1
|
Matsuda K, Adachi H, Gotoh H, Inoue Y, Kondo S. Adhesion and shrinkage transform the rounded pupal horn into an angular adult horn in Japanese rhinoceros beetle. Development 2024; 151:dev202082. [PMID: 38477641 DOI: 10.1242/dev.202082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024]
Abstract
Clarifying the mechanisms underlying shape alterations during insect metamorphosis is important for understanding exoskeletal morphogenesis. The large horn of the Japanese rhinoceros beetle Trypoxylus dichotomus is the result of drastic metamorphosis, wherein it appears as a rounded shape during pupation and then undergoes remodeling into an angular adult shape. However, the mechanical mechanisms underlying this remodeling process remain unknown. In this study, we investigated the remodeling mechanisms of the Japanese rhinoceros beetle horn by developing a physical simulation. We identified three factors contributing to remodeling by biological experiments - ventral adhesion, uneven shrinkage, and volume reduction - which were demonstrated to be crucial for transformation using a physical simulation. Furthermore, we corroborated our findings by applying the simulation to the mandibular remodeling of stag beetles. These results indicated that physical simulation applies to pupal remodeling in other beetles, and the morphogenic mechanism could explain various exoskeletal shapes.
Collapse
Affiliation(s)
- Keisuke Matsuda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Haruhiko Adachi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hiroki Gotoh
- Department of Biological Sciences, Faculty of Science, Shizuoka University, Shizuoka, Shizuoka 422-8529, Japan
| | - Yasuhiro Inoue
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto, Kyoto 616-8540, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Ochiai M, Kurihara Y, Miyazaki S. Development of the Pronotal Explanate Margin, a Novel Evolutionary Trait in Tortoise Beetles. Zoolog Sci 2024; 41:417-423. [PMID: 39436002 DOI: 10.2108/zs240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/19/2024] [Indexed: 10/23/2024]
Abstract
Most tortoise beetles, belonging to the subfamily Cassidinae (Coleoptera: Chrysomelidae), possess distinctive explanate margins, comprising elongations of the pronotum and elytra outer margins. These margins flatten against the ground, serving as a unique defensive mechanism against predators. To understand the developmental and evolutionary origins of explanate margins, we examined the development of the pronotal part of these structures in two tortoise beetle species: Thlaspida biramosa (Boheman) (tribe Cassidini) and Laccoptera nepalensis (Boheman) (tribe Aspidimorphini). Although final (fifth) instar larvae of both species exhibited no external prothoracic structures associated with explanate margins, pupae possessed a plate-shaped structure projecting anterolaterally on their pronotum. This plate-shaped structure was identified as the pupal primordium of the pronotal explanate margin, as the explanate margin emerged from inside the structure during eclosion. In prepupae of T. biramosa, the primordial tissue exhibited three region-specific folding and furrowing patterns, beneath larval cuticles. These epithelial structures expanded within minutes at the onset of pupation, resulting in pupal primordial formation. Thus, pronotal explanate margins originate from pronotal epithelia, with the furrowing and folding patterns of the epithelia shaping pupal and even adult pronotal explanate margins. The presence of morphologically similar pupal pronotal projections in various Cassidinae suggests that the development of pronotal explanate margins is likely common in these beetles.
Collapse
Affiliation(s)
- Miho Ochiai
- College of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Yuta Kurihara
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Satoshi Miyazaki
- College of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan,
- Graduate School of Agriculture, Tamagawa University, Machida, Tokyo 194-8610, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo 194-8610, Japan
| |
Collapse
|
3
|
Jin KY, Wang XP, Di YQ, Zhao YM, Wang JX, Zhao XF. The transcription factor RUNT-like regulates pupal cuticle development via promoting a pupal cuticle protein transcription. PLoS Genet 2024; 20:e1011393. [PMID: 39264939 PMCID: PMC11392391 DOI: 10.1371/journal.pgen.1011393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
Holometabolous insects undergo morphological remodeling from larvae to pupae and to adults with typical changes in the cuticle; however, the mechanism is unclear. Using the lepidopteran agricultural insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the transcription factor RUNT-like (encoded by Runt-like) regulates the development of the pupal cuticle via promoting a pupal cuticle protein gene (HaPcp) expression. The HaPcp was highly expressed in the epidermis and wing during metamorphosis and was found being involved in pupal cuticle development by RNA interference (RNAi) analysis in larvae. Runt-like was also strongly upregulated in the epidermis and wing during metamorphosis. Knockdown of Runt-like produced similar phenomena, a failure of abdomen yellow envelope and wing formation, to those following HaPcp knockdown. The insect molting hormone 20-hydroxyecdysonen (20E) upregulated HaPcp transcription via RUNT-like. 20E upregulated Runt-like transcription via nuclear receptor EcR and the transcription factor FOXO. Together, RUNT-like and HaPCP are involved in pupal cuticle development during metamorphosis under 20E regulation.
Collapse
Affiliation(s)
- Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Qin Di
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yu-Meng Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Dalaka E, Hill JS, Booth JHH, Popczyk A, Pulver SR, Gather MC, Schubert M. Deformable microlaser force sensing. LIGHT, SCIENCE & APPLICATIONS 2024; 13:129. [PMID: 38834554 DOI: 10.1038/s41377-024-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Mechanical forces are key regulators of cellular behavior and function, affecting many fundamental biological processes such as cell migration, embryogenesis, immunological responses, and pathological states. Specialized force sensors and imaging techniques have been developed to quantify these otherwise invisible forces in single cells and in vivo. However, current techniques rely heavily on high-resolution microscopy and do not allow interrogation of optically dense tissue, reducing their application to 2D cell cultures and highly transparent biological tissue. Here, we introduce DEFORM, deformable microlaser force sensing, a spectroscopic technique that detects sub-nanonewton forces with unprecedented spatio-temporal resolution. DEFORM is based on the spectral analysis of laser emission from dye-doped oil microdroplets and uses the force-induced lifting of laser mode degeneracy in these droplets to detect nanometer deformations. Following validation by atomic force microscopy and development of a model that links changes in laser spectrum to applied force, DEFORM is used to measure forces in 3D and at depths of hundreds of microns within tumor spheroids and late-stage Drosophila larva. We furthermore show continuous force sensing with single-cell spatial and millisecond temporal resolution, thus paving the way for non-invasive studies of biomechanical forces in advanced stages of embryogenesis, tissue remodeling, and tumor invasion.
Collapse
Affiliation(s)
- Eleni Dalaka
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK
- Institute for Bioengineering of Catalonia, Barcelona, Spain
| | - Joseph S Hill
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Köln, Germany
| | - Jonathan H H Booth
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Köln, Germany
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, UK
| | - Anna Popczyk
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Köln, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews, UK
| | - Malte C Gather
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, UK.
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Köln, Germany.
| | - Marcel Schubert
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Köln, Germany.
| |
Collapse
|
5
|
Bose A, Schuster K, Kodali C, Sonam S, Smith-Bolton R. The pioneer transcription factor Zelda facilitates the exit from regeneration and restoration of patterning in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596672. [PMID: 38854062 PMCID: PMC11160785 DOI: 10.1101/2024.05.30.596672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
For a damaged tissue to regenerate, the injured site must repair the wound, proliferate, and restore the correct patterning and cell types. We found that Zelda, a pioneer transcription factor largely known for its role in embryonic zygotic genome activation, is dispensable for normal wing development but crucial for wing disc patterning during regeneration. Impairing Zelda function during disc regeneration resulted in adult wings with a plethora of cell fate errors, affecting the veins, margins, and posterior compartment identity. Using CUT&RUN, we identified and validated targets of Zelda including the cell fate genes cut, Delta and achaete, which failed to return to their normal expression patterns upon loss of Zelda. In addition, Zelda controls expression of factors previously established to preserve cell fate during regeneration like taranis and osa, which stabilizes engrailed expression during regeneration, thereby preserving posterior identity. Finally, Zelda ensures proper expression of the integrins encoded by multiple edematous wings and myospheroid during regeneration to prevent blisters in the resuting adult wing. Thus, Zelda is crucial for maintaining cell fate and structural architecture of the regenerating tissue.
Collapse
Affiliation(s)
- Anish Bose
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Keaton Schuster
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Chandril Kodali
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Surabhi Sonam
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Rachel Smith-Bolton
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
6
|
Singh A, Thale S, Leibner T, Lamparter L, Ricker A, Nüsse H, Klingauf J, Galic M, Ohlberger M, Matis M. Dynamic interplay of microtubule and actomyosin forces drive tissue extension. Nat Commun 2024; 15:3198. [PMID: 38609383 PMCID: PMC11014958 DOI: 10.1038/s41467-024-47596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
In order to shape a tissue, individual cell-based mechanical forces have to be integrated into a global force pattern. Over the last decades, the importance of actomyosin contractile arrays, which are the key constituents of various morphogenetic processes, has been established for many tissues. Recent studies have demonstrated that the microtubule cytoskeleton mediates folding and elongation of the epithelial sheet during Drosophila morphogenesis, placing microtubule mechanics on par with actin-based processes. While these studies establish the importance of both cytoskeletal systems during cell and tissue rearrangements, a mechanistic understanding of their functional hierarchy is currently missing. Here, we dissect the individual roles of these two key generators of mechanical forces during epithelium elongation in the developing Drosophila wing. We show that wing extension, which entails columnar-to-cuboidal cell shape remodeling in a cell-autonomous manner, is driven by anisotropic cell expansion caused by the remodeling of the microtubule cytoskeleton from apico-basal to planarly polarized. Importantly, cell and tissue elongation is not associated with Myosin activity. Instead, Myosin II exhibits a homeostatic role, as actomyosin contraction balances polarized microtubule-based forces to determine the final cell shape. Using a reductionist model, we confirm that pairing microtubule and actomyosin-based forces is sufficient to recapitulate cell elongation and the final cell shape. These results support a hierarchical mechanism whereby microtubule-based forces in some epithelial systems prime actomyosin-generated forces.
Collapse
Affiliation(s)
- Amrita Singh
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Sameedha Thale
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
| | - Tobias Leibner
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Lucas Lamparter
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Andrea Ricker
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Harald Nüsse
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Klingauf
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Milos Galic
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany
| | - Mario Ohlberger
- Applied Mathematics, Institute for Analysis and Numerics, Faculty of Mathematics and Computer science, University of Münster, Münster, Germany
| | - Maja Matis
- Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
- Cells in Motion' Interfaculty Centre, University of Münster, Münster, Germany.
- Institute of Medical Physics and Biophysics, Medical Faculty, University of Münster, Münster, Germany.
| |
Collapse
|
7
|
Kumar N, Rangel Ambriz J, Tsai K, Mim MS, Flores-Flores M, Chen W, Zartman JJ, Alber M. Balancing competing effects of tissue growth and cytoskeletal regulation during Drosophila wing disc development. Nat Commun 2024; 15:2477. [PMID: 38509115 PMCID: PMC10954670 DOI: 10.1038/s41467-024-46698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/06/2024] [Indexed: 03/22/2024] Open
Abstract
How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in the Drosophila wing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Jennifer Rangel Ambriz
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Mayesha Sahir Mim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Marycruz Flores-Flores
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, USA
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, USA.
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
8
|
Niederhuber MJ, Leatham-Jensen M, McKay DJ. The SWI/SNF nucleosome remodeler constrains enhancer activity during Drosophila wing development. Genetics 2024; 226:iyad196. [PMID: 37949841 PMCID: PMC10847718 DOI: 10.1093/genetics/iyad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Chromatin remodeling is central to the dynamic changes in gene expression that drive cell fate determination. During development, the sets of enhancers that are accessible for use change globally as cells transition between stages. While transcription factors and nucleosome remodelers are known to work together to control enhancer accessibility, it is unclear how the short stretches of DNA that they individually unmask yield the kilobase-sized accessible regions characteristic of active enhancers. Here, we performed a genetic screen to investigate the role of nucleosome remodelers in control of dynamic enhancer activity. We find that the Drosophila Switch/Sucrose Non-Fermenting complex, BAP, is required for repression of a temporally dynamic enhancer, brdisc. Contrary to expectations, we find that the BAP-specific subunit Osa is dispensable for mediating changes in chromatin accessibility between the early and late stages of wing development. Instead, we find that Osa is required to constrain the levels of brdisc activity when the enhancer is normally active. Genome-wide profiling reveals that Osa directly binds brdisc as well as thousands of other developmentally dynamic regulatory sites, including multiple genes encoding components and targets of the Notch signaling pathway. Transgenic reporter analyses demonstrate that Osa is required for activation and for constraint of different sets of target enhancers in the same cells. Moreover, Osa loss results in hyperactivation of the Notch ligand Delta and development of ectopic sensory structures patterned by Notch signaling early in development. Together, these findings indicate that proper constraint of enhancer activity is necessary for regulation of dose-dependent developmental events.
Collapse
Affiliation(s)
- Matthew J Niederhuber
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mary Leatham-Jensen
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
9
|
Matamoro-Vidal A, Cumming T, Davidović A, Levillayer F, Levayer R. Patterned apoptosis has an instructive role for local growth and tissue shape regulation in a fast-growing epithelium. Curr Biol 2024; 34:376-388.e7. [PMID: 38215743 PMCID: PMC10808510 DOI: 10.1016/j.cub.2023.12.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
What regulates organ size and shape remains one fundamental mystery of modern biology. Research in this area has primarily focused on deciphering the regulation in time and space of growth and cell division, while the contribution of cell death has been overall neglected. This includes studies of the Drosophila wing, one of the best-characterized systems for the study of growth and patterning, undergoing massive growth during larval stage and important morphogenetic remodeling during pupal stage. So far, it has been assumed that cell death was relatively neglectable in this tissue both during larval stage and pupal stage, and as a result, the pattern of growth was usually attributed to the distribution of cell division. Here, using systematic mapping and registration combined with quantitative assessment of clone size and disappearance as well as live imaging, we outline a persistent pattern of cell death and clone elimination emerging in the larval wing disc and persisting during pupal wing morphogenesis. Local variation of cell death is associated with local variation of clone size, pointing to an impact of cell death on local growth that is not fully compensated by proliferation. Using morphometric analyses of adult wing shape and genetic perturbations, we provide evidence that patterned death locally and globally affects adult wing shape and size. This study describes a roadmap for precise assessment of the contribution of cell death to tissue shape and outlines an important instructive role of cell death in modulating quantitatively local growth and morphogenesis of a fast-growing tissue.
Collapse
Affiliation(s)
- Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Tom Cumming
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France; PPU program Institut Pasteur, Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Anđela Davidović
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, Université Paris Cité, Cell Death and Epithelial Homeostasis Unit, 75015 Paris, France.
| |
Collapse
|
10
|
Liu SP, Yin HD, Li WJ, Qin ZH, Yang Y, Huang ZZ, Zong L, Liu XK, Du Z, Fan WL, Zhang YQ, Zhang D, Zhang YE, Liu XY, Yang D, Ge SQ. The Morphological Transformation of the Thorax during the Eclosion of Drosophila melanogaster (Diptera: Drosophilidae). INSECTS 2023; 14:893. [PMID: 37999092 PMCID: PMC10671814 DOI: 10.3390/insects14110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
The model organism Drosophila melanogaster, as a species of Holometabola, undergoes a series of transformations during metamorphosis. To deeply understand its development, it is crucial to study its anatomy during the key developmental stages. We describe the anatomical systems of the thorax, including the endoskeleton, musculature, nervous ganglion, and digestive system, from the late pupal stage to the adult stage, based on micro-CT and 3D visualizations. The development of the endoskeleton causes original and insertional changes in muscles. Several muscles change their shape during development in a non-uniform manner with respect to both absolute and relative size; some become longer and broader, while others shorten and become narrower. Muscular shape may vary during development. The number of muscular bundles also increases or decreases. Growing muscles are probably anchored by the tissues in the stroma. Some muscles and tendons are absent in the adult stage, possibly due to the hardened sclerites. Nearly all flight muscles are present by the third day of the pupal stage, which may be due to the presence of more myofibers with enough mitochondria to support flight power. There are sexual differences in the same developmental period. In contrast to the endodermal digestive system, the functions of most thoracic muscles change in the development from the larva to the adult in order to support more complex locomotion under the control of a more structured ventral nerve cord based on the serial homology proposed herein.
Collapse
Affiliation(s)
- Si-Pei Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Hao-Dong Yin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Wen-Jie Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zhuang-Hui Qin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Yi Yang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zheng-Zhong Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Le Zong
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Xiao-Kun Liu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Zhong Du
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Wei-Li Fan
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Ya-Qiong Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| | - Dan Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200062, China
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
| | - Xing-Yue Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (D.Y.)
| | - Ding Yang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (X.-Y.L.); (D.Y.)
| | - Si-Qin Ge
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (S.-P.L.); (H.-D.Y.); (W.-J.L.); (Z.-H.Q.); (Y.Y.); (Z.-Z.H.); (L.Z.); (X.-K.L.); (Z.D.); (W.-L.F.); (Y.-Q.Z.); (D.Z.); (Y.E.Z.)
- University of Chinese Academy of Sciences, Beijing 100086, China
| |
Collapse
|
11
|
Amiri A, Duclut C, Jülicher F, Popović M. Random Traction Yielding Transition in Epithelial Tissues. PHYSICAL REVIEW LETTERS 2023; 131:188401. [PMID: 37977637 DOI: 10.1103/physrevlett.131.188401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
We investigate how randomly oriented cell traction forces lead to fluidization in a vertex model of epithelial tissues. We find that the fluidization occurs at a critical value of the traction force magnitude F_{c}. We show that this transition exhibits critical behavior, similar to the yielding transition of sheared amorphous solids. However, we find that it belongs to a different universality class, even though it satisfies the same scaling relations between critical exponents established in the yielding transition of sheared amorphous solids. Our work provides a fluidization mechanism through active force generation that could be relevant in biological tissues.
Collapse
Affiliation(s)
- Aboutaleb Amiri
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Charlie Duclut
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, Paris, France
- Laboratoire Physico-Chimie Curie, CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Cluster of Excellence Physics of Life, Technical University of Dresden, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| |
Collapse
|
12
|
Tsuboi A, Fujimoto K, Kondo T. Spatiotemporal remodeling of extracellular matrix orients epithelial sheet folding. SCIENCE ADVANCES 2023; 9:eadh2154. [PMID: 37656799 PMCID: PMC10854429 DOI: 10.1126/sciadv.adh2154] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
Biological systems are inherently noisy; however, they produce highly stereotyped tissue morphology. Drosophila pupal wings show a highly stereotypic folding through uniform expansion and subsequent buckling of wing epithelium within a surrounding cuticle sac. The folding pattern produced by buckling is generally stochastic; it is thus unclear how buckling leads to stereotypic tissue folding of the wings. We found that the extracellular matrix (ECM) protein, Dumpy, guides the position and direction of buckling-induced folds. Dumpy anchors the wing epithelium to the overlying cuticle at specific tissue positions. Tissue-wide alterations of Dumpy deposition and degradation yielded different buckling patterns. In summary, we propose that spatiotemporal ECM remodeling shapes stereotyped tissue folding through dynamic interactions between the epithelium and its external structures.
Collapse
Affiliation(s)
- Alice Tsuboi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Toyonaka, Osaka 560-0043, Japan
- Program of Mathematical and Life Sciences, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Takefumi Kondo
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- The Keihanshin Consortium for Fostering the Next Generation of Global Leaders in Research (K-CONNEX), Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Velagala V, Soundarrajan DK, Unger MF, Gazzo D, Kumar N, Li J, Zartman J. The multimodal action of G alpha q in coordinating growth and homeostasis in the Drosophila wing imaginal disc. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.08.523049. [PMID: 36711848 PMCID: PMC9881979 DOI: 10.1101/2023.01.08.523049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background G proteins mediate cell responses to various ligands and play key roles in organ development. Dysregulation of G-proteins or Ca 2+ signaling impacts many human diseases and results in birth defects. However, the downstream effectors of specific G proteins in developmental regulatory networks are still poorly understood. Methods We employed the Gal4/UAS binary system to inhibit or overexpress Gαq in the wing disc, followed by phenotypic analysis. Immunohistochemistry and next-gen RNA sequencing identified the downstream effectors and the signaling cascades affected by the disruption of Gαq homeostasis. Results Here, we characterized how the G protein subunit Gαq tunes the size and shape of the wing in the larval and adult stages of development. Downregulation of Gαq in the wing disc reduced wing growth and delayed larval development. Gαq overexpression is sufficient to promote global Ca 2+ waves in the wing disc with a concomitant reduction in the Drosophila final wing size and a delay in pupariation. The reduced wing size phenotype is further enhanced when downregulating downstream components of the core Ca 2+ signaling toolkit, suggesting that downstream Ca 2+ signaling partially ameliorates the reduction in wing size. In contrast, Gαq -mediated pupariation delay is rescued by inhibition of IP 3 R, a key regulator of Ca 2+ signaling. This suggests that Gαq regulates developmental phenotypes through both Ca 2+ -dependent and Ca 2+ -independent mechanisms. RNA seq analysis shows that disruption of Gαq homeostasis affects nuclear hormone receptors, JAK/STAT pathway, and immune response genes. Notably, disruption of Gαq homeostasis increases expression levels of Dilp8, a key regulator of growth and pupariation timing. Conclusion Gαq activity contributes to cell size regulation and wing metamorphosis. Disruption to Gαq homeostasis in the peripheral wing disc organ delays larval development through ecdysone signaling inhibition. Overall, Gαq signaling mediates key modules of organ size regulation and epithelial homeostasis through the dual action of Ca 2+ -dependent and independent mechanisms.
Collapse
|
14
|
Di Meglio I, Trushko A, Guillamat P, Blanch-Mercader C, Abuhattum S, Roux A. Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement. Cell Rep 2022; 40:111227. [PMID: 36001958 PMCID: PMC9433880 DOI: 10.1016/j.celrep.2022.111227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 05/03/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Morphogenesis requires spatiotemporal regulation of proliferation, both by biochemical and mechanical cues. In epithelia, this regulation is called contact inhibition of proliferation, but disentangling biochemical from mechanical cues remains challenging. Here, we show that epithelia growing under confinement accumulate pressure that inhibits proliferation above a threshold value. During growth, epithelia spontaneously buckle, and cell proliferation is transiently reactivated within the fold. Reactivation of proliferation within folds correlated with the local reactivation of the mechano-sensing YAP/TAZ pathway. At late time points, when the pressure is highest, β-catenin activity increases. The threshold pressure increases when β-catenin is overactivated and decreases when β-catenin is inhibited. Altogether, our results suggest that different mechanical cues resulting from pressure inhibition of proliferation are at play through different mechano-sensing pathways: the β-catenin pathway sustains cell division under high pressure, and the YAP pathway senses local curvature. Encapsulation of MDCK cells enables quantification of growth-induced pressure Confined epithelia reach a threshold pressure that inhibits cell-cycle progression Overactivation of β-catenin activity sustains cell division under high pressure
Collapse
Affiliation(s)
- Ilaria Di Meglio
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Anastasiya Trushko
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Pau Guillamat
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland
| | - Carles Blanch-Mercader
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; Department of Theoretical Physics, University of Geneva, 1211 Geneva, Switzerland
| | - Shada Abuhattum
- Max Planck Institute for the Science of Light and Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland; National Center of Competence in Research Chemical Biology, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
15
|
Kumar N, Huizar FJ, Farfán-Pira KJ, Brodskiy PA, Soundarrajan DK, Nahmad M, Zartman JJ. MAPPER: An Open-Source, High-Dimensional Image Analysis Pipeline Unmasks Differential Regulation of Drosophila Wing Features. Front Genet 2022; 13:869719. [PMID: 35480325 PMCID: PMC9035675 DOI: 10.3389/fgene.2022.869719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Phenomics requires quantification of large volumes of image data, necessitating high throughput image processing approaches. Existing image processing pipelines for Drosophila wings, a powerful genetic model for studying the underlying genetics for a broad range of cellular and developmental processes, are limited in speed, precision, and functional versatility. To expand on the utility of the wing as a phenotypic screening system, we developed MAPPER, an automated machine learning-based pipeline that quantifies high-dimensional phenotypic signatures, with each dimension quantifying a unique morphological feature of the Drosophila wing. MAPPER magnifies the power of Drosophila phenomics by rapidly quantifying subtle phenotypic differences in sample populations. We benchmarked MAPPER's accuracy and precision in replicating manual measurements to demonstrate its widespread utility. The morphological features extracted using MAPPER reveal variable sexual dimorphism across Drosophila species and unique underlying sex-specific differences in morphogen signaling in male and female wings. Moreover, the length of the proximal-distal axis across the species and sexes shows a conserved scaling relationship with respect to the wing size. In sum, MAPPER is an open-source tool for rapid, high-dimensional analysis of large imaging datasets. These high-content phenomic capabilities enable rigorous and systematic identification of genotype-to-phenotype relationships in a broad range of screening and drug testing applications and amplify the potential power of multimodal genomic approaches.
Collapse
Affiliation(s)
- Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Francisco J. Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Keity J. Farfán-Pira
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnical Institute (Cinvestav), Mexico City, Mexico
| | - Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Dharsan K. Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Marcos Nahmad
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnical Institute (Cinvestav), Mexico City, Mexico
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
16
|
Rallis J, Pavlopoulos A. Cellular basis of limb morphogenesis. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100887. [PMID: 35150918 DOI: 10.1016/j.cois.2022.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
How the size and shape of developing tissues is encoded in the genome has been a longstanding riddle for biologists. Constituent cells integrate several genetic and mechanical signals to decide whether to divide, die, change shape or position. We review here how morphogenetic cell behaviors contribute to leg formation from imaginal disc epithelia in the insect Drosophila melanogaster, as well as to direct embryonic limb outgrowths in the non-insect pancrustacean Parhyale hawaiensis. Considering the deep conservation of developmental programs for limb patterning among arthropods and other bilaterians, moving forward, it will be exciting to see how these genetic similarities reflect at the cellular and tissue mechanics level.
Collapse
Affiliation(s)
- John Rallis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece; Department of Biology, University of Crete, 70013 Heraklion, Crete, Greece
| | - Anastasios Pavlopoulos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 70013 Heraklion, Crete, Greece.
| |
Collapse
|
17
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Chan EHY, Zhou Y, Aerne BL, Holder MV, Weston A, Barry DJ, Collinson L, Tapon N. RASSF8-mediated transport of Echinoid via the exocyst promotes Drosophila wing elongation and epithelial ordering. Development 2021; 148:dev199731. [PMID: 34532737 PMCID: PMC8572004 DOI: 10.1242/dev.199731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.
Collapse
Affiliation(s)
- Eunice H. Y. Chan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Birgit L. Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J. Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
19
|
Harmansa S, Lecuit T. Forward and feedback control mechanisms of developmental tissue growth. Cells Dev 2021; 168:203750. [PMID: 34610484 DOI: 10.1016/j.cdev.2021.203750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023]
Abstract
The size and proportions of animals are tightly controlled during development. How this is achieved remains poorly understood. The control of organ size entails coupling of cellular growth and cell division on one hand, and the measure of organ size on the other. In this review we focus on three layers of growth control consisting of genetic patterning, notably chemical gradients, mechanics and energetics which are complemented by a systemic control unit that modulates growth in response to the nutritional conditions and coordinates growth between different organs so as to maintain proportions. Growth factors, often present as concentration dependent chemical gradients, are positive inducers of cellular growth that may be considered as deterministic cues, hence acting as organ-intrinsic controllers of growth. However, the exponential growth dynamics in many developing tissues necessitate more stringent growth control in the form of negative feedbacks. Feedbacks endow biological systems with the capacity to quickly respond to perturbations and to correct the growth trajectory to avoid overgrowth. We propose to integrate chemical, mechanical and energetic control over cellular growth in a framework that emphasizes the self-organizing properties of organ-autonomous growth control in conjunction with systemic organ non-autonomous feedback on growth.
Collapse
Affiliation(s)
- Stefan Harmansa
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems (CENTURI), Marseille, France
| | - Thomas Lecuit
- Aix-Marseille Université & CNRS, IBDM - UMR7288 & Turing Centre for Living Systems (CENTURI), Marseille, France; Collège de France, Paris, France.
| |
Collapse
|
20
|
Abstract
Cell packing - the spatial arrangement of cells - determines the shapes of organs. Recently, investigations of organ development in a variety of model organisms have uncovered cellular mechanisms that are used by epithelial tissues to change cell packing, and thereby their shapes, to generate functional architectures. Here, we review these cellular mechanisms across a wide variety of developmental processes in vertebrates and invertebrates and identify a set of common motifs in the morphogenesis toolbox that, in combination, appear to allow any change in tissue shape. We focus on tissue elongation, folding and invagination, and branching. We also highlight how these morphogenetic processes are achieved by cell-shape changes, cell rearrangements, and oriented cell division. Finally, we describe approaches that have the potential to engineer three-dimensional tissues for both basic science and translational purposes. This review provides a framework for future analyses of how tissues are shaped by the dynamics of epithelial cell packing.
Collapse
Affiliation(s)
- Sandra B Lemke
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
22
|
Goodman LD, Cope H, Nil Z, Ravenscroft TA, Charng WL, Lu S, Tien AC, Pfundt R, Koolen DA, Haaxma CA, Veenstra-Knol HE, Wassink-Ruiter JSK, Wevers MR, Jones M, Walsh LE, Klee VH, Theunis M, Legius E, Steel D, Barwick KES, Kurian MA, Mohammad SS, Dale RC, Terhal PA, van Binsbergen E, Kirmse B, Robinette B, Cogné B, Isidor B, Grebe TA, Kulch P, Hainline BE, Sapp K, Morava E, Klee EW, Macke EL, Trapane P, Spencer C, Si Y, Begtrup A, Moulton MJ, Dutta D, Kanca O, Wangler MF, Yamamoto S, Bellen HJ, Tan QKG. TNPO2 variants associate with human developmental delays, neurologic deficits, and dysmorphic features and alter TNPO2 activity in Drosophila. Am J Hum Genet 2021; 108:1669-1691. [PMID: 34314705 PMCID: PMC8456166 DOI: 10.1016/j.ajhg.2021.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA
| | - Zelha Nil
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Wu-Lin Charng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shenzhao Lu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - An-Chi Tien
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, Nijmegen, the Netherlands
| | - David A Koolen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, Nijmegen, the Netherlands
| | - Charlotte A Haaxma
- Department of Pediatric Neurology, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Geert Grooteplein Zuid 10, 6525 GA, PO Box 9101, the Netherlands
| | - Hermine E Veenstra-Knol
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Jolien S Klein Wassink-Ruiter
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, the Netherlands
| | - Marijke R Wevers
- Department of Genetics, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Melissa Jones
- Houston Area Pediatric Neurology, 24514 Kingsland Blvd, Katy, TX 77494, USA
| | - Laurence E Walsh
- Department of Pediatric Neurology, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Victoria H Klee
- Department of Pediatric Neurology, Riley Hospital for Children, Indianapolis, IN 46202, USA
| | - Miel Theunis
- Center for Human Genetics, University Hospital Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Eric Legius
- Department of Human Genetics, University of Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Katy E S Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; Department of Neurology, Great Ormond Street Hospital, London WC1N 3JH, UK
| | - Shekeeb S Mohammad
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Westmead, NSW 2145, Australia
| | - Russell C Dale
- T.Y. Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW 2145, Australia; Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney, Westmead, NSW 2145, Australia
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Brian Kirmse
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bethany Robinette
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Benjamin Cogné
- Centre hospitalier universitaire (CHU) de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, France; INSERM, CNRS, UNIV Nantes, Centre hospitalier universitaire (CHU) de Nantes, l'institut du thorax, 44007 Nantes, France
| | - Bertrand Isidor
- Centre hospitalier universitaire (CHU) de Nantes, Service de Génétique Médicale, 9 quai Moncousu, 44093 Nantes, France; INSERM, CNRS, UNIV Nantes, Centre hospitalier universitaire (CHU) de Nantes, l'institut du thorax, 44007 Nantes, France
| | - Theresa A Grebe
- Phoenix Children's Hospital, Phoenix, AZ 85016, USA; Department of Child Health, University of Arizona College of Medicine Phoenix, Phoenix, AZ 85004, USA
| | - Peggy Kulch
- Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - Bryan E Hainline
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katherine Sapp
- Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Eva Morava
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Erica L Macke
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Pamela Trapane
- University of Florida, College of Medicine, Jacksonville, Jacksonville, FL 32209, USA
| | - Christopher Spencer
- University of Florida, College of Medicine, Jacksonville, Jacksonville, FL 32209, USA
| | - Yue Si
- GeneDx, Gaithersburg, MD 20877, USA
| | | | - Matthew J Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Debdeep Dutta
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Queenie K-G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
23
|
Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, Legrand J, Faure E, Vachez L, Armezzani A, Risson AE, Zhao F, Das P, Prunet N, Meyerowitz EM, Godin C, Malandain G, Jönsson H, Traas J. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. Dev Cell 2021; 56:540-556.e8. [PMID: 33621494 PMCID: PMC8519405 DOI: 10.1016/j.devcel.2021.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 01/25/2021] [Indexed: 12/31/2022]
Abstract
We have analyzed the link between the gene regulation and growth during the early stages of flower development in Arabidopsis. Starting from time-lapse images, we generated a 4D atlas of early flower development, including cell lineage, cellular growth rates, and the expression patterns of regulatory genes. This information was introduced in MorphoNet, a web-based platform. Using computational models, we found that the literature-based molecular network only explained a minority of the gene expression patterns. This was substantially improved by adding regulatory hypotheses for individual genes. Correlating growth with the combinatorial expression of multiple regulators led to a set of hypotheses for the action of individual genes in morphogenesis. This identified the central factor LEAFY as a potential regulator of heterogeneous growth, which was supported by quantifying growth patterns in a leafy mutant. By providing an integrated view, this atlas should represent a fundamental step toward mechanistic models of flower development.
Collapse
Affiliation(s)
- Yassin Refahi
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France; Université de Reims Champagne Ardenne, INRAE, FARE, UMR A 614, 51097 Reims, France.
| | - Argyris Zardilis
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Gaël Michelin
- Université Côte d'Azur, Inria, Sophia Antipolis, CNRS, I3S, France
| | - Raymond Wightman
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Bruno Leggio
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Jonathan Legrand
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Laetitia Vachez
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Alessia Armezzani
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Anne-Evodie Risson
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Feng Zhao
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Pradeep Das
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | - Nathanaël Prunet
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elliot M Meyerowitz
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute and Division of Biology and Biological Engineering 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christophe Godin
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France
| | | | - Henrik Jönsson
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK; Computational Biology and Biological Physics, Lund University, Sölvegatan 14A, 223 62 Lund, Sweden; Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, UK.
| | - Jan Traas
- Laboratoire RDP, Université de Lyon 1, ENS-Lyon, INRAE, CNRS, UCBL, 69364 Lyon, France.
| |
Collapse
|
24
|
Montejo-Kovacevich G, Salazar PA, Smith SH, Gavilanes K, Bacquet CN, Chan YF, Jiggins CD, Meier JI, Nadeau NJ. Genomics of altitude-associated wing shape in two tropical butterflies. Mol Ecol 2021; 30:6387-6402. [PMID: 34233044 DOI: 10.1111/mec.16067] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/01/2021] [Indexed: 11/30/2022]
Abstract
Understanding how organisms adapt to their local environment is central to evolution. With new whole-genome sequencing technologies and the explosion of data, deciphering the genomic basis of complex traits that are ecologically relevant is becoming increasingly feasible. Here, we studied the genomic basis of wing shape in two Neotropical butterflies that inhabit large geographical ranges. Heliconius butterflies at high elevations have been shown to generally have rounder wings than those in the lowlands. We reared over 1,100 butterflies from 71 broods of H. erato and H. melpomene in common-garden conditions and showed that wing aspect ratio, that is, elongatedness, is highly heritable in both species and that elevation-associated wing aspect ratio differences are maintained. Genome-wide associations with a published data set of 666 whole genomes from across a hybrid zone, uncovered a highly polygenic basis to wing aspect ratio variation in the wild. We identified several genes that have roles in wing morphogenesis or wing aspect ratio variation in Drosophila flies, making them promising candidates for future studies. There was little evidence for molecular parallelism in the two species, with only one shared candidate gene, nor for a role of the four known colour pattern loci, except for optix in H. erato. Thus, we present the first insights into the heritability and genomic basis of within-species wing aspect ratio in two Heliconius species, adding to a growing body of evidence that polygenic adaptation may underlie many ecologically relevant traits.
Collapse
Affiliation(s)
| | | | - Sophie H Smith
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | | | | | | | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joana I Meier
- Department of Zoology, University of Cambridge, Cambridge, UK.,St John's College, University of Cambridge, Cambridge, UK
| | - Nicola J Nadeau
- Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
25
|
Chowdhury F, Huang B, Wang N. Cytoskeletal prestress: The cellular hallmark in mechanobiology and mechanomedicine. Cytoskeleton (Hoboken) 2021; 78:249-276. [PMID: 33754478 PMCID: PMC8518377 DOI: 10.1002/cm.21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Increasing evidence demonstrates that mechanical forces, in addition to soluble molecules, impact cell and tissue functions in physiology and diseases. How living cells integrate mechanical signals to perform appropriate biological functions is an area of intense investigation. Here, we review the evidence of the central role of cytoskeletal prestress in mechanotransduction and mechanobiology. Elevating cytoskeletal prestress increases cell stiffness and reinforces cell stiffening, facilitates long-range cytoplasmic mechanotransduction via integrins, enables direct chromatin stretching and rapid gene expression, spurs embryonic development and stem cell differentiation, and boosts immune cell activation and killing of tumor cells whereas lowering cytoskeletal prestress maintains embryonic stem cell pluripotency, promotes tumorigenesis and metastasis of stem cell-like malignant tumor-repopulating cells, and elevates drug delivery efficiency of soft-tumor-cell-derived microparticles. The overwhelming evidence suggests that the cytoskeletal prestress is the governing principle and the cellular hallmark in mechanobiology. The application of mechanobiology to medicine (mechanomedicine) is rapidly emerging and may help advance human health and improve diagnostics, treatment, and therapeutics of diseases.
Collapse
Affiliation(s)
- Farhan Chowdhury
- Department of Mechanical Engineering and Energy ProcessesSouthern Illinois University CarbondaleCarbondaleIllinoisUSA
| | - Bo Huang
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ning Wang
- Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
26
|
Kanyolo GM, Masese T, Matsubara N, Chen CY, Rizell J, Huang ZD, Sassa Y, Månsson M, Senoh H, Matsumoto H. Honeycomb layered oxides: structure, energy storage, transport, topology and relevant insights. Chem Soc Rev 2021; 50:3990-4030. [PMID: 33576756 DOI: 10.1039/d0cs00320d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials.
Collapse
Affiliation(s)
- Godwill Mbiti Kanyolo
- Department of Engineering Science, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo 182-8585, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Thompson BJ. From genes to shape during metamorphosis: a history. CURRENT OPINION IN INSECT SCIENCE 2021; 43:1-10. [PMID: 32898719 DOI: 10.1016/j.cois.2020.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Metamorphosis (Greek for a state of transcending-form or change-in-shape) refers to a dramatic transformation of an animal's body structure that occurs after development of the embryo or larva in many species. The development of a fly (or butterfly) from a crawling larva (or caterpillar) that forms a pupa (or chrysalis) before eclosing as a flying adult is a classic example of metamorphosis that captures the imagination and has been immortalized in children's books. Powerful genetic experiments in the fruit fly Drosophila melanogaster have revealed how genes can instruct the behaviour of individual cells to control patterns of tissue growth, mechanical force, cell-cell adhesion and cell-matrix adhesion drive morphogenetic change in epithelial tissues. Together, the distribution of mass, force and resistance determines cell shape changes, cell-cell rearrangements, and/or the orientation of cell divisions to generate the final form of the tissue. In organising tissue shape, genes harness the power of self-organisation to determine the collective behaviour of molecules and cells, which can often be reproduced in computer simulations of cell polarity and/or tissue mechanics. This review highlights fundamental discoveries in epithelial morphogenesis made by pioneers who were fascinated by metamorphosis, including D'Arcy Thompson, Conrad Waddington, Dianne Fristrom and Antonio Garcia-Bellido.
Collapse
Affiliation(s)
- Barry J Thompson
- John Curtin School of Medical Research, The Australian National University, 131 Garran Rd, Acton, Canberra, Australian Capital Territory (ACT), 2601, Australia.
| |
Collapse
|
28
|
Weberling A, Zernicka-Goetz M. Trophectoderm mechanics direct epiblast shape upon embryo implantation. Cell Rep 2021; 34:108655. [PMID: 33472064 PMCID: PMC7816124 DOI: 10.1016/j.celrep.2020.108655] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022] Open
Abstract
Implantation is a hallmark of mammalian embryogenesis during which embryos establish their contacts with the maternal endometrium, remodel, and undertake growth and differentiation. The mechanisms and sequence of events through which embryos change their shape during this transition are largely unexplored. Here, we show that the first extraembryonic lineage, the polar trophectoderm, is the key regulator for remodeling the embryonic epiblast. Loss of its function after immuno-surgery or inhibitor treatments prevents the epiblast shape transitions. In the mouse, the polar trophectoderm exerts physical force upon the epiblast, causing it to transform from an oval into a cup shape. In human embryos, the polar trophectoderm behaves in the opposite manner, exerting a stretching force. By mimicking this stretching behavior in mouse embryogenesis, we could direct the epiblast to adopt the disc-like shape characteristic of human embryos at this stage. Thus, the polar trophectoderm acts as a conserved regulator of epiblast shape. Mouse epiblast remodeling from blastocyst to egg cylinder is achieved in five stages Epiblast remodeling upon implantation is not inherent to the embryonic lineage The polar trophectoderm mediates epiblast shape acquisition Epiblast shape regulation by the polar trophectoderm appears conserved in evolution
Collapse
Affiliation(s)
- Antonia Weberling
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK; Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
29
|
Naganathan S, Oates A. Patterning and mechanics of somite boundaries in zebrafish embryos. Semin Cell Dev Biol 2020; 107:170-178. [DOI: 10.1016/j.semcdb.2020.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/12/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
|
30
|
Brown J, Bush I, Bozon J, Su TT. Cells with loss-of-heterozygosity after exposure to ionizing radiation in Drosophila are culled by p53-dependent and p53-independent mechanisms. PLoS Genet 2020; 16:e1009056. [PMID: 33075096 PMCID: PMC7595702 DOI: 10.1371/journal.pgen.1009056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 10/29/2020] [Accepted: 08/17/2020] [Indexed: 11/18/2022] Open
Abstract
Loss of Heterozygosity (LOH) typically refers to a phenomenon in which diploid cells that are heterozygous for a mutant allele lose their wild type allele through mutations. LOH is implicated in oncogenesis when it affects the remaining wild type copy of a tumor suppressor. Drosophila has been a useful model to identify genes that regulate the incidence of LOH, but most of these studies use adult phenotypic markers such as multiple wing hair (mwh). Here, we describe a cell-autonomous fluorescence-based system that relies on the QF/QS transcriptional module to detect LOH, which may be used in larval, pupal and adult stages and in conjunction with the GAL4/UAS system. Using the QF/QS system, we were able to detect the induction of cells with LOH by X-rays in a dose-dependent manner in the larval wing discs, and to monitor their fate through subsequent development in pupa and adult stages. We tested the genetic requirement for changes in LOH, using both classical mutants and GAL4/UAS-mediated RNAi. Our results identify two distinct culling phases that eliminate cells with LOH, one in late larval stages and another in the pupa. The two culling phases are genetically separable, showing differential requirement for pro-apoptotic genes of the H99 locus and transcription factor Srp. A direct comparison of mwh LOH and QF/QS LOH suggests that cells with different LOH events are distinguished from each other in a p53-dependent manner and are retained to different degrees in the final adult structure. These studies reveal previously unknown mechanisms for the elimination of cells with chromosome aberrations.
Collapse
Affiliation(s)
- Jeremy Brown
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Inle Bush
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Justine Bozon
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| | - Tin Tin Su
- Department of Molecular, Cellular and Developmental Biology, 347 UCB, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
31
|
Nematbakhsh A, Levis M, Kumar N, Chen W, Zartman JJ, Alber M. Epithelial organ shape is generated by patterned actomyosin contractility and maintained by the extracellular matrix. PLoS Comput Biol 2020; 16:e1008105. [PMID: 32817654 PMCID: PMC7480841 DOI: 10.1371/journal.pcbi.1008105] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 09/09/2020] [Accepted: 06/30/2020] [Indexed: 01/13/2023] Open
Abstract
Epithelial sheets define organ architecture during development. Here, we employed an iterative multiscale computational modeling and quantitative experimental approach to decouple direct and indirect effects of actomyosin-generated forces, nuclear positioning, extracellular matrix, and cell-cell adhesion in shaping Drosophila wing imaginal discs. Basally generated actomyosin forces generate epithelial bending of the wing disc pouch. Surprisingly, acute pharmacological inhibition of ROCK-driven actomyosin contractility does not impact the maintenance of tissue height or curved shape. Computational simulations show that ECM tautness provides only a minor contribution to modulating tissue shape. Instead, passive ECM pre-strain serves to maintain the shape independent from actomyosin contractility. These results provide general insight into how the subcellular forces are generated and maintained within individual cells to induce tissue curvature. Thus, the results suggest an important design principle of separable contributions from ECM prestrain and actomyosin tension during epithelial organogenesis and homeostasis. The regulation and maintenance of an organ’s shape is a major outstanding problem in developmental biology. An iterative approach combining multiscale computational modelling and quantitative experimental approach was used to decouple direct and indirect roles of subcellular mechanical forces, nuclear positioning, and extracellular matrix in shaping the major axis of the wing pouch during the larval stage in fruit flies, which serves as a prototypical system for investigating epithelial morphogenesis. The research findings in this paper demonstrate that subcellular mechanical forces can effectively generate the curved tissue profile, while extracellular matrix is necessary for preserving the bent shape even in the absence of subcellular mechanical forces once the shape is generated. The developed integrated multiscale modelling environment can be readily extended to generate and test hypothesized novel mechanisms of developmental dynamics of other systems, including organoids that consist of several cellular and extracellular matrix layers.
Collapse
Affiliation(s)
- Ali Nematbakhsh
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
| | - Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail: (JJZ); (MA)
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, Riverside, California, United States of America
- School of Medicine, University of California, Riverside, Riverside, California, United States of America
- Department of Bioengineering, University of California, Riverside, Riverside, California, United States of America
- * E-mail: (JJZ); (MA)
| |
Collapse
|
32
|
Wang J, Dahmann C. Establishing compartment boundaries in Drosophila wing imaginal discs: An interplay between selector genes, signaling pathways and cell mechanics. Semin Cell Dev Biol 2020; 107:161-169. [PMID: 32732129 DOI: 10.1016/j.semcdb.2020.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/02/2023]
Abstract
The partitioning of cells into groups or 'compartments' separated by straight and sharp boundaries is important for tissue formation in animal development. Cells from neighboring compartments are characterized by distinct fates and functions and their continuous separation at compartment boundaries maintains proper tissue organization. Signaling across compartment boundaries can induce the local expression of morphogens that in turn direct growth and patterning of the surrounding cells. Compartment boundaries play therefore an important role in tissue development. Compartment boundaries were first identified in the early 1970s in the Drosophila wing. Here, we review the role of compartment boundaries in growth and patterning of the developing wing and then discuss the genetic and physical mechanisms underlying cell separation at compartment boundaries in this tissue.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
33
|
Koyama H, Fujimori T. Isotropic expansion of external environment induces tissue elongation and collective cell alignment. J Theor Biol 2020; 496:110248. [PMID: 32275986 DOI: 10.1016/j.jtbi.2020.110248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/17/2020] [Accepted: 03/16/2020] [Indexed: 12/01/2022]
Abstract
Cell movement is crucial for morphogenesis in multicellular organisms. Growing embryos or tissues often expand isotropically, i.e., uniformly, in all dimensions. On the surfaces of these expanding environments, which we call "fields," cells are subjected to frictional forces and move passively in response. However, the potential roles of isotropically expanding fields in morphogenetic events have not been investigated well. Our previous mathematical simulations showed that a tissue was elongated on an isotropically expanding field (Imuta et al., 2014). However, the underlying mechanism remains unclarified, and how cells behave during tissue elongation was not investigated. In this study, we mathematically analyzed the effect of isotropically expanding fields using a vertex model, a standard type of multi-cellular model. We found that cells located on fields were elongated along a similar direction each other and exhibited a columnar configuration with nearly single-cell width. Simultaneously, it was confirmed that the cell clusters were also elongated, even though field expansion was absolutely isotropic. We then investigated the mechanism underlying these counterintuitive phenomena. In particular, we asked whether the dynamics of elongation was predominantly determined by the properties of the field, the cell cluster, or both. Theoretical analyses involving simplification of the model revealed that cell clusters have an intrinsic ability to asymmetrically deform, leading to their elongation. Importantly, this ability is effective only under the non-equilibrium conditions provided by field expansion. This may explain the elongation of the notochord, located on the surface of the growing mouse embryo. We established the mechanism underlying tissue elongation induced by isotropically expanding external environments, and its involvement in collective cell alignment with cell elongation, providing key insight into morphogenesis involving multiple adjacent tissues.
Collapse
Affiliation(s)
- Hiroshi Koyama
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan.
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Japan
| |
Collapse
|
34
|
Yusuff T, Jensen M, Yennawar S, Pizzo L, Karthikeyan S, Gould DJ, Sarker A, Gedvilaite E, Matsui Y, Iyer J, Lai ZC, Girirajan S. Drosophila models of pathogenic copy-number variant genes show global and non-neuronal defects during development. PLoS Genet 2020; 16:e1008792. [PMID: 32579612 PMCID: PMC7313740 DOI: 10.1371/journal.pgen.1008792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/23/2020] [Indexed: 11/25/2022] Open
Abstract
While rare pathogenic copy-number variants (CNVs) are associated with both neuronal and non-neuronal phenotypes, functional studies evaluating these regions have focused on the molecular basis of neuronal defects. We report a systematic functional analysis of non-neuronal defects for homologs of 59 genes within ten pathogenic CNVs and 20 neurodevelopmental genes in Drosophila melanogaster. Using wing-specific knockdown of 136 RNA interference lines, we identified qualitative and quantitative phenotypes in 72/79 homologs, including 21 lines with severe wing defects and six lines with lethality. In fact, we found that 10/31 homologs of CNV genes also showed complete or partial lethality at larval or pupal stages with ubiquitous knockdown. Comparisons between eye and wing-specific knockdown of 37/45 homologs showed both neuronal and non-neuronal defects, but with no correlation in the severity of defects. We further observed disruptions in cell proliferation and apoptosis in larval wing discs for 23/27 homologs, and altered Wnt, Hedgehog and Notch signaling for 9/14 homologs, including AATF/Aatf, PPP4C/Pp4-19C, and KIF11/Klp61F. These findings were further supported by tissue-specific differences in expression patterns of human CNV genes, as well as connectivity of CNV genes to signaling pathway genes in brain, heart and kidney-specific networks. Our findings suggest that multiple genes within each CNV differentially affect both global and tissue-specific developmental processes within conserved pathways, and that their roles are not restricted to neuronal functions. Rare copy-number variants (CNVs), or large deletions and duplications in the genome, are associated with both neuronal and non-neuronal clinical features. Previous functional studies for these disorders have primarily focused on understanding the cellular mechanisms for neurological and behavioral phenotypes. To understand how genes within these CNVs contribute to developmental defects in non-neuronal tissues, we assessed 79 homologs of CNV and known neurodevelopmental genes in Drosophila models. We found that most homologs showed developmental defects when knocked down in the adult fly wing, ranging from mild size changes to severe wrinkled wings or lethality. Although a majority of tested homologs showed defects when knocked down specifically in wings or eyes, we found no correlation in the severity of the observed defects in these two tissues. A subset of the homologs showed disruptions in cellular processes in the developing fly wing, including alterations in cell proliferation, apoptosis, and cellular signaling pathways. Furthermore, human CNV genes also showed differences in gene expression patterns and interactions with signaling pathway genes across multiple human tissues. Our findings suggest that genes within CNV disorders affect global developmental processes in both neuronal and non-neuronal tissues.
Collapse
Affiliation(s)
- Tanzeen Yusuff
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Matthew Jensen
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Sneha Yennawar
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Lucilla Pizzo
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Siddharth Karthikeyan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Dagny J. Gould
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Avik Sarker
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Erika Gedvilaite
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Yurika Matsui
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Janani Iyer
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Zhi-Chun Lai
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Santhosh Girirajan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
35
|
Banwarth-Kuhn M, Sindi S. How and why to build a mathematical model: A case study using prion aggregation. J Biol Chem 2020; 295:5022-5035. [PMID: 32005659 PMCID: PMC7152750 DOI: 10.1074/jbc.rev119.009851] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Biological systems are inherently complex, and the increasing level of detail with which we are able to experimentally probe such systems continually reveals new complexity. Fortunately, mathematical models are uniquely positioned to provide a tool suitable for rigorous analysis, hypothesis generation, and connecting results from isolated in vitro experiments with results from in vivo and whole-organism studies. However, developing useful mathematical models is challenging because of the often different domains of knowledge required in both math and biology. In this work, we endeavor to provide a useful guide for researchers interested in incorporating mathematical modeling into their scientific process. We advocate for the use of conceptual diagrams as a starting place to anchor researchers from both domains. These diagrams are useful for simplifying the biological process in question and distinguishing the essential components. Not only do they serve as the basis for developing a variety of mathematical models, but they ensure that any mathematical formulation of the biological system is led primarily by scientific questions. We provide a specific example of this process from our own work in studying prion aggregation to show the power of mathematical models to synergistically interact with experiments and push forward biological understanding. Choosing the most suitable model also depends on many different factors, and we consider how to make these choices based on different scales of biological organization and available data. We close by discussing the many opportunities that abound for both experimentalists and modelers to take advantage of collaborative work in this field.
Collapse
Affiliation(s)
- Mikahl Banwarth-Kuhn
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| | - Suzanne Sindi
- Department of Applied Mathematics, School of Natural Sciences, University of California, Merced, California 95343
| |
Collapse
|
36
|
Cell Cycle Progression Determines Wing Morph in the Polyphenic Insect Nilaparvata lugens. iScience 2020; 23:101040. [PMID: 32315833 PMCID: PMC7170998 DOI: 10.1016/j.isci.2020.101040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
Wing polyphenism is a phenomenon in which one genotype can produce two or more distinct wing phenotypes adapted to the particular environment. What remains unknown is how wing pad development is controlled downstream of endocrine signals such as insulin and JNK pathways. We show that genes important in cellular proliferation, cytokinesis, and cell cycle progression are necessary for growth and development of long wings. Wing pad cellular development of the long-winged morph was characterized by a highly structured epithelial layer with microvilli-like structures. Cells of adult short wing pads are largely in the G2/M phase of the cell cycle, whereas those of long wings are largely in G1. Our study is the first to report the comparative developmental and cellular morphology and structure of the wing morphs and to undertake a comprehensive evaluation of the cell cycle genes necessary for wing development of this unique, adaptive life history strategy. Genes important in determining cell numbers are necessary to form long wings Long-winged development was characterized by microvilli-like structures Cells of adult short wing pads are largely in the G2/M phase of the cell cycle Cells of adult long wing pads are largely in the G1 phase of the cell cycle
Collapse
|
37
|
tpHusion: An efficient tool for clonal pH determination in Drosophila. PLoS One 2020; 15:e0228995. [PMID: 32059043 PMCID: PMC7021318 DOI: 10.1371/journal.pone.0228995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/27/2020] [Indexed: 02/04/2023] Open
Abstract
Genetically encoded pH indicators (GEpHI) have emerged as important tools for investigating intracellular pH (pHi) dynamics in Drosophila. However, most of the indicators are based on the Gal4/UAS binary expression system. Here, we report the generation of a ubiquitously-expressed GEpHI. The fusion protein of super ecliptic pHluorin and FusionRed was cloned under the tubulin promoter (tpHusion) to drive it independently of the Gal4/UAS system. The function of tpHusion was validated in various tissues from different developmental stages of Drosophila. Differences in pHi were also indicated correctly in fixed tissues. Finally, we describe the use of tpHusion for comparative analysis of pHi in manipulated clones and the surrounding cells in epithelial tissues. Our findings establish tpHusion as a robust tool for studying pHi in Drosophila.
Collapse
|
38
|
Huichalaf CH, Al-Ramahi I, Park KW, Grunke SD, Lu N, de Haro M, El-Zein K, Gallego-Flores T, Perez AM, Jung SY, Botas J, Zoghbi HY, Jankowsky JL. Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Hum Mol Genet 2020; 28:2014-2029. [PMID: 30753434 DOI: 10.1093/hmg/ddz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.
Collapse
Affiliation(s)
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | | | - Nan Lu
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karla El-Zein
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tatiana Gallego-Flores
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Juan Botas
- Department of Molecular and Human Genetics.,Department of Molecular and Cellular Biology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Neuroscience.,Department of Molecular and Human Genetics.,Department of Pediatrics.,Department of Neurology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience.,Department of Molecular and Cellular Biology.,Department of Neurology.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
39
|
Heterogeneity Profoundly Alters Emergent Stress Fields in Constrained Multicellular Systems. Biophys J 2019; 118:15-25. [PMID: 31812354 DOI: 10.1016/j.bpj.2019.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Stress fields emerging from the transfer of forces between cells within multicellular systems are increasingly being recognized as major determinants of cell fate. Current analytical and numerical models used for the calculation of stresses within cell monolayers assume homogeneous contractile and mechanical cellular properties; however, cell behavior varies by region within constrained tissues. Here, we show the impact of heterogeneous cell properties on resulting stress fields that guide cell phenotype and apoptosis. Using circular micropatterns, we measured biophysical metrics associated with cell mechanical stresses. We then computed cell-layer stress distributions using finite element contraction models and monolayer stress microscopy. In agreement with previous studies, cell spread area, alignment, and traction forces increase, whereas apoptotic activity decreases, from the center of cell layers to the edge. The distribution of these metrics clearly indicates low cell stress in central regions and high cell stress at the periphery of the patterns. However, the opposite trend is predicted by computational models when homogeneous contractile and mechanical properties are assumed. In our model, utilizing heterogeneous cell-layer contractility and elastic moduli values based on experimentally measured biophysical parameters, we calculate low cell stress in central areas and high anisotropic stresses in peripheral regions, consistent with the biometrics. These results clearly demonstrate that common assumptions of uniformity in cell contractility and stiffness break down in postconfluence confined multicellular systems. This work highlights the importance of incorporating regional variations in cell mechanical properties when estimating emergent stress fields from collective cell behavior.
Collapse
|
40
|
Sarpal R, Yan V, Kazakova L, Sheppard L, Yu JC, Fernandez-Gonzalez R, Tepass U. Role of α-Catenin and its mechanosensing properties in regulating Hippo/YAP-dependent tissue growth. PLoS Genet 2019; 15:e1008454. [PMID: 31697683 PMCID: PMC6863567 DOI: 10.1371/journal.pgen.1008454] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 11/19/2019] [Accepted: 10/01/2019] [Indexed: 01/08/2023] Open
Abstract
α-catenin is a key protein of adherens junctions (AJs) with mechanosensory properties. It also acts as a tumor suppressor that limits tissue growth. Here we analyzed the function of Drosophila α-Catenin (α-Cat) in growth regulation of the wing epithelium. We found that different α-Cat levels led to a differential activation of Hippo/Yorkie or JNK signaling causing tissue overgrowth or degeneration, respectively. α-Cat can modulate Yorkie-dependent tissue growth through recruitment of Ajuba, a negative regulator of Hippo signaling to AJs but also through a mechanism independent of Ajuba recruitment to AJs. Both mechanosensory regions of α-Cat, the M region and the actin-binding domain (ABD), contribute to growth regulation. Whereas M is dispensable for α-Cat function in the wing, individual M domains (M1, M2, M3) have opposing effects on growth regulation. In particular, M1 limits Ajuba recruitment. Loss of M1 causes Ajuba hyper-recruitment to AJs, promoting tissue-tension independent overgrowth. Although M1 binds Vinculin, Vinculin is not responsible for this effect. Moreover, disruption of mechanosensing of the α-Cat ABD affects tissue growth, with enhanced actin interactions stabilizing junctions and leading to tissue overgrowth. Together, our findings indicate that α-Cat acts through multiple mechanisms to control tissue growth, including regulation of AJ stability, mechanosensitive Ajuba recruitment, and dynamic direct F-actin interactions. We explore the regulation of tissue and organ size which is an important consideration in normal development and health. During development, tissues reach specific sizes in proportion to the rest of the body. Uncontrolled growth can lead to malformations or promote tumor growth. Recent findings have emphasized an important role for mechanical cues in the regulation of tissue growth. Mechanical signals can, for example, arise from cytoskeletal contraction that increases tension, or from compression due to proliferation and a resulting increase in cell density that would lower tension. Mechanosensory molecules that are sensitive to changes in tissue tension can convert mechanical cues into biochemical signals that enhance or slow proliferation or cell death to adjust overall tissue size. One such mechanosensory molecule is α-Catenin which is a key component of cell adhesion structures that physically link cells together and couples these structures to the cytoskeleton within cells. We clarify several molecular parameters of how α-Catenin regulates signalling pathways that control cell proliferation and cell death.
Collapse
Affiliation(s)
- Ritu Sarpal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Victoria Yan
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lidia Kazakova
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Luka Sheppard
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Jessica C. Yu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
41
|
Lambrechts RA, Schepers H, Yu Y, van der Zwaag M, Autio KJ, Vieira-Lara MA, Bakker BM, Tijssen MA, Hayflick SJ, Grzeschik NA, Sibon OC. CoA-dependent activation of mitochondrial acyl carrier protein links four neurodegenerative diseases. EMBO Mol Med 2019; 11:e10488. [PMID: 31701655 PMCID: PMC6895606 DOI: 10.15252/emmm.201910488] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
PKAN, CoPAN, MePAN, and PDH‐E2 deficiency share key phenotypic features but harbor defects in distinct metabolic processes. Selective damage to the globus pallidus occurs in these genetic neurodegenerative diseases, which arise from defects in CoA biosynthesis (PKAN, CoPAN), protein lipoylation (MePAN), and pyruvate dehydrogenase activity (PDH‐E2 deficiency). Overlap of their clinical features suggests a common molecular etiology, the identification of which is required to understand their pathophysiology and design treatment strategies. We provide evidence that CoA‐dependent activation of mitochondrial acyl carrier protein (mtACP) is a possible process linking these diseases through its effect on PDH activity. CoA is the source for the 4′‐phosphopantetheine moiety required for the posttranslational 4′‐phosphopantetheinylation needed to activate specific proteins. We show that impaired CoA homeostasis leads to decreased 4′‐phosphopantetheinylation of mtACP. This results in a decrease of the active form of mtACP, and in turn a decrease in lipoylation with reduced activity of lipoylated proteins, including PDH. Defects in the steps of a linked CoA‐mtACP‐PDH pathway cause similar phenotypic abnormalities. By chemically and genetically re‐activating PDH, these phenotypes can be rescued, suggesting possible treatment strategies for these diseases.
Collapse
Affiliation(s)
- Roald A Lambrechts
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hein Schepers
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Yi Yu
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marianne van der Zwaag
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A Tijssen
- Neurology Department, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Susan J Hayflick
- Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Nicola A Grzeschik
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody Cm Sibon
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Byun PK, Zhang C, Yao B, Wardwell-Ozgo J, Terry D, Jin P, Moberg K. The Taiman Transcriptional Coactivator Engages Toll Signals to Promote Apoptosis and Intertissue Invasion in Drosophila. Curr Biol 2019; 29:2790-2800.e4. [PMID: 31402304 DOI: 10.1016/j.cub.2019.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 04/29/2019] [Accepted: 07/04/2019] [Indexed: 01/15/2023]
Abstract
The Drosophila Taiman (Tai) protein is homologous to the human steroid-receptor coactivators SRC1-3 and activates transcription in complex with the 20-hydroxyecdysone (20E) receptor (EcR). Tai has roles in intestinal homeostasis, germline maintenance, cell motility, and proliferation through interactions with EcR and the coactivator Yorkie (Yki). Tai also promotes invasion of tumor cells in adjacent organs, but this pro-invasive mechanism is undefined. Here, we show that Tai expression transforms sessile pupal wing cells into an invasive mass that penetrates the adjacent thorax during a period of high 20E. Candidate analysis confirms a reliance on elements of the 20E and Hippo pathways, such as Yki and the Yki-Tai target dilp8. Screening the Tai-induced wing transcriptome detects enrichment for innate immune factors, including the Spätzle (Spz) family of secreted Toll ligands that induce apoptosis during cell competition. Tai-expressing wing cells induce immune signaling and apoptosis among adjacent thoracic cells, and genetic reduction of spz, Toll, or the rpr/hid/grim pro-apoptotic factors each suppresses invasion, suggesting an intercellular Spz-Toll circuit supports killing-mediated invasion. Modeling these interactions in larval epithelia confirms that Tai kills neighboring cells via a mechanism involving Toll, Spz factors, and the Spz inhibitor Necrotic. Tai-expressing cells evade death signals by repressing the immune deficiency (IMD) pathway, which operates in parallel to Toll to control nuclear factor κB (NF-κB) activity and independently regulates JNK activity. In sum, these findings suggest that Tai promotes competitive cell killing via Spz-Toll and that this killing mechanism supports pathologic intertissue invasion in Drosophila.
Collapse
Affiliation(s)
- Phil K Byun
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Can Zhang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joanna Wardwell-Ozgo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas Terry
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ken Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
43
|
Levis M, Kumar N, Apakian E, Moreno C, Hernandez U, Olivares A, Ontiveros F, Zartman JJ. Microfluidics on the fly: Inexpensive rapid fabrication of thermally laminated microfluidic devices for live imaging and multimodal perturbations of multicellular systems. BIOMICROFLUIDICS 2019; 13:024111. [PMID: 31065310 PMCID: PMC6486393 DOI: 10.1063/1.5086671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 05/06/2023]
Abstract
Microfluidic devices provide a platform for analyzing both natural and synthetic multicellular systems. Currently, substantial capital investment and expertise are required for creating microfluidic devices using standard soft-lithography. These requirements present barriers to entry for many nontraditional users of microfluidics, including developmental biology laboratories. Therefore, fabrication methodologies that enable rapid device iteration and work "out-of-the-box" can accelerate the integration of microfluidics with developmental biology. Here, we have created and characterized low-cost hybrid polyethylene terephthalate laminate (PETL) microfluidic devices that are suitable for cell and micro-organ culture assays. These devices were validated with mammalian cell lines and the Drosophila wing imaginal disc as a model micro-organ. First, we developed and tested PETLs that are compatible with both long-term cultures and high-resolution imaging of cells and organs. Further, we achieved spatiotemporal control of chemical gradients across the wing discs with a multilayered microfluidic device. Finally, we created a multilayered device that enables controllable mechanical loading of micro-organs. This mechanical actuation assay was used to characterize the response of larval wing discs at different developmental stages. Interestingly, increased deformation of the older wing discs for the same mechanical loading suggests that the compliance of the organ is increased in preparation for subsequent morphogenesis. Together, these results demonstrate the applicability of hybrid PETL devices for biochemical and mechanobiology studies on micro-organs and provide new insights into the mechanics of organ development.
Collapse
Affiliation(s)
- Megan Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Nilay Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Emily Apakian
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Cesar Moreno
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ulises Hernandez
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Ana Olivares
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Fernando Ontiveros
- Biology Department, St. John Fisher College, Rochester, New York 14618, USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
44
|
Brodskiy PA, Wu Q, Soundarrajan DK, Huizar FJ, Chen J, Liang P, Narciso C, Levis MK, Arredondo-Walsh N, Chen DZ, Zartman JJ. Decoding Calcium Signaling Dynamics during Drosophila Wing Disc Development. Biophys J 2019; 116:725-740. [PMID: 30704858 PMCID: PMC6382932 DOI: 10.1016/j.bpj.2019.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
The robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins. However, the relationships between the inputs specifying cell and organ development, calcium signaling dynamics, and final organ morphology are poorly understood. Here, we have designed a quantitative image-analysis pipeline for decoding organ-level calcium signaling. With this pipeline, we extracted spatiotemporal features of calcium signaling dynamics during the development of the Drosophila larval wing disc, a genetic model for organogenesis. We identified specific classes of wing phenotypes that resulted from calcium signaling pathway perturbations, including defects in gross morphology, vein differentiation, and overall size. We found four qualitative classes of calcium signaling activity. These classes can be ordered based on agonist stimulation strength Gαq-mediated signaling. In vivo calcium signaling dynamics depend on both receptor tyrosine kinase/phospholipase C γ and G protein-coupled receptor/phospholipase C β activities. We found that spatially patterned calcium dynamics correlate with known differential growth rates between anterior and posterior compartments. Integrated calcium signaling activity decreases with increasing tissue size, and it responds to morphogenetic perturbations that impact organ growth. Together, these findings define how calcium signaling dynamics integrate upstream inputs to mediate multiple response outputs in developing epithelial organs.
Collapse
Affiliation(s)
- Pavel A Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Dharsan K Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Francisco J Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jianxu Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Peixian Liang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan K Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | | | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
45
|
Abstract
Heart formation involves a complex series of tissue rearrangements, during which regions of the developing organ expand, bend, converge, and protrude in order to create the specific shapes of important cardiac components. Much of this morphogenesis takes place while cardiac function is underway, with blood flowing through the rapidly contracting chambers. Fluid forces are therefore likely to influence the regulation of cardiac morphogenesis, but it is not yet clear how these biomechanical cues direct specific cellular behaviors. In recent years, the optical accessibility and genetic amenability of zebrafish embryos have facilitated unique opportunities to integrate the analysis of flow parameters with the molecular and cellular dynamics underlying cardiogenesis. Consequently, we are making progress toward a comprehensive view of the biomechanical regulation of cardiac chamber emergence, atrioventricular canal differentiation, and ventricular trabeculation. In this review, we highlight a series of studies in zebrafish that have provided new insight into how cardiac function can shape cardiac morphology, with a particular focus on how hemodynamics can impact cardiac cell behavior. Over the long-term, this knowledge will undoubtedly guide our consideration of the potential causes of congenital heart disease.
Collapse
Affiliation(s)
- Pragya Sidhwani
- Division of Biological Sciences, University of California, San Diego, CA, United States
| | - Deborah Yelon
- Division of Biological Sciences, University of California, San Diego, CA, United States.
| |
Collapse
|
46
|
Drosophila Genetics: Analysis of Tissue Growth in Adult Tissues. Methods Mol Biol 2018. [PMID: 30565123 DOI: 10.1007/978-1-4939-8910-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Drosophila melanogaster has been widely used in the study of developmental growth control and has been instrumental in the discovery and delineation of many signalling pathways that contribute to this growth, in particular the Hippo pathway. Quantitative analysis of adult tissue size has remained a vital tool in the study of tissue growth. This chapter will describe how to dissect, image, and quantify two tissues commonly used to measure growth, the Drosophila wing and eye.
Collapse
|
47
|
Cell-Based Model of the Generation and Maintenance of the Shape and Structure of the Multilayered Shoot Apical Meristem of Arabidopsis thaliana. Bull Math Biol 2018; 81:3245-3281. [PMID: 30552627 DOI: 10.1007/s11538-018-00547-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/28/2018] [Indexed: 01/28/2023]
Abstract
One of the central problems in animal and plant developmental biology is deciphering how chemical and mechanical signals interact within a tissue to produce organs of defined size, shape, and function. Cell walls in plants impose a unique constraint on cell expansion since cells are under turgor pressure and do not move relative to one another. Cell wall extensibility and constantly changing distribution of stress on the wall are mechanical properties that vary between individual cells and contribute to rates of expansion and orientation of cell division. How exactly cell wall mechanical properties influence cell behavior is still largely unknown. To address this problem, a novel, subcellular element computational model of growth of stem cells within the multilayered shoot apical meristem (SAM) of Arabidopsis thaliana is developed and calibrated using experimental data. Novel features of the model include separate, detailed descriptions of cell wall extensibility and mechanical stiffness, deformation of the middle lamella, and increase in cytoplasmic pressure generating internal turgor pressure. The model is used to test novel hypothesized mechanisms of formation of the shape and structure of the growing, multilayered SAM based on WUS concentration of individual cells controlling cell growth rates and layer-dependent anisotropic mechanical properties of subcellular components of individual cells determining anisotropic cell expansion directions. Model simulations also provide a detailed prediction of distribution of stresses in the growing tissue which can be tested in future experiments.
Collapse
|
48
|
Williamson JJ, Salbreux G. Stability and Roughness of Interfaces in Mechanically Regulated Tissues. PHYSICAL REVIEW LETTERS 2018; 121:238102. [PMID: 30576196 PMCID: PMC6420071 DOI: 10.1103/physrevlett.121.238102] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 07/03/2018] [Indexed: 05/26/2023]
Abstract
Cell division and death can be regulated by the mechanical forces within a tissue. We study the consequences for the stability and roughness of a propagating interface by analyzing a model of mechanically regulated tissue growth in the regime of small driving forces. For an interface driven by homeostatic pressure imbalance or leader-cell motility, long and intermediate-wavelength instabilities arise, depending, respectively, on an effective viscosity of cell number change, and on substrate friction. A further mechanism depends on the strength of directed motility forces acting in the bulk. We analyze the fluctuations of a stable interface subjected to cell-level stochasticity, and find that mechanical feedback can help preserve reproducibility at the tissue scale. Our results elucidate mechanisms that could be important for orderly interface motion in developing tissues.
Collapse
Affiliation(s)
- John J Williamson
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| | - Guillaume Salbreux
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom
| |
Collapse
|
49
|
Polarized microtubule dynamics directs cell mechanics and coordinates forces during epithelial morphogenesis. Nat Cell Biol 2018; 20:1126-1133. [PMID: 30202051 DOI: 10.1038/s41556-018-0193-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/09/2018] [Indexed: 11/08/2022]
Abstract
Coordinated rearrangements of cytoskeletal structures are the principal source of forces that govern cell and tissue morphogenesis1,2. However, unlike for actin-based mechanical forces, our knowledge about the contribution of forces originating from other cytoskeletal components remains scarce. Here, we establish microtubules as central components of cell mechanics during tissue morphogenesis. We find that individual cells are mechanically autonomous during early Drosophila wing epithelium development. Each cell contains a polarized apical non-centrosomal microtubule cytoskeleton that bears compressive forces, whereby acute elimination of microtubule-based forces leads to cell shortening. We further establish that the Fat planar cell polarity (Ft-PCP) signalling pathway3,4 couples microtubules at adherens junctions (AJs) and patterns microtubule-based forces across a tissue via polarized transcellular stability, thus revealing a molecular mechanism bridging single cell and tissue mechanics. Together, these results provide a physical basis to explain how global patterning of microtubules controls cell mechanics to coordinate collective cell behaviour during tissue remodelling. These results also offer alternative paradigms towards the interplay of contractile and protrusive cytoskeletal forces at the single cell and tissue levels.
Collapse
|
50
|
De Las Heras JM, García-Cortés C, Foronda D, Pastor-Pareja JC, Shashidhara LS, Sánchez-Herrero E. The Drosophila Hox gene Ultrabithorax controls appendage shape by regulating extracellular matrix dynamics. Development 2018; 145:dev.161844. [PMID: 29853618 DOI: 10.1242/dev.161844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/17/2018] [Indexed: 12/19/2022]
Abstract
Although the specific form of an organ is frequently important for its function, the mechanisms underlying organ shape are largely unknown. In Drosophila, the wings and halteres, homologous appendages of the second and third thoracic segments, respectively, bear different forms: wings are flat, whereas halteres are globular, and yet both characteristic shapes are essential for a normal flight. The Hox gene Ultrabithorax (Ubx) governs the difference between wing and haltere development, but how Ubx function in the appendages prevents or allows flat or globular shapes is unknown. Here, we show that Ubx downregulates Matrix metalloproteinase 1 (Mmp1) expression in the haltere pouch at early pupal stage, which in turn prevents the rapid clearance of Collagen IV compared with the wing disc. This difference is instrumental in determining cell shape changes, expansion of the disc and apposition of dorsal and ventral layers, all of these phenotypic traits being characteristic of wing pouch development. Our results suggest that Ubx regulates organ shape by controlling Mmp1 expression, and the extent and timing of extracellular matrix degradation.
Collapse
Affiliation(s)
- José M De Las Heras
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - Celia García-Cortés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | - David Foronda
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| | | | - L S Shashidhara
- Indian Institute of Science Education and Research Pune, Dr Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Nicolás Cabrera 1, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|