1
|
Dajti E, Bruni A, Barbara G, Azzaroli F. Diagnostic Approach to Elevated Liver Function Tests during Pregnancy: A Pragmatic Narrative Review. J Pers Med 2023; 13:1388. [PMID: 37763154 PMCID: PMC10532949 DOI: 10.3390/jpm13091388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Liver disease is not uncommon during pregnancy and is associated with increased maternal and fetal/neonatal morbidity and mortality. Physiological changes during pregnancy, including a hyperestrogenic state, increase in circulating plasma volume and/or reduction in splanchnic vascular resistance, and hemostatic imbalance, may mimic or worsen liver disease. For the clinician, it is important to distinguish among the first presentation or exacerbation of chronic liver disease, acute liver disease non-specific to pregnancy, and pregnancy-specific liver disease. This last group classically includes conditions such as hyperemesis gravidarum, intrahepatic cholestasis of pregnancy, liver disorders associated with the pre-eclampsia spectrum, and an acute fatty liver of pregnancy. All of these disorders often share pathophysiological mechanisms, symptoms, and laboratory findings (such as elevated liver enzymes), but a prompt and correct diagnosis is fundamental to guide obstetric conduct, reduce morbidity and mortality, and inform upon the risk of recurrence or development of other chronic diseases later on in life. Finally, the cause of elevated liver enzymes during pregnancy is unclear in up to 30-40% of the cases, and yet, little is known on the causes and mechanisms underlying these alterations, or whether these findings are associated with worse maternal/fetal outcomes. In this narrative review, we aimed to summarize pragmatically the diagnostic work-up and the management of subjects with elevated liver enzymes during pregnancy.
Collapse
Affiliation(s)
- Elton Dajti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Angelo Bruni
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| | - Francesco Azzaroli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 40138 Bologna, Italy; (A.B.); (G.B.); (F.A.)
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
2
|
Vonderohe C, Guthrie G, Stoll B, Hebib VM, Dawson H, Burrin D. Increased Circulating Cortisol After Vaginal Birth Is Associated With Increased FGF19 Secretion in Neonatal Pigs. Endocrinology 2022; 164:bqac188. [PMID: 36367732 PMCID: PMC10233397 DOI: 10.1210/endocr/bqac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 11/13/2022]
Abstract
The influence of birth modality (scheduled cesarean or spontaneous vaginal) on the development of the newborn has been a source of controversy in neonatology. The impact of cesarean vs vaginal birth on the development of bile acid and fibroblast growth factor 19 (FGF19) signaling is unknown. Our aim was to determine the effect of birth modality and gestational age (preterm vs term) on plasma hormone levels, bile acid pool distribution, expression of genes in the bile acid-FXR-FGF19 pathway, and plasma levels of FGF19 at birth and on day 3 of life in neonatal pigs. Four sows underwent cesarean delivery on gestation day 105 (n = 2) and 114 (n = 2; term = 115 days), and 2 additional sows were allowed to farrow at term (gestation days 112 and 118). Piglets were euthanized at birth (Term-Vaginal n = 6; Term-Cesarean n = 8; Preterm n = 10) for tissue and blood collection, and the remaining pigs received total parenteral nutrition then were fed enterally on day 3 (Term-Vaginal n = 8; Term-Cesarean n = 10; Preterm n = 8), before blood and tissue were collected. Piglets born vaginally had a markedly (30-fold) higher plasma FGF19 at birth than term pigs born via cesarean delivery, and 70-fold higher than preterm pigs (P < 0.001). However, distal ileum FGF19 gene expression was similar in all groups (P > 0.05). Plasma FGF19 positively correlated with plasma cortisol (r = 0.58; P < 0.05) and dexamethasone treatment increased ileal FGF19 expression in cultured pig tissue explants and human enteroids. Our findings suggest that exposure to maternal or endogenous glucocorticoids in the perinatal period may upregulate the development of the bile acid-FGF19 pathway.
Collapse
Affiliation(s)
- Caitlin Vonderohe
- USDA-ARS Children’s Nutrition Research Center; Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gregory Guthrie
- USDA-ARS Children’s Nutrition Research Center; Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| | - Barbara Stoll
- USDA-ARS Children’s Nutrition Research Center; Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valeria Melendez Hebib
- USDA-ARS Children’s Nutrition Research Center; Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harry Dawson
- USDA-ARS, Beltsville Human Nutrition Research Center, Diet, Genomics & Immunology Laboratory, Beltsville, MD 20705-2350, USA
| | - Douglas Burrin
- USDA-ARS Children’s Nutrition Research Center; Pediatrics, Gastroenterology & Nutrition, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Durník R, Šindlerová L, Babica P, Jurček O. Bile Acids Transporters of Enterohepatic Circulation for Targeted Drug Delivery. Molecules 2022; 27:molecules27092961. [PMID: 35566302 PMCID: PMC9103499 DOI: 10.3390/molecules27092961] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/24/2022] [Accepted: 05/02/2022] [Indexed: 12/29/2022] Open
Abstract
Bile acids (BAs) are important steroidal molecules with a rapidly growing span of applications across a variety of fields such as supramolecular chemistry, pharmacy, and biomedicine. This work provides a systematic review on their transport processes within the enterohepatic circulation and related processes. The focus is laid on the description of specific or less-specific BA transport proteins and their localization. Initially, the reader is provided with essential information about BAs′ properties, their systemic flow, metabolism, and functions. Later, the transport processes are described in detail and schematically illustrated, moving step by step from the liver via bile ducts to the gallbladder, small intestine, and colon; this description is accompanied by descriptions of major proteins known to be involved in BA transport. Spillage of BAs into systemic circulation and urine excretion are also discussed. Finally, the review also points out some of the less-studied areas of the enterohepatic circulation, which can be crucial for the development of BA-related drugs, prodrugs, and drug carrier systems.
Collapse
Affiliation(s)
- Robin Durník
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
| | - Lenka Šindlerová
- Department of Biophysics of Immune System, Institute of Biophysics, Czech Academy of Sciences, Královopolská 135, 61265 Brno, Czech Republic;
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic;
| | - Ondřej Jurček
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- CEITEC—Central European Institute of Technology, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Palackého 1946/1, 61200 Brno, Czech Republic
- Correspondence:
| |
Collapse
|
4
|
Impact of gastrointestinal tract variability on oral drug absorption and pharmacokinetics: An UNGAP review. Eur J Pharm Sci 2021; 162:105812. [PMID: 33753215 DOI: 10.1016/j.ejps.2021.105812] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/19/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
The absorption of oral drugs is frequently plagued by significant variability with potentially serious therapeutic consequences. The source of variability can be traced back to interindividual variability in physiology, differences in special populations (age- and disease-dependent), drug and formulation properties, or food-drug interactions. Clinical evidence for the impact of some of these factors on drug pharmacokinetic variability is mounting: e.g. gastric pH and emptying time, small intestinal fluid properties, differences in pediatrics and the elderly, and surgical changes in gastrointestinal anatomy. However, the link of colonic factors variability (transit time, fluid composition, microbiome), sex differences (male vs. female) and gut-related diseases (chronic constipation, anorexia and cachexia) to drug absorption variability has not been firmly established yet. At the same time, a way to decrease oral drug pharmacokinetic variability is provided by the pharmaceutical industry: clinical evidence suggests that formulation approaches employed during drug development can decrease the variability in oral exposure. This review outlines the main drivers of oral drug exposure variability and potential approaches to overcome them, while highlighting existing knowledge gaps and guiding future studies in this area.
Collapse
|
5
|
Sarkar M, Brady CW, Fleckenstein J, Forde KA, Khungar V, Molleston JP, Afshar Y, Terrault NA. Reproductive Health and Liver Disease: Practice Guidance by the American Association for the Study of Liver Diseases. Hepatology 2021; 73:318-365. [PMID: 32946672 DOI: 10.1002/hep.31559] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Monika Sarkar
- University of California, San Francisco, San Francisco, CA
| | | | | | | | | | - Jean P Molleston
- Indiana University and Riley Hospital for Children, Indianapolis, IN
| | - Yalda Afshar
- University of California, Los Angeles, Los Angeles, CA
| | - Norah A Terrault
- Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
6
|
Fang M, Zhang Q, Yu P, Ge C, Guo J, Zhang Y, Wang H. The effects, underlying mechanism and interactions of dexamethasone exposure during pregnancy on maternal bile acid metabolism. Toxicol Lett 2020; 332:97-106. [PMID: 32599024 DOI: 10.1016/j.toxlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/07/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
As important members in steroids related signal pathways, bile acids are very important in regulating substance metabolism and immune homeostasis. However, bile acids are highly cytotoxic, and the excessive accumulation can induce several abnormalities such as cholestatic liver injury. It is known that the bile acid metabolism alters during pregnancy and mostly will not result in pathologies. However, the effect of dexamethasone exposure during pregnancy on bile acid metabolism is still unknown. In this study, pregnant Wistar rats were subcutaneously administered dexamethasone (0.2 mg/kg.d) or saline from gestation day 9-21, while virgin rats were given the same treatment for 13 days. We found that, physiological pregnancy or dexamethasone exposure during non-pregnancy did not affect maternal serum TBA level and liver function. Nevertheless, dexamethasone exposure during pregnancy increased serum TBA level and accompanied with liver injury. Furthermore, we discovered that the conservation of bile acid homeostasis under pregnancy or dexamethasone exposure was maintained through compensatory pathways. However, dexamethasone exposure during pregnancy tipped the balance of liver bile acid homeostasis by increasing classical synthesis and decreasing efflux and uptake. In addition, dexamethasone exposure during pregnancy also increased serum estrogen level and nuclear receptors mRNA expression levels. Finally, two-way ANOVA analysis showed that dexamethasone exposure during pregnancy could induce or facilitate maternal cholestasis and liver injury by up-regulating ERα and CYP7A1 expression. This study confirmed that dexamethasone exposure during pregnancy was related to maternal intrahepatic cholestasis of pregnancy and should be carefully monitored in clinical settings.
Collapse
Affiliation(s)
- Man Fang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qi Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Pengxia Yu
- Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Juanjuan Guo
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, 185 Donghu Road, Wuchang District, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
7
|
Zhang C, Gan Y, Lv JW, Qin MQ, Hu WR, Liu ZB, Ma L, Song BD, Li J, Jiang WY, Wang JQ, Wang H, Xu DX. The protective effect of obeticholic acid on lipopolysaccharide-induced disorder of maternal bile acid metabolism in pregnant mice. Int Immunopharmacol 2020; 83:106442. [PMID: 32248018 DOI: 10.1016/j.intimp.2020.106442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022]
Abstract
The disorder of bile acid metabolism is a common feature during pregnancy, which leads to adverse birth outcomes and maternal damage effects. However, the cause and therapy about the disorder of bile acid metabolism are still poor. Microbial infection often occurs in pregnant women, which can induce the disorder of bile acid metabolism in adult mice. Here, this study observed the acute effect of lipopolysaccharide (LPS) on maternal bile acid of pregnant mice at gestational day 17 and the protective effect of obeticholic acid (OCA) pretreatment, a potent agonist of bile acid receptor farnesoid X receptor (FXR). The results showed LPS significantly increased the level of maternal serum and disordered bile acids components of maternal serum and liver, which were ameliorated by OCA pretreatment with obviously reducing the contents of CA, TCA, DCA, TCDCA, CDCA, GCA and TDCA in maternal serum and DCA, TCA, TDCA, TUDCA, CDCA and TCDCA in maternal liver. Furthermore, we investigated the effects of OCA on LPS-disrupted bile acid metabolism in maternal liver. LPS disrupted maternal bile acid profile by decreasing transport and metabolism with hepatic tight junctions of bile acid in pregnant mice. OCA obviously increased the protein level of nuclear FXR and regulated its target genes involving in the metabolism of bile acid, which was characterized by the lower expression of bile acid synthase CYP7A1, the higher expression of CYP3A and the higher mRNA level of transporter Mdr1a/b. This study provided the evidences that LPS disrupted bile acid metabolism in the late stage of pregnant mice and OCA pretreatment played the protective role on it by activating FXR.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - Yu Gan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ming-Qiang Qin
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Wei-Rong Hu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Bing Liu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Li Ma
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Bing-Dong Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Jian Li
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Wei-Ying Jiang
- The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Jian-Qing Wang
- MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China; The Fourth Affiliated Hospital, Anhui Medical University, Hefei 230022, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
The Hepatobiliary System: An Overview of Normal Function and Diagnostic Testing in Pregnancy. Clin Obstet Gynecol 2019; 63:122-133. [PMID: 31770121 DOI: 10.1097/grf.0000000000000504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pregnancy is associated with physiological adaptions that affect every organ system. Changes in liver function in pregnancy have important effects on nutrient metabolism, protein synthesis, and the biotransformation of substances in preparation for excretion. A clear understanding of the anatomic and functional changes of the hepatobiliary system is necessary for the diagnosis and evaluation of disease, as well as understanding how these changes predispose women to pregnancy-specific hepatic conditions. In this review, the effect of gestational changes in hepatobiliary function on laboratory tests and the role of diagnostic imaging of the liver and gallbladder in pregnancy will be discussed.
Collapse
|
9
|
Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: role of Gi protein, muscarinic receptors and TGR5. Sci Rep 2018; 8:7110. [PMID: 29740092 PMCID: PMC5940781 DOI: 10.1038/s41598-018-25569-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022] Open
Abstract
Bile acids are recognised as bioactive signalling molecules. While they are known to influence arrhythmia susceptibility in cholestasis, there is limited knowledge about the underlying mechanisms. To delineate mechanisms underlying fetal heart rhythm disturbances in cholestatic pregnancy, we used FRET microscopy to monitor cAMP release and contraction measurements in isolated rodent neonatal cardiomyocytes. The unconjugated bile acids CDCA, DCA and UDCA and, to a lesser extent, CA were found to be relatively potent agonists for the GPBAR1 (TGR5) receptor and elicit cAMP release, whereas all glyco- and tauro- conjugated bile acids are weak agonists. The bile acid-induced cAMP production does not lead to an increase in contraction rate, and seems to be mediated by the RI isoform of adenylate cyclase, unlike adrenaline-dependent release which is mediated by the RII isoform. In contrast, bile acids elicited slowing of neonatal cardiomyocyte contraction indicating that other signalling pathways are involved. The conjugated bile acids were found to be partial agonists of the muscarinic M2, but not sphingosin-1-phosphate-2, receptors, and act partially through the Gi pathway. Furthermore, the contraction slowing effect of unconjugated bile acids may also relate to cytotoxicity at higher concentrations.
Collapse
|
10
|
An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. Sci Rep 2017; 7:11823. [PMID: 28924228 PMCID: PMC5603585 DOI: 10.1038/s41598-017-11626-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/24/2017] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) affects 1/140 UK pregnancies; with pruritus, hepatic impairment and elevated serum bile acids. Severe disease is complicated by spontaneous preterm delivery and stillbirth. Previous studies have reported mutations in hepatocellular transporters (ABCB4, ABCB11). High throughput sequencing in 147 patients was performed in the transporters ABCB4, ABCB11, ATP8B1, ABCC2 and tight junction protein 2 (TJP2). Twenty-six potentially damaging variants were identified with the following predicted protein changes: Twelve ABCB4 mutations - Arg47Gln, Met113Val, Glu161Gly, Thr175Ala, Glu528Glyfs*6, Arg590Gln, Ala601Ser, Glu884Ter, Gly722Ala, Tyr775Met (x2), Trp854Ter. Four potential ABCB11 mutations - Glu297Gly (x3) and a donor splice site mutation (intron 19). Five potential ATP8B1 mutations - Asn45Thr (x3), and two others, Glu114Gln and Lys203Glu. Two ABCC2 mutations - Glu1352Ala and a duplication (exons 24 and 25). Three potential mutations were identified in TJP2; Thr62Met (x2) and Thr626Ser. No patient harboured more than one mutation. All were heterozygous. An additional 545 cases were screened for the potential recurrent mutations of ATP8B1 (Asn45Thr) and TJP2 (Thr62Met) identifying three further occurrences of Asn45Thr. This study has expanded known mutations in ABCB4 and ABCB11 and identified roles in ICP for mutations in ATP8B1 and ABCC2. Possible novel mutations in TJP2 were also discovered.
Collapse
|
11
|
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common liver disease during pregnancy, characterized by otherwise unexplained pruritus in late second and third trimester of pregnancy and elevated bile acids and/or transaminases. ICP is associated with an increased risk of adverse perinatal outcomes for the fetus and the later development of hepatobiliary disease for the mother. Bile acids should be monitored throughout pregnancy since fetal risk is increased at serum bile acids >40 µmol/l. Management of ICP consists of treatment with ursodeoxycholic acid, which reduces pruritus. Early elective delivery is common practice but should be performed on an individualized basis as long as strong evidence supporting this practice is lacking. Mothers should be followed-up for normalization of liver function tests 6-12 weeks after delivery. Future research in large-scale studies is needed to address the impact of ursodeoxycholic acid and early elective delivery on fetal outcome.
Collapse
Affiliation(s)
- Hanns-Ulrich Marschall
- a Department of Molecular and Clinical Medicine, University of Gothenburg, Sahlgrenska Academy, Institute of Medicine, S-41345 Gothenburg, Sweden
| |
Collapse
|
12
|
Malik MY, Jaiswal S, Sharma A, Shukla M, Lal J. Role of enterohepatic recirculation in drug disposition: cooperation and complications. Drug Metab Rev 2016; 48:281-327. [PMID: 26987379 DOI: 10.3109/03602532.2016.1157600] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enterohepatic recirculation (EHC) concerns many physiological processes and notably affects pharmacokinetic parameters such as plasma half-life and AUC as well as estimates of bioavailability of drugs. Also, EHC plays a detrimental role as the compounds/drugs are allowed to recycle. An in-depth comprehension of this phenomenon and its consequences on the pharmacological effects of affected drugs is important and decisive in the design and development of new candidate drugs. EHC of a compound/drug occurs by biliary excretion and intestinal reabsorption, sometimes with hepatic conjugation and intestinal deconjugation. EHC leads to prolonged elimination half-life of the drugs, altered pharmacokinetics and pharmacodynamics. Study of the EHC of any drug is complicated due to unavailability of the apposite model, sophisticated procedures and ethical concerns. Different in vitro and in vivo methods for studies in experimental animals and humans have been devised, each having its own merits and demerits. Involvement of the different transporters in biliary excretion, intra- and inter-species, pathological and biochemical variabilities obscure the study of the phenomenon. Modeling of drugs undergoing EHC has always been intricate and exigent models have been exploited to interpret the pharmacokinetic profiles of drugs witnessing multiple peaks due to EHC. Here, we critically appraise the mechanisms of bile formation, factors affecting biliary drug elimination, methods to estimate biliary excretion of drugs, EHC, multiple peak phenomenon and its modeling.
Collapse
Affiliation(s)
- Mohd Yaseen Malik
- a Department of Pharmaceutics , National Institute of Pharmaceutical Education and Research (NIPER) , Raebareli , India ;,b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India
| | - Swati Jaiswal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Abhisheak Sharma
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India ;,d Department of Pharmaceutics and Drug Delivery, School of Pharmacy , The University of Mississippi , Oxford , USA
| | - Mahendra Shukla
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| | - Jawahar Lal
- b Pharmacokinetics & Metabolism Division , CSIR-Central Drug Research Institute , Lucknow , India ;,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
13
|
Bryan MB, Chung-Davidson YW, Ren J, Bowman S, Scott AP, Huertas M, Connolly MP, Li W. Evidence that progestins play an important role in spermiation and pheromone production in male sea lamprey (Petromyzon marinus). Gen Comp Endocrinol 2015; 212:17-27. [PMID: 25623147 DOI: 10.1016/j.ygcen.2015.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 12/30/2014] [Accepted: 01/14/2015] [Indexed: 11/22/2022]
Abstract
Progestins (progestogens, C21 steroids) have been shown to regulate key physiological activities for reproduction in both sexes in all classes of vertebrates except for Agnathans. Progesterone (P) and 15α-hydroxyprogesterone (15α-P) have been detected in sea lamprey (Petromyzon marinus) plasma, but the expression patterns and functions of putative progestin receptor genes have not yet been investigated. The first objective of this study was to determine the differences in mRNA expression levels of nuclear progestin receptor (nPR) and the membrane receptor adaptor protein 'progesterone receptor membrane component 1' (pgrmc1) in putative target tissues in males at different life stages, with and without lamprey GnRH-I and -III treatment. The second objective was to demonstrate the function of progestins by implanting prespermiating males (PSM) with time-release pellets of P and measuring the latency to the onset of spermiation and plasma concentrations of sex pheromones and steroids. The third objective was to measure the binding affinity of P in the nuclear and membrane fractions of the target tissues. Expression levels of nPR and pgrmc1 differed between life stages and tissues, and in some cases were differentially responsive to lamprey GnRH-I and -III. Increases in nPR and pgrmc1 gene expressions were correlated to the late stages of sexual maturation in males. The highest expression levels of these genes were found in the liver and gill of spermiating males. These organs are, respectively, the site of production and release of the sex pheromone 3 keto-petromyzonol sulfate (3kPZS). The hypothesis that pheromone production may be under hormonal control was tested in vivo by implanting PSM with time-release pellets of P. Concentrations of 3kPZS in plasma after 1week were 50-fold higher than in controls or in males that had been implanted with androstenedione, supporting the hypothesis that P is responsible for regulating the production of the sex pheromone. P treatment also accelerated the onset of spermiation. Saturation and Scatchard analyses of the target tissues showed that both nuclear and membrane fractions bound P with high affinity and low capacity (KD 0.53pmol/g testis and 0.22 pmol/g testis, and Bmax 1.8 and 5.7 nM, respectively), similar to the characteristics of nPR and mPR in other fish. The fact that a high proportion of P was also converted in vivo to 15α-P means that it is not yet possible to determine which of these two steroids is the natural ligand in the sea lamprey.
Collapse
Affiliation(s)
- Mara Beth Bryan
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Jianfeng Ren
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
| | - Stephen Bowman
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Alexander P Scott
- The Centre for Environment, Fisheries and Aquaculture Science, Barrack Road, Weymouth, Dorset DT4 8UB, UK
| | - Mar Huertas
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Michael Patrick Connolly
- Department of Biochemistry and Molecular Biology, Michigan State University, 212 Biochemistry Building, 603 Wilson Road, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
14
|
Song X, Vasilenko A, Chen Y, Valanejad L, Verma R, Yan B, Deng R. Transcriptional dynamics of bile salt export pump during pregnancy: mechanisms and implications in intrahepatic cholestasis of pregnancy. Hepatology 2014; 60:1993-2007. [PMID: 24729004 PMCID: PMC4194188 DOI: 10.1002/hep.27171] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 04/07/2014] [Accepted: 04/09/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Bile salt export pump (BSEP) is responsible for biliary secretion of bile acids, a rate-limiting step in the enterohepatic circulation of bile acids and transactivated by nuclear receptor farnesoid X receptor (FXR). Intrahepatic cholestasis of pregnancy (ICP) is the most prevalent disorder among diseases unique to pregnancy and primarily occurs in the third trimester of pregnancy, with a hallmark of elevated serum bile acids. Currently, the transcriptional regulation of BSEP during pregnancy and its underlying mechanisms and involvement in ICP are not fully understood. In this study the dynamics of BSEP transcription in vivo in the same group of pregnant mice before, during, and after gestation were established with an in vivo imaging system (IVIS). BSEP transcription was markedly repressed in the later stages of pregnancy and immediately recovered after parturition, resembling the clinical course of ICP in human. The transcriptional dynamics of BSEP was inversely correlated with serum 17β-estradiol (E2) levels before, during, and after gestation. Further studies showed that E2 repressed BSEP expression in human primary hepatocytes, Huh 7 cells, and in vivo in mice. Such transrepression of BSEP by E2 in vitro and in vivo required estrogen receptor α (ERα). Mechanistic studies with chromatin immunoprecipitation (ChIP), protein coimmunoprecipitation (Co-IP), and bimolecular fluorescence complementation (BiFC) assays demonstrated that ERα directly interacted with FXR in living cells and in vivo in mice. CONCLUSION BSEP expression was repressed by E2 in the late stages of pregnancy through a nonclassical E2/ERα transrepressive pathway, directly interacting with FXR. E2-mediated repression of BSEP expression represents an etiological contributing factor to ICP and therapies targeting the ERα/FXR interaction may be developed for prevention and treatment of ICP.
Collapse
Affiliation(s)
| | | | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruchi Verma
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Bingfang Yan
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881
| |
Collapse
|
15
|
Deuschle U, Birkel M, Hambruch E, Hornberger M, Kinzel O, Perović-Ottstadt S, Schulz A, Hahn U, Burnet M, Kremoser C. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein. Int J Cancer 2014; 136:2693-704. [PMID: 25363753 DOI: 10.1002/ijc.29312] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022]
Abstract
The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia.
Collapse
Affiliation(s)
- Ulrich Deuschle
- Phenex Pharmaceuticals AG, Waldhofer Str. 104, 69123, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sharma Y, Chilamakuri CSR, Bakke M, Lenhard B. Computational characterization of modes of transcriptional regulation of nuclear receptor genes. PLoS One 2014; 9:e88880. [PMID: 24551185 PMCID: PMC3923872 DOI: 10.1371/journal.pone.0088880] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Nuclear receptors are a large structural class of transcription factors that act with their co-regulators and repressors to maintain a variety of biological and physiological processes such as metabolism, development and reproduction. They are activated through the binding of small ligands, which can be replaced by drug molecules, making nuclear receptors promising drug targets. Transcriptional regulation of the genes that encode them is central to gaining a deeper understanding of the diversity of their biochemical and biophysical roles and their role in disease and therapy. Even though they share evolutionary history, nuclear receptor genes have fundamentally different expression patterns, ranging from ubiquitously expressed to tissue-specific and spatiotemporally complex. However, current understanding of regulation in nuclear receptor gene family is still nascent. Methodology/Principal Findings In this study, we investigate the relationship between long-range regulation of nuclear receptor family and their known functionality. Towards this goal, we identify the nuclear receptor genes that are potential targets based on counts of highly conserved non-coding elements. We validate our results using publicly available expression (RNA-seq) and histone modification (ChIP-seq) data from the ENCODE project. We find that nuclear receptor genes involved in developmental roles show strong evidence of long-range mechanism of transcription regulation with distinct cis-regulatory content they feature clusters of highly conserved non-coding elements distributed in regions spanning several Megabases, long and multiple CpG islands, bivalent promoter marks and statistically significant higher enrichment of enhancer mark around their gene loci. On the other hand nuclear receptor genes that are involved in tissue-specific roles lack these features, having simple transcriptional controls and a greater variety of mechanisms for producing paralogs. We further examine the combinatorial patterns of histone maps associated with dynamic functional elements in order to explore the regulatory landscape of the gene family. The results show that our proposed classification capturing long-range regulation is strongly indicative of the functional roles of the nuclear receptors compared to existing classifications. Conclusions/Significanc We present a new classification for nuclear receptor gene family capturing whether a nuclear receptor is a possible target of long-range regulation or not. We compare our classification to existing structural (mechanism of action) and homology-based classifications. Our results show that understanding long-range regulation of nuclear receptors can provide key insight into their functional roles as well as evolutionary history; and this strongly merits further study.
Collapse
Affiliation(s)
- Yogita Sharma
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Marit Bakke
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Boris Lenhard
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, and MRC Clinical Sciences Centre, London, United Kingdom
- Department of Informatics, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
17
|
Kia L, Rinella ME. Interpretation and management of hepatic abnormalities in pregnancy. Clin Gastroenterol Hepatol 2013; 11:1392-8. [PMID: 23707777 DOI: 10.1016/j.cgh.2013.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 02/06/2023]
Abstract
The spectrum of liver disease in pregnancy includes liver disease unrelated to pregnancy, liver diseases that occur with increased frequency or severity in pregnancy, and liver disease specific to pregnancy. Diseases of the liver unique to pregnancy reliably occur at specific points in the gestational spectrum. Thus, gestational age, a comprehensive history, and a clinically driven diagnostic evaluation is critical in approaching a pregnant patient with abnormal liver chemistries or function. Early recognition of these conditions is important and although management may be expectant, some patients require targeted therapy or necessitate prompt delivery, which can be life-saving to both mother and child.
Collapse
Affiliation(s)
- Leila Kia
- Department of Medicine, Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | |
Collapse
|
18
|
Zhu QN, Xie HM, Zhang D, Liu J, Lu YF. Hepatic bile acids and bile acid-related gene expression in pregnant and lactating rats. PeerJ 2013; 1:e143. [PMID: 24010021 PMCID: PMC3757468 DOI: 10.7717/peerj.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 08/05/2013] [Indexed: 01/28/2023] Open
Abstract
Background. Significant physiological changes occur during pregnancy and lactation. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease closely related to disruption of bile acid homeostasis. The objective of this study was to examine the regulation of bile acid synthesis and transport in normal pregnant and lactating rats. Materials and Methods. Livers from timed pregnant SD rats were collected on gestational days (GD) 10, 14 and 19, and postnatal days (PND) 1, 7, 14 and 21. Total bile acids were determined by the enzymatic method, total RNA was isolated and subjected to real time RT-PCR analysis. Liver protein was extracted for western-blot analysis. Results. Under physiological conditions hepatic bile acids were not elevated during pregnancy but increased during lactation in rats. Bile acid synthesis rate-limiting enzyme Cyp7a1 was unchanged on gestational days, but increased on PND14 and 21 at mRNA and protein levels. Expression of Cyp8b1, Cyp27a1 and Cyp7b1 was also higher during lactation. The mRNA levels of small heterodimer partner (SHP) and protein levels of farnesoid X receptor (FXR) were increased during pregnancy and lactation. Bile acid transporters Ntcp, Bsep, Mrp3 and Mrp4 were lower at gestation, but increased during lactation. Hepatic Oatp transporters were decreased during pregnancy and lactation. Conclusion. Hepatic bile acid homeostasis is maintained during normal pregnancy in rats, probably through the FXR-SHP regulation. The expression of bile acid synthesis genes and liver bile acid accumulation were increased during lactation, together with increased expression of bile acid efflux transporter Bsep, Mrp3 and Mrp4.
Collapse
Affiliation(s)
- Qiong N Zhu
- Department of Pharmacology and Key Lab of Basic Pharmacology of Guizhou, Zunyi Medical College , Zunyi , China
| | | | | | | | | |
Collapse
|