1
|
Wuni R, Amerah H, Ammache S, Cruvinel NT, da Silva NR, Kuhnle GGC, Horst MA, Vimaleswaran KS. Interaction between genetic risk score and dietary fat intake on lipid-related traits in Brazilian young adults. Br J Nutr 2024; 132:575-589. [PMID: 39308196 PMCID: PMC11536265 DOI: 10.1017/s0007114524001594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 11/01/2024]
Abstract
The occurrence of dyslipidaemia, which is an established risk factor for cardiovascular diseases, has been attributed to multiple factors including genetic and environmental factors. We used a genetic risk score (GRS) to assess the interactions between genetic variants and dietary factors on lipid-related traits in a cross-sectional study of 190 Brazilians (mean age: 21 ± 2 years). Dietary intake was assessed by a trained nutritionist using three 24-h dietary recalls. The high GRS was significantly associated with increased concentration of TAG (beta = 0·10 mg/dl, 95 % CI 0·05-0·16; P < 0·001), LDL-cholesterol (beta = 0·07 mg/dl, 95 % CI 0·04, 0·11; P < 0·0001), total cholesterol (beta = 0·05 mg/dl, 95 % CI: 0·03, 0·07; P < 0·0001) and the ratio of TAG to HDL-cholesterol (beta = 0·09 mg/dl, 95 % CI: 0·03, 0·15; P = 0·002). Significant interactions were found between the high GRS and total fat intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03) and between the high GRS and SFA intake on TAG:HDL-cholesterol ratio (Pinteraction = 0·03). A high intake of total fat (>31·5 % of energy) and SFA (>8·6 % of energy) was associated with higher TAG:HDL-cholesterol ratio in individuals with the high GRS (beta = 0·14, 95 % CI: 0·06, 0·23; P < 0·001 for total fat intake; beta = 0·13, 95 % CI: 0·05, 0·22; P = 0·003 for SFA intake). Our study provides evidence that the genetic risk of high TAG:HDL-cholesterol ratio might be modulated by dietary fat intake in Brazilians, and these individuals might benefit from limiting their intake of total fat and SFA.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Heyam Amerah
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Serena Ammache
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Nathália T. Cruvinel
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Nara R. da Silva
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Gunter G. C. Kuhnle
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
| | - Maria A. Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás (UFG), Goiania, Brazil
| | - Karani S. Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, ReadingRG6 6DZ, UK
- Institute for Food, Nutrition, and Health (IFNH), University of Reading, ReadingRG6 6EU, UK
| |
Collapse
|
2
|
Santanasto AJ, Acharya S, Wojczynski MK, Cvejkus RK, Lin S, Brent MR, Anema JA, Wang L, Thyagarajan B, Christensen K, Daw EW, Zmuda JM. Whole Genome Linkage and Association Analyses Identify DLG Associated Protein-1 as a Novel Positional and Biological Candidate Gene for Muscle Strength: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2024; 79:glae144. [PMID: 38808484 PMCID: PMC11226997 DOI: 10.1093/gerona/glae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Grip strength is a robust indicator of overall health, is moderately heritable, and predicts longevity in older adults. METHODS Using genome-wide linkage analysis, we identified a novel locus on chromosome 18p (mega-basepair region: 3.4-4.0) linked to grip strength in 3 755 individuals from 582 families aged 64 ± 12 years (range 30-110 years; 55% women). There were 26 families that contributed to the linkage peak (cumulative logarithm of the odds [LOD] score = 10.94), with 6 families (119 individuals) accounting for most of the linkage signal (LOD = 6.4). In these 6 families, using whole genome sequencing data, we performed association analyses between the 7 312 single nucleotide (SNVs) and insertion deletion (INDELs) variants in the linkage region and grip strength. Models were adjusted for age, age2, sex, height, field center, and population substructure. RESULTS We found significant associations between genetic variants (8 SNVs and 4 INDELs, p < 5 × 10-5) in the Disks Large-associated Protein 1 (DLGAP1) gene and grip strength. Haplotypes constructed using these variants explained up to 98.1% of the LOD score. Finally, RNAseq data showed that these variants were significantly associated with the expression of nearby Myosin Light Chain 12A (MYL12A), Structural Maintenance of Chromosomes Flexible Hinge Domain Containing 1 (SMCHD1), Erythrocyte Membrane Protein Band 4.1 Like 3 (EPB41L3) genes (p < .0004). CONCLUSIONS The DLGAP1 gene plays an important role in the postsynaptic density of neurons; thus, it is both a novel positional and biological candidate gene for follow-up studies aimed at uncovering genetic determinants of muscle strength.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sandeep Acharya
- Division of Computational and Data Sciences, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Computer Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shiow Lin
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Michael R Brent
- Division of Computational and Data Sciences, Center for Genome Sciences and Systems Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Computer Science, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jason A Anema
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kaare Christensen
- Epidemiology Unit, Institute of Public Health, The Danish Aging Research Center, University of Southern Denmark, Odense, Denmark
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Zmuda
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Yousof TR, Mejia-Benitez A, Morrison KM, Austin RC. Reduced plasma GDF10 levels are positively associated with cholesterol impairment and childhood obesity. Sci Rep 2024; 14:1805. [PMID: 38245533 PMCID: PMC10799949 DOI: 10.1038/s41598-024-51635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Childhood obesity is a global health concern affecting over 150 million children worldwide, with projections of a rise to 206 million by 2025. Understanding the mechanisms underlying this epidemic is crucial for developing effective interventions. In this study, we investigated circulating levels of Growth Differentiation Factor 10 (GDF10), a novel regulator of adipogenesis. Previous studies report diminished circulating GDF10 levels contribute to obesity and hepatic steatosis in mice. To further understand the role of plasma GDF10 in childhood obesity, a prospective case-control study was conducted. Using an enzyme-linked immunosorbent assay, plasma GDF10 levels were measured in children aged 5-17 years of age with normal (n = 36) and increased (n = 56) body mass index (BMI). Subsequently, plasma GDF10 levels were compared to various cardio-metabolic parameters. Children with increased BMI exhibit significantly lower levels of plasma GDF10 compared to children with normal BMI (p < 0.05). This study not only supports previous mouse data but is the first to report that lower levels of GDF10 is associated with childhood obesity, providing an important human connection for the relevance of GDF10 in obesity. Furthermore, this study revealed a significant correlation between low plasma GDF10 levels and elevated LDL-cholesterol and total cholesterol levels dependent on BMI (95% CI, p < 0.05). This study supports the hypothesis that children with obesity display lower plasma levels of GDF10, which correlates with elevated cholesterol levels. These insights shed light on potential mechanisms contributing to childhood obesity and may lead to future therapeutic interventions targeting GDF10 to mitigate adverse effects of adipogenesis in cardiometabolic health.
Collapse
Affiliation(s)
- Tamana R Yousof
- Division of Nephrology, Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Aurora Mejia-Benitez
- Division of Nephrology, Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada
| | - Katherine M Morrison
- Department of Pediatrics, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada
| | - Richard C Austin
- Division of Nephrology, Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, ON, Canada.
- Department of Pediatrics, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, Canada.
- Division of Nephrology, Department of Medicine, McMaster University and The Research Institute of St. Joe's Hamilton, 50 Charlton Ave. E., Rm. T-3313, Hamilton, ON, L8N 4A6, Canada.
| |
Collapse
|
4
|
Butnariu LI, Gorduza EV, Țarcă E, Pânzaru MC, Popa S, Stoleriu S, Lupu VV, Lupu A, Cojocaru E, Trandafir LM, Moisă ȘM, Florea A, Stătescu L, Bădescu MC. Current Data and New Insights into the Genetic Factors of Atherogenic Dyslipidemia Associated with Metabolic Syndrome. Diagnostics (Basel) 2023; 13:2348. [PMID: 37510094 PMCID: PMC10378477 DOI: 10.3390/diagnostics13142348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Atherogenic dyslipidemia plays a critical role in the development of metabolic syndrome (MetS), being one of its major components, along with central obesity, insulin resistance, and hypertension. In recent years, the development of molecular genetics techniques and extended analysis at the genome or exome level has led to important progress in the identification of genetic factors (heritability) involved in lipid metabolism disorders associated with MetS. In this review, we have proposed to present the current knowledge related to the genetic etiology of atherogenic dyslipidemia, but also possible challenges for future studies. Data from the literature provided by candidate gene-based association studies or extended studies, such as genome-wide association studies (GWAS) and whole exome sequencing (WES,) have revealed that atherogenic dyslipidemia presents a marked genetic heterogeneity (monogenic or complex, multifactorial). Despite sustained efforts, many of the genetic factors still remain unidentified (missing heritability). In the future, the identification of new genes and the molecular mechanisms by which they intervene in lipid disorders will allow the development of innovative therapies that act on specific targets. In addition, the use of polygenic risk scores (PRS) or specific biomarkers to identify individuals at increased risk of atherogenic dyslipidemia and/or other components of MetS will allow effective preventive measures and personalized therapy.
Collapse
Affiliation(s)
- Lăcramioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Țarcă
- Department of Surgery II-Pediatric Surgery, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Setalia Popa
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Simona Stoleriu
- Odontology-Periodontology, Fixed Prosthesis Department, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Vasile Valeriu Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ancuta Lupu
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morphofunctional Sciences I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Mihaela Trandafir
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ștefana Maria Moisă
- Department of Pediatrics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Andreea Florea
- Department of Medical Genetics, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Laura Stătescu
- Medical III Department, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Minerva Codruța Bădescu
- III Internal Medicine Clinic, "St. Spiridon" County Emergency Clinical Hospital, 1 Independence Boulevard, 700111 Iasi, Romania
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Lee BY, Ordovás JM, Parks EJ, Anderson CAM, Barabási AL, Clinton SK, de la Haye K, Duffy VB, Franks PW, Ginexi EM, Hammond KJ, Hanlon EC, Hittle M, Ho E, Horn AL, Isaacson RS, Mabry PL, Malone S, Martin CK, Mattei J, Meydani SN, Nelson LM, Neuhouser ML, Parent B, Pronk NP, Roche HM, Saria S, Scheer FAJL, Segal E, Sevick MA, Spector TD, Van Horn L, Varady KA, Voruganti VS, Martinez MF. Research gaps and opportunities in precision nutrition: an NIH workshop report. Am J Clin Nutr 2022; 116:1877-1900. [PMID: 36055772 PMCID: PMC9761773 DOI: 10.1093/ajcn/nqac237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 04/06/2022] [Accepted: 08/30/2022] [Indexed: 02/01/2023] Open
Abstract
Precision nutrition is an emerging concept that aims to develop nutrition recommendations tailored to different people's circumstances and biological characteristics. Responses to dietary change and the resulting health outcomes from consuming different diets may vary significantly between people based on interactions between their genetic backgrounds, physiology, microbiome, underlying health status, behaviors, social influences, and environmental exposures. On 11-12 January 2021, the National Institutes of Health convened a workshop entitled "Precision Nutrition: Research Gaps and Opportunities" to bring together experts to discuss the issues involved in better understanding and addressing precision nutrition. The workshop proceeded in 3 parts: part I covered many aspects of genetics and physiology that mediate the links between nutrient intake and health conditions such as cardiovascular disease, Alzheimer disease, and cancer; part II reviewed potential contributors to interindividual variability in dietary exposures and responses such as baseline nutritional status, circadian rhythm/sleep, environmental exposures, sensory properties of food, stress, inflammation, and the social determinants of health; part III presented the need for systems approaches, with new methods and technologies that can facilitate the study and implementation of precision nutrition, and workforce development needed to create a new generation of researchers. The workshop concluded that much research will be needed before more precise nutrition recommendations can be achieved. This includes better understanding and accounting for variables such as age, sex, ethnicity, medical history, genetics, and social and environmental factors. The advent of new methods and technologies and the availability of considerably more data bring tremendous opportunity. However, the field must proceed with appropriate levels of caution and make sure the factors listed above are all considered, and systems approaches and methods are incorporated. It will be important to develop and train an expanded workforce with the goal of reducing health disparities and improving precision nutritional advice for all Americans.
Collapse
Affiliation(s)
- Bruce Y Lee
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| | - José M Ordovás
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Elizabeth J Parks
- Nutrition and Exercise Physiology, University of Missouri School of Medicine, MO, USA
| | | | - Albert-László Barabási
- Network Science Institute and Department of Physics, Northeastern University, Boston, MA, USA
| | | | - Kayla de la Haye
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Valerie B Duffy
- Allied Health Sciences, University of Connecticut, Storrs, CT, USA
| | - Paul W Franks
- Novo Nordisk Foundation, Hellerup, Denmark, Copenhagen, Denmark, and Lund University Diabetes Center, Sweden
- The Lund University Diabetes Center, Malmo, SwedenInsert Affiliation Text Here
| | - Elizabeth M Ginexi
- National Institutes of Health, Office of Behavioral and Social Sciences Research, Bethesda, MD, USA
| | - Kristian J Hammond
- Computer Science, Northwestern University McCormick School of Engineering, IL, USA
| | - Erin C Hanlon
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Michael Hittle
- Epidemiology and Clinical Research, Stanford University, Stanford, CA, USA
| | - Emily Ho
- Public Health and Human Sciences, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Abigail L Horn
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | | | | | - Susan Malone
- Rory Meyers College of Nursing, New York University, New York, NY, USA
| | - Corby K Martin
- Ingestive Behavior Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Josiemer Mattei
- Nutrition, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Simin Nikbin Meydani
- USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Lorene M Nelson
- Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | | | - Brendan Parent
- Grossman School of Medicine, New York University, New York, NY, USA
| | | | - Helen M Roche
- UCD Conway Institute, School of Public Health, Physiotherapy, and Sports Science, University College Dublin, Dublin, Ireland
| | - Suchi Saria
- Johns Hopkins University, Baltimore, MD, USA
| | - Frank A J L Scheer
- Brigham and Women's Hospital, Boston, MA, USA
- Medicine and Neurology, Harvard Medical School, Boston, MA, USA
| | - Eran Segal
- Computer Science and Applied Math, Weizmann Institute of Science, Rehovot, Israel
| | - Mary Ann Sevick
- Grossman School of Medicine, New York University, New York, NY, USA
| | - Tim D Spector
- Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Linda Van Horn
- Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Krista A Varady
- Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Venkata Saroja Voruganti
- Nutrition and Nutrition Research Institute, Gillings School of Public Health, The University of North Carolina, Chapel Hill, NC, USA
| | - Marie F Martinez
- Health Policy and Management, City University of New York Graduate School of Public Health and Health Policy, New York, NY, USA
| |
Collapse
|
6
|
Wong SK, Ramli FF, Ali A, Ibrahim N‘I. Genetics of Cholesterol-Related Genes in Metabolic Syndrome: A Review of Current Evidence. Biomedicines 2022; 10:biomedicines10123239. [PMID: 36551995 PMCID: PMC9775320 DOI: 10.3390/biomedicines10123239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MetS) refers to a cluster of metabolic dysregulations, which include insulin resistance, obesity, atherogenic dyslipidemia and hypertension. The complex pathogenesis of MetS encompasses the interplay between environmental and genetic factors. Environmental factors such as excessive nutrients and sedentary lifestyle are modifiable and could be improved by lifestyle modification. However, genetic susceptibility to MetS, a non-modifiable factor, has attracted the attention of researchers, which could act as the basis for future diagnosis, prognosis, and therapy for MetS. Several cholesterol-related genes associated with each characteristic of MetS have been identified, such as apolipoprotein, lipoprotein lipase (LPL), cholesteryl ester transfer protein (CETP) and adiponectin. This review aims to summarize the genetic information of cholesterol-related genes in MetS, which may potentially serve as biomarkers for early prevention and management of MetS.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Clinical Psychopharmacology Research Unit, Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX3 7JX, UK
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nurul ‘Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia
- Correspondence: ; Tel.: +60-39145-9545
| |
Collapse
|
7
|
Alcala-Diaz JF, Arenas-de Larriva AP, Torres-Peña JD, Rodriguez-Cantalejo F, Rangel-Zuñiga OA, Yubero-Serrano EM, Gutierrez-Mariscal FM, Cardelo MP, Luque RM, Ordovas JM, Perez-Martinez P, Delgado-Lista J, Lopez-Miranda J. A Gene Variation at the ZPR1 Locus (rs964184) Interacts With the Type of Diet to Modulate Postprandial Triglycerides in Patients With Coronary Artery Disease: From the Coronary Diet Intervention With Olive Oil and Cardiovascular Prevention Study. Front Nutr 2022; 9:885256. [PMID: 35782928 PMCID: PMC9247506 DOI: 10.3389/fnut.2022.885256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Aims rs964184 variant in the ZPR1 gene has been associated with blood lipids levels both in fasting and postprandial state and with the risk of myocardial infarction in high-risk cardiovascular patients. However, whether this association is modulated by diet has not been studied. Objective To investigate whether the type of diet (low-fat or Mediterranean diets) interacts with genetic variability at this loci to modulate fasting and postprandial lipids in coronary patients. Materials and Methods The genotype of the rs964184 polymorphism was determined in the Cordioprev Study population (NCT00924937). Fasting and Postprandial triglycerides were assessed before and after 3 years of dietary intervention with either a Mediterranean or a low-fat diet. Postprandial lipid assessment was done by a 4-h oral fat tolerance test (OFTT). Differences in triglycerides levels were identified using repeated-measures ANCOVA. Results From 523 patients (85% males, mean age 59 years) that completed the OFTT at baseline and after 3 years of intervention and had complete genotype information, 125 of them were carriers of the risk allele G. At the start of the study, these patients showed a higher fasting and postprandial triglycerides (TG) plasma levels. After 3 years of dietary intervention, G-carriers following a Mediterranean Diet maintained higher fasting and postprandial triglycerides, while those on the low-fat diet reduced their postprandial triglycerides to similar values to the population without the G-allele. Conclusion After 3 years of dietary intervention, the altered postprandial triglyceride response induced by genetic variability in the rs964184 polymorphism of the ZPR1 gene can be modulated by a low-fat diet, better than by a Mediterranean diet, in patients with coronary artery disease.
Collapse
Affiliation(s)
- Juan F. Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio P. Arenas-de Larriva
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose D. Torres-Peña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Oriol A. Rangel-Zuñiga
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco M. Gutierrez-Mariscal
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Magdalena P. Cardelo
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul M. Luque
- Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - Jose M. Ordovas
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- Instituto Madrileño de Estudios Avanzados en Alimentación (IMDEA-Food), Madrid, Spain
- International Advisory Board, University Camilo José Cela, Madrid, Spain
| | - Pablo Perez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
- Centro de Investigación Biomédica en Red de Fisiología de la Obesidad y Nutricion (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Jose Lopez-Miranda,
| |
Collapse
|
8
|
Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:ijms23031796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45− cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe−/−) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
|
9
|
San-Cristobal R, de Toro-Martín J, Vohl MC. Appraisal of Gene-Environment Interactions in GWAS for Evidence-Based Precision Nutrition Implementation. Curr Nutr Rep 2022; 11:563-573. [PMID: 35948824 PMCID: PMC9750926 DOI: 10.1007/s13668-022-00430-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW This review aims to analyse the currently reported gene-environment (G × E) interactions in genome-wide association studies (GWAS), involving environmental factors such as lifestyle and dietary habits related to metabolic syndrome phenotypes. For this purpose, the present manuscript reviews the available GWAS registered on the GWAS Catalog reporting the interaction between environmental factors and metabolic syndrome traits. RECENT FINDINGS Advances in omics-related analytical and computational approaches in recent years have led to a better understanding of the biological processes underlying these G × E interactions. A total of 42 GWAS were analysed, reporting over 300 loci interacting with environmental factors. Alcohol consumption, sleep time, smoking habit and physical activity were the most studied environmental factors with significant G × E interactions. The implementation of more comprehensive GWAS will provide a better understanding of the metabolic processes that determine individual responses to environmental exposures and their association with the development of chronic diseases such as obesity and the metabolic syndrome. This will facilitate the development of precision approaches for better prevention, management and treatment of these diseases.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé Et Société (NUTRISS), Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Université Laval, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390School of Nutrition, Université Laval, Quebec, QC G1V 0A6 Canada
| | - Juan de Toro-Martín
- grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé Et Société (NUTRISS), Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Université Laval, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390School of Nutrition, Université Laval, Quebec, QC G1V 0A6 Canada
| | - Marie-Claude Vohl
- grid.23856.3a0000 0004 1936 8390Centre Nutrition, Santé Et Société (NUTRISS), Institut Sur La Nutrition Et Les Aliments Fonctionnels (INAF), Université Laval, Québec, QC Canada ,grid.23856.3a0000 0004 1936 8390School of Nutrition, Université Laval, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
10
|
Irvin MR, Montasser ME, Kind T, Fan S, Barupal DK, Patki A, Tanner RM, Armstrong ND, Ryan KA, Claas SA, O’Connell JR, Tiwari HK, Arnett DK. Genomics of Postprandial Lipidomics in the Genetics of Lipid-Lowering Drugs and Diet Network Study. Nutrients 2021; 13:4000. [PMID: 34836252 PMCID: PMC8617762 DOI: 10.3390/nu13114000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022] Open
Abstract
Postprandial lipemia (PPL) is an important risk factor for cardiovascular disease. Inter-individual variation in the dietary response to a meal is known to be influenced by genetic factors, yet genes that dictate variation in postprandial lipids are not completely characterized. Genetic studies of the plasma lipidome can help to better understand postprandial metabolism by isolating lipid molecular species which are more closely related to the genome. We measured the plasma lipidome at fasting and 6 h after a standardized high-fat meal in 668 participants from the Genetics of Lipid-Lowering Drugs and Diet Network study (GOLDN) using ultra-performance liquid chromatography coupled to (quadrupole) time-of-flight mass spectrometry. A total of 413 unique lipids were identified. Heritable and responsive lipid species were examined for association with single-nucleotide polymorphisms (SNPs) genotyped on the Affymetrix 6.0 array. The most statistically significant SNP findings were replicated in the Amish Heredity and Phenotype Intervention (HAPI) Heart Study. We further followed up findings from GOLDN with a regional analysis of cytosine-phosphate-guanine (CpGs) sites measured on the Illumina HumanMethylation450 array. A total of 132 lipids were both responsive to the meal challenge and heritable in the GOLDN study. After correction for multiple testing of 132 lipids (α = 5 × 10-8/132 = 4 × 10-10), no SNP was statistically significantly associated with any lipid response. Four SNPs in the region of a known lipid locus (fatty acid desaturase 1 and 2/FADS1 and FADS2) on chromosome 11 had p < 8.0 × 10-7 for arachidonic acid FA(20:4). Those SNPs replicated in HAPI Heart with p < 3.3 × 10-3. CpGs around the FADS1/2 region were associated with arachidonic acid and the relationship of one SNP was partially mediated by a CpG (p = 0.005). Both SNPs and CpGs from the fatty acid desaturase region on chromosome 11 contribute jointly and independently to the diet response to a high-fat meal.
Collapse
Affiliation(s)
- Marguerite R. Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - May E. Montasser
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
- Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tobias Kind
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Sili Fan
- NIH West Coast Metabolomics Center, UC Davis Genome Center, University of California, Davis, CA 95616, USA; (T.K.); (S.F.)
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Amit Patki
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Rikki M. Tanner
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Nicole D. Armstrong
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.M.T.); (N.D.A.)
| | - Kathleen A. Ryan
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Steven A. Claas
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| | - Jeffrey R. O’Connell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.E.M.); (K.A.R.); (J.R.O.)
| | - Hemant K. Tiwari
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.P.); (H.K.T.)
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40536, USA; (S.A.C.); (D.K.A.)
| |
Collapse
|
11
|
Santanasto AJ, Wojczynski MK, Cvejkus RK, Lin S, Wang L, Thyagarajan B, Christensen K, Schupf N, Feitosa MF, An P, Zmuda JM. Identification of a Novel Locus for Gait Speed Decline With Aging: The Long Life Family Study. J Gerontol A Biol Sci Med Sci 2021; 76:e307-e313. [PMID: 34156441 PMCID: PMC8436996 DOI: 10.1093/gerona/glab177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Gait speed is a powerful indicator of health with aging. Potential genetic contributions to gait speed and its decline with aging are not well defined. We determined the heritability of and potential genetic regions underlying change in gait speed using longitudinal data from 2379 individuals belonging to 509 families in the Long Life Family Study (mean age 64 ± 12, range 30-110 years; 45% men). METHODS Gait speed was measured over 4 m at baseline and follow-up (7 ± 1 years). Quantitative trait linkage analyses were completed using pedigree-based maximum likelihood methods with logarithm of the odds (LOD) scores greater than 3.0, indicating genome-wide significance. We also performed linkage analysis in the top 10% of families contributing to LOD scores to allow for heterogeneity among families (HLOD). Data were adjusted for age, sex, height, and field center. RESULTS At baseline, 26.9% of individuals had "slow" gait speed less than 1.0 m/s (mean: 1.1 ± 0.2 m/s) and gait speed declined at a rate of -0.02 ± 0.03 m/s per year (p < .0001). Baseline and change in gait speed were significantly heritable (h2 = 0.24-0.32, p < .05). We did not find significant evidence for linkage for baseline gait speed; however, we identified a significant locus for change in gait speed on chromosome 16p (LOD = 4.2). A subset of 21 families contributed to this linkage peak (HLOD = 6.83). Association analyses on chromosome 16 showed that the strongest variant resides within the ADCY9 gene. CONCLUSION Further analysis of the chromosome 16 region, and ADCY9 gene, may yield new insight on the biology of mobility decline with aging.
Collapse
Affiliation(s)
- Adam J Santanasto
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Mary K Wojczynski
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan K Cvejkus
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| | - Shiow Lin
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lihua Wang
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology Unit, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Nicole Schupf
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA
| | - Mary F Feitosa
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ping An
- Department of Genetics, Division of Statistical Genomics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joseph M Zmuda
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Sciarrillo CM, Koemel NA, Keirns BH, Banks NF, Rogers EM, Rosenkranz SK, Kurti SP, Jenkins NDM, Emerson SR. Who would benefit most from postprandial lipid screening? Clin Nutr 2021; 40:4762-4771. [PMID: 34242916 PMCID: PMC10198766 DOI: 10.1016/j.clnu.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/22/2021] [Accepted: 04/10/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND & AIMS Individuals with fasting triglycerides (TG) <150 mg/dL can experience a deleterious postprandial TG response ≥220 mg/dL to a high-fat meal (HFM). The purpose of this study was to identify individuals based on fasting TG that would benefit most from additional postprandial screening. METHODS We conducted a secondary analysis of 7 studies from our laboratories featuring 156 disease-free participants (64 M, 92 F; age 18-70 years; BMI 18.5-30 kg/m2). Participants observed a 10-12 h overnight fast, after which they consumed an HFM (10-13 kcal/kg body mass; 61-64% kcal from fat). Two methods were used to identify lower and upper fasting TG cut points. Method 1 identified the lower limit as the TG concentration at which ≥90% of individuals presented peak postprandial TG (PPTG) <220 mg/dL and the upper limit as the concentration which ≥90% of individuals presented PPTG ≥220 mg/dL. Method 2 utilized receiver operating characteristic (ROC) curves and identified the lower limit as the fasting TG concentration where sensitivity was ≈95% and the upper limit as the concentration at which specificity was ≈95%. RESULTS In Method 1, 90% of individuals with fasting TG >130 mg/dL (>1.50 mmol/L) exhibited PPTG ≥220 mg/dL (≥2.50 mmol/L), while 100% of individuals with fasting TG <66 mg/dL (0.75 mmol/L) had PPTG that did not exceed 220 mg/dL (2.50 mmol/L). In Method 2, when sensitivity was ≈95%, the corresponding fasting TG concentration was 70 mg/dL (0.79 mmol/L). When specificity was ≈95%, the corresponding fasting TG concentration was 114 mg/dL (1.29 mmol/L). Based on methods 1 and 2, there was a moderate positive association (r = 0.37, p < 0.004) between fasting and PPTG for individuals with fasting TG between 70 and 130 mg/dL (0.79-1.50 mmol/L), in which 24% exhibited PPTG ≥220 mg/dL (≥2.50 mmol/L) while 76% did not. CONCLUSIONS Postprandial TG testing is likely most useful for individuals with fasting TG concentrations between 70 and 130 mg/dL (0.79-1.50 mmol/L). Outside of this range, postprandial TG responses are largely predictable. Establishing a specific patient group for which postprandial TG testing is most useful may lead to earlier risk detection in these individuals.
Collapse
Affiliation(s)
| | - Nicholas A Koemel
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; Boden Collaboration for Obesity, Nutrition, Exercise, and Eating Disorders, University of Sydney, Sydney, Australia; Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Nile F Banks
- Department of Health and Human Performance, Oklahoma State University, Stillwater, OK, USA; Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Emily M Rogers
- Department of Health and Human Performance, Oklahoma State University, Stillwater, OK, USA; Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Stephanie P Kurti
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA; Department of Kinesiology, James Madison University, Harrisonburg, VA, USA
| | - Nathaniel D M Jenkins
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; Department of Health and Human Performance, Oklahoma State University, Stillwater, OK, USA; Department of Health and Human Physiology, University of Iowa, Iowa City, IA, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK, USA; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
13
|
Garcia-Bailo B, El-Sohemy A. Recent advances and current controversies in genetic testing for personalized nutrition. Curr Opin Clin Nutr Metab Care 2021; 24:289-295. [PMID: 33883417 DOI: 10.1097/mco.0000000000000763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Considerable interest in personalized nutrition exists among the general public, policymakers, healthcare organizations and the private sector, but there is also skepticism of its utility. The present review aims to provide a summary of current controversies in the field of nutrigenomics, and to highlight recent research on the potential impact of implementing genetic testing for personalized nutrition in practice. RECENT FINDINGS Numerous companies already offer genetic testing for personalized nutrition based on research developments in nutritional genomics. However, controversy exists over whethexr genetics contributes to interindividual responses to diet; the utility of single genetic variants versus genetic risk scores; the ability of DNA-based nutritional advice to elicit positive behavior change and health effects; and whether genetic information makes a difference on the type of dietary advice provided. Potential factors contributing to the discrepant viewpoints are discussed. SUMMARY Despite the existing controversies, a solid body of evidence demonstrates that genetic testing for personalized nutrition is a powerful tool to guide dietary recommendations to improve health and performance, and to elicit positive behavior change.
Collapse
Affiliation(s)
- Bibiana Garcia-Bailo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
14
|
Kalogeropoulos P, Bilianou H, Kolovou V, Manolis A, Kolovou GD. Hellenic Postprandial Lipemia Study (HPLS): Results from the Pre-treatment Postprandial Lipemia. Eur J Intern Med 2021; 88:123-124. [PMID: 33712361 DOI: 10.1016/j.ejim.2021.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Vana Kolovou
- Metropolitan Hospital, Cardiometabolic Center, Lipoprotein Apheresis and Lipid Disorders Clinic, Athens, Greece
| | | | - Genovefa D Kolovou
- Metropolitan Hospital, Cardiometabolic Center, Lipoprotein Apheresis and Lipid Disorders Clinic, Athens, Greece.
| |
Collapse
|
15
|
Ibi D, Noordam R, van Klinken JB, Li-Gao R, de Mutsert R, Trompet S, Christen T, Blauw LL, van Heemst D, Mook-Kanamori DO, Rosendaal FR, Jukema JW, Dollé MET, Rensen PCN, van Dijk KW. Genome-Wide Association Study of the Postprandial Triglyceride Response Yields Common Genetic Variation in LIPC (Hepatic Lipase). CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e002693. [PMID: 32603185 DOI: 10.1161/circgen.119.002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The increase in serum triglyceride (TG) concentrations in response to a meal is considered a risk factor for cardiovascular disease. We aimed to elucidate the genetics of the postprandial TG response through genome-wide association studies (GWAS). METHODS Participants of the NEO (Netherlands Epidemiology of Obesity) study (n=5630) consumed a liquid mixed meal after an overnight fast. GWAS of fasting and postprandial serum TG at 150 minutes were performed. To identify genetic variation of postprandial TG independent of fasting TG, we calculated the TG response at 150 minutes by the residuals of a nonlinear regression that predicted TG at 150 minutes as a function of fasting TG. Association analyses were adjusted for age, sex, and principal components in a linear regression model. Next, using the identified variants as determinants, we performed linear regression analyses on the residuals of the postprandial response of 149 nuclear magnetic resonance-based metabolite measures. RESULTS GWAS of fasting TG and postprandial serum TG at 150 minutes resulted in completely overlapping loci, replicating previous GWAS. From GWAS of the TG response, we identified rs7350789-A (allele frequency=0.36), mapping to hepatic lipase (LIPC), to be associated with a smaller increase in TG concentrations at 150 minutes (β=-0.11; P-value=5.1×10-8). Rs7350789-A was associated with responses of 33 metabolite measures (P-value <1.34×10-3), mainly smaller increases of the TG-component in almost all HDL (high-density lipoprotein) subparticles (HDL-TG), a smaller decrease of HDL diameter and smaller increases of most components of VLDL (very low density lipoprotein) subparticles. CONCLUSIONS GWAS of the TG response identified a variant near LIPC as a main contributor to postprandial TG metabolism independent of fasting TG concentrations, resulting in smaller increases of HDL-TG and VLDL subparticles.
Collapse
Affiliation(s)
- Dorina Ibi
- Department of Human Genetics (D.I., J.B.v.K., K.W.v.D.)
| | - Raymond Noordam
- Division of Gerontology and Geriatrics, Department of Internal Medicine (R.N., D.v.H.)
| | | | - Ruifang Li-Gao
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | - Renée de Mutsert
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | | | - Tim Christen
- Department of Human Genetics (D.I., J.B.v.K., K.W.v.D.)
| | - Lisanne L Blauw
- Division of Endocrinology, Department of Internal Medicine (J.B.v.K., L.L.B., P.C.N.R., K.W.v.D.)
| | - Diana van Heemst
- Division of Gerontology and Geriatrics, Department of Internal Medicine (R.N., D.v.H.)
| | | | - Frits R Rosendaal
- Department of Clinical Epidemiology (R.L.-G., R.d.M., D.O.M.-K., F.R.R.)
| | | | - Martijn E T Dollé
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands (D.I., M.E.T.D.)
| | - Patrick C N Rensen
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center (P.C.N.R., K.W.v.D.)
| | - Ko Willems van Dijk
- Division of Endocrinology, Department of Internal Medicine (J.B.v.K., L.L.B., P.C.N.R., K.W.v.D.)
| |
Collapse
|
16
|
Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, Capdevila J, Hadjigeorgiou G, Davies R, Al Khatib H, Bonnett C, Ganesh S, Bakker E, Hart D, Mangino M, Merino J, Linenberg I, Wyatt P, Ordovas JM, Gardner CD, Delahanty LM, Chan AT, Segata N, Franks PW, Spector TD. Human postprandial responses to food and potential for precision nutrition. Nat Med 2020; 26:964-973. [PMID: 32528151 PMCID: PMC8265154 DOI: 10.1038/s41591-020-0934-0] [Citation(s) in RCA: 406] [Impact Index Per Article: 81.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 05/11/2020] [Indexed: 12/18/2022]
Abstract
Metabolic responses to food influence risk of cardiometabolic disease, but large-scale high-resolution studies are lacking. We recruited n = 1,002 twins and unrelated healthy adults in the United Kingdom to the PREDICT 1 study and assessed postprandial metabolic responses in a clinical setting and at home. We observed large inter-individual variability (as measured by the population coefficient of variation (s.d./mean, %)) in postprandial responses of blood triglyceride (103%), glucose (68%) and insulin (59%) following identical meals. Person-specific factors, such as gut microbiome, had a greater influence (7.1% of variance) than did meal macronutrients (3.6%) for postprandial lipemia, but not for postprandial glycemia (6.0% and 15.4%, respectively); genetic variants had a modest impact on predictions (9.5% for glucose, 0.8% for triglyceride, 0.2% for C-peptide). Findings were independently validated in a US cohort (n = 100 people). We developed a machine-learning model that predicted both triglyceride (r = 0.47) and glycemic (r = 0.77) responses to food intake. These findings may be informative for developing personalized diet strategies. The ClinicalTrials.gov registration identifier is NCT03479866.
Collapse
Affiliation(s)
- Sarah E Berry
- Department of Nutrition, King's College London, London, UK
| | - Ana M Valdes
- School of Medicine, University of Nottingham, Nottingham, UK.
- Nottingham NIHR Biomedical Research Centre, Nottingham, UK.
| | - David A Drew
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mohsen Mazidi
- Department of Twins Research & Genetic Epidemiology, King's College London, London, UK
| | | | | | | | | | - Haya Al Khatib
- Department of Nutrition, King's College London, London, UK
- Zoe Global Ltd, London, UK
| | | | | | | | - Deborah Hart
- Department of Twins Research & Genetic Epidemiology, King's College London, London, UK
| | - Massimo Mangino
- Department of Twins Research & Genetic Epidemiology, King's College London, London, UK
| | - Jordi Merino
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | - Jose M Ordovas
- JM-USDA-HNRCA at Tufts University, Boston, MA, USA
- IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| | | | - Linda M Delahanty
- Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Andrew T Chan
- Clinical and Translational Epidemiology Unit and Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Paul W Franks
- Department of Twins Research & Genetic Epidemiology, King's College London, London, UK
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tim D Spector
- Department of Twins Research & Genetic Epidemiology, King's College London, London, UK.
| |
Collapse
|
17
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Main Text. Curr Vasc Pharmacol 2020; 17:498-514. [PMID: 31060488 DOI: 10.2174/1570161117666190507110519] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
Residual vascular risk exists despite the aggressive lowering of Low-Density Lipoprotein Cholesterol (LDL-C). A contributor to this residual risk may be elevated fasting, or non-fasting, levels of Triglyceride (TG)-rich lipoproteins. Therefore, there is a need to establish whethe a standardised Oral Fat Tolerance Test (OFTT) can improve atherosclerotic Cardiovascular (CV) Disease (ASCVD) risk prediction in addition to a fasting or non-fasting lipid profile. An expert panel considered the role of postprandial hypertriglyceridaemia (as represented by an OFTT) in predicting ASCVD. The panel updated its 2011 statement by considering new studies and various patient categories. The recommendations are based on expert opinion since no strict endpoint trials have been performed. Individuals with fasting TG concentration <1 mmol/L (89 mg/dL) commonly do not have an abnormal response to an OFTT. In contrast, those with fasting TG concentration ≥2 mmol/L (175 mg/dL) or nonfasting ≥2.3 mmol/L (200 mg/dL) will usually have an abnormal response. We recommend considering postprandial hypertriglyceridaemia testing when fasting TG concentrations and non-fasting TG concentrations are 1-2 mmol/L (89-175 mg/dL) and 1.3-2.3 mmol/L (115-200 mg/dL), respectively as an additional investigation for metabolic risk prediction along with other risk factors (obesity, current tobacco abuse, metabolic syndrome, hypertension, and diabetes mellitus). The panel proposes that an abnormal TG response to an OFTT (consisting of 75 g fat, 25 g carbohydrate and 10 g proteins) is >2.5 mmol/L (220 mg/dL). Postprandial hypertriglyceridaemia is an emerging factor that may contribute to residual CV risk. This possibility requires further research. A standardised OFTT will allow comparisons between investigational studies. We acknowledge that the OFTT will be mainly used for research to further clarify the role of TG in relation to CV risk. For routine practice, there is a considerable support for the use of a single non-fasting sample.
Collapse
Affiliation(s)
- Genovefa D Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Abstract
Purpose “Quantile-dependent expressivity” describes an effect of the genotype that depends upon the level of the phenotype (e.g., whether a subject’s triglycerides are high or low relative to its population distribution). Prior analyses suggest that the effect of a genetic risk score (GRS) on fasting plasma triglyceride levels increases with the percentile of the triglyceride distribution. Postprandial lipemia is well suited for testing quantile-dependent expressivity because it exposes each individual’s genotype to substantial increases in their plasma triglyceride concentrations. Ninety-seven published papers were identified that plotted mean triglyceride response vs. time and genotype, which were converted into quantitative data. Separately, for each published graph, standard least-squares regression analysis was used to compare the genotype differences at time t (dependent variable) to average triglyceride concentrations at time t (independent variable) to assess whether the genetic effect size increased in association with higher triglyceride concentrations and whether the phenomenon could explain purported genetic interactions with sex, diet, disease, BMI, and drugs. Results Consistent with the phenomenon, genetic effect sizes increased (P≤0.05) with increasing triglyceride concentrations for polymorphisms associated with ABCA1, ANGPTL4, APOA1, APOA2, APOA4, APOA5, APOB, APOC3, APOE, CETP, FABP2, FATP6, GALNT2, GCKR, HL, IL1b, LEPR, LOX-1, LPL, MC4R, MTTP, NPY, SORT1, SULF2, TNFA, TCF7L2, and TM6SF2. The effect size for these polymorphisms showed a progressively increasing dose-response, with intermediate effect sizes at intermediate triglyceride concentrations. Quantile-dependent expressivity provided an alternative interpretation to their interactions with sex, drugs, disease, diet, and age, which have been traditionally ascribed to gene-environment interactions and genetic predictors of drug efficacy (i.e., personalized medicine). Conclusion Quantile-dependent expressivity applies to the majority of genetic variants affecting postprandial triglycerides, which may arise because the impaired functionalities of these variants increase at higher triglyceride concentrations. Purported gene-drug interactions may be the manifestations of quantile-dependent expressivity, rather than genetic predictors of drug efficacy.
Collapse
|
19
|
Kolovou GD, Watts GF, Mikhailidis DP, Pérez-Martínez P, Mora S, Bilianou H, Panotopoulos G, Katsiki N, Ooi TC, Lopez-Miranda J, Tybjærg-Hansen A, Tentolouris N, Nordestgaard BG. Postprandial Hypertriglyceridaemia Revisited in the Era of Non-Fasting Lipid Profile Testing: A 2019 Expert Panel Statement, Narrative Review. Curr Vasc Pharmacol 2019; 17:515-537. [DOI: 10.2174/1570161117666190503123911] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
Postprandial hypertriglyceridaemia, defined as an increase in plasma triglyceride-containing
lipoproteins following a fat meal, is a potential risk predictor of atherosclerotic cardiovascular disease
and other chronic diseases. Several non-modifiable factors (genetics, age, sex and menopausal status)
and lifestyle factors (diet, physical activity, smoking status, obesity, alcohol and medication use) may
influence postprandial hypertriglyceridaemia. This narrative review considers the studies published over
the last decade that evaluated postprandial hypertriglyceridaemia. Additionally, the genetic determinants
of postprandial plasma triglyceride levels, the types of meals for studying postprandial triglyceride response,
and underlying conditions (e.g. familial dyslipidaemias, diabetes mellitus, metabolic syndrome,
non-alcoholic fatty liver and chronic kidney disease) that are associated with postprandial hypertriglyceridaemia
are reviewed; therapeutic aspects are also considered.
Collapse
Affiliation(s)
- Genovefa D. Kolovou
- Cardiology Department and LDL-Apheresis Unit, Onassis Cardiac Surgery Center, Athens, Greece
| | - Gerald F. Watts
- Lipid Disorders Clinic, Department of Cardiology, Royal Perth Hospital, School of Medicine, Faculty of Health and Medical Sciences, University of Western Australia, Crawley, Australia
| | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, United Kingdom
| | - Pablo Pérez-Martínez
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Samia Mora
- Center for Lipid Metabolomics, Divisions of Preventive and Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Helen Bilianou
- Department of Cardiology, Tzanio Hospital, Piraeus, Greece
| | | | - Niki Katsiki
- First Department of Internal Medicine, Division of Endocrinology-Metabolism, Diabetes Center, AHEPA University Hospital, Thessaloniki, Greece
| | - Teik C. Ooi
- Department of Medicine, Division of Endocrinology and Metabolism, University of Ottawa, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - José Lopez-Miranda
- Lipid and Atherosclerosis Unit, IMIBIC/Reina Sofia University Hospital/University of Cordoba, and CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas Tentolouris
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Laiko General Hospital, Athens, Greece
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Jones RS, Tu C, Zhang M, Qu J, Morris ME. Characterization and Proteomic-Transcriptomic Investigation of Monocarboxylate Transporter 6 Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism. Mol Pharmacol 2019; 96:364-376. [PMID: 31436537 DOI: 10.1124/mol.119.116731] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Monocarboxylate transporter 6 [(MCT6), SLC16A5] is an orphan transporter with no known endogenous substrates or physiological role. Previous in vitro and in vivo experiments investigated MCT6 substrate/inhibitor specificity in Xenopus laevis oocytes; however, these data remain limited. Transcriptomic changes in the livers of mice undergoing different dieting schemes have suggested that Mct6 plays a role in glucose and lipid metabolism. The objectives of this study were 1) to develop a novel knockout (KO) mouse model (Mct6-/-) using CRISPR/Cas9 technology, 2) to characterize the KO animal model by examining physiological and biochemical parameters, and 3) to understand the physiological role of MCT6 in vivo through global proteomic and liver transcriptomic profiling. mRNA tissue analysis demonstrated knockout of Mct6, which showed greater than 90% knockdown of Mct6 (Slc16a5) gene expression in all major tissues analyzed when normalized to Mct6+/+ mice. Proteomic analyses identified greater than 4000 unique proteins in kidney, liver, and colon tissues, among which 51, 38, and 241 proteins were significantly altered, respectively (for each tissue), between Mct6+/+ and Mct6-/- mice. Additionally, Mct6-/- mice demonstrated significant changes in 199 genes in the liver compared with Mct6+/+ mice. In silico biological pathway analyses revealed significant changes in proteins and genes involved in glucose and lipid metabolism-associated pathways. This study is the first to provide evidence for an association of Mct6 in the regulation of glucose and lipid metabolism. SIGNIFICANCE STATEMENT: This paper focuses on elucidating the innate biological role of an orphan transporter in vivo, which has not been investigated thus far. Using efficient and high-throughput technologies, such as CRISPR/Cas9 gene editing, liquid chromatography-tandem mass spectrometry-based proteomic and RNA-sequencing transcriptomic analyses, our laboratory provides the first existence and characterization of a Mct6 knockout mouse model. The evidence gathered in this paper, as well as other laboratories, support the importance of MCT6 in regulating a variety of glucose and lipid metabolic pathways, which may indicate its significance in metabolic diseases.
Collapse
Affiliation(s)
- Robert S Jones
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Ming Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Jun Qu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York (R.S.J., C.T., J.Q., M.E.M.); and New York State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York (C.T., M.Z., J.Q.)
| |
Collapse
|
21
|
Geng X, Irvin MR, Hidalgo B, Aslibekyan S, Srinivasasainagendra V, An P, Frazier-Wood AC, Tiwari HK, Dave T, Ryan K, Ordovas JM, Straka RJ, Feitosa MF, Hopkins PN, Borecki I, Province MA, Mitchell BD, Arnett DK, Zhi D. An Exome-Wide Sequencing Study of the GOLDN Cohort Reveals Novel Associations of Coding Variants and Fasting Plasma Lipids. Front Genet 2019; 10:158. [PMID: 30863429 PMCID: PMC6399202 DOI: 10.3389/fgene.2019.00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 02/13/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Associations of both common and rare genetic variants with fasting blood lipids have been extensively studied. However, most of the rare coding variants associated with lipids are population-specific, and exploration of genetic data from diverse population samples may enhance the identification of novel associations with rare variants. Results: We searched for novel coding genetic variants associated with fasting lipid levels in 894 samples from the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) with exome-wide sequencing-based genotype data. In single variant tests, one variant (rs11171663 in ITGA7) was associated with fasting triglyceride levels (P = 7.66E-08), explaining approximately 3.2% of the total trait variance. In gene-based tests, we found statistically significant associations between ITGA7 (P = 1.77E-07) and SLCO2A1 (P = 7.18E-07) and triglycerides, as well as between POT1 (P = 3.00E-07) and low-density lipoprotein cholesterol. In another independent replication cohort consisting of 3,183 African American samples from Hypertension Genetic Epidemiology Network (HyperGEN) and the Genetic Epidemiology Network of Arteriopathy (GENOA), the top genes achieved P-values of 0.04 (ITGA7), 0.08 (SLCO2A1), and 0.02 (POT1). In GOLDN, gene transcript levels of ITGA7 and SLCO2A1 were associated with fasting triglycerides (P = 0.07 and P = 0.02), highlighting functional relevance of our findings. Conclusion: In this study, we present preliminary evidence of novel rare variant determinants of fasting lipids, and reveal potential underlying molecular mechanisms. Moreover, these results were replicated in an independent cohort. Our findings may inform novel biomarkers of disease risk and treatment targets.
Collapse
Affiliation(s)
- Xin Geng
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- BGI-Shenzhen, Shenzhen, China
| | - Marguerite R. Irvin
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bertha Hidalgo
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Stella Aslibekyan
- Department of Epidemiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | - Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Alexis C. Frazier-Wood
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX, United States
| | - Hemant K. Tiwari
- Department of Biostatistics, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tushar Dave
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Kathleen Ryan
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, MA, United States
- IMDEA Alimentación, Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Robert J. Straka
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Mary F. Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Paul N. Hopkins
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT, United States
| | - Ingrid Borecki
- Genetic Analysis Center, Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Michael A. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Braxton D. Mitchell
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Donna K. Arnett
- College of Public Health, University of Kentucky, Lexington, KY, United States
| | - Degui Zhi
- School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, United States
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
22
|
Sevilla-González MDR, Aguilar-Salinas CA, Muñóz-Hernández L, Almeda-Valdés P, Mehta R, Zubirán R, Bello-Chavolla OY, Gómez-Velasco DV, Vargas-Vázquez A, Viveros-Ruíz T, Martagón-Rosado AJ, Cruz-Bautista I. Identification of a threshold to discriminate fasting hypertriglyceridemia with postprandial values. Lipids Health Dis 2018; 17:156. [PMID: 30021651 PMCID: PMC6052549 DOI: 10.1186/s12944-018-0803-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Postprandial lipemia is an important cardiovascular risk factor. The assessment of postprandial lipid metabolism is a newly trend that several consortiums and countries have adopted. The aim of the study is to determine a postprandial triglyceride concentration cut-off point that accurately discriminate individuals with fasting normal triglyceride concentrations from those with fasting hypertriglyceridemia. METHODS Cross sectional population-based study. A total of 212 subjects underwent an eight hours' oral fat tolerance test. Samples were taken fasting, three, four, five, six and eight hours after the meal. The area under the receiver operating characteristic curve (c-statistic) was computed using postprandial triglycerides concentrations as independent predictor, and fasting hypertriglyceridemia as dependent variable. RESULTS The best threshold of postprandial lipemia to discriminate fasting hypertriglyceridemia was 280 mg/dL at any hour area under the curve 0.816 (95% confidence interval 0.753-0.866), bootstrap-corrected c-statistic = 0.733 (95% confidence interval 0.68-0.86). The same value was compared with apolipoprotein B concentrations (>90th percentile) having a good performance: area under the curve 0.687 95% confidence interval 0.624-0.751). Likewise, subjects with high postprandial lipemia have higher Globo risk scores. CONCLUSION The 280 mg/dL cut-off point value of postprandial triglycerides concentration any time after a test meal discriminate subjects with fasting hypertriglyceridemia. This threshold has a good performance in a heterogeneous population and has a good concordance with cardiovascular risk surrogates.
Collapse
Affiliation(s)
- Magdalena Del Rocío Sevilla-González
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Programa de Doctorado en Ciencias Médicas y de la Salud, Universidad Nacional Autonóma de México, México, México
| | - Carlos A Aguilar-Salinas
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, Mexico
| | - Liliana Muñóz-Hernández
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Cátedra Conacyt, México, México
| | - Paloma Almeda-Valdés
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Roopa Mehta
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Programa de Doctorado en Ciencias Médicas y de la Salud, Universidad Nacional Autonóma de México, México, México.,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Rafael Zubirán
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México
| | - Omar Yaxmehen Bello-Chavolla
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - Donaji V Gómez-Velasco
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico
| | - Arsenio Vargas-Vázquez
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México, México, México
| | - Tannia Viveros-Ruíz
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México
| | - Alexandro J Martagón-Rosado
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, N.L, Mexico
| | - Ivette Cruz-Bautista
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de quiroga 15, 14200, México, México. .,Programa de Doctorado en Ciencias Médicas y de la Salud, Universidad Nacional Autonóma de México, México, México. .,Departamento de Endocrinología y Metabolismo, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México, Mexico.
| |
Collapse
|
23
|
Genetic and Epigenetic Regulations of Post-prandial Lipemia. CURRENT GENETIC MEDICINE REPORTS 2018. [DOI: 10.1007/s40142-018-0146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
24
|
Irvin MR, Aslibekyan S, Do A, Zhi D, Hidalgo B, Claas SA, Srinivasasainagendra V, Horvath S, Tiwari HK, Absher DM, Arnett DK. Metabolic and inflammatory biomarkers are associated with epigenetic aging acceleration estimates in the GOLDN study. Clin Epigenetics 2018; 10:56. [PMID: 29713391 PMCID: PMC5907301 DOI: 10.1186/s13148-018-0481-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recently, epigenetic age acceleration-or older epigenetic age in comparison to chronological age-has been robustly associated with mortality and various morbidities. However, accelerated epigenetic aging has not been widely investigated in relation to inflammatory or metabolic markers, including postprandial lipids. Methods We estimated measures of epigenetic age acceleration in 830 Caucasian participants from the Genetics Of Lipid Lowering Drugs and diet Network (GOLDN) considering two epigenetic age calculations based on differing sets of 5'-Cytosine-phosphate-guanine-3' genomic site, derived from the Horvath and Hannum DNA methylation age calculators, respectively. GOLDN participants underwent a standardized high-fat meal challenge after fasting for at least 8 h followed by timed blood draws, the last being 6 h postmeal. We used adjusted linear mixed models to examine the association of the epigenetic age acceleration estimate with fasting and postprandial (0- and 6-h time points) low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglyceride (TG) levels as well as five fasting inflammatory markers plus adiponectin. Results Both DNA methylation age estimates were highly correlated with chronological age (r > 0.90). We found that the Horvath and Hannum measures of epigenetic age acceleration were moderately correlated (r = 0.50). The regression models revealed that the Horvath age acceleration measure exhibited marginal associations with increased postprandial HDL (p = 0.05), increased postprandial total cholesterol (p = 0.06), and decreased soluble interleukin 2 receptor subunit alpha (IL2sRα, p = 0.02). The Hannum measure of epigenetic age acceleration was inversely associated with fasting HDL (p = 0.02) and positively associated with postprandial TG (p = 0.02), interleukin-6 (IL6, p = 0.007), C-reactive protein (C-reactive protein, p = 0.0001), and tumor necrosis factor alpha (TNFα, p = 0.0001). Overall, the observed effect sizes were small and the association of the Hannum residual with inflammatory markers was attenuated by adjustment for estimated T cell type percentages. Conclusions Our study demonstrates that epigenetic age acceleration in blood relates to inflammatory biomarkers and certain lipid classes in Caucasian individuals of the GOLDN study. Future studies should consider epigenetic age acceleration in other tissues and extend the analysis to other ethnic groups.
Collapse
Affiliation(s)
- Marguerite R Irvin
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Stella Aslibekyan
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Anh Do
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Degui Zhi
- 2School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX USA
| | - Bertha Hidalgo
- 1Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, RPHB 230J, Birmingham, AL 35294 USA
| | - Steven A Claas
- 3College of Public Health, University of Kentucky, Lexington, KY USA
| | | | - Steve Horvath
- 5Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095 USA.,6Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095 USA.,7Human Genetics, Gonda Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095-7088 USA
| | - Hemant K Tiwari
- 4Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL USA
| | - Devin M Absher
- 8HudsonAlpha Institute for Biotechnology, Huntsville, AL USA
| | - Donna K Arnett
- 3College of Public Health, University of Kentucky, Lexington, KY USA
| |
Collapse
|
25
|
Geng X, Irvin MR, Hidalgo B, Aslibekyan S, Srinivasasainagendra V, An P, Frazier-Wood AC, Tiwari HK, Dave T, Ryan K, Ordovas JM, Straka RJ, Feitosa MF, Hopkins PN, Borecki I, Province MA, Mitchell BD, Arnett DK, Zhi D. An exome-wide sequencing study of lipid response to high-fat meal and fenofibrate in Caucasians from the GOLDN cohort. J Lipid Res 2018; 59:722-729. [PMID: 29463568 PMCID: PMC5880495 DOI: 10.1194/jlr.p080333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/04/2018] [Indexed: 12/30/2022] Open
Abstract
Our understanding of genetic influences on the response of lipids to specific interventions is limited. In this study, we sought to elucidate effects of rare genetic variants on lipid response to a high-fat meal challenge and fenofibrate (FFB) therapy in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) cohort using an exome-wide sequencing-based association study. Our results showed that the rare coding variants in ITGA7, SIPA1L2, and CEP72 are significantly associated with fasting LDL cholesterol response to FFB (P = 1.24E-07), triglyceride postprandial area under the increase (AUI) (P = 2.31E-06), and triglyceride postprandial AUI response to FFB (P = 1.88E-06), respectively. We sought to replicate the association for SIPA1L2 in the Heredity and Phenotype Intervention (HAPI) Heart Study, which included a high-fat meal challenge but not FFB treatment. The associated rare variants in GOLDN were not observed in the HAPI Heart study, and thus the gene-based result was not replicated. For functional validation, we found that gene transcript level of SIPA1L2 is associated with triglyceride postprandial AUI (P < 0.05) in GOLDN. Our study suggests unique genetic mechanisms contributing to the lipid response to the high-fat meal challenge and FFB therapy.
Collapse
Affiliation(s)
- Xin Geng
- School of Biomedical Informatics The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Marguerite R Irvin
- Departments of Epidemiology University of Alabama at Birmingham, Birmingham, AL 35233
| | - Bertha Hidalgo
- Departments of Epidemiology University of Alabama at Birmingham, Birmingham, AL 35233
| | - Stella Aslibekyan
- Departments of Epidemiology University of Alabama at Birmingham, Birmingham, AL 35233
| | | | - Ping An
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Alexis C Frazier-Wood
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030
| | - Hemant K Tiwari
- Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35233
| | - Tushar Dave
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kathleen Ryan
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111; Instituto Madrileño de Estudios Avanzados en Alimentación, Madrid 28049, Spain; Centro Nacional Investigaciones Cardiovasculares, Madrid 28029, Spain
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology Minneapolis, University of Minnesota, MN 55455
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Paul N Hopkins
- Division of Cardiovascular Medicine, University of Utah, Salt Lake City, UT 84112
| | - Ingrid Borecki
- Genetic Analysis Center, Department of Biostatistics, University of Washington, Seattle, WA 98105
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY 40506.
| | - Degui Zhi
- School of Biomedical Informatics The University of Texas Health Science Center at Houston, Houston, TX 77030; School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW Postprandial lipemia (PPL), the prolonged increase in plasma triglyceride-rich lipoproteins following food consumption, is an independent risk factor for cardiovascular disease. Genetic variation, environment and the interplay between these direct an individual's postprandial lipid response. From such interplay, inducible and reversible epigenetic changes arise. Increasing evidence suggests epigenetic variation contributes to postprandial response in lipids and risk. RECENT FINDINGS Diet and exercise are central agents affecting postprandial lipemia - triglyceride, but heterogeneity of the findings warrant more and larger studies. Several epigenetic loci identified from a human intervention study account for a substantial proportion of PPL phenotype variation, but the burden to conduct an intervention study of postprandial responses likely limits translation to personalized nutrition. SUMMARY The impact of both DNA methylation patterns and environmental factors such as diet, exercise, sleep and medication on PPL is multifaceted. Discovery of interactions that modify the association between CpG (oligodeoxydinucleotide) methylation and postprandial phenotypes is unfolding.
Collapse
Affiliation(s)
| | - Jose M Ordovas
- Jean Mayer-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
- IMDEA Food Institute, CEI UAM + CSIC
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | |
Collapse
|
27
|
Klingel SL, Roke K, Hidalgo B, Aslibekyan S, Straka RJ, An P, Province MA, Hopkins PN, Arnett DK, Ordovas JM, Lai CQ, Mutch DM. Sex Differences in Blood HDL-c, the Total Cholesterol/HDL-c Ratio, and Palmitoleic Acid are Not Associated with Variants in Common Candidate Genes. Lipids 2017; 52:969-980. [PMID: 29080057 DOI: 10.1007/s11745-017-4307-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/04/2017] [Indexed: 01/21/2023]
Abstract
Blood lipids are associated with cardiovascular disease (CVD) risk. Moreover, circulating lipid and fatty acid levels vary between men and women, and evidence demonstrates these traits may be influenced by single nucleotide polymorphisms (SNP). Sex-genotype interactions related to blood lipids and fatty acids have been poorly investigated and may help elucidate sex differences in CVD risk. The goal of this study was to investigate if the influence of SNPs previously associated with blood lipids and fatty acids varies in a sex-specific manner. Lipids and fatty acids were measured in serum and red blood cells (RBC), respectively, in 94 adults (18-30 years) from the GONE FISHIN' cohort and 118 age-matched individuals from the GOLDN cohort. HDL-c levels were higher and the total cholesterol/HDL-c (TC/HDL-c) ratio was lower in women versus men (p < 0.01). RBC palmitoleic acid and the stearoyl-CoA desaturase index were both higher in women (p < 0.01). Fatty acid desaturase (FADS) pathway activity (estimated using the ratio of eicosapentaenoic acid/alpha-linolenic acid) was higher in men (p < 0.01). The AA genotype for rs1800775 in CETP had a lower TC/HDL-c ratio in men, but not women (p int = 0.03). Independent of sex, major alleles for rs174537 in FADS1 (GG) and rs3211956 in CD36 (TT) had higher arachidonic acid, lower dihomo-γ-linoleic acid, and a higher FADS1 activity compared to minor alleles. The current study showed that blood lipid and fatty acid levels vary between healthy young men and women, but that the observed sex differences are not associated with common variants in candidate lipid metabolism genes.
Collapse
Affiliation(s)
- Shannon L Klingel
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada
| | - Kaitlin Roke
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada
| | - Bertha Hidalgo
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Stella Aslibekyan
- Department of Epidemiology, University of Alabama at Birmingham School of Public Health, Birmingham, AL, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ping An
- Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University, St. Louis, MO, USA
| | - Paul N Hopkins
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Jose M Ordovas
- JM-USDA-Human Nutrition Research Center ON Aging, Tufts University, Medford, MA, USA.,Instituto Madrileno Estudios Avanzados Alimentacion, Madrid, Spain.,Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | | | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road East, Animal Science and Nutrition Building, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Yamada K, Brousseau M, Honma W, Iimura A, Imase H, Iwaki Y, Kawanami T, LaSala D, Liang G, Mitani H, Nonomura K, Ohmori O, Pan M, Rigel DF, Umemura I, Yasoshima K, Zhu G, Mogi M. Discovery of a Novel Piperidine-Based Inhibitor of Cholesteryl Ester Transfer Protein (CETP) That Retains Activity in Hypertriglyceridemic Plasma. J Med Chem 2017; 60:8466-8481. [DOI: 10.1021/acs.jmedchem.7b00900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ken Yamada
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Margaret Brousseau
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Wataru Honma
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Akiko Iimura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Hidetomo Imase
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Yuki Iwaki
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Toshio Kawanami
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Daniel LaSala
- Novartis Institutes for BioMedical Research, Novartis
Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, New Jersey 07936-1080, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Hironobu Mitani
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Kazuhiko Nonomura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Osamu Ohmori
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Meihui Pan
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Dean F. Rigel
- Novartis Institutes for BioMedical Research, Novartis
Pharmaceuticals Corporation, 1 Health Plaza, East Hanover, New Jersey 07936-1080, United States
| | - Ichiro Umemura
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Kayo Yasoshima
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| | - Guoming Zhu
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
| | - Muneto Mogi
- Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139-4133, United States
- Novartis Institutes for BioMedical Research, Novartis
Pharma K.K., Ohkubo 8, Tsukuba, Ibaraki 300-2611, Japan
| |
Collapse
|
29
|
Abstract
There is a great deal of interest in personalized, individualized, or precision interventions for disease and health-risk mitigation. This is as true of nutrition-based intervention and prevention strategies as it is for pharmacotherapies and pharmaceutical-oriented prevention strategies. Essentially, technological breakthroughs have enabled researchers to probe an individual's unique genetic, biochemical, physiological, behavioral, and exposure profile, allowing them to identify very specific and often nuanced factors that an individual might possess, which may make it more or less likely that he or she responds favorably to a particular intervention (e.g., nutrient supplementation) or disease prevention strategy (e.g., specific diet). However, as compelling and intuitive as personalized nutrition might be in the current era in which data-intensive biomedical characterization of individuals is possible, appropriately and objectively vetting personalized nutrition strategies is not trivial and requires novel study designs and data analytical methods. These designs and methods must consider a very integrated use of the multiple contemporary biomedical assays and technologies that motivate them, which adds to their complexity. Single-subject or N-of-1 trials can be used to assess the utility of personalized interventions and, in addition, can be crafted in such a way as to accommodate the necessarily integrated use of many emerging biomedical technologies and assays. In this review, we consider the motivation, design, and implementation of N-of-1 trials in translational nutrition research that are meant to assess the utility of personalized nutritional strategies. We provide a number of example studies, discuss appropriate analytical methods given the complex data they generate and require, and consider how such studies could leverage integration of various biomarker assays and clinical end points. Importantly, we also consider the development of strategies and algorithms for matching nutritional needs to individual biomedical profiles and the issues surrounding them. Finally, we discuss the limitations of personalized nutrition studies, possible extensions of N-of-1 nutritional intervention studies, and areas of future research.
Collapse
Affiliation(s)
- Nicholas J Schork
- Translational Genomics Research Institute, Phoenix, Arizona 85004; .,J. Craig Venter Institute, La Jolla, California 92037; .,Departments of Psychiatry and Family Medicine and Public Health, University of California, San Diego, La Jolla, California 92037
| | - Laura H Goetz
- J. Craig Venter Institute, La Jolla, California 92037; .,Department of Surgery, Scripps Clinic Medical Group, La Jolla, California 92037.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
30
|
Lai CQ, Wojczynski MK, Parnell LD, Hidalgo BA, Irvin MR, Aslibekyan S, Province MA, Absher DM, Arnett DK, Ordovás JM. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J Lipid Res 2016; 57:2200-2207. [PMID: 27777315 PMCID: PMC5321216 DOI: 10.1194/jlr.m069948] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/16/2016] [Indexed: 12/18/2022] Open
Abstract
Postprandial lipemia (PPL), the increased plasma TG concentration after consuming a high-fat meal, is an independent risk factor for CVD. Individual responses to a meal high in fat vary greatly, depending on genetic and lifestyle factors. However, only a few loci have been associated with TG-PPL response. Heritable epigenomic changes may be significant contributors to the unexplained inter-individual PPL variability. We conducted an epigenome-wide association study on 979 subjects with DNA methylation measured from CD4+ T cells, who were challenged with a high-fat meal as a part of the Genetics of Lipid Lowering Drugs and Diet Network study. Eight methylation sites encompassing five genes, LPP, CPT1A, APOA5, SREBF1, and ABCG1, were significantly associated with PPL response at an epigenome-wide level (P < 1.1 × 10−7), but no methylation site reached epigenome-wide significance after adjusting for baseline TG levels. Higher methylation at LPP, APOA5, SREBF1, and ABCG1, and lower methylation at CPT1A methylation were correlated with an increased TG-PPL response. These PPL-associated methylation sites, also correlated with fasting TG, account for a substantially greater amount of phenotypic variance (14.9%) in PPL and fasting TG (16.3%) when compared with the genetic contribution of loci identified by our previous genome-wide association study (4.5%). In summary, the epigenome is a large contributor to the variation in PPL, and this has the potential to be used to modulate PPL and reduce CVD.
Collapse
Affiliation(s)
- Chao-Qiang Lai
- USDA Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Mary K Wojczynski
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Laurence D Parnell
- USDA Agricultural Research Service, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Bertha A Hidalgo
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Marguerite Ryan Irvin
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Stella Aslibekyan
- Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL
| | - Michael A Province
- Department of Genetics, Washington University School of Medicine, St. Louis, MO
| | - Devin M Absher
- Hudson Alpha Institute for Biotechnology, Huntsville, AL
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY
| | - José M Ordovás
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
31
|
Sonestedt E, Hellstrand S, Drake I, Schulz CA, Ericson U, Hlebowicz J, Persson MM, Gullberg B, Hedblad B, Engström G, Orho-Melander M. Diet Quality and Change in Blood Lipids during 16 Years of Follow-up and Their Interaction with Genetic Risk for Dyslipidemia. Nutrients 2016; 8:nu8050274. [PMID: 27171109 PMCID: PMC4882687 DOI: 10.3390/nu8050274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022] Open
Abstract
A high diet quality according to the Swedish nutrition recommendations is associated with a reduced risk of cardiovascular disease in the population-based Malmö Diet and Cancer cohort. To further clarify this protective association, we examined the association between high diet quality and change in triglycerides, high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) after 16 years of follow-up in 3152 individuals (61% women; 46–68 years at baseline). In addition, we examined if genetic risk scores composed of 80 lipid-associated genetic variants modify these associations. A diet quality index based on intakes of saturated fat, polyunsaturated fat, sucrose, fiber, fruit and vegetables, and fish was constructed. A high diet quality was associated with lower risk of developing high triglycerides (p = 0.02) and high LDL-C (p = 0.03) during follow-up compared with a low diet quality. We found an association between diet quality and long-term change in HDL-C only among those with lower genetic risk for low HDL-C as opposed to those with higher genetic risk (p-interaction = 0.04). Among those with lower genetic risk for low HDL-C, low diet quality was associated with decreased HDL-C during follow-up (p = 0.05). In conclusion, individuals with high adherence to the Swedish nutrition recommendation had lower risk of developing high triglycerides and LDL-C during 16 years of follow-up.
Collapse
Affiliation(s)
- Emily Sonestedt
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Sophie Hellstrand
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Isabel Drake
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Christina-Alexandra Schulz
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Ulrika Ericson
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Joanna Hlebowicz
- Experimental Cardiovascular Research Unit, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Margaretha M Persson
- Internal Medicine Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 32, SE-20502 Malmö, Sweden.
| | - Bo Gullberg
- Nutritional Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Bo Hedblad
- Cardiovascular Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Gunnar Engström
- Cardiovascular Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences Malmö, Lund University, Jan Waldenströms gata 35, SE-20502 Malmö, Sweden.
| |
Collapse
|
32
|
Paschou SA, Spyrou N, Mantzoros CS. Research advances in metabolism 2015. Metabolism 2016; 65:27-37. [PMID: 26892513 DOI: 10.1016/j.metabol.2015.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Stavroula A Paschou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Nikolaos Spyrou
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|