1
|
Wang J, Wang B, Xiao J, Chen Y, Wang C. Chlamydia psittaci: A zoonotic pathogen causing avian chlamydiosis and psittacosis. Virulence 2024; 15:2428411. [PMID: 39541409 PMCID: PMC11622591 DOI: 10.1080/21505594.2024.2428411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Chlamydia psittaci is an obligate intracellular gram-negative bacterium with a unique biphasic developmental cycle. It is a zoonotic pathogen with a wide range of hosts and can cause avian chlamydiosis in birds and psittacosis in humans. The pathogen is transmitted mainly through horizontal transmission between birds. Cross-species transmission sometimes occurs and human-to-human transmission has recently been confirmed. This review provides an updated overview of C. psittaci from the perspective of both avian chlamydiosis and psittacosis. We include the aspects of genotype, host-pathogen interaction, transmission, epidemiology, detection and diagnosis, clinical manifestation, management, and prevention, aiming to provide a basic understanding of C. psittaci and offer fresh insights focused on zoonosis and cross-species transmission.
Collapse
Affiliation(s)
- Jiewen Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
- Institute of Cell and Genetics, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Buwei Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuqing Chen
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, School of Basic Medicine, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, China
| |
Collapse
|
2
|
Caspe SG, Hill H. Chlamydiosis in Animals. Animals (Basel) 2024; 14:3130. [PMID: 39518853 PMCID: PMC11545194 DOI: 10.3390/ani14213130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The Chlamydiaceae family consists of Gram-negative, obligate intracellular bacteria that replicate within the cells of a diverse range of hosts. These hosts include domesticated animals such as cats, dogs, and livestock, as well as wildlife like koalas and birds, exotic species such as reptiles and amphibians, and humans. Chlamydial infection can result in various clinical signs, including respiratory diseases, reproductive failures, ocular pathologies, and enteritis, though the infected organism may remain asymptomatic. In recent years, chlamydial nomenclature has undergone several revisions due to the wide range of hosts, the frequent discovery of novel strains, and the reclassification of existing ones. Given this and the clinical significance of these infections, ranging from asymptomatic to fatal, an updated review is essential. This article outlines key characteristics of Chlamydia species and provides an updated overview of their nomenclature, offering a concise reference for future research on chlamydial diseases.
Collapse
Affiliation(s)
- Sergio Gastón Caspe
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
- Animal Health Deptartment, Instituto Nacional de Tecnología Agropecuaria (INTA) EEA Mercedes, Juan Pujol al este S/N, Mercedes W3470, Corrientes, Argentina
| | - Holly Hill
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik EH26 0PZ, UK
| |
Collapse
|
3
|
Yang S, Zeng J, Yu J, Sun R, Tuo Y, Bai H. Insights into Chlamydia Development and Host Cells Response. Microorganisms 2024; 12:1302. [PMID: 39065071 PMCID: PMC11279054 DOI: 10.3390/microorganisms12071302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Chlamydia infections commonly afflict both humans and animals, resulting in significant morbidity and imposing a substantial socioeconomic burden worldwide. As an obligate intracellular pathogen, Chlamydia interacts with other cell organelles to obtain necessary nutrients and establishes an intracellular niche for the development of a biphasic intracellular cycle. Eventually, the host cells undergo lysis or extrusion, releasing infectious elementary bodies and facilitating the spread of infection. This review provides insights into Chlamydia development and host cell responses, summarizing the latest research on the biphasic developmental cycle, nutrient acquisition, intracellular metabolism, host cell fates following Chlamydia invasion, prevalent diseases associated with Chlamydia infection, treatment options, and vaccine prevention strategies. A comprehensive understanding of these mechanisms will contribute to a deeper comprehension of the intricate equilibrium between Chlamydia within host cells and the progression of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Hong Bai
- Tianjin Key Laboratory of Cellular and Molecular Immunology (The Educational Ministry of China), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China; (S.Y.); (J.Z.); (J.Y.); (R.S.); (Y.T.)
| |
Collapse
|
4
|
Jury B, Fleming C, Huston WM, Luu LDW. Molecular pathogenesis of Chlamydia trachomatis. Front Cell Infect Microbiol 2023; 13:1281823. [PMID: 37920447 PMCID: PMC10619736 DOI: 10.3389/fcimb.2023.1281823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Chlamydia trachomatis is a strict intracellular human pathogen. It is the main bacterial cause of sexually transmitted infections and the etiologic agent of trachoma, which is the leading cause of preventable blindness. Despite over 100 years since C. trachomatis was first identified, there is still no vaccine. However in recent years, the advancement of genetic manipulation approaches for C. trachomatis has increased our understanding of the molecular pathogenesis of C. trachomatis and progress towards a vaccine. In this mini-review, we aimed to outline the factors related to the developmental cycle phase and specific pathogenesis activity of C. trachomatis in order to focus priorities for future genetic approaches. We highlight the factors known to be critical for developmental cycle stages, gene expression regulatory factors, type III secretion system and their effectors, and individual virulence factors with known impacts.
Collapse
Affiliation(s)
- Brittany Jury
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Charlotte Fleming
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Laurence Don Wai Luu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
5
|
Onorini D, Schoborg R, Borel N, Leonard C. Beta lactamase-producing Neisseria gonorrhoeae alleviates Amoxicillin-induced chlamydial persistence in a novel in vitro co-infection model. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 4:100188. [PMID: 37025122 PMCID: PMC10070076 DOI: 10.1016/j.crmicr.2023.100188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG) cause most bacterial sexually transmitted infections (STIs) worldwide. Epidemiological studies have shown high percentages of co-infections with CT/NG and indicate that NG co-infection can reactivate CT shedding during persistent chlamydial infection. These data also suggest that biological interaction between the two bacteria may increase susceptibility or transmissibility. CT is an obligate intracellular bacterium with a developmental cycle that alternates between two forms: infectious elementary bodies (EBs) which invade the epithelium and non-infectious reticulate bodies (RBs) which divide and replicate inside the inclusion. Adverse environmental conditions can interrupt chlamydial development, with a consequent temporary halt in RB division, reduction in infectious EB production and formation of enlarged chlamydiae (aberrant bodies, ABs) - characterizing chlamydial persistence. When the stressor is removed, the chlamydial developmental cycle is restored, together with production of infectious EBs. The beta-lactam amoxicillin (AMX) induces chlamydial persistence, both in vitro and in mice. We investigated the impact of penicillinase-producing NG strain (PPNG) on AMX-persistent chlamydial infection utilizing our recently developed, contact-independent in vitro model of co-infection. We hypothesized that co-infection with PPNG could prevent and/or reverse AMX-induced chlamydial persistence. Our results showed that PPNG can ameliorate AMX-persistence in two chlamydial species, CT and C. muridarum (CM), providing novel evidence for a range of Chlamydia/NG interactions.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Intracellular lifestyle of Chlamydia trachomatis and host-pathogen interactions. Nat Rev Microbiol 2023:10.1038/s41579-023-00860-y. [PMID: 36788308 DOI: 10.1038/s41579-023-00860-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
In recent years, substantial progress has been made in the understanding of the intracellular lifestyle of Chlamydia trachomatis and how the bacteria establish themselves in the human host. As an obligate intracellular pathogenic bacterium with a strongly reduced coding capacity, C. trachomatis depends on the provision of nutrients from the host cell. In this Review, we summarize the current understanding of how C. trachomatis establishes its intracellular replication niche, how its metabolism functions in the host cell, how it can defend itself against the cell autonomous and innate immune response and how it overcomes adverse situations through the transition to a persistent state. In particular, we focus on those processes for which a mechanistic understanding has been achieved.
Collapse
|
7
|
He Z, Wang C, Wang J, Zheng K, Ding N, Yu M, Li W, Tang Y, Li Y, Xiao J, Liang M, Wu Y. Chlamydia psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor expression. Int J Med Microbiol 2022; 312:151571. [PMID: 36511277 DOI: 10.1016/j.ijmm.2022.151571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/10/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
This study tested the hypothesis that Chlamydia psittaci (C. psittaci) survives and multiplies in human neutrophils by activating P2X7, a nonselective cationic channel receptor expressed constitutively on the surface of these cells. Findings illustrated that P2X7 receptor expression was enhanced in C. psittaci-infected neutrophils. C. psittaci was able to inhibite spontaneous apoptosis of neutrophils through mitochondrial-induced ATP release and IL-8 production. Importantly, inhibiting ATP activation of the P2X7 receptor with AZ10606120 promotes apoptosis, while stimulating P2X7 receptor expression with BzATP delayed spontaneous apoptosis of human neutrophils, suggesting that C. psittaci inhibits apoptosis of human neutrophils by activating P2X7 receptor. This study reveals new insights into the survival advantages of the latent persistent state of C. psittaci and the mechanism by which it evades the innate immune response.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yuanyuan Tang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China
| | - Jian Xiao
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Mingxing Liang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
8
|
Kuratli J, Leonard CA, Frohns A, Schoborg R, Piazena H, Borel N. Refinement of water-filtered infrared A (wIRA) irradiations of in vitro acute and persistent chlamydial infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 234:112533. [PMID: 35914465 DOI: 10.1016/j.jphotobiol.2022.112533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Water-filtered infrared A (wIRA) alone or in combination with visible light (VIS) exerts anti-chlamydial effects in vitro and in vivo in acute infection models. However, it has remained unclear whether reduced irradiation duration and irradiance would still maintain anti-chlamydial efficacy. Furthermore, efficacy of this non-chemical treatment option against persistent (chronic) chlamydial infections has not been investigated to date. To address this knowledge gap, we evaluated 1) irradiation durations of 5, 15 or 30 min in genital and ocular Chlamydia trachomatis acute infection models, 2) irradiances of 100, 150 or 200 mW/cm2 in the acute genital infection model and 3) anti-chlamydial activity of wIRA and VIS against C. trachomatis serovar B and E with amoxicillin (AMX)- or interferon γ (IFN-γ)-induced persistence. Reduction of irradiation duration reduced anti-chlamydial efficacy. Irradiances of 150 to 200 mW/cm2, but not 100 mW/cm2, induced anti-chlamydial effects. For persistent infections, wIRA and VIS irradiation showed robust anti-chlamydial activity independent of the infection status (persistent or recovering), persistence inducer (AMX or IFN-γ) or chlamydial strain (serovar B or E). This study clarifies the requirement of 30 min irradiation duration and 150 mW/cm2 irradiance to induce significant anti-chlamydial effects in vitro, supports the use of irradiation in the wIRA and VIS spectrum as a promising non-chemical treatment for chlamydial infections and provides important information for follow-up in vivo studies. Notably, wIRA and VIS exert anti-chlamydial effects on persistent chlamydiae which are known to be refractory to antibiotic treatment.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland; Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Mittelstrasse 43, 3012 Bern, Switzerland.
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| | - Antonia Frohns
- Plant membrane biophysics, Technical University of Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Robert Schoborg
- Department of Medical Education and Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, PO Box 70582, Johnson City, TN 37614, USA.
| | - Helmut Piazena
- Department of Anaesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporative Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany.
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 268, 8057 Zürich, Switzerland.
| |
Collapse
|
9
|
Hiyama Y, Takahashi S, Yasuda M. AAUS guideline for chlamydial urethritis. J Infect Chemother 2021; 28:142-145. [PMID: 34887176 DOI: 10.1016/j.jiac.2021.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 10/19/2022]
Abstract
Urogenital chlamydial infection is the most common sexually transmitted infection. Many cases of chlamydial infection are reported worldwide every year. Genital chlamydial infection in women can also cause obstetric issues, including infertility and miscarriage. For that purpose, appropriate care should be conducted with the latest knowledge. Only few guidelines come from Asian countries. The Asian Association of Urinary Tract Infection and Sexually Transmitted Infection (AAUS) belonging to the Urological Association of Asia (UAA) had developed the guidelines regarding chlamydial urethritis. We have collected the feedback and updated the guidelines which is now submitted for consideration of publication. In addition to the levels of evidence, the recommendation grades were defined using the modified GRADE methodology. Herein, we present the new edition of the UAA-AAUS guidelines for chlamydial urethritis.
Collapse
Affiliation(s)
- Yoshiki Hiyama
- Department of Urology, Sapporo Medical University School of Medicine, Japan; Department of Urology, Hakodate Goryoukaku Hospital, Japan.
| | - Satoshi Takahashi
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Japan
| | - Mitsuru Yasuda
- Department of Infection Control and Laboratory Medicine, Sapporo Medical University School of Medicine, Japan
| |
Collapse
|
10
|
Shima K, Kaufhold I, Eder T, Käding N, Schmidt N, Ogunsulire IM, Deenen R, Köhrer K, Friedrich D, Isay SE, Grebien F, Klinger M, Richer BC, Günther UL, Deepe GS, Rattei T, Rupp J. Regulation of the Mitochondrion-Fatty Acid Axis for the Metabolic Reprogramming of Chlamydia trachomatis during Treatment with β-Lactam Antimicrobials. mBio 2021; 12:e00023-21. [PMID: 33785629 PMCID: PMC8092193 DOI: 10.1128/mbio.00023-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Infection with the obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial sexually transmitted disease worldwide. Since no vaccine is available to date, antimicrobial therapy is the only alternative in C. trachomatis infection. However, changes in chlamydial replicative activity and the occurrence of chlamydial persistence caused by diverse stimuli have been proven to impair treatment effectiveness. Here, we report the mechanism for C. trachomatis regulating host signaling processes and mitochondrial function, which can be used for chlamydial metabolic reprogramming during treatment with β-lactam antimicrobials. Activation of signal transducer and activator of transcription 3 (STAT3) is a well-known host response in various bacterial and viral infections. In C. trachomatis infection, inactivation of STAT3 by host protein tyrosine phosphatases increased mitochondrial respiration in both the absence and presence of β-lactam antimicrobials. However, during treatment with β-lactam antimicrobials, C. trachomatis increased the production of citrate as well as the activity of host ATP-citrate lyase involved in fatty acid synthesis. Concomitantly, chlamydial metabolism switched from the tricarboxylic acid cycle to fatty acid synthesis. This metabolic switch was a unique response in treatment with β-lactam antimicrobials and was not observed in gamma interferon (IFN-γ)-induced persistent infection. Inhibition of fatty acid synthesis was able to attenuate β-lactam-induced chlamydial persistence. Our findings highlight the importance of the mitochondrion-fatty acid interplay for the metabolic reprogramming of C. trachomatis during treatment with β-lactam antimicrobials.IMPORTANCE The mitochondrion generates most of the ATP in eukaryotic cells, and its activity is used for controlling the intracellular growth of Chlamydia trachomatis Furthermore, mitochondrial activity is tightly connected to host fatty acid synthesis that is indispensable for chlamydial membrane biogenesis. Phospholipids, which are composed of fatty acids, are the central components of the bacterial membrane and play a crucial role in the protection against antimicrobials. Chlamydial persistence that is induced by various stimuli is clinically relevant. While one of the well-recognized inducers, β-lactam antimicrobials, has been used to characterize chlamydial persistence, little is known about the role of mitochondria in persistent infection. Here, we demonstrate how C. trachomatis undergoes metabolic reprogramming to switch from the tricarboxylic acid cycle to fatty acid synthesis with promoted host mitochondrial activity in response to treatment with β-lactam antimicrobials.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Thomas Eder
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Nadja Käding
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Nis Schmidt
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Iretiolu M Ogunsulire
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dirk Friedrich
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Sophie E Isay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | - Barbara C Richer
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - Ulrich L Günther
- Institute of Chemistry and Metabolomics, University of Lübeck, Lübeck, Germany
| | - George S Deepe
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| |
Collapse
|
11
|
Chen Y, Wang C, Mi J, Zhou Z, Wang J, Tang M, Yu J, Liu A, Wu Y. Characterization and comparison of differentially expressed genes involved in Chlamydia psittaci persistent infection in vitro and in vivo. Vet Microbiol 2021; 255:108960. [PMID: 33667981 DOI: 10.1016/j.vetmic.2020.108960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
Chlamydia psittaci is an obligate intracellular zoonotic pathogen that can enter a persistence state in host cells. While the exact pathogenesis is not well understood, this persistence state may play an important role in chronic Chlamydia disease. Here, we assess the effects of chlamydial persistence state in vitro and in vivo by transmission electron microscopy (TEM) and cDNA microarray assays. First, IFN-γ-induced C. psittaci persistence in HeLa cells resulted in the upregulation of 68 genes. These genes are involved in protein translation, carbohydrate metabolism, nucleotide metabolism, lipid metabolism and general stress. However, 109 genes were downregulated following persistent C. psittaci infection, many of which are involved in the TCA cycle, expression regulation and transcription, protein secretion, proteolysis and transport, membrane protein, presumed virulence factor, cell division and late expression. To further study differential gene expression of C. psittaci persistence in vivo, we established an experimentally tractable mouse model of C. psittaci persistence. The C. psittaci-infected mice were gavaged with either water or amoxicillin (amox), and the results indicated that the 20 mg/kg amox-exposed C. psittaci were viable but not infectious. Differentially expressed genes (DEGs) screened by cDNA microarray were detected, and interestingly, the results showed upregulation of three genes (euo, ahpC, prmC) and downregulation of five genes (pbp3, sucB_1, oppA_4, pmpH, ligA) in 20 mg/kg amox-exposed C. psittaci, which suggests that antibiotic treatment in vivo can induce chlamydial persistence state and lead to differential gene expression. However, the discrepancy on inducers between the two models requires more research to supplement. The results may help researchers better understand survival advantages during persistent infection and mechanisms influencing C. psittaci pathogenesis or evasion of the adaptive immune response.
Collapse
Affiliation(s)
- Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China; Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jing Mi
- Department of Hospital Infection and Control, The First Affiliated Hospital of University of South China, Hengyang, 421001, China
| | - Zhou Zhou
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China
| | - Manjuan Tang
- Clinical Microbiology Laboratory, Xiangtan Central Hospital, Xiangtan, 411100, China
| | - Jian Yu
- Department of Experimental Zoology, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Anyuan Liu
- Clinical Medical Research Center, The Second Affiliated Hospital of University of South China, Hengyang, 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
12
|
Dzakah EE, Huang L, Xue Y, Wei S, Wang X, Chen H, Shui J, Kyei F, Rashid F, Zheng H, Yang B, Tang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol 2021; 21:3. [PMID: 33397284 PMCID: PMC7784309 DOI: 10.1186/s12866-020-02061-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/24/2020] [Indexed: 02/01/2023] Open
Abstract
Background Chlamydia trachomatis is the most common sexually transmitted infection and the bacterial agent of trachoma globally. C. trachomatis undergoes a biphasic developmental cycle involving an infectious elementary body and a replicative reticulate body. Little is currently known about the gene expression dynamics of host cell mRNAs, lncRNAs, and miRNAs at different stages of C. trachomatis development. Results Here, we performed RNA-seq and miR-seq on HeLa cells infected with C. trachomatis serovar E at 20 h post-infection (hpi) and 44 hpi with or without IFN-γ treatment. Our study identified and validated differentially expressed host cell mRNAs, lncRNAs, and miRNAs during infection. Host cells at 20 hpi showed the most differential upregulation of both coding and non-coding genes while at 44 hpi in the presence of IFN-γ resulted in a dramatic downregulation of a large proportion of host genes. Using RT-qPCR, we validated the top 5 upregulated mRNAs and miRNAs, which are specific for different stages of C. trachomatis development. One of the commonly expressed miRNAs at all three stages of C. trachomatis development, miR-193b-5p, showed significant expression in clinical serum samples of C. trachomatis-infected patients as compared to sera from healthy controls and HIV-1-infected patients. Furthermore, we observed significant upregulation of antigen processing and presentation, and T helper cell differentiation pathways at 20 hpi whereas T cell receptor, mTOR, and Rap1 pathways were modulated at 44 hpi. Treatment with IFN-γ at 44 hpi showed the upregulation of cytokine-cytokine receptor interaction, FoxO signaling, and Ras signaling pathways. Conclusions Our study documented transcriptional manipulation of the host cell genomes and the upregulation of stage-specific signaling pathways necessary for the survival of the pathogen and could serve as potential biomarkers in the diagnosis and management of the disease.
Collapse
Affiliation(s)
- Emmanuel Enoch Dzakah
- Dermatology Hospital of Southern Medical University, Guangzhou, China.,Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Liping Huang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yaohua Xue
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shuai Wei
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaolin Wang
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Hongliang Chen
- The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China
| | - Jingwei Shui
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Foster Kyei
- Department of Molecular Biology and Biotechnology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Farooq Rashid
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Heping Zheng
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bing Yang
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Shixing Tang
- Dermatology Hospital of Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
13
|
Kuratli J, Leonard CA, Nufer L, Marti H, Schoborg R, Borel N. Maraviroc, celastrol and azelastine alter Chlamydia trachomatis development in HeLa cells. J Med Microbiol 2020; 69:1351-1366. [PMID: 33180014 DOI: 10.1099/jmm.0.001267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Introduction . Chlamydia trachomatis (Ct) is an obligate intracellular bacterium, causing a range of diseases in humans. Interactions between chlamydiae and antibiotics have been extensively studied in the past.Hypothesis/Gap statement: Chlamydial interactions with non-antibiotic drugs have received less attention and warrant further investigations. We hypothesized that selected cytokine inhibitors would alter Ct growth characteristics in HeLa cells.Aim. To investigate potential interactions between selected cytokine inhibitors and Ct development in vitro.Methodology. The CCR5 receptor antagonist maraviroc (Mara; clinically used as HIV treatment), the triterpenoid celastrol (Cel; used in traditional Chinese medicine) and the histamine H1 receptor antagonist azelastine (Az; clinically used to treat allergic rhinitis and conjunctivitis) were used in a genital in vitro model of Ct serovar E infecting human adenocarcinoma cells (HeLa).Results. Initial analyses revealed no cytotoxicity of Mara up to 20 µM, Cel up to 1 µM and Az up to 20 µM. Mara exposure (1, 5, 10 and 20 µM) elicited a reduction of chlamydial inclusion numbers, while 10 µM reduced chlamydial infectivity. Cel 1 µM, as well as 10 and 20 µM Az, reduced chlamydial inclusion size, number and infectivity. Morphological immunofluorescence and ultrastructural analysis indicated that exposure to 20 µM Az disrupted chlamydial inclusion structure. Immunofluorescence evaluation of Cel-incubated inclusions showed reduced inclusion sizes whilst Mara incubation had no effect on inclusion morphology. Recovery assays demonstrated incomplete recovery of chlamydial infectivity and formation of structures resembling typical chlamydial inclusions upon Az removal.Conclusion. These observations indicate that distinct mechanisms might be involved in potential interactions of the drugs evaluated herein and highlight the need for continued investigation of the interaction of commonly used drugs with Chlamydia and its host.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Lisbeth Nufer
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| | - Robert Schoborg
- Departement of Biomedical Sciences, Center for Infectious Disease, Inflammation and Immunity, Quillen College in Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Nicole Borel
- Institute of Veterinary Pathology (IVPZ) and Center for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland
| |
Collapse
|
14
|
Marangoni A, Zalambani C, Marziali G, Salvo M, Fato R, Foschi C, Re MC. Low-dose doxycycline induces Chlamydia trachomatis persistence in HeLa cells. Microb Pathog 2020; 147:104347. [PMID: 32561420 DOI: 10.1016/j.micpath.2020.104347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
Chlamydia persistence is a viable but non-replicative stage, induced by several sub-lethal stressor agents, including beta-lactam antibiotics. So far, no data about the connection between doxycycline and chlamydial persistence has been described in literature. We investigated the ability of doxycycline to induce C. trachomatis (CT) persistence in an in vitro model of epithelial cell infection (HeLa cells), comparing the results with the well-established model of penicillin-induced persistence. The effect of doxycycline was explored on 10 different CT strains by analysing (i) the presence of aberrant inclusions, (ii) chlamydial recovery, (iii) the expression of different chlamydial genes (omcB, euo, Ct110, Ct604, Ct755, HtrA) and (iv) the effects on epithelial cell viability. For each strain, the presence of foreign genomic islands responsible of tetracycline resistance was excluded. We found that low doses of doxycycline can induce a condition of CT persistence. For concentrations of doxycycline equal to 0.03-0.015 mg/L, CT inclusions are smaller and aberrant and CT cycle is characterized by the presence of viable but non-dividing RBs with the complete abolishment of chlamydial cytotoxic effect. Infectious EBs can be recovered after removal of the drug. During doxycycline-induced persistence, the expression of the late gene omcB is decreased, indicating the blocking of RB-to-EB conversion. Conversely, as for penicillin G, a significant up-regulation of the stress response HtrA gene is found in doxycycline-treated cells. This study provides a novel in vitro cell model to examine the characteristics of doxycycline-induced persistent CT infection.
Collapse
Affiliation(s)
- Antonella Marangoni
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| | - Chiara Zalambani
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| | - Giacomo Marziali
- University of Bologna, FaBiT Department, Via Irnerio 48, Bologna, Italy
| | - Melissa Salvo
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| | - Romana Fato
- University of Bologna, FaBiT Department, Via Irnerio 48, Bologna, Italy
| | - Claudio Foschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy.
| | - Maria Carla Re
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| |
Collapse
|
15
|
Comparison of In Vitro Chlamydia muridarum Infection Under Aerobic and Anaerobic Conditions. Curr Microbiol 2020; 77:1580-1589. [PMID: 32253468 DOI: 10.1007/s00284-020-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/24/2020] [Indexed: 10/24/2022]
Abstract
Although Chlamydia infects host body regions that are hypoxic to anoxic, standard Chlamydiae culture conditions are in CO2 enriched (5%) atmospheric oxygen (21%). Because of its success in causing disease in principally anaerobic body sites, e.g., vaginal tract, we hypothesize that Chlamydia has an anaerobic life cycle that plays a role in its maintenance in the host. Using a model system developed for the anaerobic culture of mammalian cells, we assessed the anoxic infectious cycle of C. muridarum in anaerobically cultured HeLa 229 cells. In the absence of oxygen, C. muridarum is capable of going through their life cycle, although its cycle is slowed (2 days post-infection anaerobic vs. 1 day aerobic). Interestingly, in addition to a slower rate of replication, there is a reduction in Chlamydia inclusion number and size as compared to aerobic controls. Anaerobic infected host cell physiology also changed with IL-6 and IL-8 production significantly lower (p ≤ 0.05) compared to aerobic infected host cells (day 4 post-infection). These findings demonstrate that Chlamydia are capable of replicating in the absence of oxygen.
Collapse
|
16
|
Foschi C, Bortolotti M, Polito L, Marangoni A, Zalambani C, Liparulo I, Fato R, Bolognesi A. Insights into penicillin-induced Chlamydia trachomatis persistence. Microb Pathog 2020; 142:104035. [PMID: 32017957 DOI: 10.1016/j.micpath.2020.104035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 01/31/2020] [Indexed: 12/23/2022]
Abstract
Chlamydia persistence is a viable, but non-cultivable, growth stage, resulting in a long-term relationship with the infected host cell. In vitro, this condition can be induced by different stressor agents, including beta-lactam antibiotics, as penicillin. The aim of this study was to get new insights into the interactions between Chlamydia trachomatis (serovars D and L2) and the epithelial host cells (HeLa) during persistence condition. In particular, we evaluated the following aspects, by comparing the normal chlamydial development cycle with penicillin-induced persistence: (i) cell survival/death, (ii) externalization of phosphatidylserine, (iii) caspase 1 and caspase 3/7 activation, and (iv) reactive oxygen species (ROS) production by the infected cells. At 72 h post-infection, the cytotoxic effect displayed by CT was completely abolished for both serovars and for all levels of multiplicity of infection only in the cells with aberrant CT inclusions. At the same time, CT was able to switch off the exposure of the lipid phosphatidylserine on the surface of epithelial cells and to strongly inhibit the activation of caspase 1 and caspase 3/7 only in penicillin-treated cells. Forty-eight hours post-infection, CT elicited a significant ROS expression both in case of a normal cycle and in case of persistence. However, serovar L and penicillin-free infection activated a higher ROS production compared to serovar D and to penicillin-induced persistence, respectively. In conclusion, we added knowledge to the cellular dynamics taking place during chlamydial persistence, demonstrating that CT creates a suitable niche to survive, switching off signals able to activate phagocytes/leukocytes recruitment. Nevertheless, persistent CT elicits ROS production by the infected cells, potentially contributing to the onset of chronic inflammation and tissue damages.
Collapse
Affiliation(s)
- Claudio Foschi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| | - Massimo Bortolotti
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Unit, Via S. Giacomo 14, Bologna, Italy
| | - Letizia Polito
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Unit, Via S. Giacomo 14, Bologna, Italy
| | - Antonella Marangoni
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy.
| | - Chiara Zalambani
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Microbiology Unit, Via Massarenti 9, Bologna, Italy
| | - Irene Liparulo
- University of Bologna, FaBiT Department, Via Irnerio 48, Bologna, Italy
| | - Romana Fato
- University of Bologna, FaBiT Department, Via Irnerio 48, Bologna, Italy
| | - Andrea Bolognesi
- University of Bologna, Department of Experimental, Diagnostic and Specialty Medicine-DIMES, General Pathology Unit, Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|
17
|
Fosmidomycin, an inhibitor of isoprenoid synthesis, induces persistence in Chlamydia by inhibiting peptidoglycan assembly. PLoS Pathog 2019; 15:e1008078. [PMID: 31622442 PMCID: PMC6818789 DOI: 10.1371/journal.ppat.1008078] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/29/2019] [Accepted: 09/12/2019] [Indexed: 11/19/2022] Open
Abstract
The antibiotic, fosmidomycin (FSM) targets the methylerythritol phosphate (MEP) pathway of isoprenoid synthesis by inhibiting the essential enzyme, 1-deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr) and is lethal to intracellular parasites and bacteria. The obligate intracellular bacterial pathogen, Chlamydia trachomatis, alternates between two developmental forms: the extracellular, infectious elementary body (EB), and the intracellular, replicative form called the reticulate body (RB). Several stressful growth conditions including iron deprivation halt chlamydial cell division and cause development of a morphologically enlarged, but viable form termed an aberrant body (AB). This phenotype constitutes the chlamydial developmental state known as persistence. This state is reversible as removal of the stressor allows the chlamydiae to re-enter and complete the normal developmental cycle. Bioinformatic analysis indicates that C. trachomatis encodes a homolog of Dxr, but its function and the requirement for isoprenoid synthesis in chlamydial development is not fully understood. We hypothesized that chlamydial Dxr (DxrCT) is functional and that the methylerythritol phosphate (MEP) pathway is required for normal chlamydial development. Thus, FSM exposure should be lethal to C. trachomatis. Overexpression of chlamydial Dxr (DxrCT) in Escherichia coli under FSM exposure and in a conditionally lethal dxr mutant demonstrated that DxrCT functions similarly to E. coli Dxr. When Chlamydia-infected cultures were exposed to FSM, EB production was significantly reduced. However, titer recovery assays, electron microscopy, and peptidoglycan labeling revealed that FSM inhibition of isoprenoid synthesis is not lethal to C. trachomatis, but instead induces persistence. Bactoprenol is a critical isoprenoid required for peptidoglycan precursor assembly. We therefore conclude that FSM induces persistence in Chlamydia by preventing bactoprenol production necessary for peptidoglycan precursor assembly and subsequent cell division.
Collapse
|
18
|
Mosolygó T, Mouwakeh A, Hussein Ali M, Kincses A, Mohácsi-Farkas C, Kiskó G, Spengler G. Bioactive Compounds of Nigella Sativa Essential Oil as Antibacterial Agents against Chlamydia Trachomatis D. Microorganisms 2019; 7:microorganisms7090370. [PMID: 31546941 PMCID: PMC6780748 DOI: 10.3390/microorganisms7090370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/02/2023] Open
Abstract
Urogenital tract infection caused by obligate intracellular bacterium Chlamydia trachomatis D (CtrD) is a leading cause of sexually transmitted diseases. Essential oil (EO) of Nigella sativa has a broad antimicrobial spectrum. The aim of this study was to evaluate the antimicrobial activity of the bioactive compounds (p-cymene, thymoquinone, carvacrol, and thymol) of N. sativa EO against CtrD. The cytotoxic effects of the compounds were determined by MTT assay. In order to quantify the anti-chlamydial activity of the compounds, HeLa cells were infected with CtrD or CtrD treated previously with the compounds. The titer of the infectious CtrD was determined by indirect immunofluorescence assay. The minimum inhibitory concentrations of the compounds were evaluated by direct quantitative PCR. None of the compounds showed a cytotoxic effect on HeLa cells in the concentrations tested. According to the immunofluorescence assay, all of the compounds significantly inhibited the growth of CtrD. The quantitative PCR revealed that the minimum concentration that exerted anti-chlamydial activity was 3.12 µM in the case of thymoquinone and p-cymene, while that of carvacrol and thymol was 6.25 µM. Therefore, it can be concluded that bioactive compounds of N. sativa EO could be used as effective antimicrobial agents against CtrD.
Collapse
Affiliation(s)
- Tímea Mosolygó
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Ahmad Mouwakeh
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary.
| | - Munira Hussein Ali
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Annamária Kincses
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| | - Csilla Mohácsi-Farkas
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary.
| | - Gabriella Kiskó
- Department of Microbiology and Biotechnology, Faculty of Food Science, Szent István University, 1118 Budapest, Hungary.
| | - Gabriella Spengler
- Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary.
| |
Collapse
|
19
|
Chlamydia and Its Many Ways of Escaping the Host Immune System. J Pathog 2019; 2019:8604958. [PMID: 31467721 PMCID: PMC6699355 DOI: 10.1155/2019/8604958] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
The increasing number of new cases of Chlamydia infection worldwide may be attributed to the pathogen's ability to evade various host immune responses. Summarized here are means of evasion utilized by Chlamydia enabling survival in a hostile host environment. The pathogen's persistence involves a myriad of molecular interactions manifested in a variety of ways, e.g., formation of membranous intracytoplasmic inclusions and cytokine-induced amino acid synthesis, paralysis of phagocytic neutrophils, evasion of phagocytosis, inhibition of host cell apoptosis, suppression of antigen presentation, and induced expression of a check point inhibitor of programmed host cell death. Future studies could focus on the targeting of these molecules associated with immune evasion, thus limiting the spread and tissue damage caused by this pathogen.
Collapse
|
20
|
Álvarez D, Caro MR, Buendía AJ, Schnee C, Ortega N, Murcia-Belmonte A, Salinas J. Effect of female sex hormones on the developmental cycle of Chlamydia abortus compared to a penicillin-induced model of persistent infection. BMC Vet Res 2019; 15:259. [PMID: 31340824 PMCID: PMC6657046 DOI: 10.1186/s12917-019-2013-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Chlamydia abortus, an obligate intracellular pathogen with an affinity for placenta, causes reproductive failure. In non-pregnant animals, an initial latent infection is established until the next gestation, when the microorganism is reactivated, causing abortion. The precise mechanisms that trigger the awakening of C. abortus are still unknown. Sexual hormones such as estradiol and progesterone have been shown to affect the outcome of infection in other species of the family Chlamydiaceae, while estrogens increase chlamydial infection, progesterone has the opposite effect. To try to establish whether there is a relationship between these events and the latency/ reactivation of C. abortus in the reproductive tract of small ruminants, ovine endometrial (LE) and trophoblastic (AH-1) cells were treated with estradiol or progesterone prior to their infection with C. abortus. The results are compared with those obtained for treatment with penicillin prior to infection, which is a well-established model for studying persistent infection in other chlamydial species. Cells were examined by transmission electron microscopy, and an mRNA expression analysis of 16 genes related to the chlamydial developmental cycle was made. RESULTS The changes observed in this study by the action of sex hormones seem to depend on the type of cell where the infection develops. In addition, while the changes are morphologically similar to those induced by treatment with penicillin, the patterns of gene expression are different. Gene expression patterns therefore, seem to depend on the persistence induced models of C. abortus used. Hormone treatments induced aberrant forms in infected endometrial cells but did not affect the chlamydial morphology in trophoblast cells. At the genetic level, hormones did not induce significant changes in the expression of the studied genes. CONCLUSIONS The results suggest that penicillin induces a state of persistence in in vitro cultured C. abortus with characteristic morphological features and gene transcriptional patterns. However, the influence of hormones on the C. abortus developmental cycle is mediated by changes in the host cell environment. Furthermore, a persistent state in C. abortus cannot be characterised by a single profile of gene expression pattern, but may change depending on the model used to induce persistence.
Collapse
Affiliation(s)
- D Álvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - M R Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain.
| | - A J Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence 'Campus Mare Nostrum, Universidad de Murcia, Murcia, Spain
| | - C Schnee
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - N Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - A Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| | - J Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria. Campus de Espinardo, Universidad de Murcia, 30100, Murcia, Spain
| |
Collapse
|
21
|
Panzetta ME, Luján AL, Bastidas RJ, Damiani MT, Valdivia RH, Saka HA. Ptr/CTL0175 Is Required for the Efficient Recovery of Chlamydia trachomatis From Stress Induced by Gamma-Interferon. Front Microbiol 2019; 10:756. [PMID: 31024512 PMCID: PMC6467971 DOI: 10.3389/fmicb.2019.00756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/26/2019] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial pathogen in humans and a frequent cause of asymptomatic, persistent infections leading to serious complications, particularly in young women. Chlamydia displays a unique obligate intracellular lifestyle involving the infectious elementary body and the replicative reticulate body. In the presence of stressors such as gamma-interferon (IFNγ) or beta-lactam antibiotics, C. trachomatis undergoes an interruption in its replication cycle and enters a viable but non-cultivable state. Upon removal of the stressors, surviving C. trachomatis resume cell division and developmental transitions. In this report, we describe a genetic screen to identify C. trachomatis mutants with defects in recovery from IFNγ- and/or penicillin-induced stress and characterized a chemically derived C. trachomatis mutant strain that exhibited a significant decrease in recovery from IFNγ- but not penicillin-induced stress. Through lateral gene transfer and targeted insertional gene inactivation we identified ptr, encoding a predicted protease, as a gene required for recovery from IFNγ-induced stress. A C. trachomatis LGV-L2 ptr-null strain displayed reduced generation of infectious progeny and impaired genome replication upon removal of IFNγ. This defect was restored by introducing a wild type copy of ptr on a plasmid, indicating that Ptr is required for a rapid growth upon removal of IFNγ. Ptr was expressed throughout the developmental cycle and localized to the inclusion lumen. Overall, our findings indicate that the putative secreted protease Ptr is required for C. trachomatis to specifically recover from IFNγ- but not penicillin-induced stress.
Collapse
Affiliation(s)
- María E Panzetta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustín L Luján
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina.,Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Robert J Bastidas
- Center for Host-Microbe Interactions, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - María T Damiani
- Instituto de Medicina y Biología Experimental de Cuyo, CONICET, Mendoza, Argentina.,Área de Química Biológica, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Raphael H Valdivia
- Center for Host-Microbe Interactions, Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Héctor A Saka
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
22
|
Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci 2019; 20:6. [PMID: 30786875 PMCID: PMC6383264 DOI: 10.1186/s12868-019-0489-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic studies strongly suggest that the pathophysiology of late-onset Alzheimer disease (AD) versus early-onset AD has environmental rather than genetic causes, thus revealing potentially novel therapeutic targets to limit disease progression. Several studies supporting the “pathogen hypothesis” of AD demonstrate a strong association between pathogens and the production of β-amyloid, the pathologic hallmark of AD. Although the mechanism of pathogen-induced neurodegeneration of AD remains unclear, astrocytes, a key player of the CNS innate immune response and producer/metabolizer of β-amyloid, have been implicated. We hypothesized that Chlamydia pneumoniae infection of human astrocytes alters the expression of the amyloid precursor protein (APP)-processing secretases, ADAM10, BACE1, and PSEN1, to promote β-amyloid formation. Utilizing immunofluorescent microscopy, molecular, and biochemical approaches, these studies explore the role of an intracellular respiratory pathogen, Chlamydia pneumoniae, as an environmental trigger for AD pathology. Human astrocytoma cells in vitro were infected with Chlamydia pneumoniae over the course of 6–72 h. The gene and protein expression, as well as the enzymatic activity of non-amyloidogenic (ADAM10), and pro-amyloidogenic (BACE1 and PSEN1) secretases were qualitatively and quantitatively assessed. In addition, the formation of toxic amyloid products as an outcome of pro-amyloidogenic APP processing was evaluated through various modalities. Results Chlamydia pneumoniae infection of human astrocytoma cells promoted the transcriptional upregulation of numerous genes implicated in host neuroinflammation, lipid homeostasis, microtubule function, and APP processing. Relative to that of uninfected astrocytes, BACE1 and PSEN1 protein levels were enhanced by nearly twofold at 48–72 h post-Chlamydia pneumoniae infection. The processing of APP in Chlamydia pneumoniae-infected astrocytes favors the pro-amyloidogenic pathway, as demonstrated by an increase in enzymatic activity of BACE1, while that of ADAM10 was decreased. Fluorescence intensity of β-amyloid and ELISA-quantified levels of soluble-APP by products revealed temporally similar increases, confirming a BACE1/PSEN1-mediated processing of APP. Conclusions Our findings suggest that Chlamydia pneumoniae infection of human astrocytes promotes the pro-amyloidogenic pathway of APP processing through the upregulation of expression and activity of β-secretase, upregulated expression of γ-secretase, and decreased activity of α-secretase. These effects of astrocyte infection provide evidence for a direct link between Chlamydia pneumoniae and AD pathology. Electronic supplementary material The online version of this article (10.1186/s12868-019-0489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Danielle B Lopez
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
23
|
Panzetta ME, Valdivia RH, Saka HA. Chlamydia Persistence: A Survival Strategy to Evade Antimicrobial Effects in-vitro and in-vivo. Front Microbiol 2018; 9:3101. [PMID: 30619180 PMCID: PMC6299033 DOI: 10.3389/fmicb.2018.03101] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
The Chlamydiaceae comprise a group of highly adapted bacterial pathogens sharing a unique intracellular lifestyle. Three Chlamydia species are pathogenic to humans: Chlamydia trachomatis, Chlamydia pneumoniae, and Chlamydia psittaci. C. trachomatis is the leading bacterial cause of sexually-transmitted infections and infectious blindness worldwide. Chlamydia pneumoniae is a major cause of community-acquired atypical pneumonia. C. psittaci primarily affects psittacine birds and can be transmitted to humans causing psittacosis, a potentially fatal form of pneumonia. As opposed to other bacterial pathogens, the spread of clinically relevant antimicrobial resistance genes does not seem to be a major problem for the treatment of Chlamydia infections. However, when exposed to stressing conditions, like those arising from exposure to antimicrobial stimuli, these bacteria undergo a temporary interruption in their replication cycle and enter a viable but non-cultivable state known as persistence. When the stressing conditions are removed, Chlamydia resumes replication and generation of infectious particles. This review gives an overview of the different survival strategies used by Chlamydia to evade the deleterious effects of penicillin and IFNγ, with a focus on the different models used to study Chlamydia persistence, their contribution to elucidating the molecular basis of this complex phenomenon and their potential implications for studies in animal models of infection.
Collapse
Affiliation(s)
- Maria Emilia Panzetta
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, United States
| | - Hector Alex Saka
- CIBICI-CONICET, Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
24
|
Kuratli J, Pesch T, Marti H, Leonard CA, Blenn C, Torgerson P, Borel N. Water Filtered Infrared A and Visible Light (wIRA/VIS) Irradiation Reduces Chlamydia trachomatis Infectivity Independent of Targeted Cytokine Inhibition. Front Microbiol 2018; 9:2757. [PMID: 30524392 PMCID: PMC6262300 DOI: 10.3389/fmicb.2018.02757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/29/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the major cause of infectious blindness and represents the most common bacterial sexually transmitted infection worldwide. Considering the potential side effects of antibiotic therapy and increasing threat of antibiotic resistance, alternative therapeutic strategies are needed. Previous studies showed that water filtered infrared A alone (wIRA) or in combination with visible light (wIRA/VIS) reduced C. trachomatis infectivity. Furthermore, wIRA/VIS irradiation led to secretion of pro-inflammatory cytokines similar to that observed upon C. trachomatis infection. We confirmed the results of previous studies, namely that cytokine secretion (IL-6, IL-8, and RANTES/CCL5) upon wIRA/VIS treatment, and the subsequent reduction of chlamydial infectivity, are independent of the addition of cycloheximide, a host protein synthesis inhibitor. Reproducible cytokine release upon irradiation indicated that cytokines might be involved in the anti-chlamydial mechanism of wIRA/VIS. This hypothesis was tested by inhibiting IL-6, IL-8, and RANTES secretion in C. trachomatis or mock-infected cells by gene silencing or pharmaceutical inhibition. Celastrol, a substance derived from Trypterygium wilfordii, used in traditional Chinese medicine and known for anti-cancer and anti-inflammatory effects, was used for IL-6 and IL-8 inhibition, while Maraviroc, a competitive CCR5 antagonist and anti-HIV drug, served as a RANTES/CCL5 inhibitor. HeLa cell cytotoxicity and impact on chlamydial morphology, size and inclusion number was evaluated upon increasing inhibitor concentration, and concentrations of 0.1 and 1 μM Celastrol and 10 and 20 μM Maraviroc were subsequently selected for irradiation experiments. Celastrol at any concentration reduced chlamydial infectivity, an effect only observed for 20 μM Maraviroc. Triple dose irradiation (24, 36, 40 hpi) significantly reduced chlamydial infectivity regardless of IL-6, IL-8, or RANTES/CCL5 gene silencing, Celastrol or Maraviroc treatment. Neither gene silencing nor pharmaceutical cytokine inhibition provoked the chlamydial stress response. The anti-chlamydial effect of wIRA/VIS is independent of cytokine inhibition under all conditions evaluated. Thus, factors other than host cell cytokines must be involved in the working mechanism of wIRA/VIS. This study gives a first insight into the working mechanism of wIRA/VIS in relation to an integral component of the host immune system and supports the potential of wIRA/VIS as a promising new tool for treatment in trachoma.
Collapse
Affiliation(s)
- Jasmin Kuratli
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian Blenn
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Paul Torgerson
- Section of Veterinary Epidemiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Lantos I, Virok DP, Mosolygó T, Rázga Z, Burián K, Endrész V. Growth characteristics of Chlamydia trachomatis in human intestinal epithelial Caco-2 cells. Pathog Dis 2018; 76:4939475. [PMID: 29635314 DOI: 10.1093/femspd/fty024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/15/2018] [Indexed: 12/13/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium causing infections of the eyes, urogenital and respiratory tracts. Asymptomatic, repeat and chronic infections with C. trachomatis are common in the urogenital tract potentially causing severe reproductive pathology. Animal models of infection and epidemiological studies suggested the gastrointestinal tract as a reservoir of chlamydiae and as a source of repeat urogenital infections. Thus, we investigated the growth characteristics of C. trachomatis in human intestinal epithelial Caco-2 cells and the infection-induced defensin production. Immunofluorescence staining and transmission electron microscopy showed the presence of chlamydial inclusions in the cells. Chlamydial DNA and viable C. trachomatis were recovered from Caco-2 cells in similar quantity compared to that detected in the usual in vitro host cell of this bacterium. The kinetics of expression of selected C. trachomatis genes in Caco-2 cells indicated prolonged replication with persisting high expression level of late genes and of heat shock protein gene groEL. Replication of C. trachomatis induced moderate level of β-defensin-2 production by Caco-2 cells, which might contribute to avoidance of immune recognition in the intestine. According to our results, Caco-2 cells support C. trachomatis replication, suggesting that the gastrointestinal tract is a site of residence for these bacteria.
Collapse
Affiliation(s)
- Ildikó Lantos
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Dezso P Virok
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Tímea Mosolygó
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Zsolt Rázga
- Department of Pathology, University of Szeged, H-6720, Állomás Str. 2, Hungary
| | - Katalin Burián
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| | - Valéria Endrész
- Department of Medical Microbiology and Immunobiology, University of Szeged, H-6720, Szeged, Dóm Sq. 10, Hungary
| |
Collapse
|
26
|
Marti H, Borel N, Dean D, Leonard CA. Evaluating the Antibiotic Susceptibility of Chlamydia - New Approaches for in Vitro Assays. Front Microbiol 2018; 9:1414. [PMID: 30018602 PMCID: PMC6037721 DOI: 10.3389/fmicb.2018.01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Pigs are the natural hosts of Chlamydia suis, the only Chlamydia species known to spontaneously acquire homotypic resistance conferred by a class C tetracycline resistance gene. Various susceptibility assays have existed for several years, but there is no widely accepted, standardized assay to determine chlamydial antibiotic susceptibility. In this study, we developed new approaches to determine the in vitro susceptibility of Chlamydia to different antibiotics in view of existing protocols. Specifically, the minimal inhibitory concentration (MIC) is based on a consensus of both inclusion number reduction and alteration of inclusion size and morphology upon antibiotic exposure. In addition to these, we employed a recovery assay, allowing observation of the chlamydial response to drug removal and subsequent recovery, as compared to both continued exposure and to the unexposed control. We propose a simple and fast screening method to detect tetracycline resistant C. suis strains within 2 to 3 days with minimal use of consumables. For proof of principle, we evaluated the susceptibility of three C. suis field strains and the reference strain S45/6 to tetracycline, sulfamethoxazole, and penicillin, antibiotics commonly used to prevent respiratory and gastrointestinal diseases on fattening pig farms. We found that tetracycline sensitive strains can easily be distinguished from resistant strains using the evaluation parameters proposed in this study. Moreover, we report that S45/6 is sensitive to sulfamethoxazole while all evaluated C. suis field strains showed some degree of sulfamethoxazole resistance. Finally, we confirm that Penicillin G induces the chlamydial stress response in all evaluated C. suis strains.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, United States.,Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States.,School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Cory A Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Impact of Active Metabolism on Chlamydia trachomatis Elementary Body Transcript Profile and Infectivity. J Bacteriol 2018; 200:JB.00065-18. [PMID: 29735758 DOI: 10.1128/jb.00065-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
Bacteria of the genus Chlamydia include the significant human pathogens Chlamydia trachomatis and C. pneumoniae All chlamydiae are obligate intracellular parasites that depend on infection of a host cell and transition through a biphasic developmental cycle. Following host cell invasion by the infectious elementary body (EB), the pathogen transitions to the replicative but noninfectious reticulate body (RB). Differentiation of the RB back to the EB is essential to generate infectious progeny. While the EB form has historically been regarded as metabolically inert, maintenance of infectivity during incubation with specific nutrients has revealed active maintenance of the infectious phenotype. Using transcriptome sequencing, we show that the transcriptome of extracellular EBs incubated under metabolically stimulating conditions does not cluster with germinating EBs but rather with the transcriptome of EBs isolated directly from infected cells. In addition, the transcriptional profile of the extracellular metabolizing EBs more closely resembled that of EB production than germination. Maintenance of infectivity of extracellular EBs was achieved by metabolizing chemically diverse compounds, including glucose 6-phosphate, ATP, and amino acids, all of which can be found in extracellular environments, including mucosal secretions. We further show that the EB cell type actively maintains infectivity in the inclusion after terminal differentiation. Overall, these findings contribute to the emerging understanding that the EB cell form is actively maintained through metabolic processes after terminal differentiation to facilitate prolonged infectivity within the inclusion and under host cell free conditions, for example, following deposition at mucosal surfaces.IMPORTANCE Chlamydiae are obligate intracellular Gram-negative bacteria that are responsible for a wide range of diseases in both animal and human hosts. According to the Centers for Disease Control and Prevention, C. trachomatis is the most frequently reported sexually transmitted infection in the United States, costing the American health care system nearly $2.4 billion annually. Every year, there are over 4 million new cases of Chlamydia infections in the United States and an estimated 100 million cases worldwide. To cause disease, Chlamydia must successfully complete its complex biphasic developmental cycle, alternating between an infectious cell form (EB) specialized for initiating entry into target cells and a replicative form (RB) specialized for creating and maintaining the intracellular replication niche. The EB cell form has historically been considered metabolically quiescent, a passive entity simply waiting for contact with a host cell to initiate the next round of infection. Recent studies and data presented here demonstrate that the EB maintains its infectious phenotype by actively metabolizing a variety of nutrients. Therefore, the EB appears to have an active role in chlamydial biology, possibly within multiple environments, such as mucosal surfaces, fomites, and inside the host cell after formation.
Collapse
|
28
|
Shima K, Kaeding N, Ogunsulire IM, Kaufhold I, Klinger M, Rupp J. Interferon-γ interferes with host cell metabolism during intracellular Chlamydia trachomatis infection. Cytokine 2018; 112:95-101. [PMID: 29885991 DOI: 10.1016/j.cyto.2018.05.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/18/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Interferon-γ (IFN-γ) is a central mediator of host immune responses including T-cell differentiation and activation of macrophages for the control of bacterial pathogens. Anti-bacterial mechanisms of IFN-γ against the obligate intracellular bacteria Chlamydiatrachomatis in epithelial cells have been intensively investigated in the past, focusing on cellular tryptophan depletion by an IFN-γ induced expression of the indoleamine 2, 3-deoxygenase (IDO). In this study, we could show that IFN-γ treatment caused a significant reduction of the host cell glycolysis that was accompanied by a reduction of glucose transporter-1 (GLUT1) and hypoxia inducible factor-1α (HIF-1α) expression. Furthermore, C. trachomatis induced enhancement of glycolytic and mitochondrial activation were significantly suppressed by IFN-γ treatment. We could further show that glucose starvation, as observed under IFN-γ treatment, was associated with an attenuated antimicrobial efficacy of doxycycline (DOX) against C. trachomatis. In conclusions, anti-chlamydial activity of IFN-γ goes beyond tryptophan depletion including interference with cellular energy metabolism resulting reduced progeny, but also impaired antimicrobial susceptibility of C. trachomatis.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany.
| | - Nadja Kaeding
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | | | - Inga Kaufhold
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | | | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany; German Center for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, Germany
| |
Collapse
|
29
|
Xue Y, Zheng H, Mai Z, Qin X, Chen W, Huang T, Chen D, Zheng L. An in vitro model of azithromycin-induced persistent Chlamydia trachomatis infection. FEMS Microbiol Lett 2018; 364:3958793. [PMID: 28854672 DOI: 10.1093/femsle/fnx145] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Single-dose azithromycin is recommended for treating Chlamydia trachomatis infections. Here, we established an in vitro cell model of azithromycin-induced persistent infection. Azithromycin inhibited the replication of C. trachomatis in a dose-time-dependent manner. Electron microscopy indicated that small inclusions in the induced model contained enlarged, aberrant and non-infectious reticulate bodies. RT-PCR showed that C. trachomatis still has the ability to express the unprocessed 16S rRNA gene in the model and that C. trachomatis recovered after the removal of azithromycin with a peak recovery time of 24 h. The mutations in 23S rRNA, L4 and L22 genes were not found in persistent infection, and qRT-PCR analysis showed that the relative expression level of euo in azithromycin treated infection was upregulated while omcB was downregulated. In summary, this study provides a novel in vitro cell model to examine the characteristics of azithromycin-induced persistent infection and contribute to the development of treatments for C. trachomatis infection.
Collapse
Affiliation(s)
- Yaohua Xue
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou 510515, China.,Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Heping Zheng
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Zhida Mai
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Xiaolin Qin
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Wentao Chen
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Tao Huang
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Daxiang Chen
- Department of Research Center, Dermatology Hospital of Southern Medical University/Guangdong Provincial Dermatology Hospital, No. 2 Lujing Road, Guangzhou 510091, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou 510515, China
| |
Collapse
|
30
|
Karhu E, Isojärvi J, Vuorela P, Hanski L, Fallarero A. Identification of Privileged Antichlamydial Natural Products by a Ligand-Based Strategy. JOURNAL OF NATURAL PRODUCTS 2017; 80:2602-2608. [PMID: 29043803 DOI: 10.1021/acs.jnatprod.6b01052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The obligate intracellular pathogen Chlamydia pneumoniae remains a difficult target for antimicrobial therapy. Owing to the permeability barrier placed by bacterial and host vacuolar membranes, as well as the propensity of the bacterium for persistent infections, treatment failures are common. Despite the urgent need for new antichlamydial compounds, their discovery is challenged by the technically demanding assay procedures and lack of validated targets. An alternative strategy of using naturally occurring compounds and their derivatives against C. pneumoniae is presented. The strategy consists of the application of ligand-based virtual screening to a natural product library of 502 compounds with the ChemGPS-NP chemography tool followed by in vitro antichlamydial assays. The reference set used for the 2D similarity search was constructed of 19 known antichlamydial compounds of plant origin. Based on the similarity screen, 53 virtual hits were selected for in vitro testing. Six compounds (leads) were identified that cause ≥50% C. pneumoniae growth inhibition and showed no impact on host cell viability. The leads fall into completely new antichlamydial chemotypes, one of them being mycophenolic acid (IC50 value 0.3 μM). The outcome indicates that using this flipped, target-independent strategy is useful for facilitating the antimicrobial lead discovery against challenging microbes.
Collapse
Affiliation(s)
- Elina Karhu
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Janne Isojärvi
- Bioinformatics, Molecular Plant Biology, Department of Biochemistry, University of Turku , Vatselankatu 2, Turku FI-20500, Finland
| | - Pia Vuorela
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Leena Hanski
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| | - Adyary Fallarero
- Exploration of Anti-Infectives Research Group, Pharmaceutical Design and Discovery, Drug Research Program, Faculty of Pharmacy, University of Helsinki , Viikinkaari 5E, Helsinki FI-00014, Finland
| |
Collapse
|
31
|
Chen Z, Chen L, Wang C, Yu J, Bai Q, Yu M, Song Y, Hu Y, Wu Y. Transcription of seven genes in a model of interferon-γ-induced persistent Chlamydia psittaci infection. Mol Med Rep 2017; 16:4835-4842. [DOI: 10.3892/mmr.2017.7133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 05/09/2017] [Indexed: 11/05/2022] Open
|
32
|
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA. Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development. J Biol Chem 2017; 292:15121-15132. [PMID: 28739800 DOI: 10.1074/jbc.m117.784561] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/13/2017] [Indexed: 11/06/2022] Open
Abstract
Chlamydia is a prevalent sexually transmitted disease that infects more than 100 million people worldwide. Although most individuals infected with Chlamydia trachomatis are initially asymptomatic, symptoms can arise if left undiagnosed. Long-term infection can result in debilitating conditions such as pelvic inflammatory disease, infertility, and blindness. Chlamydia infection, therefore, constitutes a significant public health threat, underscoring the need for a Chlamydia-specific vaccine. Chlamydia strains express a major outer-membrane protein (MOMP) that has been shown to be an effective vaccine antigen. However, approaches to produce a functional recombinant MOMP protein for vaccine development are limited by poor solubility, low yield, and protein misfolding. Here, we used an Escherichia coli-based cell-free system to express a MOMP protein from the mouse-specific species Chlamydia muridarum (MoPn-MOMP or mMOMP). The codon-optimized mMOMP gene was co-translated with Δ49apolipoprotein A1 (Δ49ApoA1), a truncated version of mouse ApoA1 in which the N-terminal 49 amino acids were removed. This co-translation process produced mMOMP supported within a telodendrimer nanolipoprotein particle (mMOMP-tNLP). The cell-free expressed mMOMP-tNLPs contain mMOMP multimers similar to the native MOMP protein. This cell-free process produced on average 1.5 mg of purified, water-soluble mMOMP-tNLP complex in a 1-ml cell-free reaction. The mMOMP-tNLP particle also accommodated the co-localization of CpG oligodeoxynucleotide 1826, a single-stranded synthetic DNA adjuvant, eliciting an enhanced humoral immune response in vaccinated mice. Using our mMOMP-tNLP formulation, we demonstrate a unique approach to solubilizing and administering membrane-bound proteins for future vaccine development. This method can be applied to other previously difficult-to-obtain antigens while maintaining full functionality and immunogenicity.
Collapse
Affiliation(s)
- Wei He
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | - Angela C Evans
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Jia Geng
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - David Homan
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Feliza Bourguet
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Nicholas O Fischer
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Yuanpei Li
- the Department of Biochemistry and Molecular Medicine and
| | - Kit S Lam
- the Department of Biochemistry and Molecular Medicine and
| | - Aleksandr Noy
- From the Lawrence Livermore National Laboratory, Livermore, California 94550.,School of Natural Sciences, University of California, Merced, California 95343
| | - Li Xing
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - R Holland Cheng
- the Department of Molecular and Cellular Biology, University of California, Davis, California 95618
| | - Amy Rasley
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Craig D Blanchette
- From the Lawrence Livermore National Laboratory, Livermore, California 94550
| | - Kurt Kamrud
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Nathaniel Wang
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Heather Gouvis
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | | | - Bolyn Hubby
- Synthetic Genomics Vaccine Inc., La Jolla, California 92037
| | - Matthew A Coleman
- From the Lawrence Livermore National Laboratory, Livermore, California 94550, .,Radiation Oncology, School of Medicine, University of California Davis, Sacramento, California 95817, and
| |
Collapse
|
33
|
Leonard CA, Schoborg RV, Borel N. Productive and Penicillin-Stressed Chlamydia pecorum Infection Induces Nuclear Factor Kappa B Activation and Interleukin-6 Secretion In Vitro. Front Cell Infect Microbiol 2017; 7:180. [PMID: 28553623 PMCID: PMC5425588 DOI: 10.3389/fcimb.2017.00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor kappa B (NFκB) is an inflammatory transcription factor that plays an important role in the host immune response to infection. The potential for chlamydiae to activate NFκB has been an area of interest, however most work has focused on chlamydiae impacting human health. Given that inflammation characteristic of chlamydial infection may be associated with severe disease outcomes or contribute to poor overall fitness in farmed animals, we evaluated the ability of porcine chlamydiae to induce NFκB activation in vitro. C. pecorum infection induced both NFκB nuclear translocation and activation at 2 hours post infection (hpi), an effect strongly enhanced by suppression of host de novo protein synthesis. C. suis and C. trachomatis showed less capacity for NFκB activation compared to C. pecorum, suggesting a species-specific variation in NFκB activation. At 24 hpi, C. pecorum induced significant NFκB activation, an effect not abolished by penicillin (beta lactam)-induced chlamydial stress. C. pecorum-dependent secretion of interleukin 6 was also detected in the culture supernatant of infected cells at 24 hpi, and this effect, too, was unchanged by penicillin-induced chlamydial stress. Taken together, these results suggest that NFκB participates in the early inflammatory response to C. pecorum and that stressed chlamydiae can promote inflammation.
Collapse
Affiliation(s)
- Cory A Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, University of ZurichZurich, Switzerland
| | - Robert V Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State UniversityJohnson City, TN, USA
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of ZurichZurich, Switzerland
| |
Collapse
|
34
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
35
|
Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. mBio 2016; 7:mBio.01520-16. [PMID: 27999159 PMCID: PMC5181774 DOI: 10.1128/mbio.01520-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Antibiotic intervention is an effective treatment strategy for many bacterial infections and liberates bacterial antigens and stimulatory products that can induce an inflammatory response. Despite the opportunity for bacterial killing to enhance the development of adaptive immunity, patients treated successfully with antibiotics can suffer from reinfection. Studies in mouse models of Salmonella and Chlamydia infection also demonstrate that early antibiotic intervention reduces host protective immunity to subsequent infection. This heightened susceptibility to reinfection correlates with poor development of Th1 and antibody responses in antibiotic-treated mice but can be overcome by delayed antibiotic intervention, thus suggesting a requirement for sustained T cell stimulation for protection. Although the contribution of memory T cell subsets is imperfectly understood in both of these infection models, a protective role for noncirculating memory cells is suggested by recent studies. Together, these data propose a model where antibiotic treatment specifically interrupts tissue-resident memory T cell formation. Greater understanding of the mechanistic basis of this phenomenon might suggest therapeutic interventions to restore a protective memory response in antibiotic-treated patients, thus reducing the incidence of reinfection.
Collapse
|
36
|
Wali S, Gupta R, Yu JJ, Lanka GKK, Chambers JP, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Chlamydial protease-like activity factor mediated protection against C. trachomatis in guinea pigs. Immunol Cell Biol 2016; 95:454-460. [PMID: 27990018 PMCID: PMC5449249 DOI: 10.1038/icb.2016.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Gopala Krishna Koundinya Lanka
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
37
|
Carter JD, Hudson AP. Recent advances and future directions in understanding and treating Chlamydia-induced reactive arthritis. Expert Rev Clin Immunol 2016; 13:197-206. [PMID: 27627462 DOI: 10.1080/1744666x.2017.1233816] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Reactive arthritis (ReA) is an inflammatory disease that can follow gastrointestinal or genitourinary infections. The primary etiologic agent for post-venereal ReA is the bacterium Chlamydia trachomatis; its relative, C pneumoniae, has also been implicated in disease induction although to a lesser degree. Studies have indicated that the arthritis is elicited by chlamydiae infecting synovial tissue in an unusual biologic state designated persistence. We review clinical aspects, host-pathogen interactions, and treatments for the disease. Areas covered: We briefly discuss both the historic and,more extensively, the current medical literature describing ReA, and we provide a discussion of the biology of the chlamydiae as it relates to elicitation of the disease. A summary of clinical aspects of Chlamydia-induced ReA is included to give context for approaches to treatment of the arthritis. Expert commentary: Basic research into the biology and host-pathogen interactions characteristic of C trachomatis has provided a wealth of information that underlies our current understanding of the pathogenic processes occurring in the ReA synovium. Importantly, a promising approach to cure of the disease is at hand. However, both basic and clinical research into Chlamydia-induced ReA has lagged over the last 5 years, including required studies relating to cure of the disease.
Collapse
Affiliation(s)
- John D Carter
- a Department of Internal Medicine, Division of Rheumatology , University of South Florida School of Medicine , Tampa , FL , USA
| | - Alan P Hudson
- b Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
38
|
Slade JA, Hall JV, Kintner J, Phillips-Campbell R, Schoborg RV. Host Nectin-1 Promotes Chlamydial Infection in the Female Mouse Genital Tract, but Is Not Required for Infection in a Novel Male Murine Rectal Infection Model. PLoS One 2016; 11:e0160511. [PMID: 27486990 PMCID: PMC4972247 DOI: 10.1371/journal.pone.0160511] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022] Open
Abstract
Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen, but more than 70% of patients fail to seek treatment due to the asymptomatic nature of these infections. Women suffer from numerous complications from chronic chlamydial infections, which include pelvic inflammatory disease and infertility. We previously demonstrated in culture that host cell nectin-1 knockdown significantly reduced chlamydial titers and inclusion size. Here, we sought to determine whether nectin-1 was required for chlamydial development in vivo by intravaginally infecting nectin-1-/- mice with Chlamydia muridarum and monitoring chlamydial shedding by chlamydial titer assay. We observed a significant reduction in chlamydial shedding in female nectin-1-/- mice compared to nectin-1+/+ control mice, an observation that was confirmed by PCR. Immunohistochemical staining in mouse cervical tissue confirmed that there are fewer chlamydial inclusions in Chlamydia-infected nectin-1-/- mice. Notably, anorectal chlamydial infections are becoming a substantial health burden, though little is known regarding the pathogenesis of these infections. We therefore established a novel male murine model of rectal chlamydial infection, which we used to determine whether nectin-1 is required for anorectal chlamydial infection in male mice. In contrast to the data from vaginal infection, no difference in rectal chlamydial shedding was observed when male nectin-1+/+ and nectin-1-/- mice were compared. Through the use of these two models, we have demonstrated that nectin-1 promotes chlamydial infection in the female genital tract but does not appear to contribute to rectal infection in male mice. These models could be used to further characterize tissue and sex related differences in chlamydial infection.
Collapse
Affiliation(s)
- Jessica A. Slade
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer V. Hall
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Jennifer Kintner
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Regenia Phillips-Campbell
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
39
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|
40
|
Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum. Int J Microbiol 2016; 2016:3832917. [PMID: 26997956 PMCID: PMC4779511 DOI: 10.1155/2016/3832917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.
Collapse
|
41
|
Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine. CURRENT CLINICAL MICROBIOLOGY REPORTS 2016; 3:10-18. [PMID: 27218014 PMCID: PMC4845085 DOI: 10.1007/s40588-016-0028-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Chlamydiaceae are widespread pathogens of both humans and animals. Chlamydia trachomatis infection causes blinding trachoma and reproductive complications in humans. Chlamydia pneumoniae causes human respiratory tract infections and atypical pneumonia. Chlamydia suis infection is associated with conjunctivitis, diarrhea, and failure to gain weight in domestic swine. Chlamydial infections in humans and domesticated animals are generally controlled by antibiotic treatment—particularly macrolides (usually azithromycin) and tetracyclines (tetracycline and doxycycline). Tetracycline-containing feed has also been used to limit infections and promote growth in livestock populations, although its use has decreased because of growing concerns about antimicrobial resistance development. Because Sandoz and Rockey published an elegant review of chlamydial anti-microbial resistance in 2010, we will review the following: (i) antibiotic resistance in C. suis, (ii) recent evidence for acquired resistance in human chlamydial infections, and (iii) recent non-genetic mechanisms of antibiotic resistance that may contribute to treatment failure.
Collapse
|
42
|
Poston TB, Darville T. Chlamydia trachomatis: Protective Adaptive Responses and Prospects for a Vaccine. Curr Top Microbiol Immunol 2016; 412:217-237. [PMID: 27033698 DOI: 10.1007/82_2016_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chlamydia trachomatis is the most common cause of sexually transmitted bacterial infection globally. These infections translate to a significant public health burden, particularly women's healthcare costs due to serious disease sequelae such as pelvic inflammatory disease (PID), tubal factor infertility, chronic pelvic pain, and ectopic pregnancy. There is no evidence that natural immunity can provide complete, long-term protection necessary to prevent chronic pathology, making human vaccine development critical. Vaccine design will require careful consideration of protective versus pathological host-response mechanisms in concert with elucidation of optimal antigens and adjuvants. Evidence suggests that a Th1 response, facilitated by IFN-γ-producing CD4 T cells, will be instrumental in generating long-term, sterilizing immunity. Although the role of antibodies is not completely understood, they have exhibited a protective effect by enhancing chlamydial clearance. Future work will require investigation of broadly neutralizing antibodies and antibody-augmented cellular immunity to successfully design a vaccine that potently elicits both arms of the immune response. Sterilizing immunity is the ultimate goal. However, vaccine-induced partial immunity that prevents upper genital tract infection and inflammation would be cost-effective compared to current screening and treatment strategies. In this chapter, we examine evidence from animal and human studies demonstrating protective adaptive immune responses to Chlamydia and discuss future challenges and prospects for vaccine development.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
43
|
Filardo S, Di Pietro M, Schiavoni G, Minniti G, Ortolani E, Romano S, Sessa R. Chlamydia pneumoniae Clinical Isolate from Gingival Crevicular Fluid: A Potential Atherogenic Strain. Front Cell Infect Microbiol 2015; 5:86. [PMID: 26636048 PMCID: PMC4659442 DOI: 10.3389/fcimb.2015.00086] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/13/2015] [Indexed: 12/17/2022] Open
Abstract
Chlamydia pneumoniae has been associated to atherosclerotic cardiovascular diseases. The aim of our study was to characterize, for the first time, a C. pneumoniae strain isolated from the gingival crevicular fluid of a patient with chronic periodontitis, described as a risk factor for cardiovascular diseases. C. pneumoniae isolate was characterized and compared to the respiratory AR-39 strain by VD4-ompA genotyping and by investigating the intracellular growth in epithelial and macrophage cell lines and its ability to induce macrophage-derived foam cells. Inflammatory cytokine levels were determined in the gingival crevicular fluid sample. C. pneumoniae isolate showed a 99% similarity with the AR-39 strain in the VD4-ompA gene sequence and shared a comparable growth kinetic in epithelial cells and macrophages, as evidenced by the infectious progeny and by the number of chlamydial genomic copies. C. pneumoniae isolate significantly increased the number of foam cells as compared to uninfected and LDL-treated macrophages (45 vs. 6%, P = 0.0065) and to the AR-39 strain (45 vs. 30%, P = 0.0065). Significantly increased levels of interleukin 1-β (2.1 ± 0.3 pg/μL) and interleukin 6 (0.6 ± 0.08 pg/μL) were found. Our results suggest that C. pneumoniae may harbor inside oral cavity and potentially be atherogenic, even though further studies will be needed to clarify the involvement of C. pneumoniae in chronic periodontitis as a risk factor for cardiovascular diseases.
Collapse
Affiliation(s)
- Simone Filardo
- Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Giovanna Schiavoni
- Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| | - Gianluca Minniti
- General Dentistry and Emergency Care Unit, George Eastman Dental Hospital Rome, Italy
| | - Emanuela Ortolani
- General Dentistry and Emergency Care Unit, George Eastman Dental Hospital Rome, Italy
| | - Silvio Romano
- Department of Life, Health & Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, "Sapienza" University Rome, Italy
| |
Collapse
|
44
|
Marti H, Blenn C, Borel N. The contribution of temperature, exposure intensity and visible light to the inhibitory effect of irradiation on acute chlamydial infection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:324-33. [PMID: 26513384 DOI: 10.1016/j.jphotobiol.2015.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 10/02/2015] [Accepted: 10/15/2015] [Indexed: 01/05/2023]
Abstract
Water-filtered infrared A (wIRA) is radiation with a spectrum ranging from 780 to 1400 nm. Chlamydiaceae are obligate intracellular bacteria associated with various diseases in both animals and humans. A recent in vitro study demonstrated that wIRA combined with visible light (wIRA/VIS) has potential as a non-chemical method for the treatment of chlamydial infections without adversely affecting the cell viability. The aim of this study was to investigate the influence of various factors on the effect of wIRA/VIS on acute chlamydial infection, namely the impact of temperature, exposure intensity and infectious dose (multiplicity of infection) as well as the efficacy of the visible light component.We demonstrate that non-thermal effects contribute to the inhibition of acute chlamydial infection. Visible light enhances the inhibitory effect of wIRA on extracellular bacteria (elementary bodies or EBs).Moreover, the inhibitory effect of wIRA/VIS following treatment of EBs prior to infection correlated with increased irradiation intensity. The infectivity of mature chlamydial inclusions was significantly reduced upon wIRA/VIS exposure at all irradiation intensities investigated, suggesting the contribution of host cell factors to the anti-chlamydial effect of wIRA/VIS in the late stage of the developmental cycle. The effect of irradiation was not influenced by the infectious dose.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse, 268, 8057, Zurich, Switzerland.
| | - Christian Blenn
- Institute of Veterinary Pathology, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse, 268, 8057, Zurich, Switzerland.
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, Vetsuisse Faculty, Winterthurerstrasse, 268, 8057, Zurich, Switzerland.
| |
Collapse
|
45
|
Chlamydia pneumoniae-Mediated Inflammation in Atherosclerosis: A Meta-Analysis. Mediators Inflamm 2015; 2015:378658. [PMID: 26346892 PMCID: PMC4546765 DOI: 10.1155/2015/378658] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/15/2015] [Indexed: 01/17/2023] Open
Abstract
Several studies have attempted to relate the C. pneumoniae-mediated inflammatory state with atherosclerotic cardiovascular diseases, providing inconsistent results. Therefore, we performed a meta-analysis to clarify whether C. pneumoniae may contribute to the pathogenesis of atherosclerosis by enhancing inflammation. 12 case-control, 6 cross-sectional, and 7 prospective studies with a total of 10,176 patients have been included in this meta-analysis. Odds Ratio (OR) with a 95% confidence interval was used to assess the seroprevalence of C. pneumoniae and differences between levels of inflammatory markers were assessed by standard mean differences. Publication bias was performed to ensure the statistical power. hsCRP, fibrinogen, interleukin- (IL-) 6, TNF-α, and IFN-γ showed a significant increase in patients with atherosclerosis compared to healthy controls (P < 0.05), along with a higher seroprevalence of C. pneumoniae (OR of 3.11, 95% CI: 2.88–3.36, P < 0.001). More interestingly, hsCRP, IL-6, and fibrinogen levels were significantly higher in C. pneumoniae IgA seropositive compared to seronegative atherosclerotic patients (P < 0.0001). In conclusion, the present meta-analysis suggests that C. pneumoniae infection may contribute to atherosclerotic cardiovascular diseases by enhancing the inflammatory state, and, in particular, seropositivity to C. pneumoniae IgA, together with hsCRP, fibrinogen, and IL-6, may be predictive of atherosclerotic cardiovascular risk.
Collapse
|
46
|
Leonard CA, Schoborg RV, Borel N. Damage/Danger Associated Molecular Patterns (DAMPs) Modulate Chlamydia pecorum and C. trachomatis Serovar E Inclusion Development In Vitro. PLoS One 2015; 10:e0134943. [PMID: 26248286 PMCID: PMC4527707 DOI: 10.1371/journal.pone.0134943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022] Open
Abstract
Persistence, more recently termed the chlamydial stress response, is a viable but non-infectious state constituting a divergence from the characteristic chlamydial biphasic developmental cycle. Damage/danger associated molecular patterns (DAMPs) are normal intracellular components or metabolites that, when released from cells, signal cellular damage/lysis. Purine metabolite DAMPs, including extracellular ATP and adenosine, inhibit chlamydial development in a species-specific manner. Viral co-infection has been shown to reversibly abrogate Chlamydia inclusion development, suggesting persistence/chlamydial stress. Because viral infection can cause host cell DAMP release, we hypothesized DAMPs may influence chlamydial development. Therefore, we examined the effect of extracellular ATP, adenosine, and cyclic AMP exposure, at 0 and 14 hours post infection, on C. pecorum and C. trachomatis serovar E development. In the absence of de novo host protein synthesis, exposure to DAMPs immediately post or at 14 hours post infection reduced inclusion size; however, the effect was less robust upon 14 hours post infection exposure. Additionally, upon exposure to DAMPs immediately post infection, bacteria per inclusion and subsequent infectivity were reduced in both Chlamydia species. These effects were reversible, and C. pecorum exhibited more pronounced recovery from DAMP exposure. Aberrant bodies, typical in virus-induced chlamydial persistence, were absent upon DAMP exposure. In the presence of de novo host protein synthesis, exposure to DAMPs immediately post infection reduced inclusion size, but only variably modulated chlamydial infectivity. Because chlamydial infection and other infections may increase local DAMP concentrations, DAMPs may influence Chlamydia infection in vivo, particularly in the context of poly-microbial infections.
Collapse
Affiliation(s)
- Cory Ann Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Shima K, Klinger M, Schütze S, Kaufhold I, Solbach W, Reiling N, Rupp J. The role of endoplasmic reticulum-related BiP/GRP78 in interferon gamma-induced persistent Chlamydia pneumoniae infection. Cell Microbiol 2015; 17:923-34. [PMID: 25588955 DOI: 10.1111/cmi.12416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/12/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022]
Abstract
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN-γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN-γ-induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN-γ-induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN-γ-induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor-2α (eIF2α) and down-regulation of the vesicle-associated membrane protein-associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN-γ-induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER-related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN-γ-induced persistent infection.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | | | - Stefan Schütze
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Inga Kaufhold
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Werner Solbach
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Jan Rupp
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| |
Collapse
|
48
|
Chacko A, Beagley KW, Timms P, Huston WM. Human Chlamydia pneumoniae isolates demonstrate ability to recover infectivity following penicillin treatment whereas animal isolates do not. FEMS Microbiol Lett 2015; 362:fnv015. [PMID: 25663156 DOI: 10.1093/femsle/fnv015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chlamydia pneumoniae strains have recently been demonstrated to have substantially different capacities to enter and recover from IFN-γ-induced persistence, depending on whether they are from human or animal host sources. Here, we examined the ability of two human and two animal strains to enter and be rescued from penicillin-induced persistence. The ability to form inclusions after the addition of penicillin was much reduced in the two animal isolates (koala LPCoLN, bandicoot B21) compared to the two human isolates (respiratory AR39 and heart A03). The penicillin treatment resulted in a dose-dependent loss of infectious progeny for all isolates, with the human strains failing to produce infectious progeny at lower doses of penicillin than the animal strains. The most remarkable finding however was the contrasting ability of the isolates to recover infectious progeny production after rescue by removal of the penicillin (at 72 h) and continued culture. The animal isolates both showed virtually no recovery from the penicillin treatment conditions. In contrast, the human isolates showed a significant ability to recovery infectivity, with the heart isolate (A03) showing the most marked recovery. Combined, these data further support the hypothesis that the ability to establish and recover from persistence appears to be enhanced in human C. pneumoniae strains compared to animal strains.
Collapse
Affiliation(s)
- Anu Chacko
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| | - Peter Timms
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Wilhelmina M Huston
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Q block, 60 Musk Ave, Kelvin Grove, QLD 4059, Australia
| |
Collapse
|
49
|
Hafner LM. Pathogenesis of fallopian tube damage caused by Chlamydia trachomatis infections. Contraception 2015; 92:108-15. [PMID: 25592078 DOI: 10.1016/j.contraception.2015.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/21/2014] [Accepted: 01/05/2015] [Indexed: 12/29/2022]
Abstract
Chlamydia trachomatis is the leading cause of bacterial sexually transmitted disease worldwide resulting in 4-5 million new cases of Chlamydia annually and an estimated 100 million cases per annum. Infections of the lower female genital tract (FGT) frequently are asymptomatic; thus, they often remain undiagnosed or untreated. If infections are either not resolved or left untreated, chlamydia can ascend to the upper FGT and infect the fallopian tubes (FTs) causing salpingitis that may lead to functional damage of the FTs and tubal factor infertility (TFI). Clinical observations and experimental data have indicated a role for antibodies against C. trachomatis proteins such as the 60-kDa heat shock protein 60 (cHSP60) in the immunopathogenesis of TFI. When released from infected cells, cHSP60 can induce proinflammatory immune responses that may functionally impair the FTs leading to fibrosis and luminal occlusion. Chlamydial pathogenesis of irreversible and permanent tubal damage is a consequence of innate and adaptive host immune responses to ongoing or repeated infections. The extracellular matrix that is regulated by metalloproteinases may also be modified by chlamydial infections of the FGT. This review will highlight protective and pathogenic immune responses to ongoing and repeated chlamydial infections of the FGT. It will also present two recent hypotheses to explain mechanisms that may contribute to FT damage during a C. trachomatis infection. If Chlamydia immunopathology can be controlled, it might yield a method of inducing fibrosis and thus provide a means of nonsurgical permanent contraception for women.
Collapse
Affiliation(s)
- Louise M Hafner
- School of Biomedical Sciences, Faculty of Health and Chronic Diseases and Ageing Theme, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Queensland 4059, Australia.
| |
Collapse
|
50
|
Hammerschlag MR, Kohlhoff SA, Gaydos CA. Chlamydia pneumoniae. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7173483 DOI: 10.1016/b978-1-4557-4801-3.00184-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|