1
|
Davigo M, Van Schooten FJ, Wijnhoven B, Drittij MJ, Dubois L, Opperhuizen A, Talhout R, Remels AHV. Alterations in the molecular regulation of mitochondrial metabolism in human alveolar epithelial cells in response to cigarette- and heated tobacco product emissions. Toxicol Lett 2024; 401:89-100. [PMID: 39284537 DOI: 10.1016/j.toxlet.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Mitochondrial abnormalities in lung epithelial cells have been associated with chronic obstructive pulmonary disease (COPD) pathogenesis. Cigarette smoke (CS) can induce alterations in the molecular pathways regulating mitochondrial function in lung epithelial cells. Recently, heated tobacco products (HTPs) have been marketed as harm reduction products compared with regular cigarettes. However, the effects of HTP emissions on human alveolar epithelial cell metabolism and on the molecular mechanisms regulating mitochondrial content and function are unclear. In this study, human alveolar epithelial cells (A549) were exposed to cigarette or HTP emissions in the form of liquid extracts. The oxygen consumption rate of differently exposed cells was measured, and mRNA and protein abundancy of key molecules involved in the molecular regulation of mitochondrial metabolism were assessed. Furthermore, we used a mitophagy detection probe to visualize mitochondrial breakdown over time in response to the extracts. Both types of extracts induced increases in basal-, maximal- and spare respiratory capacity, as well as in cellular ATP production. Moreover, we observed alterations in the abundancy of regulatory molecules controlling mitochondrial biogenesis and mitophagy. Mitophagy was not significantly altered in response to the extracts, as no significant differences compared to vehicle-treated cells were observed.
Collapse
Affiliation(s)
- Michele Davigo
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands; Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, the Netherlands.
| | - Frederik Jan Van Schooten
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Bas Wijnhoven
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Marie Jose Drittij
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| | - Ludwig Dubois
- The M-Lab, Department of Precision Medicine, GROW - School for Oncology and Reproduction, Maastricht University, Maastricht, the Netherlands
| | - Antoon Opperhuizen
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands; Office of Risk Assessment and Research, Netherlands Food and Consumer Product Safety Authority (NVWA), Utrecht, the Netherlands
| | - Reinskje Talhout
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, Bilthoven 3720 BA, the Netherlands
| | - Alexander H V Remels
- School of Nutrition and Translational Research in Metabolism (NUTRIM), Department of Pharmacology and Toxicology, Maastricht University Medical Center+, Maastricht, the Netherlands
| |
Collapse
|
2
|
Chernyavskij DA, Lyamzaev KG, Pletjushkina OY, Chen F, Karpukhina A, Vassetzky YS, Chernyak BV, Popova EN. Mitochondrial fragmentation in early differentiation of human MB135 myoblasts: Role of mitochondrial ROS production in the absence of depolarization. Life Sci 2024; 354:122941. [PMID: 39098595 DOI: 10.1016/j.lfs.2024.122941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/15/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
AIMS Study of the role of mitochondria-generated reactive oxygen species (mtROS) and mitochondrial polarization in mitochondrial fragmentation at the initial stages of myogenesis. MAIN METHODS Mitochondrial morphology, Drp1 protein phosphorylation, mitochondrial electron transport chain components content, mtROS and mitochondrial lipid peroxidation levels, and mitochondrial polarization were evaluated on days 1 and 2 of human MB135 myoblasts differentiation. A mitochondria-targeted antioxidant SkQ1 was used to elucidate the effect of mtROS on mitochondria. KEY FINDINGS In immortalized human MB135 myoblasts, mitochondrial fragmentation began on day 1 of differentiation before the myoblast fusion. This fragmentation was preceded by dephosphorylation of p-Drp1 (Ser-637). On day 2, an increase in the content of some mitochondrial proteins was observed, indicating mitochondrial biogenesis stimulation. Furthermore, we found that myogenic differentiation, even on day 1, was accompanied both by an increased production of mtROS, and lipid peroxidation of the inner mitochondrial membrane. SkQ1 blocked these effects and partially reduced the level of mitochondrial fragmentation, but did not affect the dephosphorylation of p-Drp1 (Ser-637). Importantly, mitochondrial fragmentation at early stages of MB135 differentiation was not accompanied by depolarization, as an important stimulus for mitochondrial fragmentation. SIGNIFICANCE Mitochondrial fragmentation during early myogenic differentiation depends on mtROS production rather than mitochondrial depolarization. SkQ1 only partially inhibited mitochondrial fragmentation, without significant effects on mitophagy or early myogenic differentiation.
Collapse
Affiliation(s)
| | - Konstantin G Lyamzaev
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia; The "Russian Clinical Research Center for Gerontology" of the Ministry of Healthcare of the Russian Federation, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Fei Chen
- CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Anna Karpukhina
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Yegor S Vassetzky
- Koltzov Institute of Developmental Biology, 117334 Moscow, Russia; CNRS UMR9018, Institut Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
| | - Boris V Chernyak
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| | - Ekaterina N Popova
- Belozersky Institute of Physico-Chemical Biology, 119992 Moscow, Russia.
| |
Collapse
|
3
|
Fu X, Zhang F, Dong X, Pu L, Feng Y, Xu Y, Gao F, Liang T, Kang J, Sun H, Hong T, Liu Y, Zhou H, Jiang J, Yin D, Hu X, Wang DZ, Ding J, Chen J. Adapting cytoskeleton-mitochondria patterning with myocyte differentiation by promyogenic PRR33. Cell Death Differ 2024:10.1038/s41418-024-01363-w. [PMID: 39147882 DOI: 10.1038/s41418-024-01363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Coordinated cytoskeleton-mitochondria organization during myogenesis is crucial for muscle development and function. Our understanding of the underlying regulatory mechanisms remains inadequate. Here, we identified a novel muscle-enriched protein, PRR33, which is upregulated during myogenesis and acts as a promyogenic factor. Depletion of Prr33 in C2C12 represses myoblast differentiation. Genetic deletion of Prr33 in mice reduces myofiber size and decreases muscle strength. The Prr33 mutant mice also exhibit impaired myogenesis and defects in muscle regeneration in response to injury. Interactome and transcriptome analyses reveal that PRR33 regulates cytoskeleton and mitochondrial function. Remarkably, PRR33 interacts with DESMIN, a key regulator of cytoskeleton-mitochondria organization in muscle cells. Abrogation of PRR33 in myocytes substantially abolishes the interaction of DESMIN filaments with mitochondria, leading to abnormal intracellular accumulation of DESMIN and mitochondrial disorganization/dysfunction in myofibers. Together, our findings demonstrate that PRR33 and DESMIN constitute an important regulatory module coordinating mitochondrial organization with muscle differentiation.
Collapse
Affiliation(s)
- Xuyang Fu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Feng Zhang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Xiaoxuan Dong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Linbin Pu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yan Feng
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yang Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Feng Gao
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tian Liang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Jianmeng Kang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Hongke Sun
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Tingting Hong
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yunxia Liu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hongmei Zhou
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Jiang
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Deling Yin
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Xinyang Hu
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Da-Zhi Wang
- University of South Florida Health Heart Institute, Center for Regenerative Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33602, USA
| | - Jian Ding
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Jinghai Chen
- Department of Cardiology of Second Affiliated Hospital, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310009, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| |
Collapse
|
4
|
Russo C, Santangelo R, Malaguarnera L, Valle MS. The "Sunshine Vitamin" and Its Antioxidant Benefits for Enhancing Muscle Function. Nutrients 2024; 16:2195. [PMID: 39064638 PMCID: PMC11279438 DOI: 10.3390/nu16142195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Pathological states marked by oxidative stress and systemic inflammation frequently compromise the functional capacity of muscular cells. This progressive decline in muscle mass and tone can significantly hamper the patient's motor abilities, impeding even the most basic physical tasks. Muscle dysfunction can lead to metabolic disorders and severe muscle wasting, which, in turn, can potentially progress to sarcopenia. The functionality of skeletal muscle is profoundly influenced by factors such as environmental, nutritional, physical, and genetic components. A well-balanced diet, rich in proteins and vitamins, alongside an active lifestyle, plays a crucial role in fortifying tissues and mitigating general weakness and pathological conditions. Vitamin D, exerting antioxidant effects, is essential for skeletal muscle. Epidemiological evidence underscores a global prevalence of vitamin D deficiency, which induces oxidative harm, mitochondrial dysfunction, reduced adenosine triphosphate production, and impaired muscle function. This review explores the intricate molecular mechanisms through which vitamin D modulates oxidative stress and its consequent effects on muscle function. The aim is to evaluate if vitamin D supplementation in conditions involving oxidative stress and inflammation could prevent decline and promote or maintain muscle function effectively.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Rosa Santangelo
- Department of Medicine and Health Sciences, University of Catania, Via Santa Sofia, 97, 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
5
|
Kanaan MN, Pileggi CA, Karam CY, Kennedy LS, Fong-McMaster C, Cuperlovic-Culf M, Harper ME. Cystine/glutamate antiporter xCT controls skeletal muscle glutathione redox, bioenergetics and differentiation. Redox Biol 2024; 73:103213. [PMID: 38815331 PMCID: PMC11167394 DOI: 10.1016/j.redox.2024.103213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024] Open
Abstract
Cysteine, the rate-controlling amino acid in cellular glutathione synthesis is imported as cystine, by the cystine/glutamate antiporter, xCT, and subsequently reduced to cysteine. As glutathione redox is important in muscle regeneration in aging, we hypothesized that xCT exerts upstream control over skeletal muscle glutathione redox, metabolism and regeneration. Bioinformatic analyses of publicly available datasets revealed that expression levels of xCT and GSH-related genes are inversely correlated with myogenic differentiation genes. Muscle satellite cells (MuSCs) isolated from Slc7a11sut/sut mice, which harbour a mutation in the Slc7a11 gene encoding xCT, required media supplementation with 2-mercaptoethanol to support cell proliferation but not myotube differentiation, despite persistently lower GSH. Slc7a11sut/sut primary myotubes were larger compared to WT myotubes, and also exhibited higher glucose uptake and cellular oxidative capacities. Immunostaining of myogenic markers (Pax7, MyoD, and myogenin) in cardiotoxin-damaged tibialis anterior muscle fibres revealed greater MuSC activation and commitment to differentiation in Slc7a11sut/sut muscle compared to WT mice, culminating in larger myofiber cross-sectional areas at 21 days post-injury. Slc7a11sut/sut mice subjected to a 5-week exercise training protocol demonstrated enhanced insulin tolerance compared to WT mice, but blunted muscle mitochondrial biogenesis and respiration in response to exercise training. Our results demonstrate that the absence of xCT inhibits cell proliferation but promotes myotube differentiation by regulating cellular metabolism and glutathione redox. Altogether, these results support the notion that myogenesis is a redox-regulated process and may help inform novel therapeutic approaches for muscle wasting and dysfunction in aging and disease.
Collapse
Affiliation(s)
- Michel N Kanaan
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; Dr. Eric Poulin Centre for Neuromuscular Disease (CNMD), University of Ottawa, ON, K1H 8M5, Canada
| | - Chantal A Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Charbel Y Karam
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Luke S Kennedy
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Claire Fong-McMaster
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada; National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada; Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
6
|
Yin H, Li X, Wang C, Li X, Liu J. Nickel induces mitochondrial damage in renal cells in vitro and in vivo through its effects on mitochondrial biogenesis, fusion, and fission. Chem Biol Interact 2024; 394:110975. [PMID: 38552765 DOI: 10.1016/j.cbi.2024.110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
Nickel (Ni) and its compounds are common, widely distributed components of hazardous waste in the chemical industry. Excessive exposure to Ni can cause kidney damage in humans and animals. We investigated the impact of Ni on renal mitochondria using in vivo and in vitro models of Ni nephrotoxicity, and explored the Ni nephrotoxic mechanism. We showed that nickel chloride (NiCl2) damaged the renal mitochondria, causing mitochondrial swelling, breakage of the mitochondrial cristae, increased levels of mitochondrial reactive oxygen species (mt-ROS), and depolarization of the mitochondrial membrane potential (MMP). The levels of the mitochondrial respiratory chain complexes I-IV were reduced in the kidneys of mice treated with NiCl2. In addition, NiCl2 treatment inhibited mitochondrial biogenesis in renal cells by down-regulating mRNA and the protein expression of TFAM, PGC-1α, and NRF1. Moreover, NiCl2 reduced the levels of the proteins involved in mitochondrial fusion, including Mfn1 and Mfn2, while significantly augmenting the levels of the proteins Fis1 and Drip1 involved in mitochondrial fission in renal cells. Taken together, these results suggested that NiCl2 inhibited mitochondrial biogenesis, suppressed mitochondrial fusion, and promoted mitochondrial fission, resulting in mitochondrial dysfunction in renal cells, ultimately causing renal injury. This study provided novel insights into the mechanisms of nephrotoxicity of Ni and new ideas for the development of targeted treatments for Ni-induced kidney injury.
Collapse
Affiliation(s)
- Heng Yin
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xinglai Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Chengbi Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaocong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| |
Collapse
|
7
|
Lin F, Sun L, Zhang Y, Gao W, Chen Z, Liu Y, Tian K, Han X, Liu R, Li Y, Shen L. Mitochondrial stress response and myogenic differentiation. Front Cell Dev Biol 2024; 12:1381417. [PMID: 38681520 PMCID: PMC11055459 DOI: 10.3389/fcell.2024.1381417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024] Open
Abstract
Regeneration and repair are prerequisites for maintaining effective function of skeletal muscle under high energy demands, and myogenic differentiation is one of the key steps in the regeneration and repair process. A striking feature of the process of myogenic differentiation is the alteration of mitochondria in number and function. Mitochondrial dysfunction can activate a number of transcriptional, translational and post-translational programmes and pathways to maintain cellular homeostasis under different types and degrees of stress, either through its own signaling or through constant signaling interactions with the nucleus and cytoplasm, a process known as the mitochondrial stress responses (MSRs). It is now believed that mitochondrial dysfunction is closely associated with a variety of muscle diseases caused by reduced levels of myogenic differentiation, suggesting the possibility that MSRs are involved in messaging during myogenic differentiation. Also, MSRs may be involved in myogenesis by promoting bioenergetic remodeling and assisting myoblast survival during myogenic differentiation. In this review, we will take MSRs as an entry point to explore its concrete regulatory mechanisms during myogenic differentiation, with a perspective to provide a theoretical basis for the treatment and repair of related muscle diseases.
Collapse
Affiliation(s)
- Fu Lin
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Liankun Sun
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yu Zhang
- Experimental Teaching Center of Basic Medicine, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Weinan Gao
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zihan Chen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Clinical Medical College of Jilin University, The First Hospital of Jilin University, Changchun, China
| | - Yanan Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Kai Tian
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Xuyu Han
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Ruize Liu
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- China Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Department of Physiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Luyan Shen
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
8
|
Zhu P, Peek CB. Circadian timing of satellite cell function and muscle regeneration. Curr Top Dev Biol 2024; 158:307-339. [PMID: 38670711 DOI: 10.1016/bs.ctdb.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted an important role for the molecular circadian machinery in the regulation of tissue-specific function and stress responses. Indeed, disruption of circadian function, which is pervasive in modern society, is linked to accelerated aging, obesity, and type 2 diabetes. Furthermore, evidence supporting the importance of the circadian clock within both the mature muscle tissue and satellite cells to regulate the maintenance of muscle mass and repair capacity in response injury has recently emerged. Here, we review the discovery of circadian clocks within the satellite cell (a.k.a. adult muscle stem cell) and how they act to regulate metabolism, epigenetics, and myogenesis during both healthy and diseased states.
Collapse
Affiliation(s)
- Pei Zhu
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| | - Clara B Peek
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States; Department of Medicine-Endocrinology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
9
|
Lee MH, Lee B, Park SE, Yang GE, Cheon S, Lee DH, Kang S, Sun YJ, Kim Y, Jung DS, Kim W, Kang J, Kim YR, Choi JW. Transcriptome-based deep learning analysis identifies drug candidates targeting protein synthesis and autophagy for the treatment of muscle wasting disorder. Exp Mol Med 2024; 56:904-921. [PMID: 38556548 PMCID: PMC11059359 DOI: 10.1038/s12276-024-01189-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 04/02/2024] Open
Abstract
Sarcopenia, the progressive decline in skeletal muscle mass and function, is observed in various conditions, including cancer and aging. The complex molecular biology of sarcopenia has posed challenges for the development of FDA-approved medications, which have mainly focused on dietary supplementation. Targeting a single gene may not be sufficient to address the broad range of processes involved in muscle loss. This study analyzed the gene expression signatures associated with cancer formation and 5-FU chemotherapy-induced muscle wasting. Our findings suggest that dimenhydrinate, a combination of 8-chlorotheophylline and diphenhydramine, is a potential therapeutic for sarcopenia. In vitro experiments demonstrated that dimenhydrinate promotes muscle progenitor cell proliferation through the phosphorylation of Nrf2 by 8-chlorotheophylline and promotes myotube formation through diphenhydramine-induced autophagy. Furthermore, in various in vivo sarcopenia models, dimenhydrinate induced rapid muscle tissue regeneration. It improved muscle regeneration in animals with Duchenne muscular dystrophy (DMD) and facilitated muscle and fat recovery in animals with chemotherapy-induced sarcopenia. As an FDA-approved drug, dimenhydrinate could be applied for sarcopenia treatment after a relatively short development period, providing hope for individuals suffering from this debilitating condition.
Collapse
Affiliation(s)
- Min Hak Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Bada Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Se Eun Park
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ga Eul Yang
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Seungwoo Cheon
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Dae Hoon Lee
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sukyeong Kang
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ye Ji Sun
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yongjin Kim
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Dong-Sub Jung
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Wonwoo Kim
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Jihoon Kang
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea
| | - Yi Rang Kim
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Center for Research and Development, Oncocross Ltd, Seoul, 04168, Republic of Korea.
| | - Jin Woo Choi
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Pharmacology, Institute of Regulatory Innovation Through Science, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Agarwala S, Dhabal S, Mitra K. Significance of quantitative analyses of the impact of heterogeneity in mitochondrial content and shape on cell differentiation. Open Biol 2024; 14:230279. [PMID: 38228170 PMCID: PMC10791538 DOI: 10.1098/rsob.230279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Mitochondria, classically known as the powerhouse of cells, are unique double membrane-bound multifaceted organelles carrying a genome. Mitochondrial content varies between cell types and precisely doubles within cells during each proliferating cycle. Mitochondrial content also increases to a variable degree during cell differentiation triggered after exit from the proliferating cycle. The mitochondrial content is primarily maintained by the regulation of mitochondrial biogenesis, while damaged mitochondria are eliminated from the cells by mitophagy. In any cell with a given mitochondrial content, the steady-state mitochondrial number and shape are determined by a balance between mitochondrial fission and fusion processes. The increase in mitochondrial content and alteration in mitochondrial fission and fusion are causatively linked with the process of differentiation. Here, we critically review the quantitative aspects in the detection methods of mitochondrial content and shape. Thereafter, we quantitatively link these mitochondrial properties in differentiating cells and highlight the implications of such quantitative link on stem cell functionality. Finally, we discuss an example of cell size regulation predicted from quantitative analysis of mitochondrial shape and content. To highlight the significance of quantitative analyses of these mitochondrial properties, we propose three independent rationale based hypotheses and the relevant experimental designs to test them.
Collapse
Affiliation(s)
- Swati Agarwala
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Sukhamoy Dhabal
- Department of Biology, Ashoka University, Delhi (NCR), India
| | - Kasturi Mitra
- Department of Biology, Ashoka University, Delhi (NCR), India
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
11
|
Deng K, Liu Z, Su Y, Zhang Z, Fan Y, Zhang Y, Wang F. RUNX1T1 modulates myogenic differentiation by regulating the calcium signaling pathway and the alternative splicing of ROCK2. FASEB J 2023; 37:e23044. [PMID: 37342905 DOI: 10.1096/fj.202300677r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
RUNX1T1 (Runt-related transcription factor 1, translocated to 1) plays a wide-ranging and diverse role in cellular development, including hematopoiesis and adipogenesis. However, little is known about the function of RUNX1T1 in the skeletal muscle development. Here, we assessed the impact of RUNX1T1 on the proliferation and myogenic differentiation of goat primary myoblasts (GPMs). It was observed that RUNX1T1 is highly expressed during the early stages of myogenic differentiation and the fetal stage. Moreover, the knockdown of RUNX1T1 promotes the proliferation and inhibits myogenic differentiation and mitochondrial biogenesis of GPMs. RNA sequencing analysis revealed that significantly differentially expressed genes in RUNX1T1 knockdown cells were enriched in the calcium signaling pathway. Additionally, we discovered that RUNX1T1 regulates alternative splicing (AS) events involved in myogenesis. We also show that silencing RUNX1T1 blocked the Ca2+ -CAMK signaling pathway and reduced the expression levels of muscle-specific isoforms of recombinant rho associated coiled coil containing crotein kinase 2 (ROCK2) during myogenic differentiation, partially explaining why RUNX1T1 deficiency leads to the impairment of myotube formation. These findings suggest that RUNX1T1 is a novel regulator of myogenic differentiation that regulates the calcium signaling pathway and AS of ROCK2. Overall, our results highlight the critical role of RUNX1T1 in myogenesis and broaden our understanding of myogenic differentiation.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Zhipeng Liu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yalong Su
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Zhen Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
- Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Hu B, Zhao C, Pan X, Wei H, Mo G, Xian M, Luo W, Nie Q, Li H, Zhang X. Local GHR roles in regulation of mitochondrial function through mitochondrial biogenesis during myoblast differentiation. Cell Commun Signal 2023; 21:148. [PMID: 37337300 DOI: 10.1186/s12964-023-01166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Myoblast differentiation requires metabolic reprogramming driven by increased mitochondrial biogenesis and oxidative phosphorylation. The canonical GH-GHR-IGFs axis in liver exhibits a great complexity in response to somatic growth. However, the underlying mechanism of whether local GHR acts as a control valve to regulate mitochondrial function through mitochondrial biogenesis during myoblast differentiation remains unknown. METHODS We manipulated the GHR expression in chicken primary myoblast to investigate its roles in mitochondrial biogenesis and function during myoblast differentiation. RESULTS We reported that GHR is induced during myoblast differentiation. Local GHR promoted mitochondrial biogenesis during myoblast differentiation, as determined by the fluorescence intensity of Mito-Tracker Green staining and MitoTimer reporter system, the expression of mitochondrial biogenesis markers (PGC1α, NRF1, TFAM) and mtDNA encoded gene (ND1, CYTB, COX1, ATP6), as well as mtDNA content. Consistently, local GHR enhanced mitochondrial function during myoblast differentiation, as determined by the oxygen consumption rate, mitochondrial membrane potential, ATP level and ROS production. We next revealed that the regulation of mitochondrial biogenesis and function by GHR depends on IGF1. In terms of the underlying mechanism, we demonstrated that IGF1 regulates mitochondrial biogenesis via PI3K/AKT/CREB pathway. Additionally, GHR knockdown repressed myoblast differentiation. CONCLUSIONS In conclusion, our data corroborate that local GHR acts as a control valve to enhance mitochondrial function by promoting mitochondrial biogenesis via IGF1-PI3K/AKT/CREB pathway during myoblast differentiation. Video Abstract.
Collapse
Affiliation(s)
- Bowen Hu
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Changbin Zhao
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haohui Wei
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guodong Mo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Mingjian Xian
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongmei Li
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Poliacikova G, Barthez M, Rival T, Aouane A, Luis NM, Richard F, Daian F, Brouilly N, Schnorrer F, Maurel-Zaffran C, Graba Y, Saurin AJ. M1BP is an essential transcriptional activator of oxidative metabolism during Drosophila development. Nat Commun 2023; 14:3187. [PMID: 37268614 DOI: 10.1038/s41467-023-38986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 05/23/2023] [Indexed: 06/04/2023] Open
Abstract
Oxidative metabolism is the predominant energy source for aerobic muscle contraction in adult animals. How the cellular and molecular components that support aerobic muscle physiology are put in place during development through their transcriptional regulation is not well understood. Using the Drosophila flight muscle model, we show that the formation of mitochondria cristae harbouring the respiratory chain is concomitant with a large-scale transcriptional upregulation of genes linked with oxidative phosphorylation (OXPHOS) during specific stages of flight muscle development. We further demonstrate using high-resolution imaging, transcriptomic and biochemical analyses that Motif-1-binding protein (M1BP) transcriptionally regulates the expression of genes encoding critical components for OXPHOS complex assembly and integrity. In the absence of M1BP function, the quantity of assembled mitochondrial respiratory complexes is reduced and OXPHOS proteins aggregate in the mitochondrial matrix, triggering a strong protein quality control response. This results in isolation of the aggregate from the rest of the matrix by multiple layers of the inner mitochondrial membrane, representing a previously undocumented mitochondrial stress response mechanism. Together, this study provides mechanistic insight into the transcriptional regulation of oxidative metabolism during Drosophila development and identifies M1BP as a critical player in this process.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Marine Barthez
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Thomas Rival
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nuno Miguel Luis
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Richard
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Fabrice Daian
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Frank Schnorrer
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France
| | - Andrew J Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Turing Center for Living Systems, Parc Scientifique de Luminy, 13288, Marseille Cedex 09, France.
| |
Collapse
|
14
|
Katayama T, Chigi Y, Okamura D. The ensured proliferative capacity of myoblast in serum-reduced conditions with Methyl-β-cyclodextrin. Front Cell Dev Biol 2023; 11:1193634. [PMID: 37250904 PMCID: PMC10213241 DOI: 10.3389/fcell.2023.1193634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
To produce muscle fibers for cultured meat on a large scale, it is important to expand myoblasts in a serum-reduced or serum-free medium to avoid cost, ethical, and environmental issues. Myoblasts such as C2C12 cells differentiate quickly into myotubes and lose their ability to proliferate when the serum-rich medium is replaced with a serum-reduced medium. This study demonstrates that Methyl-β-cyclodextrin (MβCD), a starch-derived agent that depletes cholesterol, can inhibit further differentiation of myoblasts at the MyoD-positive stage by reducing plasma membrane cholesterol on C2C12 cells and primary cultured chick muscle cells. Furthermore, MβCD efficiently blocks cholesterol-dependent apoptotic cell death of myoblasts, which is one of the mechanisms by which it inhibits the differentiation of C2C12 myoblast cells, as dead cells of myoblast are necessary for the fusion of adjacent myoblasts during the differentiation process into myotubes. Importantly, MβCD maintains the proliferative capacity of myoblasts only under differentiation conditions with a serum-reduced medium, suggesting that its mitogenic effect is due to its inhibitory effect on myoblast differentiation into myotube. In conclusion, this study provides significant insights into ensuring the proliferative capacity of myoblasts in a future serum-free condition for cultured meat production.
Collapse
Affiliation(s)
- Tomoka Katayama
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yuta Chigi
- Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Daiji Okamura
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara, Japan
| |
Collapse
|
15
|
Odame E, Li L, Nabilla JA, Cai H, Xiao M, Ye J, Chen Y, Kyei B, Dai D, Zhan S, Cao J, Guo J, Zhong T, Wang L, Zhang H. miR-145-3p Inhibits MuSCs Proliferation and Mitochondria Mass via Targeting MYBL1 in Jianzhou Big-Eared Goats. Int J Mol Sci 2023; 24:ijms24098341. [PMID: 37176056 PMCID: PMC10179409 DOI: 10.3390/ijms24098341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Joshua Abdulai Nabilla
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - He Cai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Miao Xiao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiangfeng Ye
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
16
|
Ikenaka A, Kitagawa Y, Yoshida M, Lin CY, Niwa A, Nakahata T, Saito MK. SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis. Life Sci Alliance 2023; 6:e202201457. [PMID: 36604149 PMCID: PMC9834662 DOI: 10.26508/lsa.202201457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a congenital neuromuscular disease caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene. Although the primary cause of progressive muscle atrophy in SMA has classically been considered the degeneration of motor neurons, recent studies have indicated a skeletal muscle-specific pathological phenotype such as impaired mitochondrial function and enhanced cell death. Here, we found that the down-regulation of SMN causes mitochondrial dysfunction and subsequent cell death in in vitro models of skeletal myogenesis with both a murine C2C12 cell line and human induced pluripotent stem cells. During myogenesis, SMN binds to the upstream genomic regions of MYOD1 and microRNA (miR)-1 and miR-206. Accordingly, the loss of SMN down-regulates these miRs, whereas supplementation of the miRs recovers the mitochondrial function, cell survival, and myotube formation of SMN-deficient C2C12, indicating the SMN-miR axis is essential for myogenic metabolic maturation. In addition, the introduction of the miRs into ex vivo muscle stem cells derived from Δ7-SMA mice caused myotube formation and muscle contraction. In conclusion, our data revealed novel transcriptional roles of SMN during myogenesis, providing an alternative muscle-oriented therapeutic strategy for SMA patients.
Collapse
Affiliation(s)
- Akihiro Ikenaka
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yohko Kitagawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Michiko Yoshida
- Department of Pediatrics, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Chuang-Yu Lin
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
17
|
Role of SIRT3 in Microgravity Response: A New Player in Muscle Tissue Recovery. Cells 2023; 12:cells12050691. [PMID: 36899828 PMCID: PMC10000945 DOI: 10.3390/cells12050691] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Life on Earth has evolved in the presence of a gravity constraint. Any change in the value of such a constraint has important physiological effects. Gravity reduction (microgravity) alters the performance of muscle, bone and, immune systems among others. Therefore, countermeasures to limit such deleterious effects of microgravity are needed considering future Lunar and Martian missions. Our study aims to demonstrate that the activation of mitochondrial Sirtuin 3 (SIRT3) can be exploited to reduce muscle damage and to maintain muscle differentiation following microgravity exposure. To this effect, we used a RCCS machine to simulate microgravity on ground on a muscle and cardiac cell line. During microgravity, cells were treated with a newly synthesized SIRT3 activator, called MC2791 and vitality, differentiation, ROS and, autophagy/mitophagy were measured. Our results indicate that SIRT3 activation reduces microgravity-induced cell death while maintaining the expression of muscle cell differentiation markers. In conclusion, our study demonstrates that SIRT3 activation could represent a targeted molecular strategy to reduce muscle tissue damage caused by microgravity.
Collapse
|
18
|
Turner MC, Brett R, Saini A, Stewart CE, Renshaw D. Serum concentration impacts myosin heavy chain expression but not cellular respiration in human LHCN-M2 myoblasts undergoing differentiation. Exp Physiol 2023; 108:169-176. [PMID: 36621799 PMCID: PMC10103887 DOI: 10.1113/ep090564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does the concentration of human serum affect skeletal muscle differentiation and cellular respiration of LHCN-M2 myoblasts? What is the main finding and its importance? The concentration of serum used to differentiate LHCN-M2 skeletal muscle cells impacts the coverage of myosin heavy chain, a marker of terminally differentiated myotubes. Normalisation of mitochondrial function data to total protein negates the differences observed in absolute values, which differ as a result of increased protein content when differentiation occurs with increasing concentration of serum. ABSTRACT The human LHCN-M2 myoblast cell line has the potential to be used to investigate skeletal muscle development and metabolism. Experiments were performed to determine how different concentrations of human serum affect myogenic differentiation and mitochondrial function of LHCN-M2 cells. LHCN-M2 myoblasts were differentiated in serum-free medium, 0.5% or 2% human serum for 5 and 10 days. Myotube formation was assessed by immunofluorescence staining of myosin heavy chain (MHC) and molecularly by mRNA expression of Myogenic differentiation 1 (MYOD1) and Myoregulatory factor 5 (MYF5). Following differentiation, mitochondrial function was assessed to establish the impact of serum concentration on mitochondrial function. Time in differentiation increased mRNA expression of MYOD1 (day 5, 6.58 ± 1.33-fold; and day 10, 4.28 ± 1.71-fold) (P = 0.012), while suppressing the expression of MYF5 (day 5, 0.21 ± 0.11-fold; and day 10, 0.06 ± 0.03-fold) (P = 0.001), regardless of the serum concentration. Higher serum concentrations increased MHC area (serum free, 11.92 ± 0.85%; 0.5%, 23.10 ± 5.82%; 2%, 43.94 ± 8.92%) (P = 0.001). Absolute basal respiration approached significance (P = 0.06) with significant differences in baseline oxygen consumption rate (P = 0.025) and proton leak (P = 0.006) when differentiated in 2% human serum, but these were not different between conditions when normalised to total protein. Our findings show that increasing concentrations of serum of LHCN-M2 skeletal muscle cells into multinucleated myotubes, but this does not affect relative mitochondrial function.
Collapse
Affiliation(s)
- Mark C. Turner
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Ryan Brett
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| | - Amarjit Saini
- Division of Clinical PhysiologyDepartment of Laboratory MedicineKarolinska, InstitutetKarolinska University Hospital HuddingeStockholmSweden
| | - Claire E. Stewart
- Research Institute of Sport and Exercise ScienceLife Sciences BuildingLiverpool John Moores UniversityLiverpoolUK
| | - Derek Renshaw
- Centre for Sport, Exercise and Life SciencesInstitute for Health and WellbeingCoventry UniversityCoventryUK
| |
Collapse
|
19
|
Lu J, Li H, Yu D, Zhao P, Liu Y. Heat stress inhibits the proliferation and differentiation of myoblasts and is associated with damage to mitochondria. Front Cell Dev Biol 2023; 11:1171506. [PMID: 37113771 PMCID: PMC10126414 DOI: 10.3389/fcell.2023.1171506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction: Heat stress is harmful to the health of humans and animals, more and more common, as a consequence of global warming, while the mechanism that heat stress modulates skeletal development remains unknown. Hence, we conducted a model of heat stress in vitro. Methods: We used Hu sheep myoblasts as the research object, real-time quantitative PCR (RT-qPCR) and western blot (WB) were conducted to detect the expression of mRNA and protein in heat-stressed myoblasts. The would-healing assay was used to detect the migration of myoblasts. The mitochondria were observed by a transmission electron microscope. Results: mRNA and protein expression of HSP60 was significantly enriched in the heat-stressed myoblasts during proliferation and differentiation (p < 0.05). In our study, we indicated that heat stress enriched the intracellular ROS of the myoblasts (p < 0.001), leading to an increase in autophagy in the myoblasts to induce apoptosis. The results demonstrated that the protein expression of LC3B-1 and BCL-2 was significantly increased in myoblasts under heat stress during proliferation and differentiation (p < 0.05). Additionally, heat stress inhibited mitochondrial biogenesis and function and reduced the mitochondrial membrane potential and downregulated the expression of mtCo2, mtNd1 and DNM1L (p < 0.05) in myoblasts during proliferation and differentiation. Consequently, heat stress inhibited the proliferation and differentiation of the myoblasts, in accordance with the downregulation of the expression of PAX7, MYOD, MYF5, MYOG and MYHC (p < 0.05). Moreover, heat stress also inhibited the cell migration of the myoblasts. Discussion: This work demonstrates that heat stress inhibits proliferation and differentiation, and accelerates apoptosis by impairing mitochondrial function and promoting autophagy, which provides a mechanism to understand heat stress affects the development of the skeletal muscle.
Collapse
Affiliation(s)
- Jiawei Lu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huixia Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Debing Yu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- College of Animal Science, Tibet Agriculture and Animal Husbandry University, Linzhi, Xizang, China
- *Correspondence: Huixia Li, ; Debing Yu,
| | - Peng Zhao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
20
|
McCann C, Quinteros M, Adelugba I, Morgada MN, Castelblanco AR, Davis EJ, Lanzirotti A, Hainer SJ, Vila AJ, Navea JG, Padilla-Benavides T. The mitochondrial Cu+ transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro. Front Mol Biosci 2022; 9:1037941. [PMID: 36438658 PMCID: PMC9682256 DOI: 10.3389/fmolb.2022.1037941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The loading of copper (Cu) into cytochrome c oxidase (COX) in mitochondria is essential for energy production in cells. Extensive studies have been performed to characterize mitochondrial cuproenzymes that contribute to the metallation of COX, such as Sco1, Sco2, and Cox17. However, limited information is available on the upstream mechanism of Cu transport and delivery to mitochondria, especially through Cu-impermeable membranes, in mammalian cells. The mitochondrial phosphate transporter SLC25A3, also known as PiC2, binds Cu+ and transports the ion through these membranes in eukaryotic cells, ultimately aiding in the metallation of COX. We used the well-established differentiation model of primary myoblasts derived from mouse satellite cells, wherein Cu availability is necessary for growth and maturation, and showed that PiC2 is a target of MTF1, and its expression is both induced during myogenesis and favored by Cu supplementation. PiC2 deletion using CRISPR/Cas9 showed that the transporter is required for proliferation and differentiation of primary myoblasts, as both processes are delayed upon PiC2 knock-out. The effects of PiC2 deletion were rescued by the addition of Cu to the growth medium, implying the deleterious effects of PiC2 knockout in myoblasts may be in part due to a failure to deliver sufficient Cu to the mitochondria, which can be compensated by other mitochondrial cuproproteins. Co-localization and co-immunoprecipitation of PiC2 and COX also suggest that PiC2 may participate upstream in the copper delivery chain into COX, as verified by in vitro Cu+-transfer experiments. These data indicate an important role for PiC2 in both the delivery of Cu to the mitochondria and COX, favoring the differentiation of primary myoblasts.
Collapse
|
21
|
Wiedner HJ, Torres EV, Blue RE, Tsai Y, Parker J, Giudice J. SET domain containing 2 (SETD2) influences metabolism and alternative splicing during myogenesis. FEBS J 2022; 289:6799-6816. [PMID: 35724320 PMCID: PMC9796740 DOI: 10.1111/febs.16553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 01/14/2023]
Abstract
Epigenetic regulatory mechanisms are increasingly recognized as crucial determinants of cellular specification and differentiation. During muscle cell differentiation (myogenesis), extensive remodelling of histone acetylation and methylation occurs. Several of these histone modifications aid in the expression of muscle-specific genes and the silencing of genes that block lineage commitment. Therefore, the identification of new epigenetic regulatory mechanisms is of high interest. Still, the functional relevance of numerous histone modifications during myogenesis remain completely uncertain. In this study, we focus on the function of H3K36me3 and its epigenetic writer, SET domain containing 2 (SETD2), in the context of muscle cell differentiation. We first observed that SETD2 expression increases during myogenesis. Targeted depletion of SETD2 in undifferentiated (myoblasts) and differentiated (myotubes) muscle cells reduced H3K36me3 levels and induced profound changes in gene expression and slight alterations in alternative splicing, as determined by deep RNA-sequencing analysis. Enzymes that function in metabolic pathways were upregulated in response to SETD2 depletion. Furthermore, we demonstrated that upregulation of several glycolytic enzymes was associated with an increase in intracellular pyruvate levels in SETD2-depleted cells, indicating a novel role for SETD2 in metabolic programming during myogenesis. Together, our results provide new insight into the signalling pathways controlled by chromatin-modifying enzymes and their associated histone modifications during muscle cell differentiation.
Collapse
Affiliation(s)
- Hannah J. Wiedner
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA,Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA
| | - Eduardo V. Torres
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA
| | - R. Eric Blue
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA
| | - Yi‐Hsuan Tsai
- Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillUSA
| | - Joel Parker
- Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA,Lineberger Comprehensive Cancer CenterThe University of North Carolina at Chapel HillUSA
| | - Jimena Giudice
- Department of Cell Biology and PhysiologyThe University of North Carolina at Chapel HillUSA,Curriculum in Genetics and Molecular Biology (GMB)The University of North Carolina at Chapel HillUSA,McAllister Heart Institute, School of MedicineThe University of North Carolina at Chapel HillUSA
| |
Collapse
|
22
|
Piñeiro-Llanes J, Suzuki-Hatano S, Jain A, Pérez Medina VA, Cade WT, Pacak CA, Simmons CS. Matrix produced by diseased cardiac fibroblasts affects early myotube formation and function. Acta Biomater 2022; 152:100-112. [PMID: 36055608 PMCID: PMC10625442 DOI: 10.1016/j.actbio.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/28/2022]
Abstract
The extracellular matrix (ECM) provides both physical and chemical cues that dictate cell function and contribute to muscle maintenance. Muscle cells require efficient mitochondria to satisfy their high energy demand, however, the role the ECM plays in moderating mitochondrial function is not clear. We hypothesized that the ECM produced by stromal cells with mitochondrial dysfunction (Barth syndrome, BTHS) provides cues that contribute to metabolic dysfunction independent of muscle cell health. To test this, we harnessed the ECM production capabilities of human pluripotent stem-cell-derived cardiac fibroblasts (hPSC-CFs) from healthy and BTHS patients to fabricate cell-derived matrices (CDMs) with controlled topography, though we found that matrix composition from healthy versus diseased cells influenced myotube formation independent of alignment cues. To further investigate the effects of matrix composition, we then examined the influence of healthy- and BTHS-derived CDMs on myotube formation and metabolic function. We found that BTHS CDMs induced lower fusion index, lower ATP production, lower mitochondrial membrane potential, and higher ROS generation than the healthy CDMs. These findings imply that BTHS-derived ECM alone contributes to myocyte dysfunction in otherwise healthy cells. Finally, to investigate potential mechanisms, we defined the composition of CDMs produced by hPSC-CFs from healthy and BTHS patients using mass spectrometry and identified 15 ECM and related proteins that were differentially expressed in the BTHS-CDM compared to healthy CDM. Our results highlight that ECM composition affects skeletal muscle formation and metabolic efficiency in otherwise healthy cells, and our methods to generate patient-specific CDMs are a useful tool to investigate the influence of the ECM on disease progression and to investigate variability among diseased patients. STATEMENT OF SIGNIFICANCE: Muscle function requires both efficient metabolism to generate force and structured extracellular matrix (ECM) to transmit force, and we sought to examine the interactions between metabolism and ECM when metabolic disease is present. We fabricated patient-specific cell derived matrices (CDMs) with controlled topographic features to replicate the composition of healthy and mitochondrial-diseased (Barth syndrome) ECM. We found that disease-derived ECM negatively affects metabolic function of otherwise healthy myoblasts, and we identified several proteins in disease-derived ECM that may be mediating this dysfunction. We anticipate that our patient-specific CDM system could be fabricated with other topographies and cell types to study cell functions and diseases of interest beyond mitochondrial dysfunction and, eventually, be applied toward personalized medicine.
Collapse
Affiliation(s)
- Janny Piñeiro-Llanes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Silveli Suzuki-Hatano
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ananya Jain
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Valerie A Pérez Medina
- Department of Mechanical Engineering, University of Puerto Rico, Mayaguez 00682, Puerto Rico
| | - William Todd Cade
- Physical Therapy Division, Duke University, 311 Trent Drive, Durham, NC 27710, USA
| | - Christina A Pacak
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Neurology Department, Medical School, University of Minnesota, WMBB 4-188 2101 6th Street SE, Minneapolis 55455, USA
| | - Chelsey S Simmons
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL 32611, USA; Department of Mechanical and Aerospace Engineering Herbert Wertheim College of Engineering, University of Florida.
| |
Collapse
|
23
|
Sun H, Shen L, Zhang P, Lin F, Ma J, Wu Y, Yu H, Sun L. Inhibition of High-Temperature Requirement Protein A2 Protease Activity Represses Myogenic Differentiation via UPRmt. Int J Mol Sci 2022; 23:ijms231911761. [PMID: 36233059 PMCID: PMC9569504 DOI: 10.3390/ijms231911761] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscles require muscle satellite cell (MuSC) differentiation to facilitate the replenishment and repair of muscle fibers. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Although mitochondria have been reported to be involved in myogenic differentiation by promoting a bioenergetic remodeling, little is known about the interplay of mitochondrial proteostasis and myogenic differentiation. High-temperature-requirement protein A2 (HtrA2/Omi) is a protease that regulates proteostasis in the mitochondrial intermembrane space (IMS). Mice deficient in HtrA2 protease activity show a distinct phenotype of sarcopenia. To investigate the role of IMS proteostasis during myogenic differentiation, we treated C2C12 myoblasts with UCF101, a specific inhibitor of HtrA2 during differentiation process. A key step in this process is called myogenic differentiation. The differentiation ability of MuSCs decreases with age and can result in sarcopenia. Further, CHOP, p-eIF2α, and other mitochondrial unfolded protein response (UPRmt)-related proteins are upregulated. Therefore, we suggest that imbalance of mitochondrial IMS proteostasis acts via a retrograde signaling pathway to inhibit myogenic differentiation via the UPRmt pathway. These novel mechanistic insights may have implications for the development of new strategies for the treatment of sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huimei Yu
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| | - Liankun Sun
- Correspondence: (H.Y.); (L.S.); Tel.: +86-0431-8561-9495 (H.Y. & L.S.)
| |
Collapse
|
24
|
Zumbaugh MD, Johnson SE, Shi TH, Gerrard DE. Molecular and biochemical regulation of skeletal muscle metabolism. J Anim Sci 2022; 100:6652332. [PMID: 35908794 PMCID: PMC9339271 DOI: 10.1093/jas/skac035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/02/2022] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle hypertrophy is a culmination of catabolic and anabolic processes that are interwoven into major metabolic pathways, and as such modulation of skeletal muscle metabolism may have implications on animal growth efficiency. Muscle is composed of a heterogeneous population of muscle fibers that can be classified by metabolism (oxidative or glycolytic) and contractile speed (slow or fast). Although slow fibers (type I) rely heavily on oxidative metabolism, presumably to fuel long or continuous bouts of work, fast fibers (type IIa, IIx, and IIb) vary in their metabolic capability and can range from having a high oxidative capacity to a high glycolytic capacity. The plasticity of muscle permits continuous adaptations to changing intrinsic and extrinsic stimuli that can shift the classification of muscle fibers, which has implications on fiber size, nutrient utilization, and protein turnover rate. The purpose of this paper is to summarize the major metabolic pathways in skeletal muscle and the associated regulatory pathways.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Tim H Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
25
|
Chen W, Chen Y, Liu Y, Wang X. Autophagy in muscle regeneration: potential therapies for myopathies. J Cachexia Sarcopenia Muscle 2022; 13:1673-1685. [PMID: 35434959 PMCID: PMC9178153 DOI: 10.1002/jcsm.13000] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/19/2022] Open
Abstract
Autophagy classically functions as a physiological process to degrade cytoplasmic components, protein aggregates, and/or organelles, as a mechanism for nutrient breakdown, and as a regulator of cellular architecture. Its biological functions include metabolic stress adaptation, stem cell differentiation, immunomodulation and diseases regulation, and so on. Current researches have proved that autophagy dysfunction may contribute to the pathogenesis of some myopathies through impairment of myofibres regeneration. Studies of autophagy inhibition also indicate the importance of autophagy in muscle regeneration, while activation of autophagy can restore muscle function in some myopathies. In this review, we aim to report the mechanisms of action of autophagy on muscle regeneration to provide relevant references for the treatment of regenerating defective myopathies by regulating autophagy. Results have shown that one key mechanism of autophagy regulating the muscle regeneration is to affect the differentiation fate of muscle stem cells (MuSCs), including quiescence maintenance, activation and differentiation. The roles of autophagy (organelle/protein degradation, energy facilitation, and/or other) vary at different myogenic stages of the repair process. When the muscle is in homeostasis, basal autophagy can maintain the quiescence state and stemness of MuSCs by renewing organelle and protein. After injury, the increased autophagy flux contributes to meet biological energy demand of MuSCs during activation and proliferation. By mitochondrial remodelling, autophagy during differentiation can promote the metabolic transformation and balance mitochondrial-mediated apoptosis signals in myoblasts. Autophagy in mature myofibres is also essential for the degradation of necrotic myofibres, and may affect the dynamics of MuSCs by affecting the secretion spectrum of myofibres or the recruitment of supporting cells. Except for myogenic cells, autophagy also plays an important role in regulating the function of non-myogenic cells in the muscle microenvironment, which is also essential for successful muscle recovery. Autophagy can regulate the immune microenvironment during muscle regeneration through the recruitment and polarization of macrophages, while autophagy in endothelial cells can regulate muscle regeneration in an angiogenic or angiogenesis-independent manner. Drug or nutrition targeted autophagy has been preliminarily proved to restore muscle function in myopathies by promoting muscle regeneration, and further understanding the role and mechanism of autophagy in various cell types during muscle regeneration will enable more effective combinatorial therapeutic strategies.
Collapse
Affiliation(s)
- Wei Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yushi Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Yuxi Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| | - Xinxia Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China.,Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou, China
| |
Collapse
|
26
|
Russo C, Valle MS, Casabona A, Spicuzza L, Sambataro G, Malaguarnera L. Vitamin D Impacts on Skeletal Muscle Dysfunction in Patients with COPD Promoting Mitochondrial Health. Biomedicines 2022; 10:biomedicines10040898. [PMID: 35453648 PMCID: PMC9026965 DOI: 10.3390/biomedicines10040898] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 12/16/2022] Open
Abstract
Skeletal muscle dysfunction is frequently associated with chronic obstructive pulmonary disease (COPD), which is characterized by a permanent airflow limitation, with a worsening respiratory disorder during disease evolution. In COPD, the pathophysiological changes related to the chronic inflammatory state affect oxidant–antioxidant balance, which is one of the main mechanisms accompanying extra-pulmonary comorbidity such as muscle wasting. Muscle impairment is characterized by alterations on muscle fiber architecture, contractile protein integrity, and mitochondrial dysfunction. Exogenous and endogenous sources of reactive oxygen species (ROS) are present in COPD pathology. One of the endogenous sources of ROS is represented by mitochondria. Evidence demonstrated that vitamin D plays a crucial role for the maintenance of skeletal muscle health. Vitamin D deficiency affects oxidative stress and mitochondrial function influencing disease course through an effect on muscle function in COPD patients. This review will focus on vitamin-D-linked mechanisms that could modulate and ameliorate the damage response to free radicals in muscle fibers, evaluating vitamin D supplementation with enough potent effect to contrast mitochondrial impairment, but which avoids potential severe side effects.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Antonino Casabona
- Section of Physiology, Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (M.S.V.); (A.C.)
| | - Lucia Spicuzza
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Gianluca Sambataro
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (L.S.); (G.S.)
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
- Correspondence:
| |
Collapse
|
27
|
Siddiqui SH, Subramaniyan SA, Park J, Kang D, Khan M, Belal SA, Lee SC, Shim K. Modulatory effects of cell–cell interactions between porcine skeletal muscle satellite cells and fibroblasts on the expression of myogenesis-related genes. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2060986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharif Hasan Siddiqui
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Sivakumar Allur Subramaniyan
- Department of Orthopaedic Surgery, Dongtan Sacred Heart Hospital, Hallym University, College of Medicine, Hwaseong, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shah Ahmed Belal
- Department of Poultry Science, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Kwanseob Shim
- Department of Animal Biotechnology, College of Agriculture and Life Sciences, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
28
|
Beijers RJ, van Iersel LEJ, Schuurman LT, Hageman RJJ, Simons SO, van Helvoort A, Gosker HR, Schols AM. Effect of targeted nutrient supplementation on physical activity and health-related quality of life in COPD: study protocol for the randomised controlled NUTRECOVER trial. BMJ Open 2022; 12:e059252. [PMID: 35296491 PMCID: PMC8928317 DOI: 10.1136/bmjopen-2021-059252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Physical and mental health are often affected in chronic obstructive pulmonary disease (COPD) adversely affecting disease course and quality of life. Abnormalities in whole body and cellular energy metabolism, dietary and plasma nutrient status and intestinal permeability have been well established in these patients as systemic determinants of functional decline and underexplored treatable traits. The aim of this study is to investigate the efficacy of 1 year targeted nutrient supplementation on physical activity level and health-related quality of life in patients with COPD. METHODS AND ANALYSIS This study is a single-centre randomised, placebo-controlled, double-blind trial in 166 patients with COPD recruited from multiple hospitals in the Netherlands. The intervention group will receive a multinutrient supplement, including vitamin D, tryptophan, long-chain polyunsaturated fatty acids and prebiotic dietary fibres as main components (94 kCal per daily dose). The control group will receive an isocaloric isonitrogenous placebo. Both groups will ingest one portion per day for at least 12 months and will additionally receive counselling on healthy lifestyle and medical adherence over the course of the study. Coprimary outcomes are physical activity assessed by triaxial accelerometry and health-related quality of life measured by the EuroQol-5 dimensions questionnaire. Secondary outcomes are cognitive function, psychological well-being, physical performance, patient-reported outcomes and the metabolic profile assessed by body composition, systemic inflammation, plasma nutrient levels, intestinal integrity and microbiome composition. Outcomes will be measured at baseline and after 12 months of supplementation. In case patients are hospitalised for a COPD exacerbation, a subset outcome panel will be measured during a 4-week recovery period after hospitalisation. ETHICS AND DISSEMINATION This study was approved by the local Ethics Committee of Maastricht University. Subjects will be included after written informed consent is provided. Study outcomes will be disseminated through presentations at (inter)national conferences and through peer-reviewed journals. TRIAL REGISTRATION NCT03807310.
Collapse
Affiliation(s)
- Rosanne Jhcg Beijers
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lieke E J van Iersel
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Lisanne T Schuurman
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | | | - Sami O Simons
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Ardy van Helvoort
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
- Danone Nutricia Research, Utrecht, the Netherlands
| | - Harry R Gosker
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Annemie Mwj Schols
- Department of Respiratory Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
29
|
Chen MM, Li Y, Deng SL, Zhao Y, Lian ZX, Yu K. Mitochondrial Function and Reactive Oxygen/Nitrogen Species in Skeletal Muscle. Front Cell Dev Biol 2022; 10:826981. [PMID: 35265618 PMCID: PMC8898899 DOI: 10.3389/fcell.2022.826981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/26/2022] [Indexed: 12/06/2022] Open
Abstract
Skeletal muscle fibers contain a large number of mitochondria, which produce ATP through oxidative phosphorylation (OXPHOS) and provide energy for muscle contraction. In this process, mitochondria also produce several types of "reactive species" as side product, such as reactive oxygen species and reactive nitrogen species which have attracted interest. Mitochondria have been proven to have an essential role in the production of skeletal muscle reactive oxygen/nitrogen species (RONS). Traditionally, the elevation in RONS production is related to oxidative stress, leading to impaired skeletal muscle contractility and muscle atrophy. However, recent studies have shown that the optimal RONS level under the action of antioxidants is a critical physiological signal in skeletal muscle. Here, we will review the origin and physiological functions of RONS, mitochondrial structure and function, mitochondrial dynamics, and the coupling between RONS and mitochondrial oxidative stress. The crosstalk mechanism between mitochondrial function and RONS in skeletal muscle and its regulation of muscle stem cell fate and myogenesis will also be discussed. In all, this review aims to describe a comprehensive and systematic network for the interaction between skeletal muscle mitochondrial function and RONS.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yan Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zheng-Xing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Heher P, Ganassi M, Weidinger A, Engquist EN, Pruller J, Nguyen TH, Tassin A, Declèves AE, Mamchaoui K, Grillari J, Kozlov AV, Zammit PS. Interplay between mitochondrial reactive oxygen species, oxidative stress and hypoxic adaptation in facioscapulohumeral muscular dystrophy: Metabolic stress as potential therapeutic target. Redox Biol 2022; 51:102251. [PMID: 35248827 PMCID: PMC8899416 DOI: 10.1016/j.redox.2022.102251] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 12/13/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is characterised by descending skeletal muscle weakness and wasting. FSHD is caused by mis-expression of the transcription factor DUX4, which is linked to oxidative stress, a condition especially detrimental to skeletal muscle with its high metabolic activity and energy demands. Oxidative damage characterises FSHD and recent work suggests metabolic dysfunction and perturbed hypoxia signalling as novel pathomechanisms. However, redox biology of FSHD remains poorly understood, and integrating the complex dynamics of DUX4-induced metabolic changes is lacking. Here we pinpoint the kinetic involvement of altered mitochondrial ROS metabolism and impaired mitochondrial function in aetiology of oxidative stress in FSHD. Transcriptomic analysis in FSHD muscle biopsies reveals strong enrichment for pathways involved in mitochondrial complex I assembly, nitrogen metabolism, oxidative stress response and hypoxia signalling. We found elevated mitochondrial ROS (mitoROS) levels correlate with increases in steady-state mitochondrial membrane potential in FSHD myogenic cells. DUX4 triggers mitochondrial membrane polarisation prior to oxidative stress generation and apoptosis through mitoROS, and affects mitochondrial health through lipid peroxidation. We identify complex I as the primary target for DUX4-induced mitochondrial dysfunction, with strong correlation between complex I-linked respiration and cellular oxygenation/hypoxia signalling activity in environmental hypoxia. Thus, FSHD myogenesis is uniquely susceptible to hypoxia-induced oxidative stress as a consequence of metabolic mis-adaptation. Importantly, mitochondria-targeted antioxidants rescue FSHD pathology more effectively than conventional antioxidants, highlighting the central involvement of disturbed mitochondrial ROS metabolism. This work provides a pathomechanistic model by which DUX4-induced changes in oxidative metabolism impair muscle function in FSHD, amplified when metabolic adaptation to varying O2 tension is required. Transcriptomics data from FSHD muscle indicates enrichment for disturbed mitochondrial pathways. Disturbed mitochondrial ROS metabolism correlates with mitochondrial membrane polarisation and myotube hypotrophy. DUX4-induced changes in mitochondrial function precede mitoROS generation and affect hypoxia signalling via complex I. FSHD is sensitive to environmental hypoxia, which increases ROS levels in FSHD myotubes. Hypotrophy in hypoxic FSHD myotubes is efficiently rescued with mitochondria-targeted antioxidants.
Collapse
|
31
|
Rahman MT, Swierzy IJ, Downie B, Salinas G, Blume M, McConville MJ, Lüder CGK. The Redox Homeostasis of Skeletal Muscle Cells Regulates Stage Differentiation of Toxoplasma gondii. Front Cell Infect Microbiol 2021; 11:798549. [PMID: 34881198 PMCID: PMC8646093 DOI: 10.3389/fcimb.2021.798549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii is an obligatory intracellular parasite that causes persistent infections in birds and mammals including ~30% of the world’s human population. Differentiation from proliferative and metabolically active tachyzoites to largely dormant bradyzoites initiates the chronic phase of infection and occurs predominantly in brain and muscle tissues. Here we used murine skeletal muscle cells (SkMCs) to decipher host cellular factors that favor T. gondii bradyzoite formation in terminally differentiated and syncytial myotubes, but not in proliferating myoblast precursors. Genome-wide transcriptome analyses of T. gondii-infected SkMCs and non-infected controls identified ~6,500 genes which were differentially expressed (DEGs) in myotubes compared to myoblasts, largely irrespective of infection. On the other hand, genes related to central carbohydrate metabolism, to redox homeostasis, and to the Nrf2-dependent stress response pathway were enriched in both infected myoblast precursors and myotubes. Stable isotope-resolved metabolite profiling indicated increased fluxes into the oxidative branch of the pentose phosphate pathway (OxPPP) in infected myoblasts and into the TCA cycle in infected myotubes. High OxPPP activity in infected myoblasts was associated with increased NADPH/NADP+ ratio while myotubes exhibited higher ROS levels and lower expression of anti-oxidants and detoxification enzymes. Pharmacological reduction of ROS levels in SkMCs inhibited bradyzoite differentiation, while increased ROS induced bradyzoite formation. Thus, we identified a novel host cell-dependent mechanism that triggers stage conversion of T. gondii into persistent tissue cysts in its natural host cell type.
Collapse
Affiliation(s)
- Md Taibur Rahman
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany.,Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Izabela J Swierzy
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Bryan Downie
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Gabriela Salinas
- Transcriptome and Genome Analysis Laboratory, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| | - Martin Blume
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia.,Junior Research Group 'Metabolism of Microbial Pathogens', Robert-Koch-Institute, Berlin, Germany
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, VIC, Australia
| | - Carsten G K Lüder
- Institute for Medical Microbiology and Virology, University Medical Center Goettingen, Georg-August-University, Goettingen, Germany
| |
Collapse
|
32
|
Deng K, Fan Y, Liang Y, Cai Y, Zhang G, Deng M, Wang Z, Lu J, Shi J, Wang F, Zhang Y. FTO-mediated demethylation of GADD45B promotes myogenesis through the activation of p38 MAPK pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:34-48. [PMID: 34513292 PMCID: PMC8408560 DOI: 10.1016/j.omtn.2021.06.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
N6-methyladenosine (m6A) modification plays a critical role in mammalian development. However, the role of m6A in the skeletal muscle development remains largely unknown. Here, we report a global m6A modification pattern of goat skeletal muscle at two key development stages and identified that the m6A modification regulated the expression of the growth arrest and DNA damage-inducible 45B (GADD45B) gene, which is involved in myogenic differentiation. We showed that GADD45B expression increased during myoblast differentiation, whereas the downregulation of GADD45B inhibits myogenic differentiation and mitochondrial biogenesis. Moreover, the expression of GADD45B regulates the expression of myogenic regulatory factors and peroxisome proliferator-activated receptor gamma coactivator 1 alpha by activating the p38 mitogen-activated protein kinase (MAPK) pathway. Conversely, the inactivation of p38 MAPK abolished the GADD45B-mediated myogenic differentiation. Furthermore, we found that the knockdown of fat mass and obesity-associated protein (FTO) increases GADD45B m6A modification and decreases the stability of GADD45B mRNA, which impairs myogenic differentiation. Our results indicate that the FTO-mediated m6A modification in GADD45B mRNA drives skeletal muscle differentiation by activating the p38 MAPK pathway, which provides a molecular mechanism for the regulation of myogenesis via RNA methylation.
Collapse
Affiliation(s)
- Kaiping Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yixuan Fan
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxu Liang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Cai
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Guomin Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingtian Deng
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhibo Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiawei Lu
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianfei Shi
- Haimen Goat Breeding Farm, Nantong 226100, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China.,Institute of Haimen Goat Industry, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Zhang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
33
|
Hu S, Mahadevan A, Elysee IF, Choi J, Souchet NR, Bae GH, Taboada AK, Sanketi B, Duhamel GE, Sevier CS, Tao G, Kurpios NA. The asymmetric Pitx2 gene regulates gut muscular-lacteal development and protects against fatty liver disease. Cell Rep 2021; 37:110030. [PMID: 34818545 PMCID: PMC8650168 DOI: 10.1016/j.celrep.2021.110030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 08/19/2021] [Accepted: 10/29/2021] [Indexed: 12/25/2022] Open
Abstract
Intestinal lacteals are essential lymphatic channels for absorption and transport of dietary lipids and drive the pathogenesis of debilitating metabolic diseases. However, organ-specific mechanisms linking lymphatic dysfunction to disease etiology remain largely unknown. In this study, we uncover an intestinal lymphatic program that is linked to the left-right (LR) asymmetric transcription factor Pitx2. We show that deletion of the asymmetric Pitx2 enhancer ASE alters normal lacteal development through the lacteal-associated contractile smooth muscle lineage. ASE deletion leads to abnormal muscle morphogenesis induced by oxidative stress, resulting in impaired lacteal extension and defective lymphatic system-dependent lipid transport. Surprisingly, activation of lymphatic system-independent trafficking directs dietary lipids from the gut directly to the liver, causing diet-induced fatty liver disease. Our study reveals the molecular mechanism linking gut lymphatic function to the earliest symmetry-breaking Pitx2 and highlights the important relationship between intestinal lymphangiogenesis and the gut-liver axis.
Collapse
Affiliation(s)
- Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Aparna Mahadevan
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Isaac F Elysee
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Joseph Choi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Nathan R Souchet
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Gloria H Bae
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Alessandra K Taboada
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Bhargav Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Gerald E Duhamel
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Carolyn S Sevier
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA
| | - Ge Tao
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell, Ithaca, NY 14853, USA.
| |
Collapse
|
34
|
Saburina IN, Kosheleva NV, Kopylov AT, Lipina TV, Krasina ME, Zurina IM, Gorkun AA, Girina SS, Pulin AA, Kaysheva AL, Morozov SG. Proteomic and electron microscopy study of myogenic differentiation of alveolar mucosa multipotent mesenchymal stromal cells in three-dimensional culture. Proteomics 2021; 22:e2000304. [PMID: 34674377 DOI: 10.1002/pmic.202000304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022]
Abstract
Myocyte differentiation is featured by adaptation processes, including mitochondria repopulation and cytoskeleton re-organization. The difference between monolayer and spheroid cultured cells at the proteomic level is uncertain. We cultivated alveolar mucosa multipotent mesenchymal stromal cells in spheroids in a myogenic way for the proper conditioning of ECM architecture and cell morphology, which induced spontaneous myogenic differentiation of cells within spheroids. Electron microscopy analysis was used for the morphometry of mitochondria biogenesis, and proteomic was used complementary to unveil events underlying differences between two-dimensional/three-dimensional myoblasts differentiation. The prevalence of elongated mitochondria with an average area of 0.097 μm2 was attributed to monolayer cells 7 days after the passage. The population of small mitochondria with a round shape and area of 0.049 μm2 (p < 0.05) was observed in spheroid cells cultured under three-dimensional conditions. Cells in spheroids were quantitatively enriched in proteins of mitochondria biogenesis (DNM1L, IDH2, SSBP1), respiratory chain (ACO2, ATP5I, COX5A), extracellular proteins (COL12A1, COL6A1, COL6A2), and cytoskeleton (MYL6, MYL12B, MYH10). Most of the Rab-related transducers were inhibited in spheroid culture. The proteomic assay demonstrated delicate mechanisms of mitochondria autophagy and repopulation, cytoskeleton assembling, and biogenesis. Differences in the ultrastructure of mitochondria indicate active biogenesis under three-dimensional conditions.
Collapse
Affiliation(s)
- Irina N Saburina
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Nastasia V Kosheleva
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia
| | - Arthur T Kopylov
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia.,Department of Proteomic Research, Institute of Biomedical Chemistry, Moscow, Russian Federation
| | - Tatiana V Lipina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Marina E Krasina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Irina M Zurina
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Anastasiya A Gorkun
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Svetlana S Girina
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Andrey A Pulin
- Pirogov National Medical Surgical Center, Moscow, Russian Federation
| | - Anna L Kaysheva
- Department of Proteomic Research, Institute of Biomedical Chemistry, Moscow, Russian Federation
| | - Sergey G Morozov
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
35
|
In Vitro Assays for the Assessment of Impaired Mitochondrial Bioenergetics in Equine Atypical Myopathy. Life (Basel) 2021; 11:life11070719. [PMID: 34357091 PMCID: PMC8307747 DOI: 10.3390/life11070719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022] Open
Abstract
Equine atypical myopathy is a seasonal intoxication of grazing equids. In Europe, this poisoning is associated with the ingestion of toxins contained in the seeds and seedlings of the sycamore maple (Acer pseudoplatanus). The toxins involved in atypical myopathy are known to inhibit ß-oxidation of fatty acids and induce a general decrease in mitochondrial respiration, as determined by high-resolution respirometry applied to muscle samples taken from cases of atypical myopathy. The severe impairment of mitochondrial bioenergetics induced by the toxins may explain the high rate of mortality observed: about 74% of horses with atypical myopathy die, most within the first two days of signs of poisoning. The mechanism of toxicity is not completely elucidated yet. To improve our understanding of the pathological process and to assess therapeutic candidates, we designed in vitro assays using equine skeletal myoblasts cultured from muscle biopsies and subjected to toxins involved in atypical myopathy. We established that equine primary myoblasts do respond to one of the toxins incriminated in the disease.
Collapse
|
36
|
Niu W, Wang H, Wang B, Mao X, Du M. Resveratrol improves muscle regeneration in obese mice through enhancing mitochondrial biogenesis. J Nutr Biochem 2021; 98:108804. [PMID: 34171502 DOI: 10.1016/j.jnutbio.2021.108804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/09/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Obesity is increasing rapidly worldwide and is accompanied by many complications, including impaired muscle regeneration. Obesity is known to inhibit AMP-activated protein kinase (AMPK) activity, which impedes mitochondrial biogenesis, myogenic differentiation and muscle regeneration. Resveratrol has an effective anti-obesity effect, but its effect on regeneration of muscle in obese mice remains to be tested. We hypothesized that resveratrol activates AMPK and mitochondrial biogenesis to improve muscle regeneration. Male C57BL/6J mice were fed a control diet or a 60% high-fat diet with or without resveratrol supplementation for 8 weeks and, then, the tibialis anterior muscle was subjected to cardiotoxin-induced muscle injury. Muscle tissue was collected at 3 and 7 d after injury. We found that resveratrol enhanced both proliferation and differentiation of satellite cells following injury in obese mice. Markers of mitochondrial biogenesis were upregulated in resveratrol-treated mice. In C2C12 myogenic cells, resveratrol activated AMPK and stimulated the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, which were associated with enhanced myogenic differentiation. Such effects of resveratrol were abolished by AMPKα1 ablation, showing the mediatory roles of AMPK. In summary, dietary resveratrol activates AMPK/ proliferator-activated receptor gamma coactivator 1-alpha axis to facilitate mitochondrial biogenesis and muscle regeneration impaired due to obesity.
Collapse
Affiliation(s)
- Wenjing Niu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haibo Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xueying Mao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA, USA.
| |
Collapse
|
37
|
Rahman FA, Quadrilatero J. Mitochondrial network remodeling: an important feature of myogenesis and skeletal muscle regeneration. Cell Mol Life Sci 2021; 78:4653-4675. [PMID: 33751143 PMCID: PMC11072563 DOI: 10.1007/s00018-021-03807-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022]
Abstract
The remodeling of the mitochondrial network is a critical process in maintaining cellular homeostasis and is intimately related to mitochondrial function. The interplay between the formation of new mitochondria (biogenesis) and the removal of damaged mitochondria (mitophagy) provide a means for the repopulation of the mitochondrial network. Additionally, mitochondrial fission and fusion serve as a bridge between biogenesis and mitophagy. In recent years, the importance of these processes has been characterised in multiple tissue- and cell-types, and under various conditions. In skeletal muscle, the robust remodeling of the mitochondrial network is observed, particularly after injury where large portions of the tissue/cell structures are damaged. The significance of mitochondrial remodeling in regulating skeletal muscle regeneration has been widely studied, with alterations in mitochondrial remodeling processes leading to incomplete regeneration and impaired skeletal muscle function. Needless to say, important questions related to mitochondrial remodeling and skeletal muscle regeneration still remain unanswered and require further investigation. Therefore, this review will discuss the known molecular mechanisms of mitochondrial network remodeling, as well as integrate these mechanisms and discuss their relevance in myogenesis and regenerating skeletal muscle.
Collapse
Affiliation(s)
- Fasih Ahmad Rahman
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Joe Quadrilatero
- Department of Kinesiology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
38
|
Ludikhuize MC, Rodríguez Colman MJ. Metabolic Regulation of Stem Cells and Differentiation: A Forkhead Box O Transcription Factor Perspective. Antioxid Redox Signal 2021; 34:1004-1024. [PMID: 32847377 DOI: 10.1089/ars.2020.8126] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Stem cell activation and differentiation occur along changes in cellular metabolism. Metabolic transitions translate into changes in redox balance, cell signaling, and epigenetics, thereby regulating these processes. Metabolic transitions are key regulators of cell fate and exemplify the moonlighting nature of many metabolic enzymes and their associated metabolites. Recent Advances: Forkhead box O transcription factors (FOXOs) are bona fide regulators of cellular homeostasis. FOXOs are multitasking proteins able to regulate cell cycle, cellular metabolism, and redox state. Recent and ongoing research poses FOXOs as key factors in stem cell maintenance and differentiation in several tissues. Critical Issues: The multitasking nature of FOXOs and their tissue-specific expression patterns hinders to disclose a possible conserved mechanism of regulation of stem cell maintenance and differentiation. Moreover, cellular metabolism, cell signaling, and epigenetics establish complex regulatory interactions, which challenge the establishment of the causal/temporal nature of metabolic changes and stem cell activation and differentiation. Future Directions: The development of single-cell technologies and in vitro models able to reproduce the dynamics of stem cell differentiation are actively contributing to define the role of metabolism in this process. This knowledge is key to understanding and designing therapies for those pathologies where the balance between proliferation and differentiation is lost. Importantly, metabolic interventions could be applied to optimize stem cell cultures meant for therapeutical applications, such as transplantations, to treat autoimmune and degenerative disorders. Antioxid. Redox Signal. 34, 1004-1024.
Collapse
Affiliation(s)
- Marlies Corine Ludikhuize
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - María José Rodríguez Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
39
|
Lagerwaard B, van der Hoek MD, Hoeks J, Grevendonk L, Nieuwenhuizen AG, Keijer J, de Boer VCJ. Propionate hampers differentiation and modifies histone propionylation and acetylation in skeletal muscle cells. Mech Ageing Dev 2021; 196:111495. [PMID: 33932454 DOI: 10.1016/j.mad.2021.111495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022]
Abstract
Protein acylation via metabolic acyl-CoA intermediates provides a link between cellular metabolism and protein functionality. A process in which acetyl-CoA and acetylation are fine-tuned is during myogenic differentiation. However, the roles of other protein acylations remain unknown. Protein propionylation could be functionally relevant because propionyl-CoA can be derived from the catabolism of amino acids and fatty acids and was shown to decrease during muscle differentiation. We aimed to explore the potential role of protein propionylation in muscle differentiation, by mimicking a pathophysiological situation with high extracellular propionate which increases propionyl-CoA and protein propionylation, rendering it a model to study increased protein propionylation. Exposure to extracellular propionate, but not acetate, impaired myogenic differentiation in C2C12 cells and propionate exposure impaired myogenic differentiation in primary human muscle cells. Impaired differentiation was accompanied by an increase in histone propionylation as well as histone acetylation. Furthermore, chromatin immunoprecipitation showed increased histone propionylation at specific regulatory myogenic differentiation sites of the Myod gene. Intramuscular propionylcarnitine levels are higher in old compared to young males and females, possibly indicating increased propionyl-CoA levels with age. The findings suggest a role for propionylation and propionyl-CoA in regulation of muscle cell differentiation and ageing, possibly via alterations in histone acylation.
Collapse
Affiliation(s)
- Bart Lagerwaard
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands; TI Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, the Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands; Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, the Netherlands; MCL Academy, Medical Centre Leeuwarden, Leeuwarden, the Netherlands
| | - Joris Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Lotte Grevendonk
- TI Food and Nutrition, P.O. Box 557, 6700 AN, Wageningen, the Netherlands; Department of Nutrition and Movement Sciences, NUTRIM School for Nutrition and Translational Research in Metabolism, Maastricht University, 6200 MD, Maastricht, the Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University and Research, PO Box 338, 6700 AH, Wageningen, the Netherlands.
| |
Collapse
|
40
|
Chabi B, Hennani H, Cortade F, Wrutniak-Cabello C. Characterization of mitochondrial respiratory complexes involved in the regulation of myoblast differentiation. Cell Biol Int 2021; 45:1676-1684. [PMID: 33764610 DOI: 10.1002/cbin.11602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 11/10/2022]
Abstract
During myoblast differentiation, mitochondria undergo numerous changes that are necessary for the progression of the myogenic program. Notably, we previously showed that alteration in mitochondrial activity was able to control the expression of keys regulator of cell cycle withdrawal and terminal differentiation. Here, we assessed whether inhibition of one of the respiratory complexes was a key factor in the regulation of myogenic differentiation in C2C12 cells, and was associated with alteration in reactive oxygen species (ROS) production. C2C12 cells were treated from proliferation to differentiation with specific inhibitors of mitochondrial complexes at a concentration that were inhibiting respiration but not altering cell morphology. Proliferation was significantly repressed with inhibition of complexes I, II, and III, or mitochondrial protein synthesis (using Chloramphenicol treatment), while complex IV inhibition did not alter myoblast proliferation compared to control cells. Moreover, inhibition of complexes I and II altered cell cycle regulators, with p21 protein expression upregulated since proliferation and p27 protein expression reduced at differentiation. Myotubes formation and myogenin expression were blunted with complexes I and II inhibitors while MyoD protein expression was maintained, suggesting an alteration in its transcriptional activity. Finally, a decrease in overall ROS production was observed with continuous inhibition of mitochondrial complexes I-IV. In summary, our data provide evidence that complexes I and II may be the primary regulators of C2C12 myogenic differentiation. This occurs through specific regulation of myogenic rather than cell cycle regulators expression and ROS production at mitochondrial rather than cell level.
Collapse
Affiliation(s)
- Béatrice Chabi
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | - Hanane Hennani
- DMEM, Université de Montpellier, INRAE, Montpellier, France
| | | | | |
Collapse
|
41
|
Zumbaugh MD, Geiger AE, Luo J, Shen Z, Shi H, Gerrard DE. O-GlcNAc transferase is required to maintain satellite cell function. STEM CELLS (DAYTON, OHIO) 2021; 39:945-958. [PMID: 33634918 DOI: 10.1002/stem.3361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/06/2021] [Indexed: 11/05/2022]
Abstract
O-GlcNAcylation is a posttranslational modification considered to be a nutrient sensor that reports nutrient scarcity or surplus. Although O-GlcNAcylation exists in a wide range of cells and/or tissues, its functional role in muscle satellite cells (SCs) remains largely unknown. Using a genetic approach, we ablated O-GlcNAc transferase (OGT), and thus O-GlcNAcylation, in SCs. We first evaluated SC function in vivo using a muscle injury model and found that OGT deficient SCs had compromised capacity to repair muscle after an acute injury compared with the wild-type SCs. By tracing SC cycling rates in vivo using the doxycycline-inducible H2B-GFP mouse model, we found that SCs lacking OGT cycled at lower rates and reduced in abundance with time. Additionally, the self-renewal ability of OGT-deficient SCs after injury was decreased compared to that of the wild-type SCs. Moreover, in vivo, in vitro, and ex vivo proliferation assays revealed that SCs lacking OGT were incapable of expanding compared with their wild-type counterparts, a phenotype that may be explained, at least in part, by an HCF1-mediated arrest in the cell cycle. Taken together, our findings suggest that O-GlcNAcylation plays a critical role in the maintenance of SC health and function in normal and injured skeletal muscle.
Collapse
Affiliation(s)
- Morgan D Zumbaugh
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Ashley E Geiger
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jing Luo
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Zhengxing Shen
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Hao Shi
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - David E Gerrard
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
42
|
Kim J, Choi JW, Namkung J. Expression Profile of Mouse Gm20594, Nuclear-Encoded Humanin-Like Gene. J Lifestyle Med 2021; 11:13-22. [PMID: 33763338 PMCID: PMC7957044 DOI: 10.15280/jlm.2021.11.1.13] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Mitochondrial-derived peptides (MDPs) such as MOTS-c and humanin have been studied for their cytoprotective functions. In mice, humanin-encoding Mtrnr2 is a mitochondrial pseudogene, and the humanin-like peptide is encoded by the nuclear Gm20594 gene. However, endogenous tissue-specific expression profiles of Gm20594 have not yet been identified. Methods Mtrnr1 and Gm20594 expression was profiled via reverse transcription using only oligo(dT) primers from tissues of C57BL6/J mice. To analyze altered expression upon mitochondrial biogenesis, C2C12 myocytes and brown adipocytes were differentiated. Mitochondrial DNA copy numbers were quantified for normalization. Results Both Mtrnr1 and Gm20594 were highly expressed in brown adipose tissue. When normalized against mitochondrial content, Mtrnr1 was identified as being highly expressed in the duodenum, followed by the jejunum. In models of mitochondrial biogenesis, both Mtrnr1 and Gm20594 were upregulated during myocyte and brown adipocyte differentiation. Increased Mtrnr1 expression during brown adipocyte differentiation remained significant after normalization against mitochondrial DNA copy number, whereas myocyte differentiation exhibited biphasic upregulation and downregulation in early and late phases, respectively. Conclusion Nuclear-encoded Gm20594 showed similar expression patterns of mitochondrial-encoded Mtrnr1. Brown adipose tissue presented the highest basal expression levels of Gm20594 and Mtrnr1. When normalized against mitochondrial DNA copy number, gut tissues exhibited the highest expression of Mtrnr1. Upregulation of Mtrnr1 during mitochondrial biogenesis is independent of mitochondrial content.
Collapse
Affiliation(s)
- Jihye Kim
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jong-Whan Choi
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Jun Namkung
- Department of Biochemistry, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
43
|
Katti P, Rai M, Srivastava S, D'Silva P, Nongthomba U. Marf-mediated mitochondrial fusion is imperative for the development and functioning of indirect flight muscles (IFMs) in drosophila. Exp Cell Res 2021; 399:112486. [PMID: 33450208 DOI: 10.1016/j.yexcr.2021.112486] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 11/15/2022]
Abstract
Dynamic changes in mitochondrial shape and size are vital for mitochondrial health and for tissue development and function. Adult Drosophila indirect flight muscles contain densely packed mitochondria. We show here that mitochondrial fusion is critical during early muscle development (in pupa) and that silencing of the outer mitochondrial membrane fusion gene, Marf, in muscles results in smaller mitochondria that are functionally defective. This leads to abnormal muscle development resulting in muscle dysfunction in adult flies. However, post-developmental silencing of Marf has no obvious effects on mitochondrial and muscle phenotype in adult flies, indicating the importance of mitochondrial fusion during early muscle development.
Collapse
Affiliation(s)
- Prasanna Katti
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| | - Mamta Rai
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India
| | - Shubhi Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Patrick D'Silva
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560 012, India.
| |
Collapse
|
44
|
Tamura Y, Kouzaki K, Kotani T, Nakazato K. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C 2C 12 myotubes: twitch vs. tetanic contractions. Am J Physiol Cell Physiol 2020; 319:C1029-C1044. [PMID: 32936700 DOI: 10.1152/ajpcell.00494.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The contraction of myotubes using electrical pulse stimulation is a research tool used to mimic muscle contractile activity and exercise in rodents and humans. Most protocols employed in previous work used low-frequency twitch contractions. However, high-frequency tetanus contractions that are more physiologically relevant to muscle contractions in vivo are poorly characterized. In this report, the similarities and differences in acute responses and chronic adaptations with different contractile modes using twitches (2 Hz, continuous, 3 h) and tetanus (66 Hz, on: 5 s/off: 5 s, 3 h) were investigated. RNA sequencing-based transcriptome analysis and subsequent bioinformatics analysis suggest that tetanus may promote bioenergetic remodeling rather than twitch. Based on in silico analyses, metabolic remodeling after three contractile sessions of twitch and tetanus were investigated. Although twitch and tetanus had no significant effect on glycolysis, both types of contraction upregulated glucose oxidation capacity. Both twitch and tetanus qualitatively caused mitochondrial adaptations (increased content, respiratory chain enzyme activity, and respiratory function). The magnitude of adaptation was much greater under tetanus conditions. Our findings indicate that the contraction of myotubes by tetanus may be a useful experimental model, especially in the study of metabolic adaptations in C2C12 myotubes.
Collapse
Affiliation(s)
- Yuki Tamura
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Karina Kouzaki
- Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| | - Takaya Kotani
- Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Koichi Nakazato
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan.,Graduate School of Medical and Health Science, Nippon Sport Science University, Tokyo, Japan.,Research Institute for Sport Science, Nippon Sport Science University, Tokyo, Japan.,Faculty of Medical Science, Nippon Sport Science University, Tokyo, Japan
| |
Collapse
|
45
|
Peng Y, Yue F, Chen J, Xia W, Huang K, Yang G, Kuang S. Phosphatase orphan 1 inhibits myoblast proliferation and promotes myogenic differentiation. FASEB J 2020; 35:e21154. [PMID: 33140469 DOI: 10.1096/fj.202001672r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/29/2020] [Accepted: 10/16/2020] [Indexed: 01/08/2023]
Abstract
Myogenesis includes sequential stages of progenitor cell proliferation, myogenic commitment and differentiation, myocyte fusion, and myotube maturation. Different stages of myogenesis are orchestrated and regulated by myogenic regulatory factors and various downstream cellular signaling. Here we identify phosphatase orphan 1 (Phospho1) as a new player in myogenesis. During activation, proliferation, and differentiation of quiescent satellite cells, the expression of Phospho1 gradually increases. Overexpression of Phospho1 inhibits myoblast proliferation but promotes their differentiation and fusion. Conversely, knockdown of Phospho1 accelerates myoblast proliferation but impairs myotube formation. Moreover, knockdown of Phospho1 decreases the OXPHO protein levels and mitochondria density, whereas overexpression of Phospho1 upregulates OXPHO protein levels and promotes mitochondrial oxygen consumption. Finally, we show that Phospho1 expression is controlled by myogenin, which binds to the promoter of Phospho1 to regulate its transcription. These results indicate a key role of Phospho1 in regulating myogenic differentiation and mitochondrial function.
Collapse
Affiliation(s)
- Ying Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Wei Xia
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA.,College of Life Science and Technology, Southwest Minzu University, Chengdu, China
| | - Kuilong Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.,Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Gongshe Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
46
|
Yuan T, Keijer J, Guo AH, Lombard DB, de Boer VCJ. An optimized desuccinylase activity assay reveals a difference in desuccinylation activity between proliferative and differentiated cells. Sci Rep 2020; 10:17030. [PMID: 33046741 PMCID: PMC7552388 DOI: 10.1038/s41598-020-72833-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/03/2020] [Indexed: 12/21/2022] Open
Abstract
Succinylation is a novel post-translational modification identified on many proteins and is involved in multiple biological processes. Succinylation levels are dynamically regulated, balanced by succinylation and desuccinylation processes, and are closely connected to metabolic state in vivo. Sirtuins have been shown to possess NAD+-dependent desuccinylation activity in vitro and in vivo, among which the desuccinylation activity of SIRT5 is most extensively studied. Our understanding of the response of succinylation levels to different metabolic conditions, is hampered by the lack of a fast NAD+-dependent desuccinylation assay in a physiological context. In the present study, we therefore optimized and validated a fluorescence-based assay for measuring NAD+-dependent desuccinylation activity in cell lysates. Our results demonstrated that shorter and stricter reaction time was critical to approach the initial rate of NAD+-dependent desuccinylation activity in crude cell lysate systems, as compared to the desuccinylation reaction of purified His-SIRT5. Analysis of desuccinylation activity in SIRT5 knockout HEK293T cells confirmed the relevance of SIRT5 in cellular desuccinylation activity, as well as the presence of other NAD+-dependent desuccinylase activities. In addition, we were able to analyse desuccinylation and deacetylation activity in multiple cell lines using this assay. We showed a remarkably higher desuccinylase activity, but not deacetylase activity, in proliferative cultured muscle and adipose cells in comparison with their differentiated counterparts. Our results reveal an alteration in NAD+-dependent desuccinylation activity under different metabolic states.
Collapse
Affiliation(s)
- Taolin Yuan
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands
| | - Angela H Guo
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David B Lombard
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University & Research, Wageningen, 6708 WD, The Netherlands.
| |
Collapse
|
47
|
Younis S, Naboulsi R, Wang X, Cao X, Larsson M, Sargsyan E, Bergsten P, Welsh N, Andersson L. The importance of the ZBED6-IGF2 axis for metabolic regulation in mouse myoblast cells. FASEB J 2020; 34:10250-10266. [PMID: 32557799 DOI: 10.1096/fj.201901321r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022]
Abstract
The transcription factor ZBED6 acts as a repressor of Igf2 and affects directly or indirectly the transcriptional regulation of thousands of genes. Here, we use gene editing in mouse C2C12 myoblasts and show that ZBED6 regulates Igf2 exclusively through its binding site 5'-GGCTCG-3' in intron 1 of Igf2. Deletion of this motif (Igf2ΔGGCT ) or complete ablation of Zbed6 leads to ~20-fold upregulation of the IGF2 protein. Quantitative proteomics revealed an activation of Ras signaling pathway in both Zbed6-/- and Igf2ΔGGCT myoblasts, and a significant enrichment of mitochondrial membrane proteins among proteins showing altered expression in Zbed6-/- myoblasts. Both Zbed6-/- and Igf2ΔGGCT myoblasts showed a faster growth rate and developed myotube hypertrophy. These cells exhibited an increased O2 consumption rate, due to IGF2 upregulation. Transcriptome analysis revealed ~30% overlap between differentially expressed genes in Zbed6-/- and Igf2ΔGGCT myotubes, with an enrichment of upregulated genes involved in muscle development. In contrast, ZBED6-overexpression in myoblasts led to cell apoptosis, cell cycle arrest, reduced mitochondrial activities, and ceased myoblast differentiation. The similarities in growth and differentiation phenotypes observed in Zbed6-/- and Igf2ΔGGCT myoblasts demonstrates that ZBED6 affects mitochondrial activity and myogenesis largely through its regulation of IGF2 expression. This study adds new insights how the ZBED6-Igf2 axis affects muscle metabolism.
Collapse
Affiliation(s)
- Shady Younis
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Rakan Naboulsi
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Xuan Wang
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiaofang Cao
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mårten Larsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ernest Sargsyan
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Peter Bergsten
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nils Welsh
- Science for Life Laboratory, Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Leif Andersson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
48
|
Bhattacharya D, Scimè A. Mitochondrial Function in Muscle Stem Cell Fates. Front Cell Dev Biol 2020; 8:480. [PMID: 32612995 PMCID: PMC7308489 DOI: 10.3389/fcell.2020.00480] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/22/2020] [Indexed: 01/25/2023] Open
Abstract
Mitochondria are crucial organelles that control cellular metabolism through an integrated mechanism of energy generation via oxidative phosphorylation. Apart from this canonical role, it is also integral for ROS production, fatty acid metabolism and epigenetic remodeling. Recently, a role for the mitochondria in effecting stem cell fate decisions has gained considerable interest. This is important for skeletal muscle, which exhibits a remarkable property for regeneration following injury, owing to satellite cells (SCs), the adult myogenic stem cells. Mitochondrial function is associated with maintaining and dictating SC fates, linked to metabolic programming during quiescence, activation, self-renewal, proliferation and differentiation. Notably, mitochondrial adaptation might take place to alter SC fates and function in the presence of different environmental cues. This review dissects the contribution of mitochondria to SC operational outcomes, focusing on how their content, function, dynamics and adaptability work to influence SC fate decisions.
Collapse
Affiliation(s)
| | - Anthony Scimè
- Molecular, Cellular and Integrative Physiology, Faculty of Health, York University, Toronto, ON, Canada
| |
Collapse
|
49
|
EDMD-Causing Emerin Mutant Myogenic Progenitors Exhibit Impaired Differentiation Using Similar Mechanisms. Cells 2020; 9:cells9061463. [PMID: 32549231 PMCID: PMC7349064 DOI: 10.3390/cells9061463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 11/17/2022] Open
Abstract
Mutations in the gene encoding emerin (EMD) cause Emery–Dreifuss muscular dystrophy (EDMD1), an inherited disorder characterized by progressive skeletal muscle wasting, irregular heart rhythms and contractures of major tendons. The skeletal muscle defects seen in EDMD are caused by failure of muscle stem cells to differentiate and regenerate the damaged muscle. However, the underlying mechanisms remain poorly understood. Most EDMD1 patients harbor nonsense mutations and have no detectable emerin protein. There are three EDMD-causing emerin mutants (S54F, Q133H, and Δ95–99) that localize correctly to the nuclear envelope and are expressed at wildtype levels. We hypothesized these emerin mutants would share in the disruption of key molecular pathways involved in myogenic differentiation. We generated myogenic progenitors expressing wildtype emerin and each EDMD1-causing emerin mutation (S54F, Q133H, Δ95–99) in an emerin-null (EMD−/y) background. S54F, Q133H, and Δ95–99 failed to rescue EMD−/y myogenic differentiation, while wildtype emerin efficiently rescued differentiation. RNA sequencing was done to identify pathways and networks important for emerin regulation of myogenic differentiation. This analysis significantly reduced the number of pathways implicated in EDMD1 muscle pathogenesis.
Collapse
|
50
|
Mick E, Titov DV, Skinner OS, Sharma R, Jourdain AA, Mootha VK. Distinct mitochondrial defects trigger the integrated stress response depending on the metabolic state of the cell. eLife 2020; 9:e49178. [PMID: 32463360 PMCID: PMC7255802 DOI: 10.7554/elife.49178] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction is associated with activation of the integrated stress response (ISR) but the underlying triggers remain unclear. We systematically combined acute mitochondrial inhibitors with genetic tools for compartment-specific NADH oxidation to trace mechanisms linking different forms of mitochondrial dysfunction to the ISR in proliferating mouse myoblasts and in differentiated myotubes. In myoblasts, we find that impaired NADH oxidation upon electron transport chain (ETC) inhibition depletes asparagine, activating the ISR via the eIF2α kinase GCN2. In myotubes, however, impaired NADH oxidation following ETC inhibition neither depletes asparagine nor activates the ISR, reflecting an altered metabolic state. ATP synthase inhibition in myotubes triggers the ISR via a distinct mechanism related to mitochondrial inner-membrane hyperpolarization. Our work dispels the notion of a universal path linking mitochondrial dysfunction to the ISR, instead revealing multiple paths that depend both on the nature of the mitochondrial defect and on the metabolic state of the cell.
Collapse
Affiliation(s)
- Eran Mick
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Denis V Titov
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Owen S Skinner
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Rohit Sharma
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Alexis A Jourdain
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Broad InstituteCambridgeUnited States
- Department of Systems Biology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|