1
|
Guo S, Keremu A, Hu M, He F, Maiwulanjiang M, Aisa HA, Xin X. Evaluation of the effect of Ela tablets in the treatment of diabetic nephropathy based on rat experiments and screening strategy for quality markers of Ela tablets targeting aldose reductase. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1252:124450. [PMID: 39793182 DOI: 10.1016/j.jchromb.2025.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/25/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Ela tablets (ALP) is a traditional Uyghur medicinal formulation comprising 9 herbs. Clinical applications have demonstrated its potential in treating diabetic nephropathy (DN). However, its specific medicinal effects and pharmacodynamic components have not been elucidated. This research aims to investigate the efficacy of ALP in treating DN and to explore the quality markers (Q-markers) for its exertion of efficacy. Using the UHPLC-Q-Orbitrap HRMS technique, a total of 60 compounds were identified within ALP. Animal experiments were conducted to investigate the effect of ALP intervention at doses of 80, 160, and 320 mg/kg in Sprague-Dawley rats. Then, fingerprints of ten batches of ALP extracts were established using UPLC-DAD. Spectrum-effect relationship analysis of these fingerprints and aldose reductase (AR) activity was conducted by chemometric analysis methods. The results were further validated by molecular docking and cellular experiments. The animal experiments indicated that ALP had a therapeutic effect on DN. Specifically, ALP reduced biochemical indexes such as serum creatinine (SCr), 24-hour urinary total protein (24 h UTP), uric acid (UA), blood urea nitrogen (BUN), triglycerides (TG), and total cholesterol (TC). ALP stabilized body weight and fasting blood glucose, enhanced the antioxidant capacity of kidneys, and improved renal pathology. Comprehensive analysis indicated that crocin-I and gallic acid may be used as Q-markers for ALP. In summary, ALP has been identified as a treatment for DN, and gallic acid and crocin-I can be used as its Q-markers.
Collapse
Affiliation(s)
- Shunan Guo
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Aizaiti Keremu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Miao Hu
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fei He
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Maitinuer Maiwulanjiang
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| | - Xuelei Xin
- The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
2
|
Dik B, Parlak TM, Ates MB, Tufan O. Exploring the combined therapeutic efficacy of bexarotene and icariin in type 2 diabetic rats. J Pharm Pharmacol 2024; 76:1474-1481. [PMID: 39024515 DOI: 10.1093/jpp/rgae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES The aim of this study was to determine the single and combined antidiabetic activity and side effects of the retinoid X receptor agonist bexarotene and the thioredoxin-interacting protein inhibitor and peroxisome proliferator-activated receptor γ and AMP-activated protein kinase activator icariin. METHODS The rats were grouped as healthy (control), diabetes, diabetes + bexarotene (20 mg/kg), diabetes + icariin (60 mg/kg), diabetes + bexarotene (10 mg/kg) + icariin (30 mg/kg) low-dose combination and diabetes + bexarotene (20 mg/kg) + icariin (60 mg/kg) high-dose combination groups. KEY FINDINGS Icariin treatment led to a significant reduction in glucose levels compared with the diabetes control group, a remarkable outcome observed 45 days after the initial application. HbA1c levels of the icariin and low-dose combination treatment groups were significantly lower than in the diabetes group. Notably, icariin treatment also significantly elevated HOMA-β levels, which is indicative of improved β-cell function. Icariin significantly decreased glucose levels at 30 and 120 min in the oral glucose tolerance test. Moreover, it ameliorated hepatocyte degeneration, hepatic cord dissociation, congestion, mononuclear cell infiltration in the liver, and degeneration in the pancreas. CONCLUSIONS Icariin treatment exhibited robust antidiabetic effects with fewer side effects than other treatment options in this study. In future studies, long-term and varying doses of icariin will contribute to the development of novel antidiabetic drugs.
Collapse
Affiliation(s)
- Burak Dik
- Department of Pharmacology and Toxicology, Selcuk University, Konya, 42130, Türkiye
| | - Tugba Melike Parlak
- Department of Pharmacology and Toxicology, Selcuk University, Konya, 42130, Türkiye
| | | | - Oznur Tufan
- Department of Pharmacology and Toxicology, Selcuk University, Konya, 42130, Türkiye
| |
Collapse
|
3
|
Li S, Hu W, Qian L, Sun D. Insights into non-coding RNAS: biogenesis, function and their potential regulatory roles in acute kidney disease and chronic kidney disease. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05083-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/29/2024] [Indexed: 01/03/2025]
|
4
|
Zhang DX, Jia SY, Xiao K, Zhang MM, Yu ZF, Liu JZ, Zhang W, Zhang LM, Xing BR, Zhou TT, Li XM, Zhao XC, An P. Icariin mitigates anxiety-like behaviors induced by hemorrhagic shock and resuscitation via inhibiting of astrocytic activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155507. [PMID: 38552430 DOI: 10.1016/j.phymed.2024.155507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Abnormal activation of astrocytes in the amygdala contributes to anxiety after hemorrhagic shock and resuscitation (HSR). Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB)-associated epigenetic reprogramming of astrocytic activation is crucial to anxiety. A bioactive monomer derived from Epimedium icariin (ICA) has been reported to modulate NF-κB signaling and astrocytic activation. PURPOSE The present study aimed to investigate the effects of ICA on post-HSR anxiety disorders and its potential mechanism of action. METHODS We first induced HSR in mice through a bleeding and re-transfusion model and selectively inhibited and activated astrocytes in the amygdala using chemogenetics. Then, ICA (40 mg/kg) was administered by oral gavage once daily for 21 days. Behavioral, electrophysiological, and pathological changes were assessed after HSR using the light-dark transition test, elevated plus maze, recording of local field potential (LFP), and immunofluorescence assays. RESULTS Exposure to HSR reduced the duration of the light chamber and attenuated open-arm entries. Moreover, HSR exposure increased the theta oscillation power in the amygdala and upregulated NF-κB p65, H3K27ac, and H3K4me3 expression. Contrarily, chemogenetic inhibition of astrocytes significantly reversed these changes. Chemogenetic inhibition in astrocytes was simulated by ICA, but chemogenetic activation of astrocytes blocked the neuroprotective effects of ICA. CONCLUSION ICA mitigated anxiety-like behaviors induced by HSR in mice via inhibiting astrocytic activation, which is possibly associated with NF-κB-induced epigenetic reprogramming.
Collapse
Affiliation(s)
- Dong-Xue Zhang
- Department of Gerontology, Cangzhou Central Hospital, Cangzhou, China
| | - Shi-Yan Jia
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China; Hebei Province Key Laboratory of Integrated Traditional and Western Medicine in Neurological Rehabilitation, China
| | - Ke Xiao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ming-Ming Zhang
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhi-Fang Yu
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Ji-Zhen Liu
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Min Zhang
- Anesthesia and Trauma Research Unit, Department of Anesthesiology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine (Cangzhou No. 2 Hospital), Cangzhou, China
| | - Bao-Rui Xing
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Ting-Ting Zhou
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Ming Li
- Hebei Key Laboratory of Integrated Traditional and Western Medicine in Osteoarthrosis Research (Preparing)
| | - Xiao-Chun Zhao
- Department of Anesthesiology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Ping An
- Department of Neurobiology, School of Life Science, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Ma L, Li J, Zhang X, Zhang W, Jiang C, Yang B, Yang H. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review. Front Pharmacol 2024; 15:1360179. [PMID: 38803440 PMCID: PMC11128677 DOI: 10.3389/fphar.2024.1360179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the chronic microvascular complications caused by diabetes, which is characterized by persistent albuminuria and/or progressive decline of estimated glomerular filtration rate (eGFR), and has been the major cause of dialysis around the world. At present, although the treatments for DKD including lifestyle modification, glycemic control and even using of Sodium-glucose cotransporter 2 (SGLT2) inhibitors can relieve kidney damage caused to a certain extent, there is still a lack of effective treatment schemes that can prevent DKD progressing to ESRD. It is urgent to find new complementary and effective therapeutic agents. Growing animal researches have shown that mitophagy makes a great difference to the pathogenesis of DKD, therefore, exploration of new drugs that target the restoration of mitophagy maybe a potential perspective treatment for DKD. The use of Chinese botanical drugs (CBD) has been identified to be an effective treatment option for DKD. There is growing concern on the molecular mechanism of CBD for treatment of DKD by regulating mitophagy. In this review, we highlight the current findings regarding the function of mitophagy in the pathological damages and progression of DKD and summarize the contributions of CBD that ameliorate renal injuries in DKD by interfering with mitophagy, which will help us further explain the mechanism of CBD in treatment for DKD and explore potential therapeutic strategies for DKD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
6
|
Yao W, Tao R, Wang K, Ding X. Icariin attenuates vascular endothelial dysfunction by inhibiting inflammation through GPER/Sirt1/HMGB1 signaling pathway in type 1 diabetic rats. Chin J Nat Med 2024; 22:293-306. [PMID: 38658093 DOI: 10.1016/s1875-5364(24)60618-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Icariin, a flavonoid glycoside, is extracted from Epimedium. This study aimed to investigate the vascular protective effects of icariin in type 1 diabetic rats by inhibiting high-mobility group box 1 (HMGB1)-related inflammation and exploring its potential mechanisms. The impact of icariin on vascular dysfunction was assessed in streptozotocin (STZ)-induced diabetic rats through vascular reactivity studies. Western blotting and immunofluorescence assays were performed to measure the expressions of target proteins. The release of HMGB1 and pro-inflammation cytokines were measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that icariin administration enhanced acetylcholine-induced vasodilation in the aortas of diabetic rats. It also notably reduced the release of pro-inflammatory cytokines, including interleukin-8 (IL-8), IL-6, IL-1β, and tumor necrosis factor-alpha (TNF-α) in diabetic rats and high glucose (HG)-induced human umbilical vein endothelial cells (HUVECs). The results also unveiled that the pro-inflammatory cytokines in the culture medium of HUVECs could be increased by rHMGB1. The increased release of HMGB1 and upregulated expressions of HMGB1-related inflammatory factors, including advanced glycation end products (RAGE), Toll-like receptor 4 (TLR4), and phosphorylated p65 (p-p65) in diabetic rats and HG-induced HUVECs, were remarkably suppressed by icariin. Notably, HMGB1 translocation from the nucleus to the cytoplasm in HUVECs under HG was inhibited by icariin. Meanwhile, icariin could activate G protein-coupled estrogen receptor (GPER) and sirt1. To explore the role of GPER and Sirt1 in the inhibitory effect of icariin on HMGB1 release and HMGB-induced inflammation, GPER inhibitor and Sirt1 inhibitor were used in this study. These inhibitors diminished the effects of icariin on HMGB1 release and HMGB1-induced inflammation. Specifically, the GPER inhibitor also negated the activation of Sirt1 by icariin. These findings suggest that icariin activates GPER and increases the expression of Sirt1, which in turn reduces HMGB1 translocation and release, thereby improving vascular endothelial function in type 1 diabetic rats by inhibiting inflammation.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Wang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Ding N, Sun S, Zhou S, Lv Z, Wang R. Icariin alleviates renal inflammation and tubulointerstitial fibrosis via Nrf2-mediated attenuation of mitochondrial damage. Cell Biochem Funct 2024; 42:e4005. [PMID: 38583082 DOI: 10.1002/cbf.4005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
Tubulointerstitial fibrosis is an inevitable consequence of all progressive chronic kidney disease (CKD) and contributes to a substantial health burden worldwide. Icariin, an active flavonoid glycoside obtained from Epimedium species, exerts potential antifibrotic effect. The study aimed to explore the protective effects of icariin against tubulointerstitial fibrosis in unilateral ureteral obstruction (UUO)-induced CKD mice and TGF-β1-treated HK-2 cells, and furthermore, to elucidate the underlying mechanisms. The results demonstrated that icariin significantly improved renal function, alleviated tubular injuries, and reduced fibrotic lesions in UUO mice. Furthermore, icariin suppressed renal inflammation, reduced oxidative stress as evidenced by elevated superoxide dismutase activity and decreased malondialdehyde level. Additionally, TOMM20 immunofluorescence staining and transmission electron microscope revealed that mitochondrial mass and morphology of tubular epithelial cells in UUO mice was restored by icariin. In HK-2 cells treated with TGF-β1, icariin markedly decreased profibrotic proteins expression, inhibited inflammatory factors, and protected mitochondria along with preserving mitochondrial morphology, reducing reactive oxygen species (ROS) and mitochondrial ROS (mtROS) overproduction, and preserving membrane potential. Further investigations demonstrated that icariin could activate nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway both in vivo and in vitro, whereas inhibition of Nrf2 by ML385 counteracted the protective effects of icariin on TGF-β1-induced HK-2 cells. In conclusion, icariin protects against renal inflammation and tubulointerstitial fibrosis at least partly through Nrf2-mediated attenuation of mitochondrial dysfunction, which suggests that icariin could be developed as a promising therapeutic candidate for the treatment of CKD.
Collapse
Affiliation(s)
- Nannan Ding
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shanyue Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuting Zhou
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Rong Wang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
8
|
Zhang Y, Jiao X, Liu J, Feng G, Luo X, Zhang M, Zhang B, Huang L, Long Q. A new direction in Chinese herbal medicine ameliorates for type 2 diabetes mellitus: Focus on the potential of mitochondrial respiratory chain complexes. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117484. [PMID: 38012971 DOI: 10.1016/j.jep.2023.117484] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetes is a common chronic disease. Chinese herbal medicine (CHM) has a history of several thousand years in the treatment of diabetes, and active components with hypoglycemic effects extracted from various CHM, such as polysaccharides, flavonoids, terpenes, and steroidal saponins, have been widely used in the treatment of diabetes. AIM OF THE STUDY Research exploring the potential of various CHM compounds to regulate the mitochondrial respiratory chain complex to improve type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS The literature data were primarily obtained from authoritative databases such as PubMed, CNKI, Wanfang, and others within the last decade. The main keywords used include "type 2 diabetes mellitus", "Chinese medicine", "Chinese herbal medicine", "mitochondrial respiratory chain complex", and "mitochondrial dysfunction". RESULTS Chinese herbal medicine primarily regulates the activity of mitochondrial respiratory chain complexes in various tissues such as liver, adipose tissue, skeletal muscle, pancreatic islets, and small intestine. It improves cellular energy metabolism through hypoglycemic, antioxidant, anti-inflammatory and lipid-modulating effects. Different components of CHM can regulate the same mitochondrial respiratory chain complexes, while the same components of a particular CHM can regulate different complex activities. The active components of CHM target different mitochondrial respiratory chain complexes, regulate their aberrant changes and effectively improve T2DM and its complications. CONCLUSION Chinese herbal medicine can modulate the function of mitochondrial respiratory chain complexes in various cell types and exert their hypoglycemic effects through various mechanisms. CHM has significant therapeutic potential in regulating mitochondrial respiratory chain complexes to improve T2DM, but further research is needed to explore the underlying mechanisms and conduct clinical trials to assess the safety and efficacy of these medications. This provides new perspectives and opportunities for personalized improvement and innovative developments in diabetes management.
Collapse
Affiliation(s)
- Yinghui Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinyue Jiao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jianying Liu
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Mingyue Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binzhi Zhang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Chinese Medicine for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Yao W, Tao R, Xu Y, Chen ZS, Ding X, Wan L. AR/RKIP pathway mediates the inhibitory effects of icariin on renal fibrosis and endothelial-to-mesenchymal transition in type 2 diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117414. [PMID: 37977422 DOI: 10.1016/j.jep.2023.117414] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Herba epimedium brevicornu maxim is traditionally known as a sexual enhancement, and has the effect of tonifying kidney yang. Icariin is a flavonoid extracted from epimedium brevicornu maxim, and has been shown to improve nephropathy disease. AIM OF THE STUDY This study investigated the possible role of icariin in regulating renal EndMT in type 2 diabetic nephropathy (T2DN). MATERIALS AND METHODS Male type 2 diabetic Sprague Dawley rats, Male D2.BKS(D)-Leprdb/J (db/db) mice, and mouse glomerular endothelial cells were utilized to evaluate the effect of icariin. Western blotting, Q-PCR, immunohistochemistry, H&E, Masson staining, immunofluorescence, and siRNA transfection, were performed in this study. RESULTS The inhibitory function of icariin in renal fibrosis and renal EndMT was verified in type 2 diabetic animals. Methyltestosterone suppressed renal fibrosis and EndMT in db/db mice. Androgen receptor (AR), the major receptor of testosterone, was upregulated by icariin. The AR antagonist MDV3100, blocked the inhibition by icariin in renal EndMT, revealing that icariin repressed renal EndMT by activating AR. In addition, icariin and methyltestosterone upregulated the Raf kinase inhibitor protein (RKIP) in db/db mice. Furthermore, siRNA-RKIP inhibited the effect of icariin on EndMT. The MEK/ERK pathway, as the downstream pathway of RKIP, was suppressed by icariin and methyltestosterone. Of note, the effect of icariin on the MEK/ERK pathway was abolished by MDV3100 or siRNA-RKIP. CONCLUSIONS These results supported that icariin targeted AR/RKIP/MEK/ERK pathway to suppress renal fibrosis and EndMT in T2DN.
Collapse
Affiliation(s)
- Wenhui Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Rongpin Tao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yue Xu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, New York, NY, 11439, USA
| | - Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China; Precision Medicine Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Lisheng Wan
- Department of Traditional Chinese Medicine, Shenzhen Children's Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Lin QR, Jia LQ, Lei M, Gao D, Zhang N, Sha L, Liu XH, Liu YD. Natural products as pharmacological modulators of mitochondrial dysfunctions for the treatment of diabetes and its complications: An update since 2010. Pharmacol Res 2024; 200:107054. [PMID: 38181858 DOI: 10.1016/j.phrs.2023.107054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/12/2023] [Accepted: 12/31/2023] [Indexed: 01/07/2024]
Abstract
Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.
Collapse
Affiliation(s)
- Qian-Ru Lin
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lian-Qun Jia
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 116600, China
| | - Ming Lei
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Di Gao
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Nan Zhang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Lei Sha
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China
| | - Xu-Han Liu
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, China.
| | - Yu-Dan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
11
|
Chen X, Li X, Cao B, Chen X, Zhang K, Han F, Kan C, Zhang J, Sun X, Guo Z. Mechanisms and efficacy of traditional Chinese herb monomers in diabetic kidney disease. Int Urol Nephrol 2024; 56:571-582. [PMID: 37552392 DOI: 10.1007/s11255-023-03703-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes and is the primary cause of end-stage renal disease. Current treatment strategies primarily focus on the inhibition of the renin-angiotensin-aldosterone system and the attainment of blood glucose control. Although current medical therapies for DKD have been shown to delay disease progression and improve long-term outcomes, their efficacy is limited and they may be restricted in certain cases, particularly when hyperkalemia is present. Traditional Chinese medicine (TCM) treatment has emerged as a significant complementary approach for DKD. TCM monomers, derived from various Chinese herbs, have been found to modulate multiple therapeutic targets and exhibit a broad range of therapeutic effects in patients with DKD. This review aims to summarize the mechanisms of action of TCM monomers in the treatment of DKD, based on findings from clinical trials, as well as cell and animal studies. The results of these investigations demonstrate the potential effective use of TCM monomers in treating or preventing DKD, offering a promising new direction for future research in the field. By providing a comprehensive overview of the mechanisms and efficacy of TCM monomers in DKD, this review highlights the potential of these natural compounds as alternative therapeutic options for improving outcomes in patients with DKD.
Collapse
Affiliation(s)
- Xuexun Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xuan Li
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Bo Cao
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Xinping Chen
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Kexin Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Fang Han
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
| | - Chengxia Kan
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Jingwen Zhang
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China
| | - Xiaodong Sun
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
- Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical University, 2428 Yuhe Road, Weifang, 261031, Shandong, China.
| | - Zhentao Guo
- Department of Nephrology, Affiliated Hospital of Weifang Medical University, Weifang, 261031, China.
| |
Collapse
|
12
|
Zhao W, Shan X, Li X, Lu S, Xia L, Chen H, Zhang C, Guo W, Xu M, Lu R, Zhao P. Icariin inhibits hypertrophy by regulation of GPER1 and CaMKII/HDAC4/MEF2C signaling crosstalk in ovariectomized mice. Chem Biol Interact 2023; 384:110728. [PMID: 37739049 DOI: 10.1016/j.cbi.2023.110728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 08/16/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Icariin (ICA), a flavonoid phytoestrogen, was isolated from traditional Chinese medicine Yin Yang Huo (Epimedium brevicornu Maxim.). Previous studies reporting the cardioprotective effects of ICA are available; however, little is known about the impact of ICA on cardioprotection under conditions of reduced estrogen levels. This study aimed to provide detailed information regarding the antihypertrophic effects of ICA in ovariectomized female mice. Female mice were subjected to ovariectomy (OVX) and transverse aortic constriction and then orally treated with ICA at doses of 30, 60 or 120 mg/kg/day for 4 weeks. Morphological assessments, echocardiographic parameters, histological analyses, and immunofluorescence were performed to evaluate cardiac hypertrophy. Cardiomyocytes from mice or rats were stimulated using phenylephrine, and cell surface and hypertrophy markers were tested using immunofluorescence and qPCR. Western blotting, qPCR, and luciferase reporter gene assays were used to assess the expression of proteins and mRNA and further investigate the proteins related to the G-protein coupled estrogen receptor (GPER1) and CaMKII/HDAC4/MEF2C signaling pathways in vivo and in vitro. ICA blocks cardiac hypertrophy induced by pressure overload in OVX mice. Additionally, we demonstrated that ICA activated GPER1 and inhibited the nuclear export or promoted the nuclear import of histone deacetylase 4 (HDAC4) through regulation of phosphorylation of calmodulin-dependent protein kinase II (CaMKII) and further improved the repression of myocyte enhancer factor-2C (MEF2C). ICA ameliorated cardiac hypertrophy in OVX mice by activating GPER1 and inhibiting the CaMKII/HDAC4/MEF2 signaling pathway.
Collapse
Affiliation(s)
- Wenxia Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Public Health, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiaoli Shan
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueqin Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuang Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Xia
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihua Chen
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Zhang
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Guo
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Lu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pei Zhao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
14
|
Arterburn JB, Prossnitz ER. G Protein-Coupled Estrogen Receptor GPER: Molecular Pharmacology and Therapeutic Applications. Annu Rev Pharmacol Toxicol 2023; 63:295-320. [PMID: 36662583 PMCID: PMC10153636 DOI: 10.1146/annurev-pharmtox-031122-121944] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The actions of estrogens and related estrogenic molecules are complex and multifaceted in both sexes. A wide array of natural, synthetic, and therapeutic molecules target pathways that produce and respond to estrogens. Multiple receptors promulgate these responses, including the classical estrogen receptors of the nuclear hormone receptor family (estrogen receptors α and β), which function largely as ligand-activated transcription factors, and the 7-transmembrane G protein-coupled estrogen receptor, GPER, which activates a diverse array of signaling pathways. The pharmacology and functional roles of GPER in physiology and disease reveal important roles in responses to both natural and synthetic estrogenic compounds in numerous physiological systems. These functions have implications in the treatment of myriad disease states, including cancer, cardiovascular diseases, and metabolic disorders. This review focuses on the complex pharmacology of GPER and summarizes major physiological functions of GPER and the therapeutic implications and ongoing applications of GPER-targeted compounds.
Collapse
Affiliation(s)
- Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico, USA
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
| | - Eric R Prossnitz
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA;
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, and Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
15
|
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 64:5852-5877. [PMID: 36591787 DOI: 10.1080/10408398.2022.2159317] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus (DM) is a global health issue in the twenty-first century, and there are numerous challenges in preventing and alleviating its chronic complications. The herb Epimedium has beneficial therapeutic effects on various human diseases, including DM. Its major flavonoid component, icariin, has significant anti-DM activity and may help improve pancreatic β-cell dysfunction and insulin resistance. Furthermore, preclinical evidence has shown that icariin and its in vivo bioactive form, icariside II, have preventive and therapeutic effects on several diabetic complications, including diabetic cardiomyopathy, diabetic vascular endothelial disorder, diabetic nephropathy, and diabetic erectile dysfunction. In this review, we present the general and toxicological information concerning icariin and icariside II and review the anti-DM effects of icariin from a molecular perspective. Additionally, we discuss the potential benefits of icariin and icariside II on the important pathological mechanisms of various diabetic complications. Despite positive preclinical evidence, additional investigations are needed before relevant clinical studies can be conducted. Therefore, we conclude with suggestions for future research. Hopefully, this review will provide a comprehensive molecular perspective for future research and product development related to icariin and icariside II in treating DM and diabetic complications.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kaixi Ding
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rensong Yue
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Lei
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Geriatrics, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Muhammad A, Forcados GE, Yusuf AP, Abubakar MB, Sadiq IZ, Elhussin I, Siddique MAT, Aminu S, Suleiman RB, Abubakar YS, Katsayal BS, Yates CC, Mahavadi S. Comparative G-Protein-Coupled Estrogen Receptor (GPER) Systems in Diabetic and Cancer Conditions: A Review. Molecules 2022; 27:molecules27248943. [PMID: 36558071 PMCID: PMC9786783 DOI: 10.3390/molecules27248943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
For many patients, diabetes Mellitus and Malignancy are frequently encountered comorbidities. Diabetes affects approximately 10.5% of the global population, while malignancy accounts for 29.4 million cases each year. These troubling statistics indicate that current treatment approaches for these diseases are insufficient. Alternative therapeutic strategies that consider unique signaling pathways in diabetic and malignancy patients could provide improved therapeutic outcomes. The G-protein-coupled estrogen receptor (GPER) is receiving attention for its role in disease pathogenesis and treatment outcomes. This review aims to critically examine GPER' s comparative role in diabetes mellitus and malignancy, identify research gaps that need to be filled, and highlight GPER's potential as a therapeutic target for diabetes and malignancy management. There is a scarcity of data on GPER expression patterns in diabetic models; however, for diabetes mellitus, altered expression of transport and signaling proteins has been linked to GPER signaling. In contrast, GPER expression in various malignancy types appears to be complex and debatable at the moment. Current data show inconclusive patterns of GPER expression in various malignancies, with some indicating upregulation and others demonstrating downregulation. Further research should be conducted to investigate GPER expression patterns and their relationship with signaling pathways in diabetes mellitus and various malignancies. We conclude that GPER has therapeutic potential for chronic diseases such as diabetes mellitus and malignancy.
Collapse
Affiliation(s)
- Aliyu Muhammad
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | | | - Abdurrahman Pharmacy Yusuf
- Department of Biochemistry, School of Life Sciences, Federal University of Technology, Minna P.M.B. 65, Nigeria
| | - Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
- Centre for Advanced Medical Research & Training (CAMRET), Usmanu Danfodiyo University, Sokoto P.M.B. 2254, Nigeria
| | - Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Isra Elhussin
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Md Abu Talha Siddique
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Suleiman Aminu
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Rabiatu Bako Suleiman
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Babangida Sanusi Katsayal
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria P.M.B. 1044, Nigeria
| | - Clayton C Yates
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| | - Sunila Mahavadi
- Center for Cancer Research, Department of Biology, Tuskegee University, Tuskegee, AL 36088, USA
| |
Collapse
|
17
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Ding X, Zhao H, Qiao C. Icariin protects podocytes from NLRP3 activation by Sesn2-induced mitophagy through the Keap1-Nrf2/HO-1 axis in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154005. [PMID: 35247669 DOI: 10.1016/j.phymed.2022.154005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/15/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Icariin (ICA) is a flavonoid extract obtained from Herba epimedii that has been proven to exert multiple pharmacological activities, including antifibrotic and anti-inflammatory activities. PURPOSE This study aimed to investigate the ameliorative mechanism of ICA in diabetes mellitus rats and MPC-5 cells. METHODS We administered ICA at 3 different dosages (20 mg/kg, 40 mg/kg, 80 mg/kg) to streptozotocin (STZ)-treated rats and (1 μM, 3 μM, 10 μM) to high glucose (HG)-treated MPC-5 cells. We also chose irbesartan (IRB) (13.5 mg/kg in rats, 1 μM in cells) as a positive control drug to evaluate the ICA pharmacological effect. After administration, the kidneys of rats and MPC-5 cells were harvested for experiments. RESULTS After 8 weeks of oral administration, we found that the physiological index was improved by ICA and IRB. The results of immunohistochemistry, Western blot, and laser confocal imaging showed that mitophagy might play a key role in ICA-induced improvement. In further research, we found that ICA could activate Nrf2, suppress NLRP3 and degrade Keap1 via Sesn2-dependant mitophagy. To verify our hypothesis, we blocked the mitophagy signalling pathway via Sesn2 siRNA. The results showed that ICA-induced NLRP3 suppression and mitophagy vanished. CONCLUSION In summary, we conclude that ICA can increase Sesn2-induced mitophagy to inhibit NLRP3 inflammasome activation by the Keap1-Nrf2/HO-1 axis in diabetic nephropathy rats. This might be the underlying mechanism of ICA's protective effect in diabetic nephropathy.
Collapse
Affiliation(s)
- Xuansheng Ding
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China; Anhui University of Science and Technology, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China
| | - Hanzhen Zhao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China
| | - Chen Qiao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, No.639 Longmian Road, Jiangning District, Nanjing, Jiangsu, China.
| |
Collapse
|
19
|
Liu S, Zhao J, Tian WS, Wang JC, Wang HW, Zhou BH. Estrogen deficiency aggravates fluorine ion-induced renal fibrosis via the TGF-β1/Smad signaling pathway in rats. Toxicol Lett 2022; 362:26-37. [DOI: 10.1016/j.toxlet.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/21/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
|
20
|
Mitochondrial Oxidative Stress and Cell Death in Podocytopathies. Biomolecules 2022; 12:biom12030403. [DOI: 10.3390/biom12030403] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Podocytopathies are kidney diseases that are driven by podocyte injury with proteinuria and proteinuria-related symptoms as the main clinical presentations. Albeit podocytopathies are the major contributors to end-stage kidney disease, the underlying molecular mechanisms of podocyte injury remain to be elucidated. Mitochondrial oxidative stress is associated with kidney diseases, and increasing evidence suggests that oxidative stress plays a vital role in the pathogenesis of podocytopathies. Accumulating evidence has placed mitochondrial oxidative stress in the focus of cell death research. Excessive generated reactive oxygen species over antioxidant defense under pathological conditions lead to oxidative damage to cellular components and regulate cell death in the podocyte. Conversely, exogenous antioxidants can protect podocyte from cell death. This review provides an overview of the role of mitochondrial oxidative stress in podocytopathies and discusses its role in the cell death of the podocyte, aiming to identify the novel targets to improve the treatment of patients with podocytopathies.
Collapse
|
21
|
Liu Y, Xue C, Lu H, Zhou Y, Guan R, Wang J, Zhang Q, Ke T, Aschner M, Zhang W, Luo W. Hypoxia causes mitochondrial dysfunction and brain memory disorder in a manner mediated by the reduction of Cirbp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151228. [PMID: 34715218 DOI: 10.1016/j.scitotenv.2021.151228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Environmental hypoxic hazard has increasingly become a global public health issue, with impelling evidences supporting the relation between hypoxia and cognitive disorders. As a potent stressor, hypoxia causes mitochondrial dysfunction with insufficient energy production, thus the formation of brain memory disorder. Yet, the underlying molecular mechanism/s against hypoxia induced injury have yet to be identified. Here, we report that cold inducible RNA binding protein (Cirbp) attenuates hypoxia induced insufficient energy production and oxidative stress. Further analyses show that Cirbp sustains protein levels of respiratory chain complexes II (SDHB) and IV (MT-CO1), and directly binds the 3'UTR of Atp5g3 to control mitochondrial homeostasis and ATP biogenesis upon hypoxic stress. Altogether, our data establish Cirbp as a critical protective factor against hypoxic health hazard and provide novel insights into its latent regulation network.
Collapse
Affiliation(s)
- Ying Liu
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Chong Xue
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Huanyu Lu
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Yang Zhou
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Jiye Wang
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Qian Zhang
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China
| | - Tao Ke
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States of America
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States of America
| | - Wenbin Zhang
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health, Fourth Military Medical University, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Key Laboratory of Free Radical Biology and Medicine, Xi'an 710032, China.
| |
Collapse
|
22
|
Su B, Cheng D, Chen G, Zhang S, Wang L, Wu X, Tang S. Icariin Attenuation of Diabetic Kidney Disease Through Inhibition of Endoplasmic Reticulum Stress via G Protein-Coupled Estrogen Receptors. J Biomed Nanotechnol 2022; 18:488-497. [PMID: 35484747 DOI: 10.1166/jbn.2022.3242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diabetic kidney disease (DKD) is the most common complication of diabetes mellitus and has become the primary cause of End-Stage Renal Disease (ESRD) globally. Icariin (ICA), an effective component extracted from Epimedium, has antiosteoporosis effect, antitumor effects, anti-ischemia effects, and other effects. In this study, a mouse DKD model was established, and Icariin solid nanoliposomes were administered to determine whether ICA had a protective effect on the renal function of DKD mice by regulating estrogen level and endoplasmic reticulum (ER) stress pathway. The results showed that the microalbumin/creatinine in urine, serum urea nitrogen, and CHOL in ICA cultured DKD mice significantly decreased, and mice nephropathy improved significantly. rat renal tubule epithelial cells were further tested, and the rat renal tubule epithelial cells were modeled by cultured cells with high glucose. The results showed that high glucose could promote the proliferation of renal tubular epithelial cells. Simultaneously, ICA can inhibit the proliferation of renal tubular epithelial cells and induce cell apoptosis. Furthermore, the expression of ER stress-related proteins IRE1 and XBP-1S was further detected. Additionally, to ICA intervention, a GPER antagonist (G-15) was added for intervention, the inhibitory effects of IRE1 and XBP-1S were reversed, and the ER stress pathway was activated. Cell experiments showed that ICA could promote GPER expression, while inhibiting GPER expression promoted the activation of ER stress pathway, and GPER expression was negatively correlated with ER stress protein expression. Therefore, the experiment proved that in DKD tissues, a high concentration of ICA can inhibit the ER stress response by promoting the expression of GPER, reducing the proliferation of diabetic nephropathy, and increasing the rate of tissue apoptosis.
Collapse
Affiliation(s)
- Baolin Su
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Dejin Cheng
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Gangyi Chen
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Shu Zhang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Liangliang Wang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Xingbo Wu
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| | - Shuifu Tang
- Division of Nephrology, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, PR China
| |
Collapse
|
23
|
He W, Liu H, Hu L, Wang Y, Huang L, Liang A, Wang X, Zhang Q, Chen Y, Cao Y, Li S, Wang J, Lei X. Icariin improves testicular dysfunction via enhancing proliferation and inhibiting mitochondria-dependent apoptosis pathway in high-fat diet and streptozotocin-induced diabetic rats. Reprod Biol Endocrinol 2021; 19:168. [PMID: 34753504 PMCID: PMC8576896 DOI: 10.1186/s12958-021-00851-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Diabetes mellitus (DM), a chronic metabolic disease, severely impairs male reproductive function. However, the underpinning mechanisms are still incompletely defined, and there are no effective strategies or medicines for these reproductive lesions. Icariin (ICA), the main active component extracted from Herba epimedii, is a flavonoid traditionally used to treat testicular dysfunction. Whether ICA can improve male reproductive dysfunction caused by DM and its underlying mechanisms are still unclear. In this study, by employing metformin as a comparative group, we evaluated the protective effects of ICA on male reproductive damages caused by DM and explored the possible mechanisms. METHODS Rats were fed with a high fat diet (HFD) and then intraperitoneally injected with streptozotocin (STZ) to induce diabetes. Diabetic rats were randomly divided into T2DM + saline group, T2DM + metformin group and T2DM + ICA group. Rats without the treatment of HFD and STZ were used as control group. The morphology of testicular tissues was examined by histological staining. The mRNA expression levels were determined by quantitative real-time PCR. Immunostaining detected the protein levels of proliferating cell nuclear antigen (PCNA), hypoxia-inducible factor 1-alpha (HIF-1α) and sirtuin 1 (SIRT1) in testicular tissues. TUNEL assay was performed to determine cell apoptosis in the testicular tissues. The protein expression levels of HIF-1α and SIRT1 in the testicular tissues were determined by western blot assay. RESULTS ICA effectively improved male reproductive dysfunction of diabetic rats. ICA administration significantly decreased fasting blood glucose (FBG) and insulin resistance index (IRI). In addition, ICA increased testis weight, epididymis weight, sperm number, sperm motility and the cross-sectional area of seminiferous tubule. ICA recovered the number of spermatogonia, primary spermatocytes and Sertoli cells. Furthermore, ICA upregulated the expression of PCNA, activated SRIT1-HIF-1α signaling pathway, and inhibited intrinsic mitochondria dependent apoptosis pathway by upregulating the expression of Bcl-2 and downregulating the expression of Bax and caspase 3. CONCLUSION These results suggest that ICA could attenuate male reproductive dysfunction of diabetic rats possibly via increasing cell proliferation and decreasing cell apoptosis of testis. ICA potentially represents a novel therapeutic strategy against DM-induced testicular damages.
Collapse
Affiliation(s)
- Weiguo He
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Huiqing Liu
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Linlin Hu
- grid.460081.bReproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000 China
| | - Yaohui Wang
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Lane Huang
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Aihong Liang
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Xuan Wang
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Qing Zhang
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Yi Chen
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Yi Cao
- grid.417409.f0000 0001 0240 6969School of Basic Medical Sciences, Zunyi Medical University, Zunyi, 563000 China
| | - Suyun Li
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Junli Wang
- grid.460081.bReproductive Medicine Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000 China
| | - Xiaocan Lei
- grid.412017.10000 0001 0266 8918Clinical Anatomy and Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, 421001 China
| |
Collapse
|
24
|
Qi MY, He YH, Cheng Y, Fang Q, Ma RY, Zhou SJ, Hao JQ. Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway. Food Funct 2021; 12:1241-1251. [PMID: 33433547 DOI: 10.1039/d0fo02335c] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetic nephropathy (DN) is one of the complex and severe complications of diabetes mellitus (DM). Icariin (ICA) is a flavonoid extracted from the leaves and stems of Herba epimedii with a wide range of pharmacological effects, such as anti-osteoporosis, anti-fibrosis, anti-aging, anti-inflammation and antioxidation. The purpose of our study was to explore the renal protective effect of ICA on DN in mice and its possible mechanisms. ICR mice were exposed to STZ-induced DN. The kidney organ coefficient of mice was computed. 24 h UP in urine was measured. Serum FBG, Cr and BUN were detected. The content of MDA and the activities of SOD, CAT and GSH-Px in renal tissues were tested. HE staining, PAS staining, PASM staining and transmission electron microscopy were used to observe renal pathological changes. Furthermore, TLR4, p-NF-κB p65, TNF-α and IL-6 of renal tissues were assayed by immunohistochemistry and western blotting. Our results indicated that ICA observably optimized the renal organ coefficient, reduced the level of 24 h UP in urine, decreased the content of Cr, BUN in serum and MDA in renal tissues, promoted the activities of SOD, CAT and GSH-Px in renal tissues, and ameliorated pathological lesions of kidneys noticeably. Besides, ICA inhibited the expressions of TLR4, p-NF-κB p65, TNF-α and IL-6 remarkably in renal tissues. ICA, which might lighten the renal inflammatory response by suppressing the TLR4/NF-κB signal pathway, played a protective role in kidneys of STZ-induced DN mice.
Collapse
Affiliation(s)
- Min-You Qi
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Ying-Hao He
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Yin Cheng
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Qing Fang
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Ru-Yu Ma
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Shao-Jie Zhou
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| | - Jia-Qi Hao
- Institution of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China.
| |
Collapse
|
25
|
Liu X, Liu Z, Miao Y, Wang L, Yin H. Sex hormone-like Effects of Icariin on T-cells immune modulation in spontaneously hypertensive rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113717. [PMID: 33359002 DOI: 10.1016/j.jep.2020.113717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epimedium brevicornu Maxim as a Chinese herb, is recommended for the treatment of menopausal women with hypertension for 50 years. Icariin, as the main hydrophilic ingredient of Epimedium brevicornu Maxim, has been proven to be a plant sex hormone and lower blood pressure down. Here, we hypothesized that Icariin can regulate T cells differentiation which leads to the blood pressure decrease in castrated SHR rats. AIM OF THE STUDY The present study aimed to investigate the effects of the exogenous estrogen, androgen and Icariin on T-cell modulation in hypertension. MATERIALS AND METHODS Two weeks after castration, both male and female SHR rats were given estradiol, testosterone, and Icariin intervention respectively. Body weight, blood pressure, and heart rate were tested weekly. After six weeks, proportion of T helper cells (Th), cytotoxic T cells (Tc), and regulatory T cells (Tregs) in both peripheral blood mononuclear cells (PBMCs) and splenocytes were tested by flowcytometry. Serum levels of estrogen, testosterone, AngII, TNF-α, IL-17 were tested by Elisa. Aortic arches were isolated for HE and Masson staining. The expressions of ERβ and AR in aorta were tested by Western-blot. RESULTS In both male and female SHR rats, we found that Icariin and estradiol lower blood pressure, but testosterone elevates blood pressure. Similar as testosterone, Icariin can attenuate Tc and Th proportions and elevate Tregs proportion in both peripheral blood and splenocyte in male SHR, which can be blunt by flutamide. Besides, Icariin performs similar function as estradiol that attenuates Tc proportions and elevates Tregs proportion in both peripheral blood and splenocytes in female SHR, which leads to the lower blood pressure and can be partly blunt by fulvestrant. Testosterone increases AngII and TNF-α levels in serum, leading to the higher blood pressure in both male and female SHR rats. CONCLUSION These results verified that Icariin, as a plant sex hormone, can regulate T cells differentiation related to blood pressure decrease in SHR rats.
Collapse
Affiliation(s)
- Xin Liu
- From the Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing, China, XL.
| | - Zekun Liu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, USA, ZKL.
| | - Yang Miao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China, YM.
| | - Lin Wang
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China, LW.
| | - Huijun Yin
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China, HJY.
| |
Collapse
|
26
|
Zhao M, Yu Y, Wang R, Chang M, Ma S, Qu H, Zhang Y. Mechanisms and Efficacy of Chinese Herbal Medicines in Chronic Kidney Disease. Front Pharmacol 2021; 11:619201. [PMID: 33854427 PMCID: PMC8039908 DOI: 10.3389/fphar.2020.619201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022] Open
Abstract
As the current treatment of chronic kidney disease (CKD) is limited, it is necessary to seek more effective and safer treatment methods, such as Chinese herbal medicines (CHMs). In order to clarify the modern theoretical basis and molecular mechanisms of CHMs, we reviewed the knowledge based on publications in peer-reviewed English-language journals, focusing on the anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated and antifibrotic effects of CHMs commonly used in kidney disease. We also discussed recently published clinical trials and meta-analyses in this field. Based on recent studies regarding the mechanisms of kidney disease in vivo and in vitro, CHMs have anti-inflammatory, antioxidative, anti-apoptotic, autophagy-mediated, and antifibrotic effects. Several well-designed randomized controlled trials (RCTs) and meta-analyses demonstrated that the use of CHMs as an adjuvant to conventional medicines may benefit patients with CKD. Unknown active ingredients, low quality and small sample sizes of some clinical trials, and the safety of CHMs have restricted the development of CHMs. CHMs is a potential method in the treatment of CKD. Further study on the mechanism and well-conducted RCTs are urgently needed to evaluate the efficacy and safety of CHMs.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Yu
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Rumeng Wang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,Beijing University of Chinese Medicine, Beijing, China
| | - Meiying Chang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sijia Ma
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hua Qu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.,NMPA Key Laboratory for Clinical Research and Evaluation of Traditional Chinese Medicine, Beijing, China.,National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Yu Zhang
- Department of Nephrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
27
|
Safe S, Jayaraman A, Chapkin RS, Howard M, Mohankumar K, Shrestha R. Flavonoids: structure-function and mechanisms of action and opportunities for drug development. Toxicol Res 2021; 37:147-162. [PMID: 33868973 DOI: 10.1007/s43188-020-00080-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Arul Jayaraman
- Department of Chemical Engineering, Texas A&M University, College Station, TX 77843 USA
| | - Robert S Chapkin
- Department of Nutrition, Texas A&M University, College Station, TX 77843 USA
| | - Marcell Howard
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
28
|
Ma HY, Chen S, Du Y. Estrogen and estrogen receptors in kidney diseases. Ren Fail 2021; 43:619-642. [PMID: 33784950 PMCID: PMC8018493 DOI: 10.1080/0886022x.2021.1901739] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/03/2021] [Accepted: 03/06/2021] [Indexed: 02/08/2023] Open
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are posing great threats to global health within this century. Studies have suggested that estrogen and estrogen receptors (ERs) play important roles in many physiological processes in the kidney. For instance, they are crucial in maintaining mitochondrial homeostasis and modulating endothelin-1 (ET-1) system in the kidney. Estrogen takes part in the kidney repair and regeneration via its receptors. Estrogen also participates in the regulation of phosphorus homeostasis via its receptors in the proximal tubule. The ERα polymorphisms have been associated with the susceptibilities and outcomes of several renal diseases. As a consequence, the altered or dysregulated estrogen/ERs signaling pathways may contribute to a variety of kidney diseases, including various causes-induced AKI, diabetic kidney disease (DKD), lupus nephritis (LN), IgA nephropathy (IgAN), CKD complications, etc. Experimental and clinical studies have shown that targeting estrogen/ERs signaling pathways might have protective effects against certain renal disorders. However, many unsolved problems still exist in knowledge regarding the roles of estrogen and ERs in distinct kidney diseases. Further research is needed to shed light on this area and to enable the discovery of pathway-specific therapies for kidney diseases.
Collapse
Affiliation(s)
- Hao-Yang Ma
- Department of Geriatrics, Second Affiliated Hospital of Zhejiang University, Hangzhou, China
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Chen
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Du
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Sultanova RF, Schibalski R, Yankelevich IA, Stadler K, Ilatovskaya DV. Sex differences in renal mitochondrial function: a hormone-gous opportunity for research. Am J Physiol Renal Physiol 2020; 319:F1117-F1124. [PMID: 33135479 DOI: 10.1152/ajprenal.00320.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sex differences (biological distinctions between males and females) present a complex interplay of genetic, developmental, biological, and environmental factors. More and more studies are shedding light on the importance of sex differences in normal physiology and susceptibility to cancer, cardiovascular and renal conditions, and neurodegenerative diseases. This mini-review is devoted to the role of sex dimorphisms in renal function, with a focus on the distinctions between male and female mitochondria. Here, we cover the aspects of renal mitochondrial bioenergetics where sex differences have been reported to date, for instance, biogenesis, reactive oxygen species production, and oxidative stress. Special attention is devoted to the effects of sex hormones, such as estrogen and testosterone, on mitochondrial bioenergetics in the kidney in physiology and pathophysiology.
Collapse
Affiliation(s)
- Regina F Sultanova
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia
| | - Ryan Schibalski
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Irina A Yankelevich
- Saint-Petersburg State Chemical Pharmaceutical University, St. Petersburg, Russia.,Insitute of Experimental Medicine, St. Petersburg, Russia
| | | | - Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
30
|
Gohar EY, Pollock DM. Functional Interaction of Endothelin Receptors in Mediating Natriuresis Evoked by G Protein-Coupled Estrogen Receptor 1. J Pharmacol Exp Ther 2020; 376:98-105. [PMID: 33127751 PMCID: PMC7788354 DOI: 10.1124/jpet.120.000322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein–coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1–dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| |
Collapse
|
31
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
32
|
Wang X, Liu Q, Kong D, Long Z, Guo Y, Wang S, Liu R, Hai C. Down-regulation of SETD6 protects podocyte against high glucose and palmitic acid-induced apoptosis, and mitochondrial dysfunction via activating Nrf2-Keap1 signaling pathway in diabetic nephropathy. J Mol Histol 2020; 51:549-558. [PMID: 32803470 DOI: 10.1007/s10735-020-09904-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/09/2020] [Indexed: 02/07/2023]
Abstract
Diabetic nephropathy (DN), a serious complication of hyperglycemia, is one of the most common causes of end-stage renal disease (ESRD). Glomerular podocyte injury is a major mechanism that leads to DN. However, the mechanisms underlying podocyte injury are ambiguous. In this study, we sought to investigate the contribution of SET domain-containing protein 6 (SETD6) to the pathogenesis of podocyte injury induced by glucose (GLU) and palmitic acid (PA), as well as the underlying mechanisms. Our results showed that GLU and PA treatment significantly decreased SETD6 expression in mouse podocytes. Besides, Cell Counting Kit-8 (CCK-8) and flow cytometry assay demonstrated that silencing of SETD6 silence obviously enhanced cell viability, and suppressed apoptosis in GLU and PA-induced podocytes. We also discovered that downregulation of SETD6 suppressed GLU and PA-induced ROS generation and podocyte mitochondrial dysfunction. Nrf2-Keap1 signaling pathway was involved in the effect of SETD6 on mitochondrial dysfunction. Taken together, silencing of SETD6 protected mouse podocyte against apoptosis and mitochondrial dysfunction through activating Nrf2-Keap1 signaling pathway. Therefore these data provide new insights into new potential therapeutic targets for DN treatment.
Collapse
Affiliation(s)
- Xiang Wang
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Qiling Liu
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Deqin Kong
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - Zi Long
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China
| | - YuFang Guo
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Shuang Wang
- Department of Physiopathology, Xi'an Medical University, Xi'an, 710021, Shaanxi, People's Republic of China
| | - Rui Liu
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| | - Chunxu Hai
- Department of Toxicology, The Ministry of Education, Key Lab of Hazard Assessment and Control in Special Operational Environment, Shaanxi Provincial Key Laboratory of Free Radical Biology and Medicine, School of Public Health, Air Force Medical University (Fourth Military Medical University), 127 Changle Western Road, Xi'an, 710032, Shaanxi, People's Republic of China.
| |
Collapse
|
33
|
Wang T, Wang Y, Liu L, Jiang Z, Li X, Tong R, He J, Shi J. Research progress on sirtuins family members and cell senescence. Eur J Med Chem 2020; 193:112207. [PMID: 32222662 DOI: 10.1016/j.ejmech.2020.112207] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/13/2020] [Accepted: 03/04/2020] [Indexed: 02/05/2023]
Abstract
Human aging is a phenomenon of gradual decline and loss of cell, tissue, organ and other functions under the action of external environment and internal factors. It is mainly related to genomic instability, telomere wear, mitochondrial dysfunction, protein balance disorder, antioxidant damage, microRNA expression disorder and so on. Sirtuins protein is a kind of deacetylase which can regulate cell metabolism and participate in a variety of cell physiological functions. It has been found that sirtuins family can prolong the lifespan of yeast. Sirtuins can inhibit human aging through many signaling pathways, including apoptosis signaling pathway, mTOR signaling pathway, sirtuins signaling pathway, AMPK signaling pathway, phosphatidylinositol 3 kinase (PI3K) signaling pathway and so on. Based on this, this paper reviews the action principle of anti-aging star members of sirtuins family Sirt1, Sirt3 and Sirt6 on anti-aging related signaling pathways and typical compounds, in order to provide ideas for the screening of anti-aging compounds of sirtuins family members.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yujue Wang
- Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Li Liu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Xingxing Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jun He
- State Key Laboratory of Biotherapy, Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
34
|
Chen Y, Liu Q, Shan Z, Zhao Y, Li M, Wang B, Zheng X, Feng W. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:244. [PMID: 31488111 PMCID: PMC6727542 DOI: 10.1186/s12906-019-2656-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/27/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND Catalpol, a natural iridoid glycoside in Rehmannia glutinosa, can alleviate proteinuria associated with diabetic nephropathy (DN), however, whether catalpol has a protective effect against podocyte injury in DN remains unclear. METHODS In this study, we used a high glucose (HG)-induced podocyte injury model to evaluate the protective effect and mechanism of catalpol against HG-induced podocyte injury. Cell viability was determined by the 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The levels of lactate dehydrogenase (LDH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured by commercial assay kits. Cell apoptosis and reactive oxygen species (ROS) were determined by using flow cytometry. Tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) levels were determined by enzyme-linked immunosorbent assay (ELISA). The protein expression levels of B-cell lymphoma-2 (Bcl-2), Bcl2-associated x (Bax), cleaved caspase-3, nicotinamide adenine dinucleotide phosphate oxidase enzyme 4 (NOX4), toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), p38 mitogen-activated protein kinase (p38 MAPK), phosphorylated p38 MAPK (p-p38 MAPK), nuclear factor kappa B inhibitor alpha (IκBα) and phosphorylated IκBα (p-IκBα) were measured by western blotting. In addition, Bcl-2, Bax, caspase-3 and nuclear factor kappa B (NF-κB) levels were determined by immunofluorescence staining. RESULTS Catalpol significantly increased cell viability and decreased LDH release in HG-induced podocyte injury. Catalpol significantly decreased ROS generation, apoptosis, level of MDA, levels of inflammatory cytokine TNF-α, IL-1β, and IL-6 and increased SOD activity in HG-induced podocyte injury. Moreover, catalpol significantly decreased expression of cleaved caspase-3, Bax, NOX4, TLR4, MyD88, p-p38 MAPK, p-IκBα and NF-κB nuclear translocation, as well as increased Bcl-2 expression in HG-induced podocyte injury. CONCLUSION Catalpol can protect against podocyte injury by ameliorating apoptosis and inflammation. These protective effects may be attributed to the inhibition of NOX4, which alleviates ROS generation and suppression of the TLR4/MyD88 and p38 MAPK signaling pathways to prevent NF-κB activation. Therefore, catalpol could be a promising drug for the prevention of DN.
Collapse
Affiliation(s)
- Yan Chen
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Qingpu Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Zengfu Shan
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Yingying Zhao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Meng Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Baiyan Wang
- College of Basic Medicine, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, Henan, 450046, People's Republic of China.
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, Henan, 450046, People's Republic of China.
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, Henan, 450046, People's Republic of China.
| |
Collapse
|
35
|
Icariin protects mouse Leydig cell testosterone synthesis from the adverse effects of di(2-ethylhexyl) phthalate. Toxicol Appl Pharmacol 2019; 378:114612. [DOI: 10.1016/j.taap.2019.114612] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/02/2023]
|
36
|
Abstract
PURPOSE OF REVIEW The majority of end-stage renal disease including dialysis and kidney transplant patients are men. In contrast, the incidence of chronic kidney disease (CKD) is higher in women compared with men. In this review, we dissect the sex hormone levels and its effects on experimental models and patients with CKD. RECENT FINDINGS Sex hormones are clearly involved in CKD progression to end-stage renal disease (ESRD). A significant reduction in lipid peroxidation as a mechanism of renoprotection has been observed in kidneys of streptozotocin (STZ)-diabetic ovariectomized rats after estradiol administration. Furthermore, a G-protein-coupled estrogen receptor inhibits podocyte oxidative stress maintaining the integrity of the mitochondrial membrane. Sex hormone depletion has been shown to modulate RAS system and protect against kidney injury in the male STZ-diabetic model. In human primary proximal tubular epithelial cells, a proteomic study showed that dihydrotestosterone dysregulated metabolic, suggesting that the deleterious effect of androgens within the kidney maybe related to altered energy metabolism in renal tubules. SUMMARY Male gender is associated with worse CKD progression and this fact may be ascribed to sex hormone. Although male hormones exert a deleterious effect in terms of increasing oxidative stress, activating RAS system, and worsening fibrosis within the damaged kidney, female hormones exert a renoprotective effect.
Collapse
|
37
|
Sun S, Liu L, Tian X, Guo Y, Cao Y, Mei Y, Wang C. Icariin Attenuates High Glucose-Induced Apoptosis, Oxidative Stress, and Inflammation in Human Umbilical Venous Endothelial Cells. PLANTA MEDICA 2019; 85:473-482. [PMID: 30703815 DOI: 10.1055/a-0837-0975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Endothelial dysfunction is closely associated with diabetic complications. Icariin, a flavonoid glycoside isolated from the Epimedium plant species, exhibits antidiabetic properties. However, its impact on endothelial function remains poorly understood, particularly under hyperglycemia. In this study, we investigated the potential protective effect of icariin on high glucose-induced detrimental effects on vascular endothelial cells. Human umbilical venous endothelial cells were incubated in media containing 5.5 mM glucose (normal glucose) or 25 mM glucose (high glucose) in the presence or absence of 50 µM icariin for 72 h. We found that high glucose markedly induced cell apoptosis, enhanced reactive oxygen species generation, and elevated expression levels of inflammatory factors and cell adhesion molecules, which were greatly subdued by icariin supplementation. In conclusion, icariin exerted a beneficial effect on high glucose-induced endothelial dysfunction. This new finding provides a promising strategy for future treatment of diabetic vascular complications.
Collapse
Affiliation(s)
- Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Le Liu
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Xiaojun Tian
- Department of Critical Care Medicine, The Second People's Hospital of Jingzhou City, Jingzhou, China
| | - Yanghongyun Guo
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yingkang Cao
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| | - Yunqing Mei
- Department of Cardio-Thoracic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
- Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
- Karamay Central Hospital, Karamay, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, China
| |
Collapse
|
38
|
Yao X, Jing X, Guo J, Sun K, Deng Y, Zhang Y, Guo F, Ye Y. Icariin Protects Bone Marrow Mesenchymal Stem Cells Against Iron Overload Induced Dysfunction Through Mitochondrial Fusion and Fission, PI3K/AKT/mTOR and MAPK Pathways. Front Pharmacol 2019; 10:163. [PMID: 30873034 PMCID: PMC6403125 DOI: 10.3389/fphar.2019.00163] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/11/2019] [Indexed: 12/26/2022] Open
Abstract
Iron overload has been reported to contribute to bone marrow mesenchymal stem cells (BMSCs) damage, but the precise mechanism still remains elusive. Icariin, a major bioactive monomer belonging to flavonoid glucosides isolated from Herba Epimedii, has been shown to protect cells from oxidative stress induced apoptosis. The aim of this study was to investigate whether icariin protected against iron overload induced dysfunction of BMSCs and its underlying mechanism. In this study, we found that iron overload induced by 100 μM ferric ammonium citrate (FAC) caused apoptosis of BMSCs, promoted cleaved caspase-3 and BAX protein expressions while inhibited Bcl-2 protein expression, which effects were significantly attenuated by icariin treatment. In addition, iron overload induced significant depolarization of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) generation and inhibition of mitochondrial fusion/fission, which effects were also attenuated by icariin treatment. Meanwhile, we found that iron overload induced by 100 μM FAC significantly inhibited mitochondrial fission protein FIS1 and fusion protein MFN2 expressions, inhibited DRP1 and Cytochrome C protein translocation from the cytoplasm to mitochondria. Icariin at concentration of 1 μM was able to promote mitochondrial fission protein FIS1 and fusion protein MFN2 expressions, and increase DRP1 and cytochrome C protein translocation from the cytoplasm to mitochondria. Further, osteogenic differentiation and proliferation of BMSCs was significantly inhibited by iron overload, but icariin treatment rescued both osteogenic differentiation and proliferation of BMSCs. Further studies showed that icariin attenuated iron overload induced inactivation of the PI3K/AKT/mTOR pathway and activation of the ERK1/2 and JNK pathways. In summary, our study indicated that icariin was able to protect against iron overload induced dysfunction of BMSCs. These effects were potentially related to the modulation of mitochondrial fusion and fission, activation of the PI3K/AKT/mTOR pathway and inhibition of ERK1/2 and JNK pathways.
Collapse
Affiliation(s)
- Xudong Yao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiachao Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Deng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Zhao H, Ma SX, Shang YQ, Zhang HQ, Su W. microRNAs in chronic kidney disease. Clin Chim Acta 2019; 491:59-65. [PMID: 30639583 DOI: 10.1016/j.cca.2019.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) results in high morbidity and mortality worldwide causing a huge socioeconomic burden. MicroRNA (miRNA) exert critical regulatory functions by targeting downstream genes and have been associated with many pathophysiologic processes including CKD. In fact, many studies have shown that the expression of various miRNAs was significantly changed in CKD. Current investigations have focused on revealing the relationship between miRNAs and CKD states including diabetic nephropathy, lupus nephritis, focal segmental glomerulosclerosis and IgA nephropathy. In this review, we summarize the latest advances elucidating miRNA involvement in the progression of CKD and demonstrate that miRNAs have the potential to be effective biomarkers and therapeutic targets for subsequent treatment.
Collapse
Affiliation(s)
- Hui Zhao
- Faculty of Life Science & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Shi-Xing Ma
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - You-Quan Shang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Huan-Qiao Zhang
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China
| | - Wei Su
- Department of Nephrology, Baoji Central Hospital, No. 8 Jiangtan Road, Baoji, Shaanxi 721008, China.
| |
Collapse
|
40
|
Mi B, Wang J, Liu Y, Liu J, Hu L, Panayi AC, Liu G, Zhou W. Icariin Activates Autophagy via Down-Regulation of the NF-κB Signaling-Mediated Apoptosis in Chondrocytes. Front Pharmacol 2018; 9:605. [PMID: 29950992 PMCID: PMC6008570 DOI: 10.3389/fphar.2018.00605] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic and degenerative joint condition that is mainly characterized by cartilage degradation, osteophyte formation, and joint stiffness. The NF-κB signaling pathway in inflammation, autophagy, and apoptosis plays a prominent role in the progression of OA. Icariin, a prenylated flavonol glycoside extracted from Epimedium, have been proven to exert anti-osteoporotic and anti-inflammatory effects in OA. However, the action mechanisms of its effect on chondrocytes have yet to be elucidated. In the present study, we demonstrated that the in vitro therapeutic effects of icariin on rat chondrocytes in a dose-dependent manner. We found that TNF-α induced the production of IL-1, IL-6, IL-12, reactive oxygen species (ROS), nitric oxide (NO), Caspase-3, and Caspase-9 in chondrocytes. We also provided evidence that TNF-α inhibited autophagy markers (Atg 5, Atg 7) and prevented LC3 I translate to LC3 II. Furthermore, TNF-α induced matrix metalloproteinase (MMP)3 and MMP9 expression. The negative effects of TNF-α on chondrocytes can be partially blocked by treating with icariin or ammonium pyrrolidinedithiocarbamate (PDTC, an NF-κB inhibitor). The present study data also suggested that icariin suppressed both TNF-α-stimulated p65 nuclear translocation and IκBα protein degradation. These results indicated that icariin protected against OA by suppressing inflammatory cytokines and apoptosis, through activation of autophagy via NF-κB inhibition. In conclusion, icariin appears to favorably modulate autophagy and apoptosis in chondrocytes making it a promising compound for cartilage tissue engineering in the treatment of OA.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangcong Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Adriana C Panayi
- Addenbrooke's Hospital, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|