 years). The median number of reported contacts was 12 (IQR 8-20) whereas the median number of physical (i.e. skin-to-skin) contacts was 8.5 (IQR 5-14). Study participants had contacts mostly with people of similar age, and with their offspring or parents. The number of reported contacts was mainly determined by the participants' age, household size and occupation. School-aged children had more contacts than other age groups. Within-household reciprocity of contacts reporting declined with household size (range 70%-100%). Ninety percent of household contact networks were complete, and furthermore, household members' contacts with non-household members showed significant overlap (range 33%-86%), indicating a high degree of contact clustering. A two-level mixing epidemic model was simulated to compare within-household mixing based on observed contact networks and within-household random mixing. No differences in the size or duration of the simulated epidemics were revealed. CONCLUSION This study of rural low-density communities in the highlands of Peru suggests contact patterns are highly assortative. Study findings support the use of within-household homogenous mixing assumptions for epidemic modeling in this setting.
Collapse
Affiliation(s)
- Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University School of Medicine, Nashville, TN, United States of America
- * E-mail:
| | - Nele Goeyvaerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases, and Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | | - Kathryn M. Edwards
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Ana I. Gil
- Instituto de Investigación Nutricional, Lima, Peru
| | | | - Niel Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
- Centre for Health Economics Research and Modeling Infectious Diseases, and Centre for the Evaluation of Vaccination, Vaccine & Infectious Disease Institute, University of Antwerp, Wilrijk, Belgium
| | | |
Collapse
|
33
|
Ouwens MJNM, Littlewood KJ, Sauboin C, Téhard B, Denis F, Boëlle PY, Alain S. The impact of 2-dose routine measles, mumps, rubella, and varicella vaccination in France on the epidemiology of varicella and zoster using a dynamic model with an empirical contact matrix. Clin Ther 2015; 37:816-829.e10. [PMID: 25726457 DOI: 10.1016/j.clinthera.2014.12.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 12/08/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Abstract
PURPOSE Varicella has a high incidence affecting the vast majority of the population in France and can lead to severe complications. Almost every individual infected by varicella becomes susceptible to herpes zoster later in life due to reactivation of the latent virus. Zoster is characterized by pain that can be long-lasting in some cases and has no satisfactory treatment. Routine varicella vaccination can prevent varicella. The vaccination strategy of replacing both doses of measles, mumps, and rubella (MMR) with a combined MMR and varicella (MMRV) vaccine is a means of reaching high vaccination coverage for varicella immunization. The objective of this analysis was to assess the impact of routine varicella vaccination, with MMRV in place of MMR, on the incidence of varicella and zoster diseases in France and to assess the impact of exogenous boosting of zoster incidence, age shift in varicella cases, and other possible indirect effects. METHODS A dynamic transmission population-based model was developed using epidemiological data for France to determine the force of infection, as well as an empirically derived contact matrix to reduce assumptions underlying these key drivers of dynamic models. Scenario analyses tested assumptions regarding exogenous boosting, vaccine waning, vaccination coverage, risk of complications, and contact matrices. FINDINGS The model provides a good estimate of the incidence before varicella vaccination implementation in France. When routine varicella vaccination is introduced with French current coverage levels, varicella incidence is predicted to decrease by 57%, and related complications are expected to decrease by 76% over time. After vaccination, it is observed that exogenous boosting is the main driver of change in zoster incidence. When exogenous boosting is assumed, there is a temporary increase in zoster incidence before it gradually decreases, whereas without exogenous boosting, varicella vaccination leads to a gradual decrease in zoster incidence. Changing vaccine efficacy waning levels and coverage assumptions are still predicted to result in overall benefits with varicella vaccination. IMPLICATIONS In conclusion, the model predicted that MMRV vaccination can significantly reduce varicella incidence. With suboptimal coverage, a limited age shift of varicella cases is predicted to occur post-vaccination with MMRV. However, it does not result in an increase in the number of complications. GSK study identifier: HO-12-6924.
Collapse
Affiliation(s)
| | | | | | - Bertrand Téhard
- Pharmaco Epidemiology Unit, GSK France, Marly-le-Roi, France
| | - François Denis
- CHU de Limoges, Service de Bactériologie Virologie-Hygiène, Limoges, France
| | - Pierre-Yves Boëlle
- Université Pierre et Marie Curie, Service de Biostatistique - INSERM U707, Paris, France
| | - Sophie Alain
- CHU de Limoges, Service de Bactériologie Virologie-Hygiène, Limoges, France; Université de Limoges, Faculté de Médecine, Service de Bactériologie, INSERM UMR 1092, Limoges, France
| |
Collapse
|
34
|
Santermans E, Goeyvaerts N, Melegaro A, Edmunds WJ, Faes C, Aerts M, Beutels P, Hens N. The social contact hypothesis under the assumption of endemic equilibrium: Elucidating the transmission potential of VZV in Europe. Epidemics 2015; 11:14-23. [PMID: 25979278 DOI: 10.1016/j.epidem.2014.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 11/28/2022] Open
Abstract
The basic reproduction number R0 and the effective reproduction number R are pivotal parameters in infectious disease epidemiology, quantifying the transmission potential of an infection in a population. We estimate both parameters from 13 pre-vaccination serological data sets on varicella zoster virus (VZV) in 12 European countries and from population-based social contact surveys under the commonly made assumptions of endemic and demographic equilibrium. The fit to the serology is evaluated using the inferred effective reproduction number R as a model eligibility criterion combined with AIC as a model selection criterion. For only 2 out of 12 countries, the common choice of a constant proportionality factor is sufficient to provide a good fit to the seroprevalence data. For the other countries, an age-specific proportionality factor provides a better fit, assuming physical contacts lasting longer than 15 min are a good proxy for potential varicella transmission events. In all countries, primary infection with VZV most often occurs in early childhood, but there is substantial variation in transmission potential with R0 ranging from 2.8 in England and Wales to 7.6 in The Netherlands. Two non-parametric methods, the maximal information coefficient (MIC) and a random forest approach, are used to explain these differences in R0 in terms of relevant country-specific characteristics. Our results suggest an association with three general factors: inequality in wealth, infant vaccination coverage and child care attendance. This illustrates the need to consider fundamental differences between European countries when formulating and parameterizing infectious disease models.
Collapse
Affiliation(s)
- E Santermans
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium.
| | - N Goeyvaerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium; Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - A Melegaro
- Department of Policy Analysis and Public Management and Dondena Centre for Research on Social Dynamics, Universit Commerciale L. Bocconi, Milan, Italy
| | - W J Edmunds
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - C Faes
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - M Aerts
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium
| | - P Beutels
- Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium; School of Public Health and Community Medicine, The University of New South Wales, Sydney, Australia
| | - N Hens
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Diepenbeek, Belgium; Centre for Health Economic Research and Modelling Infectious Diseases, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
35
|
Kiti MC, Kinyanjui TM, Koech DC, Munywoki PK, Medley GF, Nokes DJ. Quantifying age-related rates of social contact using diaries in a rural coastal population of Kenya. PLoS One 2014; 9:e104786. [PMID: 25127257 PMCID: PMC4134222 DOI: 10.1371/journal.pone.0104786] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Improved understanding and quantification of social contact patterns that govern the transmission dynamics of respiratory viral infections has utility in the design of preventative and control measures such as vaccination and social distancing. The objective of this study was to quantify an age-specific matrix of contact rates for a predominantly rural low-income population that would support transmission dynamic modeling of respiratory viruses. METHODS AND FINDINGS From the population register of the Kilifi Health and Demographic Surveillance System, coastal Kenya, 150 individuals per age group (<1, 1-5, 6-15, 16-19, 20-49, 50 and above, in years) were selected by stratified random sampling and requested to complete a day long paper diary of physical contacts (e.g. touch or embrace). The sample was stratified by residence (rural-to-semiurban), month (August 2011 to January 2012, spanning seasonal changes in socio-cultural activities), and day of week. Usable diary responses were obtained from 568 individuals (∼50% of expected). The mean number of contacts per person per day was 17.7 (95% CI 16.7-18.7). Infants reported the lowest contact rates (mean 13.9, 95% CI 12.1-15.7), while primary school students (6-15 years) reported the highest (mean 20.1, 95% CI 18.0-22.2). Rates of contact were higher within groups of similar age (assortative), particularly within the primary school students and adults (20-49 years). Adults and older participants (>50 years) exhibited the highest inter-generational contacts. Rural contact rates were higher than semiurban (18.8 vs 15.6, p = 0.002), with rural primary school students having twice as many assortative contacts as their semiurban peers. CONCLUSIONS AND SIGNIFICANCE This is the first age-specific contact matrix to be defined for tropical Sub-Saharan Africa and has utility in age-structured models to assess the potential impact of interventions for directly transmitted respiratory infections.
Collapse
Affiliation(s)
| | - Timothy Muiruri Kinyanjui
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Mathematics and WIDER, University of Warwick, Coventry, United Kingdom
| | | | | | | | - David James Nokes
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- School of Life Sciences and WIDER, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
36
|
Ferraro CF, Trotter CL, Nascimento MC, Jusot JF, Omotara BA, Hodgson A, Ali O, Alavo S, Sow S, Daugla DM, Stuart JM. Household crowding, social mixing patterns and respiratory symptoms in seven countries of the African meningitis belt. PLoS One 2014; 9:e101129. [PMID: 24988195 PMCID: PMC4079295 DOI: 10.1371/journal.pone.0101129] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 06/03/2014] [Indexed: 12/24/2022] Open
Abstract
Objectives To describe the variation in household crowding and social mixing patterns in the African meningitis belt and to assess any association with self-reported recent respiratory symptoms. Methods In 2010, the African Meningococcal Carriage Consortium (MenAfriCar) conducted cross-sectional surveys in urban and rural areas of seven countries. The number of household members, rooms per household, attendance at social gatherings and meeting places were recorded. Associations with self-reported recent respiratory symptoms were analysed by univariate and multivariate regression models. Results The geometric mean people per room ranged from 1.9 to 2.8 between Ghana and Ethiopia respectively. Attendance at different types of social gatherings was variable by country, ranging from 0.5 to 1.5 per week. Those who attended 3 or more different types of social gatherings a week (frequent mixers) were more likely to be older, male (OR 1.27, p<0.001) and live in urban areas (OR 1.45, p<0.001). Frequent mixing and young age, but not increased household crowding, were associated with higher odds of self-reported respiratory symptoms (aOR 2.2, p<0.001 and OR 2.8, p<0.001 respectively). A limitation is that we did not measure school and workplace attendance. Conclusion There are substantial variations in household crowding and social mixing patterns across the African meningitis belt. This study finds a clear association between age, increased social mixing and respiratory symptoms. It lays the foundation for designing and implementing more detailed studies of social contact patterns in this region.
Collapse
Affiliation(s)
- Claire F. Ferraro
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Caroline L. Trotter
- Disease Dynamics Unit, Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Maria C. Nascimento
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Jean-François Jusot
- Unité d'Epidémiologie, Centre de Recherches Médicales et Sanitaires (CERMES), Niamey, Niger
| | | | - Abraham Hodgson
- Navrongo Health Research Centre, Navrongo, Ghana
- Research and Development Division, Ghana Health Service, Ghana
| | - Oumer Ali
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | - Serge Alavo
- L'institut de recherche pour le développement, Dakar, Senegal
| | - Samba Sow
- Center for Vaccine Development-Mali (CVD-MALI), Bamako, Mali
| | | | - James M. Stuart
- Department of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
37
|
Abrams S, Beutels P, Hens N. Assessing mumps outbreak risk in highly vaccinated populations using spatial seroprevalence data. Am J Epidemiol 2014; 179:1006-17. [PMID: 24573540 DOI: 10.1093/aje/kwu014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mumps is a potentially severe viral infection. The incidence of mumps has declined dramatically in high-income countries since the introduction of mumps antigen-containing vaccines. However, recent large outbreaks of mumps in highly vaccinated populations suggest waning of vaccine-induced immunity and primary vaccine failure. In this paper we present a simple method for identifying geographic regions with high outbreak potential, demonstrated using 2006 mumps seroprevalence data from Belgium and Belgian vaccination coverage data. Predictions of the outbreak potential in terms of the effective reproduction number in future years signal an increased risk of new mumps outbreaks. Literature reviews on serological information for both primary vaccine failure and waning immunity provide essential information for our predictions. Tailor-made additional vaccination campaigns would be valuable for decreasing local pockets of susceptibility, thereby reducing the risk of future large-scale mumps outbreaks.
Collapse
|
38
|
Van Kerckhove K, Hens N, Edmunds WJ, Eames KTD. The impact of illness on social networks: implications for transmission and control of influenza. Am J Epidemiol 2013; 178:1655-62. [PMID: 24100954 DOI: 10.1093/aje/kwt196] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We expect social networks to change as a result of illness, but social contact data are generally collected from healthy persons. Here we quantified the impact of influenza-like illness on social mixing patterns. We analyzed the contact patterns of persons from England measured when they were symptomatic with influenza-like illness during the 2009 A/H1N1pdm influenza epidemic (2009-2010) and again 2 weeks later when they had recovered. Illness was associated with a reduction in the number of social contacts, particularly in settings outside the home, reducing the reproduction number to about one-quarter of the value it would otherwise have taken. We also observed a change in the age distribution of contacts. By comparing the expected age distribution of cases resulting from transmission by (a)symptomatic persons with incidence data, we estimated the contribution of both groups to transmission. Using this, we calculated the fraction of transmission resulting from (a)symptomatic persons, assuming equal duration of infectiousness. We estimated that 66% of transmission was attributable to persons with symptomatic disease (95% confidence interval: 0.23, 1.00). This has important implications for control: Treating symptomatic persons with antiviral agents or encouraging home isolation would be expected to have a major impact on transmission, particularly since the reproduction number for this strain was low.
Collapse
|
39
|
Ogunjimi B, Theeten H, Hens N, Beutels P. Serology indicates cytomegalovirus infection is associated with varicella-zoster virus reactivation. J Med Virol 2013; 86:812-9. [DOI: 10.1002/jmv.23749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Benson Ogunjimi
- Centre for Health Economics Research and Modeling Infectious Diseases; Vaccine & Infectious Disease Institute; University of Antwerp; Antwerp Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics; Hasselt University; Hasselt Belgium
| | - Heidi Theeten
- Centre for the Evaluation of Vaccination; Vaccine & Infectious Disease Institute; University of Antwerp; Antwerp Belgium
| | - Niel Hens
- Centre for Health Economics Research and Modeling Infectious Diseases; Vaccine & Infectious Disease Institute; University of Antwerp; Antwerp Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics; Hasselt University; Hasselt Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modeling Infectious Diseases; Vaccine & Infectious Disease Institute; University of Antwerp; Antwerp Belgium
- School of Public Health and Community Medicine; University of New South Wales; Sydney Australia
| |
Collapse
|
40
|
Ogunjimi B, Van Damme P, Beutels P. Herpes Zoster Risk Reduction through Exposure to Chickenpox Patients: A Systematic Multidisciplinary Review. PLoS One 2013; 8:e66485. [PMID: 23805224 PMCID: PMC3689818 DOI: 10.1371/journal.pone.0066485] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/07/2013] [Indexed: 11/19/2022] Open
Abstract
Varicella-zoster virus (VZV) causes chickenpox and may subsequently reactivate to cause herpes zoster later in life. The exogenous boosting hypothesis states that re-exposure to circulating VZV can inhibit VZV reactivation and consequently also herpes zoster in VZV-immune individuals. Using this hypothesis, mathematical models predicted widespread chickenpox vaccination to increase herpes zoster incidence over more than 30 years. Some countries have postponed universal chickenpox vaccination, at least partially based on this prediction. After a systematic search and selection procedure, we analyzed different types of exogenous boosting studies. We graded 13 observational studies on herpes zoster incidence after widespread chickenpox vaccination, 4 longitudinal studies on VZV immunity after re-exposure, 9 epidemiological risk factor studies, 7 mathematical modeling studies as well as 7 other studies. We conclude that exogenous boosting exists, although not for all persons, nor in all situations. Its magnitude is yet to be determined adequately in any study field.
Collapse
Affiliation(s)
- Benson Ogunjimi
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Interuniversity Institute for Biostatistics and Statistical Bioinformatics, Hasselt University, Hasselt, Belgium
- * E-mail:
| | - Pierre Van Damme
- Centre for the Evaluation of Vaccination, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Philippe Beutels
- Centre for Health Economics Research and Modeling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
41
|
Potter GE, Hens N. A penalized likelihood approach to estimate within-household contact networks from egocentric data. J R Stat Soc Ser C Appl Stat 2013; 62:629-648. [PMID: 23935218 DOI: 10.1111/rssc.12011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Acute infectious diseases are transmitted over networks of social contacts. Epidemic models are used to predict the spread of emergent pathogens and compare intervention strategies. Many of these models assume equal probability of contact within mixing groups (homes, schools, etc.), but little work has inferred the actual contact network, which may influence epidemic estimates. We develop a penalized likelihood method to infer contact networks within households, a key area for disease transmission. Using egocentric surveys of contact behavior in Belgium, we estimate within-household contact networks for six different age compositions. Our estimates show dependency in contact behavior and vary substantively by age composition, with fewer contacts occurring in older households. Our results are relevant for epidemic models used to make policy recommendations.
Collapse
Affiliation(s)
- Gail E Potter
- California Polytechnic State University, San Luis Obispo, CA, U.S.A., Center for Statistics and Quantitative Infectious Diseases, Fred Hutchinson Cancer Research Center, Seattle, WA, U.S.A
| | | |
Collapse
|
42
|
Bilcke J, van Hoek AJ, Beutels P. Childhood varicella-zoster virus vaccination in Belgium: cost-effective only in the long run or without exogenous boosting? Hum Vaccin Immunother 2013; 9:812-22. [PMID: 23321955 DOI: 10.4161/hv.23334] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
AIM To assess the effectiveness and cost-effectiveness of a universal childhood varicella-zoster vaccination programme in Belgium (1) using the most recent Belgian data on varicella-zoster burden, (2) exploring different options for the timing of the second dose, (3) obtaining results with and without exogenous natural boosting, and (4) investigating the possible additional benefit of zoster booster vaccination for adults at age 50 or 60 y. METHODS An extensively studied and improved dynamic model is used to estimate primary and breakthrough chickenpox and zoster cases over time. For a range of vaccination options, we compared the direct costs (health care payer perspective) and health outcomes (including Quality-Adjusted Life-Years (QALYs) lost) associated with chickenpox and herpes zoster. Estimates of social contact patterns, health care use, costs and QALY losses are almost exclusively based on Belgian databases and surveys. RESULTS AND CONCLUSIONS If exogenous natural boosting exists, a net loss in QALYs is expected for several decades after implementing a universal chickenpox vaccination programme, due to an increase in zoster mainly in persons aged 50-80 y. This result holds also for scenarios that minimise or counteract the expected increase in zoster incidence (e.g. additional booster vaccinations in adults). However, if the boosting hypothesis is not true or if costs and QALYs are cumulated over at least 33 to more than 100 y after vaccination (depending on the assumptions made), different options for universal 2-dose vaccination against chickenpox in Belgium would be cost-effective at a vaccine price of €43/dose or lower.
Collapse
Affiliation(s)
- Joke Bilcke
- Center for Health Economic Research and Modeling Infectious Diseases (CHERMID); Vaccine and Infectious Disease Institute (Vaxinfectio); University of Antwerp; Wilrijk, Belgium
| | | | | |
Collapse
|
43
|
Farrington CP, Unkel S, Anaya-Izquierdo K. Estimation of basic reproduction numbers: individual heterogeneity and robustness to perturbation of the contact function. Biostatistics 2012; 14:528-40. [DOI: 10.1093/biostatistics/kxs054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Willem L, Van Kerckhove K, Chao DL, Hens N, Beutels P. A nice day for an infection? Weather conditions and social contact patterns relevant to influenza transmission. PLoS One 2012; 7:e48695. [PMID: 23155399 PMCID: PMC3498265 DOI: 10.1371/journal.pone.0048695] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/28/2012] [Indexed: 11/30/2022] Open
Abstract
Although there is no doubt that significant morbidity and mortality occur during annual influenza epidemics, the role of contextual circumstances, which catalyze seasonal influenza transmission, remains unclear. Weather conditions are believed to affect virus survival, efficiency of transmission and host immunity, but seasonality may also be driven by a tendency of people to congregate indoors during periods of bad weather. To test this hypothesis, we combined data from a social contact survey in Belgium with local weather data. In the absence of a previous in-depth weather impact analysis of social contact patterns, we explored the possibilities and identified pitfalls. We found general dominance of day-type (weekend, holiday, working day) over weather conditions, but nonetheless observed an increase in long duration contacts ([Formula: see text]1 hour) on regular workdays with low temperatures, almost no precipitation and low absolute humidity of the air. Interestingly, these conditions are often assumed to be beneficial for virus survival and transmission. Further research is needed to establish the impact of the weather on social contacts. We recommend that future studies sample over a broad spectrum of weather conditions and day types and include a sufficiently large proportion of holiday periods and weekends.
Collapse
Affiliation(s)
- Lander Willem
- Center for Health Economics Research & Modeling of Infectious Diseases, Center for the Evaluation of Vaccinations, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
45
|
Newall AT, Jit M, Beutels P. Economic evaluations of childhood influenza vaccination: a critical review. PHARMACOECONOMICS 2012; 30:647-660. [PMID: 22788257 DOI: 10.2165/11599130-000000000-00000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The potential benefits of influenza vaccination programmes targeted at children have gained increasing attention in recent years. We conducted a literature search of economic evaluations of influenza vaccination in those aged ≤18 years. The search revealed 20 relevant articles, which were reviewed. The studies differed widely in terms of the costs and benefits that were included. The conclusions were generally favourable for vaccination, but often applied a wider perspective (i.e. including productivity losses) than the reference case for economic evaluations used in many countries. Several evaluations estimated outcomes from a single-year epidemiological study, which may limit their validity given the year-to-year variation in influenza transmissibility, virulence, vaccine match and prior immunity. Only one study used a dynamic transmission model able to fully incorporate the indirect herd protection to the wider community. The use of dynamic models offers great scope to capture the population-wide implications of seasonal vaccination efforts, particularly those targeted at children.
Collapse
Affiliation(s)
- Anthony T Newall
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia.
| | | | | |
Collapse
|
46
|
Bolton KJ, McCaw JM, Forbes K, Nathan P, Robins G, Pattison P, Nolan T, McVernon J. Influence of contact definitions in assessment of the relative importance of social settings in disease transmission risk. PLoS One 2012; 7:e30893. [PMID: 22359553 PMCID: PMC3281034 DOI: 10.1371/journal.pone.0030893] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 11/18/2022] Open
Abstract
Background Realistic models of disease transmission incorporating complex population heterogeneities require input from quantitative population mixing studies. We use contact diaries to assess the relative importance of social settings in respiratory pathogen spread using three measures of person contact hours (PCH) as proxies for transmission risk with an aim to inform bipartite network models of respiratory pathogen transmission. Methods and Findings Our survey examines the contact behaviour for a convenience sample of 65 adults, with each encounter classified as occurring in a work, retail, home, social, travel or “other” setting. The diary design allows for extraction of PCH-interaction (cumulative time in face-face conversational or touch interaction with contacts) – analogous to the contact measure used in several existing surveys – as well as PCH-setting (product of time spent in setting and number of people present) and PCH-reach (product of time spent in setting and number of people in close proximity). Heterogeneities in day-dependent distribution of risk across settings are analysed using partitioning and cluster analyses and compared between days and contact measures. Although home is typically the highest-risk setting when PCH measures isolate two-way interactions, its relative importance compared to social and work settings may reduce when adopting a more inclusive contact measure that considers the number and duration of potential exposure events. Conclusions Heterogeneities in location-dependent contact behaviour as measured by contact diary studies depend on the adopted contact definition. We find that contact measures isolating face-face conversational or touch interactions suggest that contact in the home dominates, whereas more inclusive contact measures indicate that home and work settings may be of higher importance. In the absence of definitive knowledge of the contact required to facilitate transmission of various respiratory pathogens, it is important for surveys to consider alternative contact measures.
Collapse
Affiliation(s)
- Kirsty J Bolton
- Vaccine and Immunisation Research Group, Melbourne School of Population Health, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Silhol R, Boëlle PY. Modelling the effects of population structure on childhood disease: the case of varicella. PLoS Comput Biol 2011; 7:e1002105. [PMID: 21814504 PMCID: PMC3140963 DOI: 10.1371/journal.pcbi.1002105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 05/13/2011] [Indexed: 11/26/2022] Open
Abstract
Realistic, individual-based models based on detailed census data are increasingly used to study disease transmission. Whether the rich structure of such models improves predictions is debated. This is studied here for the spread of varicella, a childhood disease, in a realistic population of children where infection occurs in the household, at school, or in the community at large. A methodology is first presented for simulating households with births and aging. Transmission probabilities were fitted for schools and community, which reproduced the overall cumulative incidence of varicella over the age range of 0-11 years old.Moreover, the individual-based model structure allowed us to reproduce several observed features of VZV epidemiology which were not included as hypotheses in the model: the age at varicella in first-born children was older than in other children, in accordance with observation; the same was true for children residing in rural areas. Model predicted incidence was comparable to observed incidence over time. These results show that models based on detailed census data on a small scale provide valid small scale prediction. By simulating several scenarios, we evaluate how varicella epidemiology is shaped by policies, such as age at first school enrolment, and school eviction. This supports the use of such models for investigating outcomes of public health measures.
Collapse
Affiliation(s)
- Romain Silhol
- Université Pierre et Marie Curie-Paris 6, Paris, France.
| | | |
Collapse
|
48
|
Melegaro A, Jit M, Gay N, Zagheni E, Edmunds WJ. What types of contacts are important for the spread of infections?: using contact survey data to explore European mixing patterns. Epidemics 2011; 3:143-51. [PMID: 22094337 DOI: 10.1016/j.epidem.2011.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 03/16/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022] Open
Abstract
Knowledge of the determinants of infectious disease transmission is a public health priority as it allows the design of optimal control strategies for endemic or emerging infections. We analyse a detailed dataset on contact patterns across five European countries and use available serological profiles for varicella and parvovirus B19 infections to identify the types of contact that may be most relevant for transmission. We show that models informed by contact data fit well the observed serological profiles of both infections. We find that intimate types of contacts explain the pattern of acquisition of serological markers by age better than other types of social contacts. We observe similar patterns in each of the countries analysed, suggesting that there are consistent biological mechanisms at work.
Collapse
Affiliation(s)
- Alessia Melegaro
- Modelling and Economics Unit, Health Protection Agency, Centre for Infections, London, UK.
| | | | | | | | | |
Collapse
|
49
|
Isella L, Romano M, Barrat A, Cattuto C, Colizza V, Van den Broeck W, Gesualdo F, Pandolfi E, Ravà L, Rizzo C, Tozzi AE. Close encounters in a pediatric ward: measuring face-to-face proximity and mixing patterns with wearable sensors. PLoS One 2011; 6:e17144. [PMID: 21386902 PMCID: PMC3046133 DOI: 10.1371/journal.pone.0017144] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 01/21/2011] [Indexed: 11/19/2022] Open
Abstract
Background Nosocomial infections place a substantial burden on health care systems and represent one of the major issues in current public health, requiring notable efforts for its prevention. Understanding the dynamics of infection transmission in a hospital setting is essential for tailoring interventions and predicting the spread among individuals. Mathematical models need to be informed with accurate data on contacts among individuals. Methods and Findings We used wearable active Radio-Frequency Identification Devices (RFID) to detect face-to-face contacts among individuals with a spatial resolution of about 1.5 meters, and a time resolution of 20 seconds. The study was conducted in a general pediatrics hospital ward, during a one-week period, and included 119 participants, with 51 health care workers, 37 patients, and 31 caregivers. Nearly 16,000 contacts were recorded during the study period, with a median of approximately 20 contacts per participants per day. Overall, 25% of the contacts involved a ward assistant, 23% a nurse, 22% a patient, 22% a caregiver, and 8% a physician. The majority of contacts were of brief duration, but long and frequent contacts especially between patients and caregivers were also found. In the setting under study, caregivers do not represent a significant potential for infection spread to a large number of individuals, as their interactions mainly involve the corresponding patient. Nurses would deserve priority in prevention strategies due to their central role in the potential propagation paths of infections. Conclusions Our study shows the feasibility of accurate and reproducible measures of the pattern of contacts in a hospital setting. The obtained results are particularly useful for the study of the spread of respiratory infections, for monitoring critical patterns, and for setting up tailored prevention strategies. Proximity-sensing technology should be considered as a valuable tool for measuring such patterns and evaluating nosocomial prevention strategies in specific settings.
Collapse
Affiliation(s)
- Lorenzo Isella
- Complex Networks and Systems Group, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy
| | | | - Alain Barrat
- Complex Networks and Systems Group, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy
- Centre de Physique Théorique de Marseille, CNRS UMR 6207, Marseille, France
| | - Ciro Cattuto
- Complex Networks and Systems Group, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy
| | - Vittoria Colizza
- Complex Networks and Systems Group, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy
| | - Wouter Van den Broeck
- Complex Networks and Systems Group, Institute for Scientific Interchange (ISI) Foundation, Torino, Italy
| | | | | | - Lucilla Ravà
- Epidemiology Unit, Bambino Gesù Hospital, Rome, Italy
| | - Caterina Rizzo
- National Centre for Epidemiology, Surveillance and Health Promotion, Istituto Superiore di Sanità Rome, Rome, Italy
| | | |
Collapse
|
50
|
Social contact patterns in Vietnam and implications for the control of infectious diseases. PLoS One 2011; 6:e16965. [PMID: 21347264 PMCID: PMC3038933 DOI: 10.1371/journal.pone.0016965] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 01/10/2011] [Indexed: 11/20/2022] Open
Abstract
Background The spread of infectious diseases from person to person is determined by the frequency and nature of contacts between infected and susceptible members of the population. Although there is a long history of using mathematical models to understand these transmission dynamics, there are still remarkably little empirical data on contact behaviors with which to parameterize these models. Even starker is the almost complete absence of data from developing countries. We sought to address this knowledge gap by conducting a household based social contact diary in rural Vietnam. Methods and Findings A diary based survey of social contact patterns was conducted in a household-structured community cohort in North Vietnam in 2007. We used generalized estimating equations to model the number of contacts while taking into account the household sampling design, and used weighting to balance the household size and age distribution towards the Vietnamese population. We recorded 6675 contacts from 865 participants in 264 different households and found that mixing patterns were assortative by age but were more homogenous than observed in a recent European study. We also observed that physical contacts were more concentrated in the home setting in Vietnam than in Europe but the overall level of physical contact was lower. A model of individual versus household vaccination strategies revealed no difference between strategies in the impact on R0. Conclusions and Significance This work is the first to estimate contact patterns relevant to the spread of infections transmitted from person to person by non-sexual routes in a developing country setting. The results show interesting similarities and differences from European data and demonstrate the importance of context specific data.
Collapse
|