1
|
Lee P, Kim J, Oh H, Kim CU, Jeong AY, Lee MS, Jang MS, Hong JJ, Park JE, Kim DJ. Coronavirus nucleocapsid-based vaccine provides partial protection against hetero-species coronavirus in murine models. Antiviral Res 2024; 231:105991. [PMID: 39181216 DOI: 10.1016/j.antiviral.2024.105991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Most coronavirus vaccines focus on the spike (S) antigen, but the frequent mutations in S raise concerns about the vaccine efficacy against new variants. Although additional antigens with conserved sequences are have been tested, the extent to which these vaccines can provide immunity against different coronavirus species remains unclear. In this study, we assessed the potential of nucleocapsid (N) as a coronavirus vaccine antigen. Immunization with MERS-CoV N induced robust immune responses, providing significant protection against MERS-CoV. Notably, MERS-CoV N elicited cross-reactive T cell responses to SARS-CoV-2 N and significantly reduced lung inflammation following a SARS-CoV-2 challenge in the transient hACE2 mouse model. However, in K18-hACE transgenic mice, the vaccine showed limited protection. Collectively, our findings suggest that coronavirus N can be an effective vaccine antigen against homologous viruses, but its efficacy may vary across different coronaviruses, highlighting the need for further research on pan-coronavirus vaccines using conserved antigens.
Collapse
Affiliation(s)
- Pureum Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | - Jihee Kim
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea
| | - Hanseul Oh
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Veterinary Medicine, Cheongju, South Korea
| | - Chang-Ung Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ahn Young Jeong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Princeton University, Princeton, NJ, USA
| | - Moo-Seung Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; University of Science and Technology (UST), Daejeon, South Korea
| | | | - Jung Joo Hong
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.
| | - Jung-Eun Park
- Chungnam National University College of Veterinary Medicine, Daejeon, South Korea.
| | - Doo-Jin Kim
- Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Chungbuk National University College of Medicine, Cheongju, South Korea; Biomedical Research Institute, Chungbuk National University Hospital, Cheongju, South Korea.
| |
Collapse
|
2
|
Qiu H, Yuan XY, Holloway K, Wood H, Cabral T, Grant C, McQueen P, Westmacott G, Beniac DR, Lin L, Carpenter M, Kobasa D, Gräfenhan T, Cheney IW. Development and characterization of monoclonal antibodies recognizing nucleocapsid protein of multiple SARS-CoV-2 variants. Heliyon 2024; 10:e35325. [PMID: 39170261 PMCID: PMC11336563 DOI: 10.1016/j.heliyon.2024.e35325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Rapid antigen test (RAT) is widely used for SARS-CoV-2 infection diagnostics. However, test sensitivity has decreased recently due to the emergence of the Omicron variant and its sublineages. Here we developed a panel of SARS-CoV-2 nucleocapsid protein (NP) specific mouse monoclonal antibodies (mAbs) and assessed their sensitivity and specificity to important SARS-CoV-2 variants. We identified seven mAbs that exhibited strong reactivity to SARS-CoV-2 variants and recombinant NP (rNP) by Western immunoblot or ELISA. Their specificity to SARS-CoV-2 was confirmed by negative or low reactivity to rNPs from SARS-CoV-1, MERS, and common human coronaviruses (HCoV-HKU1, HCoV-CO43, HCoV-NL63, and HCoV-229E). These seven mAbs were further tested by immunoplaque assay against selected variants of concern (VOCs), including two Omicron sublineages, and five mAbs (F461G13, F461G7, F459G7, F457G3, and F461G6), showed strong reactions, warranting further suitability testing for the development of diagnostic assay.
Collapse
Affiliation(s)
- Hongyu Qiu
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Xin-Yong Yuan
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Kimberly Holloway
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Heidi Wood
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Teresa Cabral
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Chris Grant
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Peter McQueen
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Garrett Westmacott
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Daniel R. Beniac
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Lisa Lin
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Michael Carpenter
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | - Darwyn Kobasa
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| | | | - Ian Wayne Cheney
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, MB, R3E 3R2, Canada
| |
Collapse
|
3
|
Strong MJ, McLellan C, Kaplanis B, Droppelmann CA, Junop M. Phase Separation of SARS-CoV-2 Nucleocapsid Protein with TDP-43 Is Dependent on C-Terminus Domains. Int J Mol Sci 2024; 25:8779. [PMID: 39201466 PMCID: PMC11354357 DOI: 10.3390/ijms25168779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The SARS-CoV-2 nucleocapsid protein (N protein) is critical in viral replication by undergoing liquid-liquid phase separation to seed the formation of a ribonucleoprotein (RNP) complex to drive viral genomic RNA (gRNA) translation and in suppressing both stress granules and processing bodies, which is postulated to increase uncoated gRNA availability. The N protein can also form biomolecular condensates with a broad range of host endogenous proteins including RNA binding proteins (RBPs). Amongst these RBPs are proteins that are associated with pathological, neuronal, and glial cytoplasmic inclusions across several adult-onset neurodegenerative disorders, including TAR DNA binding protein 43 kDa (TDP-43) which forms pathological inclusions in over 95% of amyotrophic lateral sclerosis cases. In this study, we demonstrate that the N protein can form biomolecular condensates with TDP-43 and that this is dependent on the N protein C-terminus domain (N-CTD) and the intrinsically disordered C-terminus domain of TDP-43. This process is markedly accelerated in the presence of RNA. In silico modeling suggests that the biomolecular condensate that forms in the presence of RNA is composed of an N protein quadriplex in which the intrinsically disordered TDP-43 C terminus domain is incorporated.
Collapse
Affiliation(s)
- Michael J. Strong
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
- Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Crystal McLellan
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
| | - Brianna Kaplanis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (B.K.); (M.J.)
| | - Cristian A. Droppelmann
- Molecular Medicine Group, Robarts Research Institute, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (C.M.); (C.A.D.)
| | - Murray Junop
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada; (B.K.); (M.J.)
| |
Collapse
|
4
|
Valiate BVS, Castro JTD, Marçal TG, Andrade LAF, Oliveira LID, Maia GBF, Faustino LP, Hojo-Souza NS, Reis MAAD, Bagno FF, Salazar N, Teixeira SR, Almeida GG, Gazzinelli RT. Evaluation of an RBD-nucleocapsid fusion protein as a booster candidate for COVID-19 vaccine. iScience 2024; 27:110177. [PMID: 38993669 PMCID: PMC11238127 DOI: 10.1016/j.isci.2024.110177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/30/2024] [Accepted: 05/31/2024] [Indexed: 07/13/2024] Open
Abstract
Despite successful vaccines and updates, constant mutations of SARS-CoV-2 makes necessary the search for new vaccines. We generated a chimeric protein that comprises the receptor-binding domain from spike and the nucleocapsid antigens (SpiN) from SARS-CoV-2. Once SpiN elicits a protective immune response in rodents, here we show that convalescent and previously vaccinated individuals respond to SpiN. CD4+ and CD8+ T cells from these individuals produced greater amounts of IFN-γ when stimulated with SpiN, compared to SARS-CoV-2 antigens. Also, B cells from these individuals were able to secrete antibodies that recognize SpiN. When administered as a boost dose in mice previously immunized with CoronaVac, ChAdOx1-S or BNT162b2, SpiN was able to induce a greater or equivalent immune response to homologous prime/boost. Our data reveal the ability of SpiN to induce cellular and humoral responses in vaccinated human donors, rendering it a promising candidate.
Collapse
Affiliation(s)
- Bruno Vinicius Santos Valiate
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Julia Teixeira de Castro
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Luis Adan Flores Andrade
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Livia Isabela de Oliveira
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Fundação Hospitalar do Estado de Minas Gerais, Belo Horizonte 31.630-901, MG, Brazil
| | | | | | - Natalia S Hojo-Souza
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | | | - Flávia Fonseca Bagno
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Natalia Salazar
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Santuza R Teixeira
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Gregório Guilherme Almeida
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| | - Ricardo Tostes Gazzinelli
- Fundação Oswaldo Cruz-Minas, Belo Horizonte 30.190-002, MG, Brazil
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Parque Tecnológico de Belo Horizonte, Belo Horizonte 31.310-260, MG, Brazil
| |
Collapse
|
5
|
Claus J, ten Doesschate T, Taks E, Debisarun PA, Smits G, van Binnendijk R, van der Klis F, Verhagen LM, de Jonge MI, Bonten MJM, Netea MG, van de Wijgert JHHM. Determinants of Systemic SARS-CoV-2-Specific Antibody Responses to Infection and to Vaccination: A Secondary Analysis of Randomised Controlled Trial Data. Vaccines (Basel) 2024; 12:691. [PMID: 38932420 PMCID: PMC11209274 DOI: 10.3390/vaccines12060691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the one-year follow-up. We assessed determinants of systemic anti-S1 and anti-N immunoglobulin type G (IgG) responses using trial data. Participants were randomised to BCG or placebo vaccination, reported daily symptoms, SARS-CoV-2 test results, and COVID-19 vaccinations, and donated blood for SARS-CoV-2 serology at two time points. In the 970 participants, anti-S1 geometric mean antibody concentrations (GMCs) were much higher than anti-N GMCs. Anti-S1 GMCs significantly increased with increasing number of immune events (SARS-CoV-2 infection or COVID-19 vaccination): 104.7 international units (IU)/mL, 955.0 IU/mL, and 2290.9 IU/mL for one, two, and three immune events, respectively (p < 0.001). In adjusted multivariable linear regression models, anti-S1 and anti-N log10 concentrations were significantly associated with infection severity, and anti-S1 log10 concentration with COVID-19 vaccine type/dose. In univariable models, anti-N log10 concentration was also significantly associated with acute infection duration, and severity and duration of individual symptoms. Antibody concentrations were not associated with long COVID or long-term loss of smell/taste.
Collapse
Affiliation(s)
- Juana Claus
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Thijs ten Doesschate
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
- Department of Internal Medicine, Jeroen Bosch Ziekenhuis, 5223 GZ Hertogenbosch, The Netherlands
| | - Esther Taks
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Priya A. Debisarun
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
| | - Gaby Smits
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Rob van Binnendijk
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Fiona van der Klis
- National Institute of Public Health and the Environment, 3720 BA Bilthoven, The Netherlands; (G.S.); (R.v.B.); (F.v.d.K.)
| | - Lilly M. Verhagen
- Department of Paediatric Infectious Diseases and Immunology, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marien I. de Jonge
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands;
| | - Marc J. M. Bonten
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| | - Mihai G. Netea
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (E.T.); (P.A.D.); (M.G.N.)
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, 53113 Bonn, Germany
| | - Janneke H. H. M. van de Wijgert
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands; (J.C.); (T.t.D.); (J.H.H.M.v.d.W.)
| |
Collapse
|
6
|
Lobaina Y, Chen R, Suzarte E, Ai P, Musacchio A, Lan Y, Chinea G, Tan C, Silva R, Guillen G, Yang K, Li W, Perera Y, Hermida L. A Nasal Vaccine Candidate, Containing Three Antigenic Regions from SARS-CoV-2, to Induce a Broader Response. Vaccines (Basel) 2024; 12:588. [PMID: 38932317 PMCID: PMC11209543 DOI: 10.3390/vaccines12060588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
A chimeric protein, formed by two fragments of the conserved nucleocapsid (N) and S2 proteins from SARS-CoV-2, was obtained as a recombinant construct in Escherichia coli. The N fragment belongs to the C-terminal domain whereas the S2 fragment spans the fibre structure in the post-fusion conformation of the spike protein. The resultant protein, named S2NDH, was able to form spherical particles of 10 nm, which forms aggregates upon mixture with the CpG ODN-39M. Both preparations were recognized by positive COVID-19 human sera. The S2NDH + ODN-39M formulation administered by the intranasal route resulted highly immunogenic in Balb/c mice. It induced cross-reactive anti-N humoral immunity in both sera and bronchoalveolar fluids, under a Th1 pattern. The cell-mediated immunity (CMI) was also broad, with positive response even against the N protein of SARS-CoV-1. However, neither neutralizing antibodies (NAb) nor CMI against the S2 region were obtained. As alternative, the RBD protein was included in the formulation as inducer of NAb. Upon evaluation in mice by the intranasal route, a clear adjuvant effect was detected for the S2NDH + ODN-39M preparation over RBD. High levels of NAb were induced against SARS-CoV-2 and SARS-CoV-1. The bivalent formulation S2NDH + ODN-39M + RBD, administered by the intranasal route, constitutes an attractive proposal as booster vaccine of sarbecovirus scope.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Yaqin Lan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Glay Chinea
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Ricardo Silva
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| | - Gerardo Guillen
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (G.C.); (G.G.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (A.M.); (Y.L.); (C.T.); (K.Y.); (W.L.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- Science and Innovation Directorate, BioCubaFarma, Independence Avenue, No. 8126, Corner 100 Street, Havana 10800, Cuba;
| |
Collapse
|
7
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Musacchio A, Silva R, Tan C, Martín A, Lazo L, Guillén-Nieto G, Yang K, Perera Y, Hermida L. The Nucleocapsid Protein of SARS-CoV-2, Combined with ODN-39M, Is a Potential Component for an Intranasal Bivalent Vaccine with Broader Functionality. Viruses 2024; 16:418. [PMID: 38543783 PMCID: PMC10976088 DOI: 10.3390/v16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 05/23/2024] Open
Abstract
Despite the rapid development of vaccines against COVID-19, they have important limitations, such as safety issues, the scope of their efficacy, and the induction of mucosal immunity. The present study proposes a potential component for a new generation of vaccines. The recombinant nucleocapsid (N) protein from the SARS-CoV-2 Delta variant was combined with the ODN-39M, a synthetic 39 mer unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN), used as an adjuvant. The evaluation of its immunogenicity in Balb/C mice revealed that only administration by intranasal route induced a systemic cross-reactive, cell-mediated immunity (CMI). In turn, this combination was able to induce anti-N IgA in the lungs, which, along with the specific IgG in sera and CMI in the spleen, was cross-reactive against the nucleocapsid protein of SARS-CoV-1. Furthermore, the nasal administration of the N + ODN-39M preparation, combined with RBD Delta protein, enhanced the local and systemic immune response against RBD, with a neutralizing capacity. Results make the N + ODN-39M preparation a suitable component for a future intranasal vaccine with broader functionality against Sarbecoviruses.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Edith Suzarte
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Alejandro Martín
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Laura Lazo
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Gerardo Guillén-Nieto
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- R&D Department, Yongzhou Zhong Gu Biotechnology Co., Ltd., Yangjiaqiao Street, Lengshuitan District, Yongzhou 425000, China
- CIGB: Research Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (E.S.); (A.M.); (L.L.); (G.G.-N.)
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou 425000, China; (Y.L.); (R.C.); (P.A.); (V.H.); (A.M.); (R.S.); (C.T.)
- Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou 425000, China
- BCF: R&D Section, Representative Office BCF in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing 100022, China
| |
Collapse
|
8
|
Zyoud S. Global Mapping and Visualization Analysis of One Health Knowledge in the COVID-19 Context. ENVIRONMENTAL HEALTH INSIGHTS 2024; 18:11786302241236017. [PMID: 38449589 PMCID: PMC10916474 DOI: 10.1177/11786302241236017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024]
Abstract
Globally, the COVID-19 pandemic had a significant impact on the health, social, and economic systems, triggering lasting damage and exposing the complexity of the problem beyond just being a health emergency. This crisis has highlighted the need for a comprehensive and collaborative strategy to successfully counter infectious diseases and other global challenges. With the COVID-19 pandemic pushing One Health to the forefront of global health and sustainable development agendas, this concept has emerged as a potential approach for addressing these challenges. In the context of COVID-19, this study investigates global knowledge about One Health by examining its state, significant contributions, and future directions. It seeks to offer an integrated framework of insights guiding the development of well-informed decisions. A comprehensive search using the Scopus database was conducted, employing specific terms related to One Health and COVID-19. VOSviewer 1.6.19 software was used to generate network visualization maps. Countries' research output was adjusted based on their gross domestic product (GDP) and population size. The study identified a total of 527 publications. The United States led with 134 documents (25.4%), but India topped the adjusted ranking. One Health journal stood as the most common outlet for disseminating knowledge (49 documents; 9.3%), while Centers for Disease Control and Prevention (CDC), the United States emerged as the most prolific institution (13 documents; 2.5%). Key topics were related to the virus transmission mechanisms, climate change impacts, antimicrobial resistance, ecosystem health, preparedness, collaboration, community engagement, and developing of efficient surveillance systems. The study emphasizes how critical it is to capitalize on the present momentum of COVID-19 to advance One Health concepts. Integrating social and environmental sciences, and a variety of professions for better interaction and collaboration is crucial. Additionally, increased funding for developing countries, and legislative empowerment are vital to advance One Health and boost disease prevention.
Collapse
Affiliation(s)
- Shaher Zyoud
- Department of Building Engineering & Environment,Palestine Technical University (Kadoorie), Tulkarem, Palestine
- Department of Civil Engineering & Sustainable Structures,Palestine Technical University (Kadoorie), Tulkarem, Palestine
| |
Collapse
|
9
|
Rabdano S, Ruzanova E, Makarov D, Vertyachikh A, Teplykh V, Rudakov G, Pletyukhina I, Saveliev N, Zakharov K, Alpenidze D, Vasilyuk V, Arakelov S, Skvortsova V. Safety and Immunogenicity of the Convacell ® Recombinant N Protein COVID-19 Vaccine. Vaccines (Basel) 2024; 12:100. [PMID: 38276672 PMCID: PMC10821050 DOI: 10.3390/vaccines12010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
We have developed Convacell®-a COVID-19 vaccine based on the recombinant nucleocapsid (N) protein of SARS-CoV-2. This paper details Convacell's® combined phase I/II and IIb randomized, double-blind, interventional clinical trials. The primary endpoints were the frequency of adverse effects (AEs) and the titers of specific anti-N IgGs induced by the vaccination; secondary endpoints included the nature of the immune response. Convacell® demonstrated high safety in phase I with no severe AEs detected, 100% seroconversion by day 42 and high and sustained for 350 days anti-N IgG levels in phase II. Convacell® also demonstrated a fused cellular and humoral immune response. Phase IIb results showed significant post-vaccination increases in circulating anti-N IgG and N protein-specific IFNγ+-producing PBMC quantities among 438 volunteers. Convacell® showed same level of immunological efficacy for single and double dose vaccination regimens, including for elderly patients. The clinical studies indicate that Convacell® is safe and highly immunogenic.
Collapse
Affiliation(s)
- Sevastyan Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Ellina Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Denis Makarov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Anastasiya Vertyachikh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Valeriya Teplykh
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - German Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Iuliia Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | - Nikita Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | | - Diana Alpenidze
- State Budgetary Health Institution “City Polyclinic No. 117”, St. Petersburg 194358, Russia
| | - Vasiliy Vasilyuk
- Department of Toxicology, Extreme and Diving Medicine, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg 191015, Russia
| | - Sergei Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia (I.P.)
| | | |
Collapse
|
10
|
Vukčević M, Šerović K, Despot M, Nikolić-Kokić A, Vujović A, Nikolić M, Blagojević D, Jovanović T, Despot D. Humoral and Cellular Immune Response after Three Doses of Sinopharm [Vero Cell]-Inactivated COVID-19 Vaccine in Combination with SARS-CoV-2 Infection Leads to Hybrid Immunity. Pharmaceuticals (Basel) 2024; 17:122. [PMID: 38256955 PMCID: PMC10818859 DOI: 10.3390/ph17010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/30/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Several vaccines against COVID-19 have been developed and licensed to enhance the immune response against SARS-CoV-2. Similarly, previous infection with SARS-CoV-2 has been shown to provide significant protection against severe infection and hospitalization. METHODS We investigated the effect of three doses of the Sinopharm vaccine and SARS-CoV-2 infection on the specific immune response in 103 volunteers, measuring neutralizing antibodies, anti-S1 IgG, anti-RBD IgM, anti-N IgM, anti-N IgG antibodies, and INF γ. RESULTS Our results showed that the presence of cardiovascular diseases increased the level of anti-N-IgG antibodies, while endocrinological diseases decreased the level of neutralizing antibodies and anti-N IgG antibodies, suggesting that these diseases alter the effect of vaccine-induced immunity. In addition, there was a significant decrease in anti-S1 IgG levels at 6 months and in anti-N IgG levels 18 months post-infection, while neutralizing antibodies and INF γ levels were constant at 3, 6, and 18 months post-infection. CONCLUSIONS Our results confirm the emergence of hybrid immunity, which is the strongest and most durable compared to natural immunity or vaccine-induced immunity. Significant positive correlations were found between humoral and cellular immunity markers: neutralizing antibodies, anti-S1 IgG and anti-N IgG antibodies, and INF γ, indicating a unique coordinated response specific to COVID-19.
Collapse
Affiliation(s)
- Marija Vukčević
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Katarina Šerović
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Mateja Despot
- Faculty of Medicine, University of Belgrade, dr Subotića starijeg 8, 11000 Belgrade, Serbia;
| | - Aleksandra Nikolić-Kokić
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, Department of Physiology, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.N.-K.); (D.B.)
| | | | - Milan Nikolić
- University of Belgrade, Faculty of Chemistry, Department of Biochemistry, Studentski trg 12-16, 11158 Belgrade, Serbia;
| | - Duško Blagojević
- Institute for Biological Research “Siniša Stanković”-National Institute of Republic of Serbia, Department of Physiology, University of Belgrade, Despota Stefana 142, 11108 Belgrade, Serbia; (A.N.-K.); (D.B.)
| | - Tanja Jovanović
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| | - Dragana Despot
- Institute for Biocides and Medical Ecology, Trebevićka 16, 11030 Belgrade, Serbia; (M.V.); (K.Š.); (D.D.)
| |
Collapse
|
11
|
Adnan N, Haq MA, Tisha TA, Khandker SS, Jamiruddin MR, Sajal SSA, Akter S, Ahmed MF, Raqib R, Khondoker MU, Azmuda N, Haque M. Optimizing SARS-CoV-2 Immunoassays for Specificity in Dengue-Co-Endemic Areas. Cureus 2023; 15:e47683. [PMID: 37899905 PMCID: PMC10599982 DOI: 10.7759/cureus.47683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The overlap in clinical presentation between COVID-19 and dengue poses challenges for diagnosis in co-endemic regions. Furthermore, there have been reports of antibody cross-reactivity between SARS-CoV-2 and dengue. Our research aims to evaluate SARS-CoV-2 antigens for serological testing while reducing the possibility of cross-reactivity with anti-dengue antibodies. Method Two hundred and ten serum samples were collected from 179 patients and divided into four panels. Panels 1 and 2 consisted of COVID-19-negative healthy donors (n=81) and pre-pandemic dengue patients (n=50), respectively. Alternatively, Panel 3 (n=19) was composed of reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-positive samples collected within two weeks of COVID-19 symptom onset, while Panel 4 (n=60) was composed of positive samples collected after two weeks of symptom onset. Previously developed and characterized in-house SARS-CoV-2 spike-1 (S1), receptor binding domain (RBD), and nucleocapsid (N) immunoglobin G (IgG)-enzyme-linked immunosorbent assay (ELISA) assays were used for the study. Results Six dengue-positive sera cross-reacted with the RBD of SARS-CoV-2. However, only one dengue-positive sera cross-reacted with the S1 and N proteins of SARS-CoV-2. Co-immobilization of S1 and RBD in different ratios revealed an 80:20 (S1:RBD) ratio as optimal for achieving an overall 96.2% sensitivity with the least cross-reaction to anti-dengue antibodies. Conclusion Our findings indicated that SARS-CoV-2 RBD-based immunoassays present more cross-reactivity with anti-dengue antibodies than S1 and N proteins. Furthermore, co-immobilization of S1 and RBD reduces the cross-reactivity with anti-dengue antibodies compared to RBD, thereby increasing the immunoassay specificity without affecting overall sensitivity for the dengue-endemic areas.
Collapse
Affiliation(s)
- Nihad Adnan
- Microbiology, Jahangirnagar University, Dhaka, BGD
| | - Md Ahsanul Haq
- Bio-Statistics, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, BGD
| | | | - Shahad Saif Khandker
- Biochemistry and Molecular Biology, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | | | - Sm Shafiul Alam Sajal
- Biochemistry and Molecular Biology, Gonoshasthaya Samaj Vittik Medical College, Dhaka, BGD
| | - Salma Akter
- Microbiology, Jahangirnagar University, Dhaka, BGD
| | | | - Rubhana Raqib
- Immunology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, BGD
| | | | | | - Mainul Haque
- Department of Research, School of Dentistry, Karnavati Scientific Research Center (KSRC) Karnavati University, Gandhinagar, IND
- Pharmacology and Therapeutics, National Defence University of Malaysia, Kuala Lumpur, MYS
| |
Collapse
|
12
|
Verma J, Kaushal N, Manish M, Subbarao N, Shakirova V, Martynova E, Liu R, Hamza S, Rizvanov AA, Khaiboullina SF, Baranwal M. Identification of conserved immunogenic peptides of SARS-CoV-2 nucleocapsid protein. J Biomol Struct Dyn 2023; 42:11098-11114. [PMID: 37750540 DOI: 10.1080/07391102.2023.2260484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
The emergence of the new SARS-CoV-2 variants has led to major concern regarding the efficacy of approved vaccines. Nucleocapsid is a conserved structural protein essential for replication of the virus. This study focuses on identifying conserved epitopes on the nucleocapsid (N) protein of SARS-CoV-2. Using 510 unique amino acid sequences of SARS-CoV-2 N protein, two peptides (193 and 215 aa) with 90% conservancy were selected for T cell epitope prediction. Three immunogenic peptides containing multiple T cell epitopes were identified which were devoid of autoimmune and allergic immune response. These peptides were also conserved (100%) in recent Omicron variants reported in Jan-August 2023. HLA analysis reveals that these peptides are predicted as binding to large number of HLA alleles and 71-90% population coverage in six continents. Identified peptides displayed good binding score with both HLA class I and HLA class II molecules in the docking study. Also, a vaccine construct docked with TLR-4 receptor displays strong interaction with 20 hydrogen bonds and molecular simulation analysis reveals that docked complex are stable. Additionally, the immunogenicity of these N protein peptides was confirmed using SARS-CoV-2 convalescent serum samples. We conclude that the identified N protein peptides contain highly conserved and antigenic epitopes which could be used as a target for the future vaccine development against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jigyasa Verma
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neha Kaushal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Manish Manish
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Venera Shakirova
- Department of Infectious Diseases, Kazan State Medical Academy, Kazan, Russia
| | - Ekaterina Martynova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Rongzeng Liu
- Department of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shaimaa Hamza
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
13
|
Li B, Zhang J, Huang Y, Li X, Feng J, Li Y, Zhang R. A conserved N protein nano-vaccine of COVID-19 exerts potent and cross-reactive humoral and cellular immune responses in mice. J Med Virol 2023; 95:e29115. [PMID: 37750245 DOI: 10.1002/jmv.29115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
As severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) mutates continually, the current vaccines are unable to provide sufficient protection. It is important to develop a broad-spectrum vaccine with conserved antigens to prevent variant infection. Here we fused the SARS-CoV-2 N protein with Helicobacter pylori nonheme ferritin to construct a SARS-CoV-2 N-Ferritin nanoparticle vaccine. Compared with the monomer N protein, the N-Ferritin nanoparticles induced more lymph node dendritic cells in mice to trigger adoptive immunity. Following this, the N-Ferritin elicited more robust and long-lasting antibody responses, which had better cross-reactivity with the SARS-CoV N protein. It is also worth noting that higher levels of N-specific IgG and IgA were distributed in the lungs of N-Ferritin-immunized mice. Furthermore, the N-Ferritin nanoparticles also resulted higher proportion of interferon-γ+ CD8+ T cells, CD8+ Tcm cells, and T cells with cross-reactivity in SARS-CoV-2, SARS-CoV, and Middle East respiratory syndrome-related coronavirus. The conserved N-based nanoparticles could provide a promising vaccine developing strategy against SARS-CoV-2 variants and other coronaviruses.
Collapse
Affiliation(s)
- Bing Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yang Huang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinrui Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jing Feng
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yan Li
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Rongxin Zhang
- Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
14
|
Lobaina Y, Chen R, Suzarte E, Ai P, Huerta V, Tan C, Alvarez-Lajonchere L, Liling Y, Musacchio A, Silva R, Guillén G, Zaixue J, Yang K, Perera Y, Hermida L. Broad humoral immunity generated in mice by a formulation composed of two antigens from the Delta variant of SARS-CoV-2. Arch Virol 2023; 168:190. [PMID: 37351679 DOI: 10.1007/s00705-023-05812-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/05/2023] [Indexed: 06/24/2023]
Abstract
Due to the rapid development of new variants of SARS-CoV-2 as well as the real threat of new coronavirus zoonosis events, the development of a preventive vaccine with a broader scope of functionality is highly desirable. Previously, we reported the functionality of a nasal formulation containing the nucleocapsid protein and the receptor-binding domain (RBD) of the spike protein of the Delta variant of SARS-CoV-2 combined with the ODN-39M adjuvant. This combination induced cross-reactive immunity in mucosal and systemic compartments at the sarbecovirus level. In the present study, we explored the magnitude of the immunity generated in BALB/c mice by the same formulation with alum added as an additional adjuvant, to enhance the humoral immunity against the two antigens. Animals were immunized with three doses of the bivalent formulation, administered by subcutaneous route. Humoral immunity was tested by ELISA, and the neutralizing capacity of the resulting antibodies (Abs) was evaluated using a surrogate test and a vesicular stomatitis virus (VSV) pseudovirus-based assay. Cell-mediated immunity was also investigated using an IFN-γ ELISpot assay. High levels of antibodies against both antigens (N and RBD) were obtained upon immunization. Anti-RBD Abs with neutralizing capacity reacted with the RBD of three SARS-CoV-2 variants tested, including Omicron. Abs recognizing the nucleocapsid proteins of SARS-CoV-1 and the SARS-CoV-2 Delta and Omicron variants were also detected. Taken together, these results suggest that this bivalent formulation could be an attractive component of a pancorona vaccine able to broaden the scope of humoral immunity against both antigens. This will be particularly important for the reinforcement of immunity in previously vaccinated and/or infected populations.
Collapse
Affiliation(s)
- Yadira Lobaina
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China
| | - Rong Chen
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Edith Suzarte
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Panchao Ai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Vivian Huerta
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Changyuan Tan
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China
| | - Liz Alvarez-Lajonchere
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Yang Liling
- Department of Laboratory Medicine, Dongguan Ninth People's Hospital, No. 88, Shaditang, Guancheng District, Dongguan, Guangdong, China
| | - Alexis Musacchio
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Ricardo Silva
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China
| | - Gerardo Guillén
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba
| | - Jiang Zaixue
- Guangdong Eighth People's Hospital, No. 68 South, Shilong Xihu 3rd Road, Shilong Town, Dongguan, Guangdong, China
| | - Ke Yang
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Biomedical Research Department, Center for Genetic Engineering and Biotechnology (CIGB), 10600, Havana, Cuba.
- Research Department, Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou, 425000, Hunan, China.
| | - Lisset Hermida
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Lengshuitan District, Yongzhou, 425000, Hunan, China.
- Scientific Department, Representative Office of BioCubaFarma in China, Jingtai Tower, No. 24 Jianguomen Wai Street, Chaoyang District, Beijing, 100022, China.
- Yongzhou Development and Construction Investment Co. Ltd. (YDCI), Changfeng Industry Park, Yongzhou Economic and Technological Development Zone, No. 1 Liebao Road, Lengshuitan District, Yongzhou, Hunan, China.
| |
Collapse
|
15
|
Brzuska G, Zimna M, Baranska K, Szewczyk B, Strakova P, Ruzek D, Krol E. The Influence of Adjuvant Type on the Immunogenicity of RBD/N Cocktail Antigens as a Vaccine Candidate against SARS-CoV-2 Virus. Microbiol Spectr 2023; 11:e0256422. [PMID: 37199661 PMCID: PMC10269882 DOI: 10.1128/spectrum.02564-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The emerging virus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2 virus), agent of COVID-19, appeared in December 2019 in Wuhan, China, and became a serious threat to global health and public safety. Many COVID-19 vaccines have been approved and licensed around the world. Most of the developed vaccines include S protein and induce an antibody-based immune response. Additionally, T-cell response to the SARS-CoV-2 antigens could be beneficial for combating the infection. The type of immune response is greatly dependent not only on the antigen, but also on adjuvants used in vaccine formulation. Here, we compared the effect of four different adjuvants (AddaS03, Alhydrogel/MPLA, Alhydrogel/ODN2395, Quil A) on the immunogenicity of a mixture of recombinant RBD and N SARS-CoV-2 proteins. We have analyzed the antibody and T-cell response specific to RBD and N proteins and assessed the impact of adjuvants on virus neutralization. Our results clearly indicated that Alhydrogel/MPLA and Alhydrogel/ODN2395 adjuvants elicited the higher titers of specific and cross-reactive antibodies to S protein variants from various SARS-CoV-2 and SARS-CoV-1 strains. Moreover, Alhydrogel/ODN2395 stimulated high cellular response to both antigens, as assessed by IFN-γ production. Importantly, sera collected from mice immunized with RBD/N cocktail in combination with these adjuvants exhibited neutralizing activity against the authentic SARS-CoV-2 virus as well as particles pseudotyped with S protein from various virus variants. The results from our study demonstrate the immunogenic potential of RBD and N antigens and point out the importance of adjuvants selection in vaccine formulation in order to enhance the immunological response. IMPORTANCE Although several COVID-19 vaccines have been approved worldwide, continuous emergence of new SARS-CoV-2 variants calls for new efficient vaccines against them, providing long-lasting immunity. As the immune response after vaccination is dependent not only on antigen used, but also on other vaccine components, e.g., adjuvants, the purpose of this work was to study the effect of different adjuvants on the immunogenicity of RBD/N SARS-CoV-2 cocktail proteins. In this work, it has been shown that immunization with both antigens plus the different adjuvants studied elicited higher Th1 and Th2 responses against RBD and N, which contributed to higher neutralization of the virus. The obtained results can be used for design of new vaccines, not only against SARS-CoV-2, but also against other important viral pathogens.
Collapse
Affiliation(s)
- Gabriela Brzuska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Klaudia Baranska
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Boguslaw Szewczyk
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Petra Strakova
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Daniel Ruzek
- Laboratory of Emerging Viral Infections, Veterinary Research Institute, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
16
|
Murray SM, Ansari AM, Frater J, Klenerman P, Dunachie S, Barnes E, Ogbe A. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat Rev Immunol 2023; 23:304-316. [PMID: 36539527 PMCID: PMC9765363 DOI: 10.1038/s41577-022-00809-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 12/24/2022]
Abstract
Pre-existing cross-reactive immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins in infection-naive subjects have been described by several studies. In particular, regions of high homology between SARS-CoV-2 and common cold coronaviruses have been highlighted as a likely source of this cross-reactivity. However, the role of such cross-reactive responses in the outcome of SARS-CoV-2 infection and vaccination is currently unclear. Here, we review evidence regarding the impact of pre-existing humoral and T cell immune responses to outcomes of SARS-CoV-2 infection and vaccination. Furthermore, we discuss the importance of conserved coronavirus epitopes for the rational design of pan-coronavirus vaccines and consider cross-reactivity of immune responses to ancestral SARS-CoV-2 and SARS-CoV-2 variants, as well as their impact on COVID-19 vaccination.
Collapse
Affiliation(s)
- Sam M Murray
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Azim M Ansari
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - John Frater
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Susanna Dunachie
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Ane Ogbe
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Rabdano SO, Ruzanova EA, Pletyukhina IV, Saveliev NS, Kryshen KL, Katelnikova AE, Beltyukov PP, Fakhretdinova LN, Safi AS, Rudakov GO, Arakelov SA, Andreev IV, Kofiadi IA, Khaitov MR, Valenta R, Kryuchko DS, Berzin IA, Belozerova NS, Evtushenko AE, Truhin VP, Skvortsova VI. Immunogenicity and In Vivo Protective Effects of Recombinant Nucleocapsid-Based SARS-CoV-2 Vaccine Convacell ®. Vaccines (Basel) 2023; 11:vaccines11040874. [PMID: 37112786 PMCID: PMC10141225 DOI: 10.3390/vaccines11040874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The vast majority of SARS-CoV-2 vaccines which are licensed or under development focus on the spike (S) protein and its receptor binding domain (RBD). However, the S protein shows considerable sequence variations among variants of concern. The aim of this study was to develop and characterize a SARS-CoV-2 vaccine targeting the highly conserved nucleocapsid (N) protein. Recombinant N protein was expressed in Escherichia coli, purified to homogeneity by chromatography and characterized by SDS-PAGE, immunoblotting, mass spectrometry, dynamic light scattering and differential scanning calorimetry. The vaccine, formulated as a squalane-based emulsion, was used to immunize Balb/c mice and NOD SCID gamma (NSG) mice engrafted with human PBMCs, rabbits and marmoset monkeys. Safety and immunogenicity of the vaccine was assessed via ELISA, cytokine titer assays and CFSE dilution assays. The protective effect of the vaccine was studied in SARS-CoV-2-infected Syrian hamsters. Immunization induced sustainable N-specific IgG responses and an N-specific mixed Th1/Th2 cytokine response. In marmoset monkeys, an N-specific CD4+/CD8+ T cell response was observed. Vaccinated Syrian hamsters showed reduced lung histopathology, lower virus proliferation, lower lung weight relative to the body, and faster body weight recovery. Convacell® thus is shown to be effective and may augment the existing armamentarium of vaccines against COVID-19.
Collapse
Affiliation(s)
- Sevastyan O Rabdano
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Ellina A Ruzanova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Iuliia V Pletyukhina
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Nikita S Saveliev
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | | | | | - Petr P Beltyukov
- Scientific Research Institute of Hygiene, Occupational Pathology and Human Ecology of the Federal Medical-Biological Agency of Russia (SRIHOPHE), Kuzmolovsky 188663, Russia
| | - Liliya N Fakhretdinova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Ariana S Safi
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - German O Rudakov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Sergei A Arakelov
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Igor V Andreev
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
| | - Ilya A Kofiadi
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Musa R Khaitov
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Immunology, N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow 117997, Russia
| | - Rudolf Valenta
- National Research Center Institute of Immunology (NRCII), Federal Medical-Biological Agency of Russia, Moscow 115522, Russia
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, Moscow 119435, Russia
- Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Daria S Kryuchko
- Federal Medical-Biological Agency of Russia, Moscow 125310, Russia
| | - Igor A Berzin
- Federal Medical-Biological Agency of Russia, Moscow 125310, Russia
| | - Natalia S Belozerova
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Anatoly E Evtushenko
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | - Viktor P Truhin
- Saint Petersburg Scientific Research Institute of Vaccines and Serums of the Federal Medical-Biological Agency of Russia (SPbSRIVS), St. Petersburg 198320, Russia
| | | |
Collapse
|
18
|
Rodrigues-da-Silva RN, Conte FP, da Silva G, Carneiro-Alencar AL, Gomes PR, Kuriyama SN, Neto AAF, Lima-Junior JC. Identification of B-Cell Linear Epitopes in the Nucleocapsid (N) Protein B-Cell Linear Epitopes Conserved among the Main SARS-CoV-2 Variants. Viruses 2023; 15:v15040923. [PMID: 37112903 PMCID: PMC10145278 DOI: 10.3390/v15040923] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.
Collapse
Affiliation(s)
- Rodrigo N Rodrigues-da-Silva
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Fernando P Conte
- Eukaryotic Pilot Laboratory, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Gustavo da Silva
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Ana L Carneiro-Alencar
- Laboratory of Immunological Technology, Institute of Technology in Immunobiologicals, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| | - Paula R Gomes
- Getulio Vargas State Hospital, Rio de Janeiro 21070-061, Brazil
| | - Sergio N Kuriyama
- SENAI Innovation Institute for Green Chemistry, Rio de Janeiro 20271-030, Brazil
| | - Antonio A F Neto
- SENAI Innovation Institute for Green Chemistry, Rio de Janeiro 20271-030, Brazil
| | - Josué C Lima-Junior
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
19
|
Salarifar A, Khalili S, Rasaee MJ. Recombinant highly antigenic truncated fusion-based protein as a diagnostic antigen for anti-SARS-CoV-2 nucleocapsid antibody ELISA. Protein Expr Purif 2023; 203:106200. [PMID: 36379348 PMCID: PMC9653556 DOI: 10.1016/j.pep.2022.106200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Among the main structural protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), nucleocapsid phosphoprotein (NP) exhibits high immunogenicity and is the most abundant viral protein produced and shed during infection. Detection of antibodies against NP may help assess the number of individuals exposed to SARS-COV-2 or vaccinated against it. Based on these findings and other structural and antigenic evaluations, we designed a recombinant truncated fusion NP-based protein for application in an immunoassay for detecting immunoglobulins in patients who have recovered from COVID-19. In this research, we aligned the NPs from SARS-CoV and SARS-CoV-2 and selected highly antigenic parts of the SARS-CoV-2 sequences based on in-silico studies. The protein was expressed under optimum conditions in the bacterial host BL21 and purified by nickel immobilized metal affinity chromatography. Moreover, the purity level was assessed by SDS-PAGE and Western blotting whereas the folding of the protein was evaluated by circular dichroism. Ultimately, we used the purified recombinant protein in ELISA development in which 42 samples from convalescent patients were compared with 20 samples of the past 2019 patients who had attended laboratories for various clinical check-ups. The sensitivity and specificity were determined as 71% and 90%, respectively, in the optimum cut-off point measured by the receiver operating characteristic curve.
Collapse
Affiliation(s)
- Abbasali Salarifar
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Javad Rasaee
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Maghsood F, Ghorbani A, Yadegari H, Golsaz-Shirazi F, Amiri MM, Shokri F. SARS-CoV-2 nucleocapsid: Biological functions and implication for disease diagnosis and vaccine design. Rev Med Virol 2023; 33:e2431. [PMID: 36790816 DOI: 10.1002/rmv.2431] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is transmitted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and has affected millions of people all around the world, leading to more than 6.5 million deaths. The nucleocapsid (N) phosphoprotein plays important roles in modulating viral replication and transcription, virus-infected cell cycle progression, apoptosis, and regulation of host innate immunity. As an immunodominant protein, N protein induces strong humoral and cellular immune responses in COVID-19 patients, making it a key marker for studying N-specific B cell and T cell responses and the development of diagnostic serological assays and efficient vaccines. In this review, we focus on the structural and functional features and the kinetic and epitope mapping of B cell and T cell responses against SARS-CoV-2 N protein to extend our understanding on the development of sensitive and specific diagnostic immunological tests and effective vaccines.
Collapse
Affiliation(s)
- Faezeh Maghsood
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Amiri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Lobaina Y, Chen R, Ai P, Yang L, Alvarez-Lajonchere L, Suzarte E, Tan C, Silva R, Jiang Z, Yang K, Perera Y, Hermida L. Cross-Reactive Profile Against Two Conserved Coronavirus Antigens in Sera from SARS-CoV-2 Hybrid and Vaccinated Immune Donors. Viral Immunol 2023; 36:222-228. [PMID: 36735580 DOI: 10.1089/vim.2022.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Since the beginning of the pandemic, the pre-existing immunity against SARS-CoV-2 has been postulated as one possible cause of asymptomatic infections. Later, various works reported that pre-existing immune response against the two structural conserved antigens: S2 subunit and the nucleocapsid protein, were associated to some level of asymptomatic profile in infected individuals. To explore the Ab background against these two antigens, in the context of vaccine-elicited and hybrid (natural infection plus vaccination induced) immunity of SARS-CoV-2, in this work, we tested sera from inactivated vaccine-immunized donors and from vaccinated and subsequent natural infected donors upon the Omicron variant wave in Guangdong province, China. Serum samples were collected from 27 COVID-19 convalescent, 25 SARS-CoV-2 vaccinated, and 10 negative donors. The IgG cross-reactivity response against these two antigens from another relevant human coronavirus (HCoV) was also evaluated. The findings indicate that IgG response against S2 and N protein was particularly higher in sera with hybrid immunity. The cross-reactive Abs were more significant against SARS-CoV-1, while a wide cross-reactivity was detected for N antigen for one human Alpha coronavirus HCoV-229E even in the negative control samples. The presence of cross-reactive Abs against the two conserved antigens N and S2, particularly in the context of hybrid immunity, could pave the way for future boosted vaccines carrying these conserved regions.
Collapse
Affiliation(s)
- Yadira Lobaina
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,CIGB: Vaccines & Pharmaceutics Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Rong Chen
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,Yongzhou Zhong Gu Biotechnology Co., Ltd, Yongzhou, China
| | - Panchao Ai
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,Yongzhou Zhong Gu Biotechnology Co., Ltd, Yongzhou, China
| | - Liling Yang
- Department of Laboratory Medicine, Dongguan Ninth People's Hospital, Dongguan, China
| | - Liz Alvarez-Lajonchere
- CIGB: Vaccines & Pharmaceutics Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Edith Suzarte
- CIGB: Vaccines & Pharmaceutics Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Changyuan Tan
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,Yongzhou Zhong Gu Biotechnology Co., Ltd, Yongzhou, China
| | - Ricardo Silva
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,BCF: BioCubafarma, Representative Office in China, Beijing, China
| | - Zaixue Jiang
- Guangdong Eighth People's Hospital, Dongguan, China
| | - Ke Yang
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,Yongzhou Zhong Gu Biotechnology Co., Ltd, Yongzhou, China
| | - Yasser Perera
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,CIGB: Vaccines & Pharmaceutics Division, Biomedical Research Department, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Lisset Hermida
- CCBJIC: China-Cuba Biotechnology Joint Innovation Center, Yongzhou, China.,BCF: BioCubafarma, Representative Office in China, Beijing, China
| |
Collapse
|
22
|
Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals (Basel) 2023; 13:ani13030524. [PMID: 36766413 PMCID: PMC9913536 DOI: 10.3390/ani13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is one of the deadliest epidemics. This pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the role of dogs in spreading the disease in human society is poorly understood. This review sheds light on the limited susceptibility of dogs to COVID-19 infections which is likely attributed to the relatively low levels of angiotensin-converting enzyme 2 (ACE2) in the respiratory tract and the phylogenetic distance of ACE2 in dogs from the human ACE2 receptor. The low levels of ACE2 affect the binding affinity between spike and ACE2 proteins resulting in it being uncommon for dogs to spread the disease. To demonstrate the role of dogs in spreading COVID-19, we reviewed the epidemiological studies and prevalence of SARS-CoV-2 in dogs. Additionally, we discussed the use of detection dogs as a rapid and reliable method for effectively discriminating between SARS-CoV-2 infected and non-infected individuals using different types of samples (secretions, saliva, and sweat). We considered the available information on COVID-19 in the human-dog interfaces involving the possibility of transmission of COVID-19 to dogs by infected individuals and vice versa, the human-dog behavior changes, and the importance of preventive measures because the risk of transmission by domestic dogs remains a concern.
Collapse
|
23
|
Chechetkin VR, Lobzin VV. Evolving ribonucleocapsid assembly/packaging signals in the genomes of the human and animal coronaviruses: targeting, transmission and evolution. J Biomol Struct Dyn 2022; 40:11239-11263. [PMID: 34338591 DOI: 10.1080/07391102.2021.1958061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A world-wide COVID-19 pandemic intensified strongly the studies of molecular mechanisms related to the coronaviruses. The origin of coronaviruses and the risks of human-to-human, animal-to-human and human-to-animal transmission of coronaviral infections can be understood only on a broader evolutionary level by detailed comparative studies. In this paper, we studied ribonucleocapsid assembly-packaging signals (RNAPS) in the genomes of all seven known pathogenic human coronaviruses, SARS-CoV, SARS-CoV-2, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-229E and HCoV-NL63 and compared them with RNAPS in the genomes of the related animal coronaviruses including SARS-Bat-CoV, MERS-Camel-CoV, MHV, Bat-CoV MOP1, TGEV and one of camel alphacoronaviruses. RNAPS in the genomes of coronaviruses were evolved due to weakly specific interactions between genomic RNA and N proteins in helical nucleocapsids. Combining transitional genome mapping and Jaccard correlation coefficients allows us to perform the analysis directly in terms of underlying motifs distributed over the genome. In all coronaviruses, RNAPS were distributed quasi-periodically over the genome with the period about 54 nt biased to 57 nt and to 51 nt for the genomes longer and shorter than that of SARS-CoV, respectively. The comparison with the experimentally verified packaging signals for MERS-CoV, MHV and TGEV proved that the distribution of particular motifs is strongly correlated with the packaging signals. We also found that many motifs were highly conserved in both characters and positioning on the genomes throughout the lineages that make them promising therapeutic targets. The mechanisms of encapsidation can affect the recombination and co-infection as well.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R Chechetkin
- Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, Russia
| | - Vasily V Lobzin
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
24
|
Renalase Challenges the Oxidative Stress and Fibroproliferative Response in COVID-19. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4032704. [PMID: 36132227 PMCID: PMC9484957 DOI: 10.1155/2022/4032704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 01/08/2023]
Abstract
The hallmark of the coronavirus disease 2019 (COVID-19) pathophysiology was reported to be an inappropriate and uncontrolled immune response, evidenced by activated macrophages, and a robust surge of proinflammatory cytokines, followed by the release of reactive oxygen species, that synergistically result in acute respiratory distress syndrome, fibroproliferative lung response, and possibly even death. For these reasons, all identified risk factors and pathophysiological processes of COVID-19, which are feasible for the prevention and treatment, should be addressed in a timely manner. Accordingly, the evolving anti-inflammatory and antifibrotic therapy for severe COVID-19 and hindering post-COVID-19 fibrosis development should be comprehensively investigated. Experimental evidence indicates that renalase, a novel amino-oxidase, derived from the kidneys, exhibits remarkable organ protection, robustly addressing the most powerful pathways of cell trauma: inflammation and oxidative stress, necrosis, and apoptosis. As demonstrated, systemic renalase administration also significantly alleviates experimentally induced organ fibrosis and prevents adverse remodeling. The recognition that renalase exerts cytoprotection via sirtuins activation, by raising their NAD+ levels, provides a “proof of principle” for renalase being a biologically impressive molecule that favors cell protection and survival and maybe involved in the pathogenesis of COVID-19. This premise supports the rationale that renalase's timely supplementation may prove valuable for pathologic conditions, such as cytokine storm and related acute respiratory distress syndrome. Therefore, the aim for this review is to acknowledge the scientific rationale for renalase employment in the experimental model of COVID-19, targeting the acute phase mechanisms and halting fibrosis progression, based on its proposed molecular pathways. Novel therapies for COVID-19 seek to exploit renalase's multiple and distinctive cytoprotective mechanisms; therefore, this review should be acknowledged as the thorough groundwork for subsequent research of renalase's employment in the experimental models of COVID-19.
Collapse
|
25
|
Amano T, Yu H, Amano M, Leyder E, Badiola M, Ray P, Kim J, Ko AC, Achour A, Weng NP, Kochba E, Levin Y, Ko MSH. Controllable self-replicating RNA vaccine delivered intradermally elicits predominantly cellular immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.05.506686. [PMID: 36263074 PMCID: PMC9580376 DOI: 10.1101/2022.09.05.506686] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Intradermal delivery of self-replicating RNA (srRNA) is a promising vaccine platform. Considering that human skin temperature is around 33°C, lower than core body temperature of 37°C, we have developed an srRNA that functions optimally at skin temperature and is inactivated at or above 37°C as a safety switch. This temperature- c ontrollable srRNA (c-srRNA), when tested as an intradermal vaccine against SARS-CoV-2, functions when injected naked without lipid nanoparticles. Unlike most currently available vaccines, c-srRNA vaccines predominantly elicit cellular immunity with little or no antibody production. Interestingly, c-srRNA-vaccinated mice produced antigen-specific antibodies upon subsequent stimulation with antigen protein. Antigen-specific antibodies were also produced when B-cell stimulation using antigen protein was followed by c-srRNA booster vaccination. Using c-srRNA, we have designed a pan-coronavirus booster vaccine that incorporates both spike receptor binding domains as viral surface proteins and evolutionarily conserved nucleoproteins as viral non-surface proteins, from both SARS-CoV-2 and MERS-CoV. It can thereby potentially immunize against SARS-CoV-2, SARS-CoV, MERS-CoV, and their variants. c-srRNA may provide a route to activate cellular immunity against a wide variety of pathogens.
Collapse
|
26
|
Melo-Filho CC, Bobrowski T, Martin HJ, Sessions Z, Popov KI, Moorman NJ, Baric RS, Muratov EN, Tropsha A. Conserved coronavirus proteins as targets of broad-spectrum antivirals. Antiviral Res 2022; 204:105360. [PMID: 35691424 PMCID: PMC9183392 DOI: 10.1016/j.antiviral.2022.105360] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Coronaviruses are a class of single-stranded, positive-sense RNA viruses that have caused three major outbreaks over the past two decades: Middle East respiratory syndrome-related coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). All outbreaks have been associated with significant morbidity and mortality. In this study, we have identified and explored conserved binding sites in the key coronavirus proteins for the development of broad-spectrum direct acting anti-coronaviral compounds and validated the significance of this conservation for drug discovery with existing experimental data. We have identified four coronaviral proteins with highly conserved binding site sequence and 3D structure similarity: PLpro, Mpro, nsp10-nsp16 complex(methyltransferase), and nsp15 endoribonuclease. We have compiled all available experimental data for known antiviral medications inhibiting these targets and identified compounds active against multiple coronaviruses. The identified compounds representing potential broad-spectrum antivirals include: GC376, which is active against six viral Mpro (out of six tested, as described in research literature); mycophenolic acid, which is active against four viral PLpro (out of four); and emetine, which is active against four viral RdRp (out of four). The approach described in this study for coronaviruses, which combines the assessment of sequence and structure conservation across a viral family with the analysis of accessible chemical structure - antiviral activity data, can be explored for the development of broad-spectrum drugs for multiple viral families.
Collapse
Affiliation(s)
- Cleber C Melo-Filho
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Tesia Bobrowski
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zoe Sessions
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Konstantin I Popov
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene N Muratov
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| | - Alexander Tropsha
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
27
|
Yang L, Liang T, Pierson LM, Wang H, Fletcher JK, Wang S, Bao D, Zhang L, Huang Z, Zheng W, Zhang X, Park H, Li Y, Robinson JE, Feehan AK, Lyon CJ, Cao J, Morici LA, Li C, Roy CJ, Yu X, Hu T. SARS-CoV-2 Epitopes following Infection and Vaccination Overlap Known Neutralizing Antibody Sites. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9769803. [PMID: 35928300 PMCID: PMC9297724 DOI: 10.34133/2022/9769803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
Identification of epitopes targeted following virus infection or vaccination can guide vaccine design and development of therapeutic interventions targeting functional sites, but can be laborious. Herein, we employed peptide microarrays to map linear peptide epitopes (LPEs) recognized following SARS-CoV-2 infection and vaccination. LPEs detected by nonhuman primate (NHP) and patient IgMs after SARS-CoV-2 infection extensively overlapped, localized to functionally important virus regions, and aligned with reported neutralizing antibody binding sites. Similar LPE overlap occurred after infection and vaccination, with LPE clusters specific to each stimulus, where strong and conserved LPEs mapping to sites known or likely to inhibit spike protein function. Vaccine-specific LPEs tended to map to sites known or likely to be affected by structural changes induced by the proline substitutions in the mRNA vaccine's S protein. Mapping LPEs to regions of known functional importance in this manner may accelerate vaccine evaluation and discovery of targets for site-specific therapeutic interventions.
Collapse
Affiliation(s)
- Li Yang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Te Liang
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing 100083, China
| | - Lane M. Pierson
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Hongye Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Jesse K. Fletcher
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Shu Wang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Duran Bao
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Lili Zhang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Zhen Huang
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Wenshu Zheng
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Xiaomei Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Heewon Park
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Yuwen Li
- Hayward Genetics Center, Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - James E. Robinson
- Department of Pediatrics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Amy K. Feehan
- Infectious Disease Department, Ochsner Clinic Foundation, New Orleans, LA 70121, USA
| | - Christopher J. Lyon
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Jing Cao
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Lisa A. Morici
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chenzhong Li
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | - Chad J. Roy
- Department of Microbiology & Immunology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Division of Microbiology, Tulane National Primate Research Center, 18703 Three Rivers Road, Covington, LA 70433, USA
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Tony Hu
- Center for Cellular and Molecular Diagnostics, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA 70112, USA
| |
Collapse
|
28
|
Durmus C, Balaban Hanoglu S, Harmanci D, Moulahoum H, Tok K, Ghorbanizamani F, Sanli S, Zihnioglu F, Evran S, Cicek C, Sertoz R, Arda B, Goksel T, Turhan K, Timur S. Indiscriminate SARS-CoV-2 multivariant detection using magnetic nanoparticle-based electrochemical immunosensing. Talanta 2022; 243:123356. [PMID: 35248943 PMCID: PMC8891155 DOI: 10.1016/j.talanta.2022.123356] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/28/2022] [Accepted: 03/01/2022] [Indexed: 11/03/2022]
Abstract
The increasing mutation frequency of the SARS-CoV-2 virus and the emergence of successive variants have made correct diagnosis hard to perform. Developing efficient and accurate methods to diagnose infected patients is crucial to effectively mitigate the pandemic. Here, we developed an electrochemical immunosensor based on SARS-CoV-2 antibody cocktail-conjugated magnetic nanoparticles for the sensitive and accurate detection of the SARS-CoV-2 virus and its variants in nasopharyngeal swabs. The application of the antibody cocktail was compared with commercially available anti-SARS-CoV-2 S1 (anti-S1) and anti-S2 monoclonal antibodies. After optimization and calibration, the limit of detection (LOD) determination demonstrated a LOD = 0.53–0.75 ng/mL for the antibody cocktail-based sensor compared with 0.93 ng/mL and 0.99 ng/mL for the platforms using anti-S1 and anti-S2, respectively. The platforms were tested with human nasopharyngeal swab samples pre-diagnosed with RT-PCR (10 negatives and 40 positive samples). The positive samples include the original, alpha, beta, and delta variants (n = 10, for each). The polyclonal antibody cocktail performed better than commercial anti-S1 and anti-S2 antibodies for all samples reaching 100% overall sensitivity, specificity, and accuracy. It also showed a wide range of variants detection compared to monoclonal antibody-based platforms. The present work proposes a versatile electrochemical biosensor for the indiscriminate detection of the different variants of SARS-CoV-2 using a polyclonal antibody cocktail. Such diagnostic tools allowing the detection of variants can be of great efficiency and economic value in the fight against the ever-changing SARS-CoV-2 virus.
Collapse
|
29
|
Chura-Chambi RM, Prieto-da-Silva ARDB, Di Lela MM, Oliveira JE, Abreu PEA, Meireles LR, de Andrade Junior HF, Morganti L. High level SARS-CoV-2 nucleocapsid refolding using mild condition for inclusion bodies solubilization: Application of high pressure at pH 9.0. PLoS One 2022; 17:e0262591. [PMID: 35113919 PMCID: PMC8812862 DOI: 10.1371/journal.pone.0262591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
SARS-CoV-2 Nucleocapsid (N) is the most abundant viral protein expressed in host samples and is an important antigen for diagnosis. N is a 45 kDa protein that does not present disulfide bonds. Intending to avoid non-specific binding of SARS-CoV-2 N to antibodies from patients who previously had different coronaviruses, a 35 kDa fragment of N was expressed without a conserved motif in E. coli as inclusion bodies (N122-419-IB). Culture media and IB washing conditions were chosen to obtain N122-419-IB with high yield (370 mg/L bacterial culture) and protein purity (90%). High pressure solubilizes protein aggregates by weakening hydrophobic and ionic interactions and alkaline pH promotes solubilization by electrostatic repulsion. The association of pH 9.0 and 2.4 kbar promoted efficient solubilization of N122-419-IB without loss of native-like tertiary structure that N presents in IB. N122-419 was refolded with a yield of 85% (326 mg/L culture) and 95% purity. The refolding process takes only 2 hours and the protein is ready for use after pH adjustment, avoiding the necessity of dialysis or purification. Antibody binding of COVID-19-positive patients sera to N122-419 was confirmed by Western blotting. ELISA using N122-419 is effective in distinguishing between sera presenting antibodies against SARS-CoV-2 from those who do not. To the best of our knowledge, the proposed condition for IB solubilization is one of the mildest described. It is possible that the refolding process can be extended to a wide range of proteins with high yields and purity, even those that are sensible to very alkaline pH.
Collapse
Affiliation(s)
- Rosa Maria Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | | | - Matheus Martins Di Lela
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | - João Ezequiel Oliveira
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| | | | - Luciana Regina Meireles
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo,SP, Brazil
| | | | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
30
|
Few SARS-CoV-2 infections detected in Newfoundland and Labrador in the absence of Public Health Laboratory-based confirmation. PLoS One 2022; 17:e0262957. [PMID: 35089949 PMCID: PMC8797227 DOI: 10.1371/journal.pone.0262957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/09/2022] [Indexed: 01/08/2023] Open
Abstract
Objective
To assess the incidence of COVID-19 infection in the absence of a confirmatory test in persons suspecting they contracted COVID-19 and elucidate reasons for their belief.
Methods
We recruited persons with a confirmed COVID-19 diagnosis and persons who believed they may have contracted COVID-19 between December, 2019 and April, 2021 into a study of immunity against SARS-CoV-2. An intake questionnaire captured their perceived risk factors for exposure and symptoms experienced, including symptom duration and severity. ELISA testing against multiple SARS-CoV-2 antigens was done to detect antibodies against SARS-CoV-2. No participant had received COVID-19 vaccination prior to the time of testing.
Results
The vast majority of study subjects without Public Health confirmation of infection had no detectable antibodies against SARS-CoV-2. Suspected infection with SARS-CoV-2 generally involved experiencing symptoms common to many other respiratory infections. Unusually severe or persistent symptoms often supported suspicion of infection with SARS-CoV-2 as did travel or contact with travelers from outside Newfoundland and Labrador. Rare cases in which antibodies against SARS-CoV-2 were detected despite negative results of Public Health testing for SARS-CoV-2 RNA involved persons in close contact with confirmed cases.
Conclusions
Broad public awareness and declaration of pandemic status in March, 2020 contributed to the perceived risk of contracting COVID-19 in Newfoundland and Labrador from late 2019 to April 2021 and raised expectation of its severity. Serological testing is useful to diagnose past infection with SARS-CoV-2 to accurately estimate population exposure rates.
Collapse
|
31
|
Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A. Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 2022; 106:1151-1164. [PMID: 35037999 PMCID: PMC8762450 DOI: 10.1007/s00253-022-11769-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 12/10/2021] [Accepted: 01/07/2022] [Indexed: 11/02/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the coronavirus disease (COVID-19). It is confirmed that nucleocapsid (N) protein is closely related to viral pathogenesis, modulation of host immune response, RNA transcription, and replication and virus packaging. Therefore, the N protein is a preponderant antigen target for virus detection. The codon-optimized N gene was designed according to the encoding characteristics of insect cells and inserted into pFastBacTM1 vector with 6 × His-tag-fused N protein for expression in insect sf21 cells. Six anti-N mAbs (4G3, 5B3, 12B6, 18C7-A2, 21H10-A3, 21H10-E9) were prepared by recombinant N protein. The mAbs showed high titers, antibody affinity, and reactivity with the SARS-CoV-2 N protein. Then, fourteen overlapped peptides that covered the intact N protein were synthesized (N1-N14). Peptide N14 was identified as the main linear B-cell epitope region via peptide-ELISA and dot-blot assay, and this region was truncated gradually until mapping the peptide 401-DFSKQLQQ-408. Simultaneously, compared with the sequence of variants of concern (VOCs) and variants of interest (VOIs) strains among the several countries, epitope 401-DFSKQLQQ-408 is very conservative among them. The findings provide new guidance for the design and detection of COVID-19 targets. KEY POINTS: • The N protein was optimized according to the insect cell codon preference and was highly expressed. • The monoclonal antibodies prepared in this study were shown high antibody titers and high affinity. • Monoclonal antibodies were used to map the epitope 401-408 amino acids of N protein for the first time in this study.
Collapse
Affiliation(s)
- Yuanyuan Tian
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Hongliang Liu
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Rui Jia
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Jingming Zhou
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Yanhua Qi
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Jinran Du
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Chao Liang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Xifang Zhu
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
32
|
Erdem Ö, Eş I, Saylan Y, Inci F. Unifying the Efforts of Medicine, Chemistry, and Engineering in Biosensing Technologies to Tackle the Challenges of the COVID-19 Pandemic. Anal Chem 2022; 94:3-25. [PMID: 34874149 DOI: 10.1021/acs.analchem.1c04454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Özgecan Erdem
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Ismail Eş
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
33
|
Kolesov DE, Sinegubova MV, Safenkova IV, Vorobiev II, Orlova NA. Antigenic properties of the SARS-CoV-2 nucleoprotein are altered by the RNA admixture. PeerJ 2022; 10:e12751. [PMID: 35036106 PMCID: PMC8744485 DOI: 10.7717/peerj.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Determining the presence of antibodies to the SARS-CoV-2 antigens is the best way to identify infected people, regardless of the development of symptoms of COVID-19. The nucleoprotein (NP) of the SARS-CoV-2 is an immunodominant antigen of the virus; anti-NP antibodies are detected in persons previously infected with the virus with the highest titers. Many test systems for detecting antibodies to SARS-CoV-2 contain NP or its fragments as antigen. The sensitivity and specificity of such test systems differ significantly, which can be explained by variations in the antigenic properties of NP caused by differences in the methods of its cultivation, isolation and purification. We investigated this effect for the Escherichia coli-derived SARS-CoV-2 NP, obtained from the cytoplasm in the soluble form. We hypothesized that co-purified nucleic acids that form a strong complex with NP might negatively affect NP's antigenic properties. Therefore, we have established the NP purification method, which completely eliminates the RNA in the NP preparation. Two stages of RNA removal were used: treatment of the crude lysate of E. coli with RNase A and subsequent selective RNA elution with 2 M NaCl solution. The resulting NP without RNA has a significantly better signal-to-noise ratio when used as an ELISA antigen and tested with a control panel of serum samples with antibodies to SARS-CoV-2; therefore, it is preferable for in vitro diagnostic use. The same increase of the signal-to-noise ratio was detected for the free N-terminal domain of the NP. Complete removal of RNA complexed with NP during purification will significantly improve its antigenic properties, and the absence of RNA in NP preparations should be controlled during the production of this antigen.
Collapse
Affiliation(s)
- Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Safenkova
- Laboratory of Immunobiochemistry, Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
34
|
Shen H, Zhang N, Liu Y, Yang X, He Y, Li Q, Shen X, Zhu Y, Yang Y. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front Pharmacol 2022; 12:805535. [PMID: 35069217 PMCID: PMC8766975 DOI: 10.3389/fphar.2021.805535] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a highly contagious respiratory disease, which mainly affects the lungs. Critically ill patients are easily complicated by cytokine storms, acute respiratory distress syndrome (ARDS), and respiratory failure, which seriously threaten their lives. Pulmonary fibrosis (PF) is a common interstitial lung disease, and its pathogenesis may involve the participation of a variety of immune cells and inflammatory factors. Current studies have shown that patients with COVID-19 may be complicated by pulmonary fibrosis, and patients with pulmonary fibrosis may also be at higher risk of contracting COVID-19 than healthy people. Pulmonary fibrosis is an important risk factor leading to the aggravation of COVID-19 disease. COVID-19 complicated by cytokine storm and ARDS mechanism pathways are similar to the pathogenesis of pulmonary fibrosis. The potential interaction between pulmonary fibrosis and COVID-19 can cause acute exacerbation of the patient's condition, but the potential mechanism between the two has not been fully elucidated. Most of the drug treatment programs for COVID-19-related pulmonary fibrosis are currently formulated about the relevant guidelines for idiopathic pulmonary fibrosis (IPF), and there is no clear drug treatment program recommendation. This article aims to summarize the relevant mechanism pathways of COVID-19 and pulmonary fibrosis, explore the interrelationships and possible mechanisms, and discuss the value and risks of existing and potential COVID-19-related pulmonary fibrosis treatment drugs, to provide reference for anti-fibrosis treatment for patients.
Collapse
Affiliation(s)
- Hao Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nu Zhang
- Department of Pharmacy, People’s Hospital of Fushun County, Fushun, China
| | - Yuqing Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan He
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Chechetkin VR, Lobzin VV. Ribonucleocapsid assembly/packaging signals in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2: detection, comparison and implications for therapeutic targeting. J Biomol Struct Dyn 2022; 40:508-522. [PMID: 32901577 PMCID: PMC7544952 DOI: 10.1080/07391102.2020.1815581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
The genomic ssRNA of coronaviruses is packaged within a helical nucleocapsid. Due to transitional symmetry of a helix, weakly specific cooperative interaction between ssRNA and nucleocapsid proteins leads to the natural selection of specific quasi-periodic assembly/packaging signals in the related genomic sequence. Such signals coordinated with the nucleocapsid helical structure were detected and reconstructed in the genomes of the coronaviruses SARS-CoV and SARS-CoV-2. The main period of the signals for both viruses was about 54 nt, that implies 6.75 nt per N protein. The complete coverage of the ssRNA genome of length about 30,000 nt by the nucleocapsid would need 4.4 × 103 N proteins, that makes them the most abundant among the structural proteins. The repertoires of motifs for SARS-CoV and SARS-CoV-2 were divergent but nearly coincided for different isolates of SARS-CoV-2. We obtained the distributions of assembly/packaging signals over the genomes with nonoverlapping windows of width 432 nt. Finally, using the spectral entropy, we compared the load from point mutations and indels during virus age for SARS-CoV and SARS-CoV-2. We found the higher mutational load on SARS-CoV. In this sense, SARS-CoV-2 can be treated as a 'newborn' virus. These observations may be helpful in practical medical applications and are of basic interest. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vladimir R. Chechetkin
- Engelhardt Institute of Molecular Biology of
Russian Academy of Sciences, Moscow,
Russia
| | | |
Collapse
|
36
|
Jamiruddin R, Haq A, Khondoker MU, Ali T, Ahmed F, Khandker SS, Jawad I, Hossain R, Ahmed S, Rahman SR, Mustafi M, Kaitsuka T, Mie M, Tomizawa K, Kobatake E, Haque M, Adnan N. Antibody response to the first dose of AZD1222 vaccine in COVID-19 convalescent and uninfected individuals in Bangladesh. Expert Rev Vaccines 2021; 20:1651-1660. [PMID: 34503369 PMCID: PMC8442763 DOI: 10.1080/14760584.2021.1977630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/03/2021] [Indexed: 10/31/2022]
Abstract
BACKGROUND Vaccination with the Oxford-AstraZeneca COVID-19 vaccine (AZD1222) initially started in the UK and quickly implemented around the Globe, including Bangladesh. Up to date, more than nine million doses administrated to the Bangladeshi public. METHOD Herein, we studied the antibody response to the first dose of AZD1222 in 86 Bangladeshi individuals using in-house ELISA kits. Study subjects were categorized into two groups, convalescent and uninfected, based on prior infection history and SARS-CoV-2 nucleocapsid-IgG profiles. RESULTS All the convalescent individuals presented elevated spike-1-IgG compared to 90% of uninfected ones after the first dose. Day >28 post-vaccination, the convalescent group showed six times higher antibody titer than the uninfected ones. The most elevated antibody titers for the former and later group were found at Day 14 and Days >28 post-vaccination, respectively. The spike-1-IgA titer showed a similar pattern as spike-1-IgG, although in a low-titer. In contrast, the IgM titer did not show any significant change in either group. CONCLUSION High antibody titer in the convalescent group, signify the importance of the first dose among the uninfected group. This study advocates the integration of antibody tests in vaccination programs in the healthcare system for maximizing benefit.
Collapse
Affiliation(s)
- Raeed Jamiruddin
- Department of Pharmacy, Brac University, Dhaka, Bangladesh
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
| | - Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
| | - Mohib Ullah Khondoker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar, Dhaka, Bangladesh
| | - Tamanna Ali
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
| | - Firoz Ahmed
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
| | - Irfan Jawad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Rubel Hossain
- Department of Microbiology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Sohel Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | - Mamun Mustafi
- Department of Community Medicine, Gonoshasthaya Samaj Vittik Medical College, Savar, Dhaka, Bangladesh
| | - Taku Kaitsuka
- Department of Pharmaceutical Sciences, School of Pharmacy, International University of Health and Welfare, Okawa, Fukuoka, Japan
| | - Masayasu Mie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health Universiti Pertahanan, Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sugai Besi, Kuala Lumpur, Malaysia
| | - Nihad Adnan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhanmondi, Dhaka, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| |
Collapse
|
37
|
Chansaenroj J, Yorsaeng R, Posuwan N, Puenpa J, Wanlapakorn N, Sudhinaraset N, Sripramote M, Chalongviriyalert P, Jirajariyavej S, Kiatpanabhikul P, Saiyarin J, Soudon C, Thienfaidee O, Palakawong Na Ayuthaya T, Brukesawan C, Chirathaworn C, Intharasongkroh D, Chaiwanichsiri D, Issarasongkhram M, Kitphati R, Mungaomklang A, Nagavajara P, Poovorawan Y. Long-term specific IgG response to SARS-CoV-2 nucleocapsid protein in recovered COVID-19 patients. Sci Rep 2021; 11:23216. [PMID: 34853374 PMCID: PMC8636620 DOI: 10.1038/s41598-021-02659-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
This study monitored the long-term immune response to severe acute respiratory syndrome coronavirus (SARS-CoV)-2 infection in patients who had recovered from coronavirus disease (COVID)-19. Anti-nucleocapsid immunoglobulin G (anti-N IgG) titer in serum samples collected at a single (N = 302) or multiple time points (N = 229) 3–12 months after COVID-19 symptom onset or SARS-CoV-2 detection in respiratory specimens was measured by semiquantitative chemiluminescent microparticle immunoassay. The 531 patients (966 specimens) were classified according to the presence or absence of pneumonia symptoms. Anti N IgG was detected in 87.5% of patients (328/375) at 3 months, 38.6% (93/241) at 6 months, 23.7% (49/207) at 9 months, and 26.6% (38/143) at 12 months. The anti-N IgG seropositivity rate was significantly lower at 6, 9, and 12 months than at 3 months (P < 0.01) and was higher in the pneumonia group than in the non-pneumonia/asymptomatic group at 6 months (P < 0.01), 9 months (P = 0.04), and 12 months (P = 0.04). The rate started to decline 6–12 months after symptom onset. Anti-N IgG sample/cutoff index was positively correlated with age (r = 0.192, P < 0.01) but negatively correlated with interval between symptom onset and blood sampling (r = − 0.567, P < 0.01). These findings can guide vaccine strategies in recovered COVID-19 patients.
Collapse
Affiliation(s)
- Jira Chansaenroj
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ritthideach Yorsaeng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nawarat Posuwan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Division of Academic Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthinee Sudhinaraset
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Manit Sripramote
- Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | | | - Supunee Jirajariyavej
- Taksin Hospital, Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Phatharaporn Kiatpanabhikul
- Charoenkrung Pracharak Hospital, Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Jatuporn Saiyarin
- Klang General Hospital, Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Chulikorn Soudon
- Sirindhorn Hospital, Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Orawan Thienfaidee
- Ratchaphiphat Hospital, Medical Service Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | | | - Chantapat Brukesawan
- Public Health Center 26, Health Department, Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Chintana Chirathaworn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Tropical Medicine Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | | | - Mila Issarasongkhram
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Rungrueng Kitphati
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Anek Mungaomklang
- Institute for Urban Disease Control and Prevention, Department of Disease Control, Ministry of Public Health, Bangkok, Thailand
| | - Pijaya Nagavajara
- Office of the Permanent Secretary for the Bangkok Metropolitan Administration, Bangkok, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
38
|
Hwang MT, Park I, Heiranian M, Taqieddin A, You S, Faramarzi V, Pak AA, van der Zande AM, Aluru NR, Bashir R. Ultrasensitive Detection of Dopamine, IL-6 and SARS-CoV-2 Proteins on Crumpled Graphene FET Biosensor. ADVANCED MATERIALS TECHNOLOGIES 2021; 6:2100712. [PMID: 34901384 PMCID: PMC8646936 DOI: 10.1002/admt.202100712] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/09/2021] [Indexed: 05/03/2023]
Abstract
Universal platforms for biomolecular analysis using label-free sensing modalities can address important diagnostic challenges. Electrical field effect-sensors are an important class of devices that can enable point-of-care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect-based sensors using DNA molecules on the crumpled graphene FET (field-effect transistor) platform. Here, the crumpled graphene FET-based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin-6 (IL-6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID-19 related proteins, nucleocapsid (N-) and spike (S-) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point-of-care diagnostics.
Collapse
Affiliation(s)
- Michael Taeyoung Hwang
- Department of BioNano TechnologyGachon University1342 Seongnam‐Daero, Sujeong‐GuSeongnamGyeonggi13120Republic of Korea
| | - Insu Park
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Mohammad Heiranian
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Amir Taqieddin
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Seungyong You
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Vahid Faramarzi
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Angela A. Pak
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Arend M. van der Zande
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Narayana R. Aluru
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Walker Department of Mechanical EngineeringOden Institute for Computational Engineering and SciencesThe University of Texas at AustinAustinTX78712USA
| | - Rashid Bashir
- Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of BioengineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Materials Research LaboratoryUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
39
|
Fisher M, Levy H, Fatelevich E, Afrimov Y, Ben-Shmuel A, Rosenfeld R, Noy-Porat T, Glinert I, Sittner A, Biber A, Belkin A, Bar-David E, Puni R, Levy I, Mazor O, Weiss S, Mechaly A. A Serological Snapshot of COVID-19 Initial Stages in Israel by a 6-Plex Antigen Array. Microbiol Spectr 2021; 9:e0087021. [PMID: 34612689 PMCID: PMC8510178 DOI: 10.1128/spectrum.00870-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022] Open
Abstract
The first case of SARS-CoV-2 was discovered in Israel in late February 2020. Three major outbreaks followed, resulting in over 800,000 cases and over 6,000 deaths by April 2021. Our aim was characterization of a serological snapshot of Israeli patients and healthy adults in the early months of the COVID-19 pandemic. Sera from 55 symptomatic COVID-19 patients and 146 healthy subjects (early-pandemic, reverse transcription-quantitative PCR [qRT-PCR]-negative), collected in Israel between March and April 2020, were screened for SARS-CoV-2-specific IgG, IgM, and IgA antibodies, using a 6-plex antigen microarray presenting the whole inactivated virus and five viral antigens: a stabilized version of the spike ectodomain (S2P), spike subunit 1 (S1), receptor-binding-domain (RBD), N-terminal-domain (NTD), and nucleocapsid (NC). COVID-19 patients, 4 to 40 days post symptom onset, presented specific IgG to all of the viral antigens (6/6) in 54 of the 55 samples (98% sensitivity). Specific IgM and IgA antibodies for all six antigens were detected in only 10% (5/55) and 4% (2/55) of the patients, respectively, suggesting that specific IgG is a superior serological marker for COVID-19. None of the qRT-PCR-negative sera reacted with all six viral antigens (100% specificity), and 48% (70/146) were negative throughout the panel. Our findings confirm a low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population prior to the COVID-19 outbreak. We further suggest that the presence of low-level cross-reacting antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals. IMPORTANCE A 6-plex protein array presenting the whole inactivated virus and five nucleocapsid and spike-derived SARS-CoV-2 antigens was used to generate a serological snapshot of SARS-CoV-2 seroprevalence and seroconversion in Israel in the early months of the pandemic. Our findings confirm a very low seroprevalence of anti-SARS-CoV-2 antibodies in the Israeli adult population. We further propose that the presence of low-level nonspecific antibodies in naive individuals calls for a combined, multiantigen analysis for accurate discrimination between naive and exposed individuals enabling accurate determination of seroconversion. The developed assay is currently applied to evaluate immune responses to the Israeli vaccine during human phase I/II trials.
Collapse
Affiliation(s)
- Morly Fisher
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Haim Levy
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ella Fatelevich
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yafa Afrimov
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Amir Ben-Shmuel
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ronit Rosenfeld
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Tal Noy-Porat
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Itai Glinert
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Assa Sittner
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Asaf Biber
- Sheba Medical Center and the Sackler Medical School, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ana Belkin
- Sheba Medical Center and the Sackler Medical School, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Elad Bar-David
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Reut Puni
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Itzchak Levy
- Sheba Medical Center and the Sackler Medical School, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Ohad Mazor
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Shay Weiss
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Adva Mechaly
- Department of Infectious Diseases, Israel Institute for Biological Research, Ness-Ziona, Israel
| |
Collapse
|
40
|
Lutomski C, El-Baba TJ, Bolla JR, Robinson CV. Multiple Roles of SARS-CoV-2 N Protein Facilitated by Proteoform-Specific Interactions with RNA, Host Proteins, and Convalescent Antibodies. JACS AU 2021; 1:1147-1157. [PMID: 34462738 PMCID: PMC8231660 DOI: 10.1021/jacsau.1c00139] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Indexed: 05/12/2023]
Abstract
The SARS-CoV-2 nucleocapsid (N) protein is a highly immunogenic viral protein that plays essential roles in replication and virion assembly. Here, using native mass spectrometry, we show that dimers are the functional unit of ribonucleoprotein assembly and that N protein binds RNA with a preference for GGG motifs, a common motif in coronavirus packaging signals. Unexpectedly, proteolytic processing of N protein resulted in the formation of additional proteoforms. The N-terminal proteoforms bind RNA, with the same preference for GGG motifs, and bind to cyclophilin A, an interaction which can be abolished by approved immunosuppressant cyclosporin A. Furthermore, N proteoforms showed significantly different interactions with IgM, IgG, and IgA antibodies from convalescent plasma. Notably, the C-terminal proteoform exhibited a heightened interaction with convalescent antibodies, suggesting the antigenic epitope is localized to the C-terminus. Overall, the different interactions of N proteoforms highlight potential avenues for therapeutic intervention and identify a stable and immunogenic proteoform as a possible candidate for immune-directed therapies.
Collapse
Affiliation(s)
- Corinne
A. Lutomski
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Tarick J. El-Baba
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Jani R. Bolla
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| | - Carol V. Robinson
- Physical
and Theoretical Chemistry Laboratory, University
of Oxford, South Parks Road, OX13QZ Oxford, U.K.
| |
Collapse
|
41
|
Affiliation(s)
- Elizabeth Smerczak
- Detroit Medical Center University Laboratories, Sinai-Grace Hospital, Detroit, Michigan, USA
| |
Collapse
|
42
|
Ramakrishnan RK, Kashour T, Hamid Q, Halwani R, Tleyjeh IM. Unraveling the Mystery Surrounding Post-Acute Sequelae of COVID-19. Front Immunol 2021; 12:686029. [PMID: 34276671 PMCID: PMC8278217 DOI: 10.3389/fimmu.2021.686029] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
More than one year since its emergence, corona virus disease 2019 (COVID-19) is still looming large with a paucity of treatment options. To add to this burden, a sizeable subset of patients who have recovered from acute COVID-19 infection have reported lingering symptoms, leading to significant disability and impairment of their daily life activities. These patients are considered to suffer from what has been termed as “chronic” or “long” COVID-19 or a form of post-acute sequelae of COVID-19, and patients experiencing this syndrome have been termed COVID-19 long-haulers. Despite recovery from infection, the persistence of atypical chronic symptoms, including extreme fatigue, shortness of breath, joint pains, brain fogs, anxiety and depression, that could last for months implies an underlying disease pathology that persist beyond the acute presentation of the disease. As opposed to the direct effects of the virus itself, the immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is believed to be largely responsible for the appearance of these lasting symptoms, possibly through facilitating an ongoing inflammatory process. In this review, we hypothesize potential immunological mechanisms underlying these persistent and prolonged effects, and describe the multi-organ long-term manifestations of COVID-19.
Collapse
Affiliation(s)
- Rakhee K Ramakrishnan
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Tarek Kashour
- Department of Cardiac Sciences, King Fahad Cardiac Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Qutayba Hamid
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Meakins-Christie Laboratories, Research Institute of the McGill University Healthy Center, McGill University, Montreal, QC, Canada
| | - Rabih Halwani
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Prince Abdullah Ben Khaled Celiac Disease Chair, Department of Pediatrics, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Imad M Tleyjeh
- Infectious Diseases Section, Department of Medical Specialties, King Fahad Medical City, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Division of Infectious Diseases, Mayo Clinic College of Medicine and Science, Rochester, MN, United States.,Division of Epidemiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
43
|
Zhao H, Wu D, Nguyen A, Li Y, Adão RC, Valkov E, Patterson GH, Piszczek G, Schuck P. Energetic and structural features of SARS-CoV-2 N-protein co-assemblies with nucleic acids. iScience 2021; 24:102523. [PMID: 33997662 PMCID: PMC8103780 DOI: 10.1016/j.isci.2021.102523] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleocapsid (N) protein of the SARS-CoV-2 virus packages the viral genome into well-defined ribonucleoprotein particles, but the molecular pathway is still unclear. N-protein is dimeric and consists of two folded domains with nucleic acid (NA) binding sites, surrounded by intrinsically disordered regions that promote liquid-liquid phase separation. Here, we use biophysical tools to study N-protein interactions with oligonucleotides of different lengths, examining the size, composition, secondary structure, and energetics of the resulting states. We observe the formation of supramolecular clusters or nuclei preceding growth into phase-separated droplets. Short hexanucleotide NA forms compact 2:2 N-protein/NA complexes with reduced disorder. Longer oligonucleotides expose additional N-protein interactions and multi-valent protein-NA interactions, which generate higher-order mixed oligomers and simultaneously promote growth of droplets. Phase separation is accompanied by a significant change in protein secondary structure, different from that caused by initial NA binding, which may contribute to the assembly of ribonucleoprotein particles within macromolecular condensates.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Regina C. Adão
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| | - Eugene Valkov
- Messenger RNA Regulation and Decay Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, Building 560, Room 21-105A, Frederick, MD 21702, USA
| | - George H. Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, 50 South Drive, Bethesda, MD 20892, USA
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, 13 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
44
|
Jamiruddin MR, Haq MA, Tomizawa K, Kobatake E, Mie M, Ahmed S, Khandker SS, Ali T, Jahan N, Oishee MJ, Khondoker MU, Sil BK, Haque M, Adnan N. Longitudinal Antibody Dynamics Against Structural Proteins of SARS-CoV-2 in Three COVID-19 Patients Shows Concurrent Development of IgA, IgM, and IgG. J Inflamm Res 2021; 14:2497-2506. [PMID: 34163208 PMCID: PMC8214341 DOI: 10.2147/jir.s313188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/19/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Dynamics and persistence of neutralizing and non-neutralizing antibodies can give us the knowledge required for serodiagnosis, disease management, and successful vaccine design and development. The disappearance of antibodies, absence of humoral immunity activation, and sporadic reinfection cases emphasize the importance of longitudinal antibody dynamics against variable structural antigens. METHODS In this study, twenty-five healthy subjects working in a SARS-COV-2 serodiagnostic assay development project were enrolled, and their sign and symptoms were followed up to six months. Three subjects showed COVID-19-like symptoms, and three subjects' antibody dynamics were followed over 120 days by analyzing 516 samples. We have developed 12 different types of in-house ELISAs to observe the kinetics of IgG, IgM, and IgA against four SARS-CoV-2 proteins, namely nucleocapsid, RBD, S1, and whole spike (S1+S2). For the development of these assays, 30-104 pre-pandemic samples were taken as negative controls and 83 RT-qPCR positive samples as positive ones. RESULTS All three subjects presented COVID-19-like symptoms twice, with mild symptoms in the first episode were severe in the second, and RT-qPCR confirmed the latter. The initial episode did not culminate with any significant antibody development, while a multifold increase in IgG antibodies characterized the second episode. Interestingly, IgG antibody development concurrent with IgM and IgA and persisted, whereas the latter two weans off rather quickly if appeared. CONCLUSION Antibody kinetics observed in this study can provide a pathway to the successful development of sero-diagnostics and epidemiologists to predict the fate of vaccination currently in place.
Collapse
Affiliation(s)
| | - Md Ahsanul Haq
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Eiry Kobatake
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
| | - Masayasu Mie
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8502, Japan
| | - Sohel Ahmed
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Shahad Saif Khandker
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Tamanna Ali
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Nowshin Jahan
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | | | | | - Bijon Kumar Sil
- Gonoshasthaya-RNA Molecular Diagnostic & Research Center, Dhaka, 1205, Bangladesh
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| | - Nihad Adnan
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| |
Collapse
|
45
|
Cuspoca AF, Díaz LL, Acosta AF, Peñaloza MK, Méndez YR, Clavijo DC, Yosa Reyes J. An Immunoinformatics Approach for SARS-CoV-2 in Latam Populations and Multi-Epitope Vaccine Candidate Directed towards the World's Population. Vaccines (Basel) 2021; 9:vaccines9060581. [PMID: 34205992 PMCID: PMC8228945 DOI: 10.3390/vaccines9060581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022] Open
Abstract
The coronavirus pandemic is a major public health crisis affecting global health systems with dire socioeconomic consequences, especially in vulnerable regions such as Latin America (LATAM). There is an urgent need for a vaccine to help control contagion, reduce mortality and alleviate social costs. In this study, we propose a rational multi-epitope candidate vaccine against SARS-CoV-2. Using bioinformatics, we constructed a library of potential vaccine peptides, based on the affinity of the most common major human histocompatibility complex (HLA) I and II molecules in the LATAM population to predict immunological complexes among antigenic, non-toxic and non-allergenic peptides extracted from the conserved regions of 92 proteomes. Although HLA-C, had the greatest antigenic peptide capacity from SARS-CoV-2, HLA-B and HLA-A, could be more relevant based on COVID-19 risk of infection in LATAM countries. We also used three-dimensional structures of SARS-CoV-2 proteins to identify potential regions for antibody production. The best HLA-I and II predictions (with increased coverage in common alleles and regions evoking B lymphocyte responses) were grouped into an optimized final multi-epitope construct containing the adjuvants Beta defensin-3, TpD, and PADRE, which are recognized for invoking a safe and specific immune response. Finally, we used Molecular Dynamics to identify the multi-epitope construct which may be a stable target for TLR-4/MD-2. This would prove to be safe and provide the physicochemical requirements for conducting experimental tests around the world.
Collapse
Affiliation(s)
- Andrés Felipe Cuspoca
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Laura Lorena Díaz
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Alvaro Fernando Acosta
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Marcela Katherine Peñaloza
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Yardany Rafael Méndez
- Grupo de Investigación en Epidemiología Clínica de Colombia (GRECO), Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (A.F.C.); (L.L.D.); (A.F.A.); (M.K.P.); (Y.R.M.)
| | - Diana Carolina Clavijo
- Facultad de Ingeniería y Ciencias, Pontificia Universidad Javeriana Cali, Santiago de Cali 760031, Colombia;
| | - Juvenal Yosa Reyes
- Laboratorio de Simulación Molecular, Facultad de Ciencias Básicas y Biomédicas, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
46
|
Anderson G, Liu JL, Esparza TJ, Voelker BT, Hofmann ER, Goldman ER. Single-Domain Antibodies for the Detection of SARS-CoV-2 Nucleocapsid Protein. Anal Chem 2021; 93:7283-7291. [PMID: 33955213 PMCID: PMC8117401 DOI: 10.1021/acs.analchem.1c00677] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
The goal of this work was to develop recombinantly expressed variable domains derived from camelid heavy-chain antibodies known as single-domain antibodies (sdAbs) directed against the SARS-CoV-2 nucleocapsid protein for incorporation into detection assays. To achieve this, a llama was immunized using a recombinant SARS-CoV-2 nucleocapsid protein and an immune phage-display library of variable domains was developed. The sdAbs selected from this library segregated into five distinct sequence families. Three of these families bind to unique epitopes with high affinity, low nM to sub-nM KD, as determined by surface plasmon resonance. To further enhance the utility of these sdAbs for the detection of nucleocapsid protein, homobivalent and heterobivalent genetic fusion constructs of the three high-affinity sdAbs were prepared. The effectiveness of the sdAbs for the detection of nucleocapsid protein was evaluated using MagPlex fluid array assays, a multiplexed immunoassay on color-coded magnetic microspheres. Using the optimal bivalent pair, one immobilized on the microsphere and the other serving as the biotinylated recognition reagent, a detection limit as low as 50 pg/mL of recombinant nucleocapsid and of killed virus down to 1.28 × 103 pfu/mL was achieved. The sdAbs described here represent immune reagents that can be tailored to be optimized for a number of detection platforms and may one day aid in the detection of SARS-CoV-2 to assist in controlling the current pandemic.
Collapse
Affiliation(s)
- George
P. Anderson
- Center
for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Jinny L. Liu
- Center
for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| | - Thomas J. Esparza
- Laboratory
of Functional and Molecular Imaging, The
National Institute of Neurological Disorders and Stroke Intramural
Research Program, Bethesda, Maryland 20892, United States
- Henry
M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland 20892, United States
| | - Bruce T. Voelker
- Chemical
Biological Center, U.S. Army Combat Capabilities
Development Command, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
| | - E. Randal Hofmann
- Chemical
Biological Center, U.S. Army Combat Capabilities
Development Command, 8198 Blackhawk Road, Aberdeen Proving Ground, Maryland 21010, United States
- EXCET,
Inc., 6225 Brandon Avenue
#360, Springfield, Virginia 22150, United States
| | - Ellen R. Goldman
- Center
for Biomolecular Science and Engineering, US Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, District of Columbia 20375, United States
| |
Collapse
|
47
|
Potential Antiviral Immune Response Against COVID-19: Lessons Learned from SARS-CoV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:149-167. [PMID: 33973177 DOI: 10.1007/978-3-030-63761-3_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Virus and host innate immune system interaction plays a significant role in forming the outcome of viral diseases. Host innate immunity initially recognizes the viral invasion and induces a rapid inflammatory response, and this recognition activates signaling cascades that trigger the release of antiviral mediators. This chapter aims to explore the mechanisms by which newly emerged coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activates the host immune system. Since SARS-CoV-2 shares similarities with SARS-CoV that caused the epidemic of SARS in 2003, the pathogenesis of both viruses could be at least very similar. For this, this chapter provides a synthesis of literature concerning antiviral immunity in SARS-CoV and SARS-CoV-2. It includes the presentation of epitopes linked to SARS-CoV-2 as well as the ability of SARS-CoV-2 to cause proteolytic activation and interact with angiotensin-converting enzyme 2 (ACE2) via molecular mimicry. This chapter characterizes various mechanisms that this virus may engage in escaping the host immunity, ended by a discussion of humoral immune responses against SARS-CoV-2.
Collapse
|
48
|
Hong SH, Oh H, Park YW, Kwak HW, Oh EY, Park HJ, Kang KW, Kim G, Koo BS, Hwang EH, Baek SH, Park HJ, Lee YS, Bang YJ, Kim JY, Bae SH, Lee SJ, Seo KW, Kim H, Kwon T, Kim JH, Lee S, Kim E, Kim Y, Park JH, Park SI, Gonçalves M, Weon BM, Jeong H, Nam KT, Hwang KA, Kim J, Kim H, Lee SM, Hong JJ, Nam JH. Immunization with RBD-P2 and N protects against SARS-CoV-2 in nonhuman primates. SCIENCE ADVANCES 2021; 7:7/22/eabg7156. [PMID: 34049881 DOI: 10.1126/sciadv.abg7156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), various vaccines are being developed, with most vaccine candidates focusing on the viral spike protein. Here, we developed a previously unknown subunit vaccine comprising the receptor binding domain (RBD) of the spike protein fused with the tetanus toxoid epitope P2 (RBD-P2) and tested its efficacy in rodents and nonhuman primates (NHPs). We also investigated whether the SARS-CoV-2 nucleocapsid protein (N) could increase vaccine efficacy. Immunization with N and RBD-P2 (RBDP2/N) + alum increased T cell responses in mice and neutralizing antibody levels in rats compared with those obtained using RBD-P2 + alum. Furthermore, in NHPs, RBD-P2/N + alum induced slightly faster SARS-CoV-2 clearance than that induced by RBD-P2 + alum, albeit without statistical significance. Our study supports further development of RBD-P2 as a vaccine candidate against SARS-CoV-2. Also, it provides insights regarding the use of N in protein-based vaccines against SARS-CoV-2.
Collapse
Affiliation(s)
- So-Hee Hong
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Yong Wook Park
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Eun Young Oh
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Kyung Won Kang
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Green Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Eun-Ha Hwang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Su Jeen Lee
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Ki-Weon Seo
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Hak Kim
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Taewoo Kwon
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Ji-Hwan Kim
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Seonghwan Lee
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Eunsom Kim
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Yeonhwa Kim
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sang-In Park
- Scripps Korea Antibody Institute, Chuncheon, Kangwon-do 24341, Republic of Korea
| | - Marta Gonçalves
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Haengdueng Jeong
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ki Taek Nam
- Severance Biomedical Science Institute, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Ah Hwang
- Department of Research and Development, SML Genetree, Baumero 225, Seocho-gu, Seoul 06740, Republic of Korea
| | - Jihye Kim
- Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hun Kim
- Department of Research and Development, SK Bioscience, Pangyoro 332, Bundang-gu, Republic of Korea
| | - Sang-Myeong Lee
- Present address: College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Jung Joo Hong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungcheongbuk, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea.
| |
Collapse
|
49
|
Sen SR, Sanders EC, Gabriel KN, Miller BM, Isoda HM, Salcedo GS, Garrido JE, Dyer RP, Nakajima R, Jain A, Caldaruse AM, Santos AM, Bhuvan K, Tifrea DF, Ricks-Oddie JL, Felgner PL, Edwards RA, Majumdar S, Weiss GA. Predicting COVID-19 Severity with a Specific Nucleocapsid Antibody plus Disease Risk Factor Score. mSphere 2021; 6:e00203-21. [PMID: 33910993 PMCID: PMC8092137 DOI: 10.1128/msphere.00203-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Effective methods for predicting COVID-19 disease trajectories are urgently needed. Here, enzyme-linked immunosorbent assay (ELISA) and coronavirus antigen microarray (COVAM) analysis mapped antibody epitopes in the plasma of COVID-19 patients (n = 86) experiencing a wide range of disease states. The experiments identified antibodies to a 21-residue epitope from nucleocapsid (termed Ep9) associated with severe disease, including admission to the intensive care unit (ICU), requirement for ventilators, or death. Importantly, anti-Ep9 antibodies can be detected within 6 days post-symptom onset and sometimes within 1 day. Furthermore, anti-Ep9 antibodies correlate with various comorbidities and hallmarks of immune hyperactivity. We introduce a simple-to-calculate, disease risk factor score to quantitate each patient's comorbidities and age. For patients with anti-Ep9 antibodies, scores above 3.0 predict more severe disease outcomes with a 13.42 likelihood ratio (96.7% specificity). The results lay the groundwork for a new type of COVID-19 prognostic to allow early identification and triage of high-risk patients. Such information could guide more effective therapeutic intervention.IMPORTANCE The COVID-19 pandemic has resulted in over two million deaths worldwide. Despite efforts to fight the virus, the disease continues to overwhelm hospitals with severely ill patients. Diagnosis of COVID-19 is readily accomplished through a multitude of reliable testing platforms; however, prognostic prediction remains elusive. To this end, we identified a short epitope from the SARS-CoV-2 nucleocapsid protein and also a disease risk factor score based upon comorbidities and age. The presence of antibodies specifically binding to this epitope plus a score cutoff can predict severe COVID-19 outcomes with 96.7% specificity.
Collapse
Affiliation(s)
- Sanjana R Sen
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Emily C Sanders
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Kristin N Gabriel
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Brian M Miller
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Hariny M Isoda
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Gabriela S Salcedo
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Jason E Garrido
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Rebekah P Dyer
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA
| | - Aarti Jain
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA
| | - Ana-Maria Caldaruse
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| | - Alicia M Santos
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Keertna Bhuvan
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Delia F Tifrea
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, USA
| | - Joni L Ricks-Oddie
- Center for Statistical Consulting, Department of Statistics, University of California Irvine, Irvine, California, USA
- Biostatics, Epidemiology and Research Design Unit, Institute for Clinical and Translational Sciences, University of California Irvine, Irvine, California, USA
| | - Philip L Felgner
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA
| | - Robert A Edwards
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, USA
| | - Sudipta Majumdar
- Department of Chemistry, University of California Irvine, Irvine, California, USA
| | - Gregory A Weiss
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, California, USA
- Department of Chemistry, University of California Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, California, USA
| |
Collapse
|
50
|
Casasanta MA, Jonaid GM, Kaylor L, Luqiu WY, Solares MJ, Schroen ML, Dearnaley WJ, Wilson J, Dukes MJ, Kelly DF. Microchip-based structure determination of low-molecular weight proteins using cryo-electron microscopy. NANOSCALE 2021; 13:7285-7293. [PMID: 33889923 PMCID: PMC8135184 DOI: 10.1039/d1nr00388g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interest in cryo-Electron Microscopy (EM) imaging has skyrocketed in recent years due to its pristine views of macromolecules and materials. As advances in instrumentation and computing algorithms spurred this progress, there is renewed focus to address specimen-related challenges. Here we contribute a microchip-based toolkit to perform complementary structural and biochemical analysis on low-molecular weight proteins. As a model system, we used the SARS-CoV-2 nucleocapsid (N) protein (48 kDa) due to its stability and important role in therapeutic development. Cryo-EM structures of the N protein monomer revealed a flexible N-terminal "top hat" motif and a helical-rich C-terminal domain. To complement our structural findings, we engineered microchip-based immunoprecipitation assays that led to the discovery of the first antibody binding site on the N protein. The data also facilitated molecular modeling of a variety of pandemic and common cold-related coronavirus proteins. Such insights may guide future pandemic-preparedness protocols through immuno-engineering strategies to mitigate viral outbreaks.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|