1
|
Mseza B, Kumbowi PK, Nduwimana M, Banga D, Busha ET, Egesa WI, Odong RJ, Ndeezi G. Prevalence and factors associated with cerebral malaria among children aged 6 to 59 months with severe malaria in Western Uganda: a hospital-based cross-sectional study. BMC Pediatr 2024; 24:704. [PMID: 39506687 PMCID: PMC11539429 DOI: 10.1186/s12887-024-05178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Cerebral malaria, caused by Plasmodium falciparum, represents the most severe neurologic complication of malaria. Its association with high morbidity and mortality rates, especially among young children, underscores its clinical significance. In sub-Saharan Africa, including Uganda, cerebral malaria remains a major health challenge, contributing significantly to the high child mortality rate. Despite advances in malaria control, the burden of cerebral malaria among children under five is substantial, reflecting the need for targeted interventions and improved management strategies. This study aimed to determine the prevalence of cerebral malaria and identify associated factors among children admitted with severe malaria at a tertiary hospital in western Uganda. METHODS This was a cross-sectional, descriptive, and analytical study involving children aged 6 to 59 months admitted with severe malaria. The study was conducted from January to March 2023 at Fort Portal Regional Referral Hospital. Severe and cerebral malaria were defined as per the WHO criteria. Sociodemographic, clinical, and laboratory data were collected and analyzed using IBM SPSS version 27. Logistic regression analysis was used to evaluate the factors associated with cerebral malaria. A p-value < 0.05 indicated statistical significance. RESULTS A total of 250 children were recruited (mean age 33.1 ± 17.3 months). The prevalence of cerebral malaria was 12.8% (95% CI: 8.9-17.6). Cerebral malaria was independently associated with male sex (aOR: 3.05, 95% CI: 1.20-7.77, p = 0.02), abnormal bleeding (aOR: 13.22, 95% CI: 11.54-15.16, p = 0.001), history of convulsions (aOR 12.20, 95% CI: 10.7-21.69, p = 0.010), acute kidney injury (aOR: 4.50, 95% CI: 1.30-15.53, p = 0.02), and hyponatremia (aOR: 3.47, 95% CI: 1.34-8.96, p = 0.010). CONCLUSIONS AND RECOMMENDATIONS The prevalence of cerebral malaria was high among children with severe malaria. Factors associated with cerebral malaria included male gender, history of convulsions, abnormal bleeding, acute kidney injury, and hyponatremia. Targeted interventions and early management are essential to improve clinical outcomes.
Collapse
Affiliation(s)
- Banga Mseza
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda.
| | - Patrick Kumbakulu Kumbowi
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Martin Nduwimana
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Desire Banga
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Emmanuel Tibasima Busha
- Department of Pediatrics and Child Health, Université Libre Des Pays Des Grands Lacs, Goma, Democratic Republic of Congo
| | - Walufu Ivan Egesa
- Department of Pediatrics, Nile International Hospital, Jinja, Uganda
| | - Richard Justin Odong
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda
| | - Grace Ndeezi
- Department of Pediatrics and Child Health, Faculty of Clinical Medicine and Dentistry, Kampala International University, Kampala, Uganda
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
2
|
Tesfaye Z, Derso A, Zeleke AJ, Addisu A, Woldu B, Deress T, Mekonnen GG, Tegegne Y. Exploring coagulation parameters as predictive biomarkers of Plasmodium infection: A comprehensive analysis of coagulation parameters. PLoS One 2024; 19:e0301963. [PMID: 38626035 PMCID: PMC11020526 DOI: 10.1371/journal.pone.0301963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Malaria affects the intravascular environment, leading to abnormal coagulation activation, prolonged prothrombin time, and activated partial thromboplastin time. Despite the high prevalence of malaria in the study area, there has been little published research on the effects of Plasmodium infection on coagulation parameters. OBJECTIVE The aim was to assess the effect of malaria on basic coagulation parameters among patients attending Dembia Primary Hospital and Makisegnit Health Center. METHODS A cross-sectional study was carried out from January to March 2020. The study involved 120 participants. Blood specimens were collected, which were analyzed using a Huma Clot Due Plus analyzer. The collected data were entered into EpiData and exported to SPSS version 21 for analysis. Non-parametric statistical methods were employed to analyze the data. The results were considered statistically significant if the p-value was less than 0.05. RESULTS Individuals infected with Plasmodium exhibit coagulation disorders with elevated levels of PT (Prothrombin Time), APTT (Activated Partial Thromboplastin Time), and INR (International Normalization Ratio) in comparison to healthy controls. The median PT, APTT, and INR values for infected cases were measured at 20.5 [8.6], 39.5 [17.9], and 1.8 [0.9], respectively, while healthy controls had measurements of 15.1 [2.5], 28.8 [8.3], and 1.3 [0.2] (p ≤ 0.001). The severity of coagulation disorders increased with an increase in parasitemia levels. The type of Plasmodium species present had a significant impact on PT and INR values (p ≤ 0.001), whereas APTT did not show any significant impact across the Plasmodium species (p > 0.05). CONCLUSION The results of this study found that malaria has a substantial impact on various blood clotting parameters, including PT, APTT, and INR. Parasitemia severity is significantly associated with extended PT and INR, implying that the higher the parasitemia, the longer it takes for blood to clot. Furthermore, the study discovered that the PT and INR levels differed based on the type of Plasmodium species responsible for the infection.
Collapse
Affiliation(s)
- Zelalem Tesfaye
- Bichina Primary Hospital, Amhara Regional State Health Bureau, Bahir Dar, Ethiopia
| | - Adane Derso
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ayalew Jejaw Zeleke
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Ayenew Addisu
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Berhanu Woldu
- Department of Haematology and Immunohaematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshiwal Deress
- Department of Quality Assurance and Laboratory Management, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Gebeyaw Getnet Mekonnen
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yalewayker Tegegne
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Qidwai T. Cytokine storm in COVID-19 and malaria: Annals of pro-inflammatory cytokines. Cytokine 2024; 173:156420. [PMID: 37976701 DOI: 10.1016/j.cyto.2023.156420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Infectious diseases are affecting the people worldwide. Mostly, infectious agents activate excessive production of cytokines so called cytokine storm. Among the infectious diseases COVID-19 is one of the deadliest diseases affecting individuals all over the world, moreover, Plasmodium falciparum malaria and HIV are major killers. An excessive pro-inflammatory response is one of the major causes of pathological conditions in these diseases. It is important to investigate the pathophysiology in the infectious diseases such as COVID-19, malaria and HIV as there is no concrete therapy against them so far. Exploration of excessive pro-inflammation could be important for therapeutic intervention. In this article, an attempt has been made to analyze the pathological conditions arise due to excessive inflammatory response in COVID-19, malaria and other infectious diseases. Targeting excessive pro-inflammatory response/cytokine storm in infectious diseases could be a useful strategy.
Collapse
Affiliation(s)
- Tabish Qidwai
- Faculty of Biotechnology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Uttar Pradesh 225003, India.
| |
Collapse
|
4
|
Solomon OD, Villarreal P, Domingo ND, Ochoa L, Vanegas D, Cardona SM, Cardona AE, Stephens R, Vargas G. Dynamic intravital imaging reveals reactive vessel-associated microglia play a protective role in cerebral malaria coagulopathy. Sci Rep 2023; 13:19526. [PMID: 37945689 PMCID: PMC10636186 DOI: 10.1038/s41598-023-43208-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023] Open
Abstract
Vascular congestion and coagulopathy have been shown to play a role in human and experimental cerebral malaria (eCM), but little is known about the role of microglia, or microglia-vascular interactions and hypercoagulation during disease progression in this fatal infection. Recent studies show microglia bind to fibrinogen, a glycoprotein involved in thrombosis. An eCM model of Plasmodium chabaudi infection in mice deficient in the regulatory cytokine IL-10 manifests neuropathology, including hypercoagulation with extensive fibrin(ogen) deposition and neuroinflammation. Intravital microscopy and immunofluorescence are applied to elucidate the role of microglia in eCM. Results show microgliosis and coagulopathy occur early in disease at 3 dpi (day post-infection), and both are exacerbated as disease progresses to 7dpi. Vessel associated microglia increase significantly at 7 dpi, and the expression of the microglial chemoattractant CCL5 (RANTES) is increased versus uninfected and localized with fibrin(ogen) in vessels. PLX3397 microglia depletion resulted in rapid behavioral decline, severe hypothermia, and greater increase in vascular coagulopathy. This study suggests that microglia play a prominent role in controlling infection-initiated coagulopathy and supports a model in which microglia play a protective role in cerebral malaria by migrating to and patrolling the cerebral vasculature, potentially regulating degree of coagulation during systemic inflammation.
Collapse
Affiliation(s)
- Olivia D Solomon
- The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Paula Villarreal
- The Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Nadia D Domingo
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Lorenzo Ochoa
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Neurobiology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Difernando Vanegas
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Sandra M Cardona
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Astrid E Cardona
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Robin Stephens
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Gracie Vargas
- Biomedical Engineering and Imaging Sciences Group, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Lakkavaram AL, Maymand S, Naser W, Ward AC, de Koning-Ward TF. Cish knockout mice exhibit similar outcomes to malaria infection despite altered hematopoietic responses. Front Microbiol 2023; 14:1288876. [PMID: 38029163 PMCID: PMC10653303 DOI: 10.3389/fmicb.2023.1288876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
The Cytokine-inducible Src homology 2 domain-containing (CISH) protein is a negative feedback regulator induced by cytokines that play key roles in immunity and erythropoiesis. Single nucleotide polymorphisms (SNPs) in the human CISH gene have been associated with increased susceptibility to severe malaria disease. To directly assess how CISH might influence outcomes in the BALB/c model of malaria anemia, CISH knockout (Cish-/-) mice on this background were infected with Plasmodium berghei and their hematopoietic responses, cytokine production and ability to succumb to severe malaria disease evaluated. Despite basal erythrocytic disruption, upon P. berghei infection, the Cish -/- mice were better able to maintain peripheral blood cell counts, hemoglobin levels and a steady-state pattern of erythroid differentiation compared to wild-type (Cish+/+) mice. Ablation of CISH, however, did not influence the outcome of acute malaria infections in either the BALB/c model or the alternative C57BL/6 model of experimental cerebral malaria, with the kinetics of infection, parasite load, weight loss and cytokine responses being similar between Cish+/+ and Cish-/- mice, and both genotypes succumbed to experimental cerebral malaria within a comparable timeframe.
Collapse
Affiliation(s)
| | - Saeed Maymand
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Wasan Naser
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
- College of Science, University of Baghdad, Baghdad, Iraq
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
- Institute for Mental and Physical Health and Clinical Translation, Geelong, VIC, Australia
| |
Collapse
|
6
|
Pinheiro ADS, Kazura JW, Pinheiro AA, Schmaier AH. Is there a role for bradykinin in cerebral malaria pathogenesis? Front Cell Infect Microbiol 2023; 13:1184896. [PMID: 37637466 PMCID: PMC10448822 DOI: 10.3389/fcimb.2023.1184896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Malaria is a parasitic disease of global health significance and a leading cause of death in children living in endemic regions. Although various Plasmodium species are responsible for the disease, Plasmodium falciparum infection accounts for most severe cases of the disease in humans. The mechanisms of cerebral malaria pathogenesis have been studied extensively in humans and animal malaria models; however, it is far from being fully understood. Recent discoveries indicate a potential role of bradykinin and the kallikrein kinin system in the pathogenesis of cerebral malaria. The aim of this review is to highlight how bradykinin is formed in cerebral malaria and how it may impact cerebral blood-brain barrier function. Areas of interest in this context include Plasmodium parasite enzymes that directly generate bradykinin from plasma protein precursors, cytoadhesion of P. falciparum infected red blood cells to brain endothelial cells, and endothelial cell blood-brain barrier disruption.
Collapse
Affiliation(s)
- Alessandro de Sa Pinheiro
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - James W. Kazura
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Ana Acacia Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alvin H. Schmaier
- Department of Medicine, Hematology and Oncology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
7
|
Duangchan T, Kotepui M, Sukati S, Rattanapan Y, Wangdi K. A Systematic Review and Meta-Analysis of the Proportion Estimates of Disseminated Intravascular Coagulation (DIC) in Malaria. Trop Med Infect Dis 2023; 8:289. [PMID: 37368707 DOI: 10.3390/tropicalmed8060289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/01/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Disseminated intravascular coagulation (DIC) is a potentially life-threatening condition that causes systemic coagulation to be turned on and coagulation factors to be used up. However, the evidence for DIC in malaria patients is still not clear, and small case series and retrospective studies have shown varying results. This meta-analysis was intended for the evaluation of the evidence of DIC among malaria patients using a meta-analysis approach. The protocol for the systematic review was registered at PROSPERO as CRD42023392194. Studies that investigated DIC in patients with malaria were searched in Ovid, Scopus, Embase, PubMed, and MEDLINE. The pooled proportion with 95% confidence intervals (CI) of DIC among malaria patients was estimated using a random-effects model. A total of 1837 articles were identified, and 38 articles were included in the meta-analysis. The overall proportion of DIC in malaria was 11.6% (95% CI: 8.9%-14.3%, I2: 93.2%, 38 studies). DIC in severe falciparum malaria and fatal malaria was 14.6% (95% CI: 5.0-24.3%, I2: 95.5%, 11 studies) and 82.2% (95% CI: 56.2-100%, I2: 87.3, 4 studies). The estimates of DIC among severe malaria patients who had multi-organ dysfunction with bleeding, cerebral malaria, acute renal failure, and ≥2 complications were 79.6% (95% CI: 67.1-88.2%, one study), 11.9% (95% CI: 7.9-17.6%, one study), 16.7% (95% CI: 10.2-23.3%, ten studies), and 4.8% (95% CI: 1.9-7.7%, nine studies), respectively. The proportion estimates of DIC among the patients with malaria depended on the Plasmodium species, clinical severity, and types of severe complications. The information from this study provided useful information to guide the management of malaria patients. Future studies are needed to investigate the association between Plasmodium infection and DIC and to understand the mechanism of malaria-induced DIC.
Collapse
Affiliation(s)
- Thitinat Duangchan
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Suriyan Sukati
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Yanisa Rattanapan
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
- Hematology and Transfusion Science Research Center, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Kinley Wangdi
- Department of Global Health, National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra 2601, Australia
| |
Collapse
|
8
|
Thakar M, Noumbissi ME, Stins MF. Microvascular Environment Influences Brain Microvascular Heterogeneity: Relative Roles of Astrocytes and Oligodendrocytes for the EPCR Expression in the Brain Endothelium. Int J Mol Sci 2023; 24:6908. [PMID: 37108071 PMCID: PMC10138692 DOI: 10.3390/ijms24086908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Postmortem neuropathology shows clear regional differences in many brain diseases. For example, brains from cerebral malaria (CM) patients show more hemorrhagic punctae in the brain's white matter (WM) than grey matter (GM). The underlying reason for these differential pathologies is unknown. Here, we assessed the effect of the vascular microenvironment on brain endothelial phenotype, focusing endothelial protein C receptor (EPCR). We demonstrate that the basal level of EPCR expression in cerebral microvessels is heterogeneous in the WM compared to the GM. We used in vitro brain endothelial cell cultures and showed that the upregulation of EPCR expression was associated with exposure to oligodendrocyte conditioned media (OCM) compared to astrocyte conditioned media (ACM). Our findings shed light on the origin of the heterogeneity of molecular phenotypes at the microvascular level and might help better understand the variation in pathology seen in CM and other neuropathologies associated with vasculature in various brain regions.
Collapse
Affiliation(s)
- Manjusha Thakar
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
| | - Midrelle E. Noumbissi
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Monique F. Stins
- Malaria Research Institute, Department Molecular Microbiology & Immunology, Johns Hopkins School Public Health, Baltimore, MD 21205, USA
- Biomedical Research Institute of Southern California, Oceanside, CA 92056, USA
| |
Collapse
|
9
|
Muppidi P, Wright E, Wassmer SC, Gupta H. Diagnosis of cerebral malaria: Tools to reduce Plasmodium falciparum associated mortality. Front Cell Infect Microbiol 2023; 13:1090013. [PMID: 36844403 PMCID: PMC9947298 DOI: 10.3389/fcimb.2023.1090013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in Plasmodium falciparum (Pf) infection and is associated with the sequestration of parasitised erythrocytes in the microvasculature of the host's vital organs. Prompt diagnosis and treatment are key to a positive outcome in CM. However, current diagnostic tools remain inadequate to assess the degree of brain dysfunction associated with CM before the window for effective treatment closes. Several host and parasite factor-based biomarkers have been suggested as rapid diagnostic tools with potential for early CM diagnosis, however, no specific biomarker signature has been validated. Here, we provide an updated review on promising CM biomarker candidates and evaluate their applicability as point-of-care tools in malaria-endemic areas.
Collapse
Affiliation(s)
- Pranavi Muppidi
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emily Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Samuel C. Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Himanshu Gupta
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| |
Collapse
|
10
|
Chaudhary A, Kataria P, Surela N, Das J. Pathophysiology of Cerebral Malaria: Implications of MSCs as A Regenerative Medicinal Tool. Bioengineering (Basel) 2022; 9:bioengineering9060263. [PMID: 35735506 PMCID: PMC9219920 DOI: 10.3390/bioengineering9060263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
The severe form of malaria, i.e., cerebral malaria caused by Plasmodium falciparum, is a complex neurological syndrome. Surviving persons have a risk of behavioral difficulties, cognitive disorders, and epilepsy. Cerebral malaria is associated with multiple organ dysfunctions. The adhesion and accumulation of infected RBCs, platelets, and leucocytes (macrophages, CD4+ and CD8+ T cells, and monocytes) in the brain microvessels play an essential role in disease progression. Micro-vascular hindrance by coagulation and endothelial dysfunction contributes to neurological damage and the severity of the disease. Recent studies in human cerebral malaria and the murine model of cerebral malaria indicate that different pathogens as well as host-derived factors are involved in brain microvessel adhesion and coagulation that induces changes in vascular permeability and impairment of the blood-brain barrier. Efforts to alleviate blood-brain barrier dysfunction and de-sequestering of RBCs could serve as adjunct therapies. In this review, we briefly summarize the current understanding of the pathogenesis of cerebral malaria, the role of some factors (NK cells, platelet, ANG-2/ANG-1 ratio, and PfEMP1) in disease progression and various functions of Mesenchymal stem cells. This review also highlighted the implications of MSCs as a regenerative medicine.
Collapse
Affiliation(s)
- Amrendra Chaudhary
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Poonam Kataria
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Neha Surela
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
| | - Jyoti Das
- Parasite-Host Biology, National Institute of Malaria Research, New Delhi 110077, India; (A.C.); (P.K.); (N.S.)
- AcSIR, Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-25307203; Fax: +91-25307177
| |
Collapse
|
11
|
SARS-CoV-2 and Plasmodium falciparum are probably adopting Analogous strategy to invade erythrocytes. J Infect Public Health 2021; 14:883-885. [PMID: 34118739 PMCID: PMC8189613 DOI: 10.1016/j.jiph.2021.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
|
12
|
Mejia P, Treviño-Villarreal JH, De Niz M, Meibalan E, Longchamp A, Reynolds JS, Turnbull LB, Opoka RO, Roussilhon C, Spielmann T, Ozaki CK, Heussler VT, Seydel KB, Taylor TE, John CC, Milner DA, Marti M, Mitchell JR. Adipose tissue parasite sequestration drives leptin production in mice and correlates with human cerebral malaria. SCIENCE ADVANCES 2021; 7:7/13/eabe2484. [PMID: 33762334 PMCID: PMC7990332 DOI: 10.1126/sciadv.abe2484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/04/2021] [Indexed: 05/03/2023]
Abstract
Circulating levels of the adipokine leptin are linked to neuropathology in experimental cerebral malaria (ECM), but its source and regulation mechanism remain unknown. Here, we show that sequestration of infected red blood cells (iRBCs) in white adipose tissue (WAT) microvasculature increased local vascular permeability and leptin production. Mice infected with parasite strains that fail to sequester in WAT displayed reduced leptin production and protection from ECM. WAT sequestration and leptin induction were lost in CD36KO mice; however, ECM susceptibility revealed sexual dimorphism. Adipocyte leptin was regulated by the mechanistic target of rapamycin complex 1 (mTORC1) and blocked by rapamycin. In humans, although Plasmodium falciparum infection did not increase circulating leptin levels, iRBC sequestration, tissue leptin production, and mTORC1 activity were positively correlated with CM in pediatric postmortem WAT. These data identify WAT sequestration as a trigger for leptin production with potential implications for pathogenesis of malaria infection, prognosis, and treatment.
Collapse
Affiliation(s)
- Pedro Mejia
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| | | | - Mariana De Niz
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Elamaran Meibalan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Justin S Reynolds
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lindsey B Turnbull
- Department of Pediatric Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | | | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - C Keith Ozaki
- Department of Surgery and the Heart and Vascular Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karl B Seydel
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| | - Terrie E Taylor
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| | - Chandy C John
- Department of Pediatric Infectious Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Danny A Milner
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- American Society for Clinical Pathology, Chicago, IL, USA
| | - Matthias Marti
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James R Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
13
|
Mbagwu SI, Filgueira L. Differential Expression of CD31 and Von Willebrand Factor on Endothelial Cells in Different Regions of the Human Brain: Potential Implications for Cerebral Malaria Pathogenesis. Brain Sci 2020; 10:E31. [PMID: 31935960 PMCID: PMC7016814 DOI: 10.3390/brainsci10010031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cerebral microvascular endothelial cells (CMVECs) line the vascular system of the brain and are the chief cells in the formation and function of the blood brain barrier (BBB). These cells are heterogeneous along the cerebral vasculature and any dysfunctional state in these cells can result in a local loss of function of the BBB in any region of the brain. There is currently no report on the distribution and variation of the CMVECs in different brain regions in humans. This study investigated microcirculation in the adult human brain by the characterization of the expression pattern of brain endothelial cell markers in different brain regions. Five different brain regions consisting of the visual cortex, the hippocampus, the precentral gyrus, the postcentral gyrus, and the rhinal cortex obtained from three normal adult human brain specimens were studied and analyzed for the expression of the endothelial cell markers: cluster of differentiation 31 (CD31) and von-Willebrand-Factor (vWF) through immunohistochemistry. We observed differences in the expression pattern of CD31 and vWF between the gray matter and the white matter in the brain regions. Furthermore, there were also regional variations in the pattern of expression of the endothelial cell biomarkers. Thus, this suggests differences in the nature of vascularization in various regions of the human brain. These observations also suggest the existence of variation in structure and function of different brain regions, which could reflect in the pathophysiological outcomes in a diseased state.
Collapse
Affiliation(s)
- Smart Ikechukwu Mbagwu
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
- Department of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, 435101 Nnewi Campus, Nigeria
| | - Luis Filgueira
- Anatomy Unit, Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
14
|
Jensen AR, Adams Y, Hviid L. Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1-based vaccines to prevent it. Immunol Rev 2020; 293:230-252. [PMID: 31562653 PMCID: PMC6972667 DOI: 10.1111/imr.12807] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Malaria, a mosquito-borne infectious disease caused by parasites of the genus Plasmodium continues to be a major health problem worldwide. The unicellular Plasmodium-parasites have the unique capacity to infect and replicate within host erythrocytes. By expressing variant surface antigens Plasmodium falciparum has evolved to avoid protective immune responses; as a result in endemic areas anti-malaria immunity develops gradually over many years of multiple and repeated infections. We are studying the role of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) expressed by asexual stages of P. falciparum responsible for the pathogenicity of severe malaria. The immunopathology of falciparum malaria has been linked to cyto-adhesion of infected erythrocytes to specific host receptors. A greater appreciation of the PfEMP1 molecules important for the development of protective immunity and immunopathology is a prerequisite for the rational discovery and development of a safe and protective anti-disease malaria vaccine. Here we review the role of ICAM-1 and EPCR receptor adhering falciparum-parasites in the development of severe malaria; we discuss our current research to understand the factors involved in the pathogenesis of cerebral malaria and the feasibility of developing a vaccine targeted specifically to prevent this disease.
Collapse
Affiliation(s)
- Anja Ramstedt Jensen
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Yvonne Adams
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Lars Hviid
- Centre for Medical Parasitology at Department of Immunology and MicrobiologyFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Infectious DiseasesRigshospitaletCopenhagenDenmark
| |
Collapse
|
15
|
Abstract
Central nervous system fungal infections can be broadly divided into those that infect a healthy host such as Cryptococcus, Coccidioides, Histoplasma, Blastomyces, Sporothrix spp., and those that cause opportunistic infections in an immunocompromised host such as Candida, Aspergillus, Zygomycetes, Trichosporon spp. The clinical manifestations of central nervous system fungal infections commonly seen in children in clinical practice include a chronic meningitis or meningoencephalitis syndrome, brain abscess, rhino-cerebral syndrome and rarely, a fungal ventriculitis. Fungal central nervous system infections should be suspected in any child with subacute to chronic febrile encephalopathy or meningitis with or without raised intracranial pressure, seizures, orbital pain and/or sero-sanguinous nasal discharge. Diagnosis is corroborated by cerebrospinal fluid analysis, culture and PCR, special stains, serological tests and neuroimaging. Management of fungal central nervous system infections include specific antifungal therapy and supportive measures for associated problems, management of underlying predisposing condition and surgical intervention in cases with localized disease, abscess or presence of simultaneous foreign body such as intracranial shunts. In addition to the fungi, several parasitic infections can cause central nervous system infections in children. Of these, authors briefly discuss cerebral malaria, and amebic meningo-encephalitis.
Collapse
|
16
|
Moussa EM, Huang H, Thézénas ML, Fischer R, Ramaprasad A, Sisay-Joof F, Jallow M, Pain A, Kwiatkowski D, Kessler BM, Casals-Pascual C. Proteomic profiling of the plasma of Gambian children with cerebral malaria. Malar J 2018; 17:337. [PMID: 30249265 PMCID: PMC6154937 DOI: 10.1186/s12936-018-2487-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection. A number of pathological findings have been correlated with pediatric CM including sequestration, platelet accumulation, petechial haemorrhage and retinopathy. However, the molecular mechanisms leading to death in CM are not yet fully understood. METHODS A shotgun plasma proteomic study was conducted using samples form 52 Gambian children with CM admitted to hospital. Based on clinical outcome, children were assigned to two groups: reversible and fatal CM. Label-free liquid chromatography-tandem mass spectrometry was used to identify and compare plasma proteins that were differentially regulated in children who recovered from CM and those who died. Candidate biomarkers were validated using enzyme immunoassays. RESULTS The plasma proteomic signature of children with CM identified 266 proteins differentially regulated in children with fatal CM. Proteins from the coagulation cascade were consistently decreased in fatal CM, whereas the plasma proteomic signature associated with fatal CM underscored the importance of endothelial activation, tissue damage, inflammation, haemolysis and glucose metabolism. The concentration of circulating proteasomes or PSMB9 in plasma was not significantly different in fatal CM when compared with survivors. Plasma PSMB9 concentration was higher in patients who presented with seizures and was significantly correlated with the number of seizures observed in patients with CM during admission. CONCLUSIONS The results indicate that increased tissue damage and hypercoagulability may play an important role in fatal CM. The diagnostic value of this molecular signature to identify children at high risk of dying to optimize patient referral practices should be validated prospectively.
Collapse
Affiliation(s)
- Ehab M Moussa
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | - Honglei Huang
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | | | - Roman Fischer
- Wellcome Trust Centre for Human Genetics, Oxford, UK
| | - Abhinay Ramaprasad
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Arnab Pain
- King Abdulla University of Science and Technology, Thuwal, Saudi Arabia
| | | | | | - Climent Casals-Pascual
- Wellcome Trust Centre for Human Genetics, Oxford, UK.
- Hospital Clinic i Provincial de Barcelona, CDB and ISGlobal, Barcelona, Spain.
| |
Collapse
|
17
|
Lee HJ, Georgiadou A, Otto TD, Levin M, Coin LJ, Conway DJ, Cunnington AJ. Transcriptomic Studies of Malaria: a Paradigm for Investigation of Systemic Host-Pathogen Interactions. Microbiol Mol Biol Rev 2018; 82:e00071-17. [PMID: 29695497 PMCID: PMC5968457 DOI: 10.1128/mmbr.00071-17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptomics, the analysis of genome-wide RNA expression, is a common approach to investigate host and pathogen processes in infectious diseases. Technical and bioinformatic advances have permitted increasingly thorough analyses of the association of RNA expression with fundamental biology, immunity, pathogenesis, diagnosis, and prognosis. Transcriptomic approaches can now be used to realize a previously unattainable goal, the simultaneous study of RNA expression in host and pathogen, in order to better understand their interactions. This exciting prospect is not without challenges, especially as focus moves from interactions in vitro under tightly controlled conditions to tissue- and systems-level interactions in animal models and natural and experimental infections in humans. Here we review the contribution of transcriptomic studies to the understanding of malaria, a parasitic disease which has exerted a major influence on human evolution and continues to cause a huge global burden of disease. We consider malaria a paradigm for the transcriptomic assessment of systemic host-pathogen interactions in humans, because much of the direct host-pathogen interaction occurs within the blood, a readily sampled compartment of the body. We illustrate lessons learned from transcriptomic studies of malaria and how these lessons may guide studies of host-pathogen interactions in other infectious diseases. We propose that the potential of transcriptomic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in study design rather than as a consequence of technological constraints. Further advances will require the integration of transcriptomic data with analytical approaches from other scientific disciplines, including epidemiology and mathematical modeling.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Thomas D Otto
- Centre of Immunobiology, University of Glasgow, Glasgow, United Kingdom
| | - Michael Levin
- Section of Paediatrics, Imperial College, London, United Kingdom
| | - Lachlan J Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - David J Conway
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | |
Collapse
|
18
|
Moussa E, Huang H, Ahras M, Lall A, Thezenas ML, Fischer R, Kessler BM, Pain A, Billker O, Casals-Pascual C. Proteomic profiling of the brain of mice with experimental cerebral malaria. J Proteomics 2018; 180:61-69. [DOI: 10.1016/j.jprot.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 05/15/2017] [Accepted: 06/02/2017] [Indexed: 11/24/2022]
|
19
|
Riggle BA, Miller LH, Pierce SK. Do we know enough to find an adjunctive therapy for cerebral malaria in African children? F1000Res 2017; 6:2039. [PMID: 29250318 PMCID: PMC5701444 DOI: 10.12688/f1000research.12401.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2017] [Indexed: 01/27/2023] Open
Abstract
Cerebral malaria is the deadliest complication of malaria, a febrile infectious disease caused by Plasmodium parasite. Any of the five human Plasmodium species can cause disease, but, for unknown reasons, in approximately 2 million cases each year P. falciparum progresses to severe disease, ultimately resulting in half a million deaths. The majority of these deaths are in children under the age of five. Currently, there is no way to predict which child will progress to severe disease and there are no adjunctive therapies to halt the symptoms after onset. Herein, we discuss what is known about the disease mechanism of one form of severe malaria, cerebral malaria, and how we might exploit this understanding to rescue children in the throes of cerebral disease.
Collapse
Affiliation(s)
- Brittany A Riggle
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Louis H Miller
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, USA
| |
Collapse
|
20
|
Lennartz F, Adams Y, Bengtsson A, Olsen RW, Turner L, Ndam NT, Ecklu-Mensah G, Moussiliou A, Ofori MF, Gamain B, Lusingu JP, Petersen JEV, Wang CW, Nunes-Silva S, Jespersen JS, Lau CKY, Theander TG, Lavstsen T, Hviid L, Higgins MK, Jensen ATR. Structure-Guided Identification of a Family of Dual Receptor-Binding PfEMP1 that Is Associated with Cerebral Malaria. Cell Host Microbe 2017; 21:403-414. [PMID: 28279348 PMCID: PMC5374107 DOI: 10.1016/j.chom.2017.02.009] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/20/2017] [Accepted: 02/10/2017] [Indexed: 11/09/2022]
Abstract
Cerebral malaria is a deadly outcome of infection by Plasmodium falciparum, occurring when parasite-infected erythrocytes accumulate in the brain. These erythrocytes display parasite proteins of the PfEMP1 family that bind various endothelial receptors. Despite the importance of cerebral malaria, a binding phenotype linked to its symptoms has not been identified. Here, we used structural biology to determine how a group of PfEMP1 proteins interacts with intercellular adhesion molecule 1 (ICAM-1), allowing us to predict binders from a specific sequence motif alone. Analysis of multiple Plasmodium falciparum genomes showed that ICAM-1-binding PfEMP1s also interact with endothelial protein C receptor (EPCR), allowing infected erythrocytes to synergistically bind both receptors. Expression of these PfEMP1s, predicted to bind both ICAM-1 and EPCR, is associated with increased risk of developing cerebral malaria. This study therefore reveals an important PfEMP1-binding phenotype that could be targeted as part of a strategy to prevent cerebral malaria. Structural basis for P. falciparum PfEMP1 binding to endothelial receptor ICAM-1defined A sequence motif derived from structure predicts group A PfEMP1 binding to ICAM-1 These ICAM-1-binding PfEMP1s also all bind to endothelial protein C receptor (EPCR) Expression of dual ICAM-1- and EPCR-binding PfEMP1 is associated with cerebral malaria
Collapse
Affiliation(s)
- Frank Lennartz
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Yvonne Adams
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Anja Bengtsson
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Rebecca W Olsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Louise Turner
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Nicaise T Ndam
- Faculté de Pharmacie, Institut de Recherche pour le Développement (IRD), COMUE Sorbonne Paris Cité, 75013 Paris, France; Faculté des Sciences de la Santé (FSS), Université d'Aboméy Calavi, 01 BP 526 Cotonou, Benin
| | - Gertrude Ecklu-Mensah
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark; Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Azizath Moussiliou
- Faculté des Sciences de la Santé (FSS), Université d'Aboméy Calavi, 01 BP 526 Cotonou, Benin
| | - Michael F Ofori
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Benoit Gamain
- UMR_S1134, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France
| | - John P Lusingu
- National Institute for Medical Research, Tanga Centre, 11101 Dar es Salaam, Tanzania
| | - Jens E V Petersen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Christian W Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Sofia Nunes-Silva
- UMR_S1134, Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge, Laboratoire d'Excellence GR-Ex, 75013 Paris, France
| | - Jakob S Jespersen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Clinton K Y Lau
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Lars Hviid
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark
| | - Matthew K Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU Oxford, UK.
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of Immunology and Microbiology (ISIM), Faculty of Health and Medical Sciences, University of Copenhagen, 1165 Copenhagen, Denmark; Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), 2100 Copenhagen, Denmark.
| |
Collapse
|
21
|
Kuleš J, Gotić J, Mrljak V, Barić Rafaj R. Alteration of haemostatic parameters in uncomplicated canine babesiosis. Comp Immunol Microbiol Infect Dis 2017; 53:1-6. [DOI: 10.1016/j.cimid.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 10/19/2022]
|
22
|
Antwi-Baffour S, Adjei JK, Agyemang-Yeboah F, Annani-Akollor M, Kyeremeh R, Asare GA, Gyan B. Proteomic analysis of microparticles isolated from malaria positive blood samples. Proteome Sci 2017; 15:5. [PMID: 28352210 PMCID: PMC5366142 DOI: 10.1186/s12953-017-0113-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/17/2017] [Indexed: 01/06/2023] Open
Abstract
Background Malaria continues to be a great public health concern due to the significant mortality and morbidity associated with the disease especially in developing countries. Microparticles (MPs), also called plasma membrane derived extracellular vesicles (PMEVs) are subcellular structures that are generated when they bud off the plasma membrane. They can be found in healthy individuals but the numbers tend to increase in pathological conditions including malaria. Although, various studies have been carried out on the protein content of specific cellular derived MPs, there seems to be paucity of information on the protein content of circulating MPs in malaria and their association with the various signs and symptoms of the disease. The aim of this study was therefore to carry out proteomic analyses of MPs isolated from malaria positive samples and compare them with proteins of MPs from malaria parasite culture supernatant and healthy controls in order to ascertain the role of MPs in malaria infection. Methods Plasma samples were obtained from forty-three (43) malaria diagnosed patients (cases) and ten (10) healthy individuals (controls). Malaria parasite culture supernatant was obtained from our laboratory and MPs were isolated from them and confirmed using flow cytometry. 2D LC-MS was done to obtain their protein content. Resultant data were analyzed using SPSS Ver. 21.0 statistical software, Kruskal Wallis test and Spearman’s correlation coefficient r. Results In all, 1806 proteins were isolated from the samples. The MPs from malaria positive samples recorded 1729 proteins, those from culture supernatant were 333 while the control samples recorded 234 proteins. The mean number of proteins in MPs of malaria positive samples was significantly higher than that in the control samples. Significantly, higher quantities of haemoglobin subunits were seen in MPs from malaria samples and culture supernatant compared to control samples. Conclusion A great number of proteins were observed to be carried in the microparticles (MPs) from malaria samples and culture supernatant compared to controls. The greater loss of haemoglobin from erythrocytes via MPs from malaria patients could serve as the initiation and progression of anaemia in P.falciparum infection. Also while some proteins were upregulated in circulating MPs in malaria samples, others were down regulated.
Collapse
Affiliation(s)
- Samuel Antwi-Baffour
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Jonathan Kofi Adjei
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana.,Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Francis Agyemang-Yeboah
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Max Annani-Akollor
- Department of Molecular Medicine, School of Medical Sciences Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ransford Kyeremeh
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - George Awuku Asare
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, College of Health Sciences, University of Ghana, P. O. Box KB 143, Korle-Bu, Accra, Ghana
| | - Ben Gyan
- Noguchi Memorial Institute of Medical Research, University of Ghana, Legon, Ghana
| |
Collapse
|
23
|
Thachil J. Platelets and infections in the resource-limited countries with a focus on malaria and viral haemorrhagic fevers. Br J Haematol 2017; 177:960-970. [PMID: 28295179 DOI: 10.1111/bjh.14582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infections continue to cause a high incidence of mortality and morbidity in resource-poor nations. Although antimicrobial therapy has aided mostly in dealing with the pathogenic micro-organisms themselves, the collateral damage caused by the infections continue to cause many deaths. Intensive care support and manipulation of the hosts' abnormal response to the infection have helped to improve mortality in well-resourced countries. But, in those areas with limited resources, this is not yet the case and simpler methods of diagnosis and interventions are required. Thrombocytopenia is one of the most common manifestations in all these infections and may be used as an easily available prognostic indicator and marker for the severity of the infections. In this review, the relevance of platelets in infections in general, and specifically to tropical infections, malaria, and viral haemorrhagic fevers in the emerging countries is discussed. Better understanding of the pathophysiology and the role of platelets in particular in such conditions is likely to translate into better patient care and thus reduce morbidity and mortality.
Collapse
Affiliation(s)
- Jecko Thachil
- Department of Haematology, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
24
|
Majewska A, Gajewska M, Dembele K, Maciejewski H, Prostek A, Jank M. Lymphocytic, cytokine and transcriptomic profiles in peripheral blood of dogs with atopic dermatitis. BMC Vet Res 2016; 12:174. [PMID: 27553600 PMCID: PMC4995625 DOI: 10.1186/s12917-016-0805-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
Background Canine atopic dermatitis (cAD) is a common chronic and pruritic skin disease in dogs. The development of cAD involves complex interactions between environmental antigens, genetic predisposition and a number of disparate cell types. The aim of the present study was to perform comprehensive analyses of peripheral blood of AD dogs in relation to healthy subjects in order to determine the changes which would be characteristic for cAD. Results The number of cells in specific subpopulations of lymphocytes was analyzed by flow cytometry, concentration of chosen pro- and anti-inflammatory cytokines (IL-4, IL-10, IL-13, TNF-α, TGF-β1) was determined by ELISA; and microarray analysis was performed on RNA samples isolated from peripheral blood nuclear cells of AD and healthy dogs. The number of Th cells (CD3+CD4+) in AD and healthy dogs was similar, whereas the percentage of Tc (CD3+CD8+) and Treg (CD4+CD25+ Foxp3+) cells increased significantly in AD dogs. Increased concentrations of IL-13 and TNF-α, and decreased levels of IL-10 and TGF-β1 was observed in AD dogs. The level of IL-4 was similar in both groups of animals. Results of the microarray experiment revealed differentially expressed genes involved in transcriptional regulation (e.g., transcription factors: SMAD2, RORA) or signal transduction pathways (e.g., VEGF, SHB21, PROC) taking part in T lymphocytes lineages differentiation and cytokines synthesis. Conclusions Results obtained indicate that CD8+ T cells, beside CD4+ T lymphocytes, contribute to the development of the allergic response. Increased IL-13 concentration in AD dogs suggests that this cytokine may play more important role than IL-4 in mediating changes induced by allergic inflammation. Furthermore, observed increase in Treg cells in parallel with high concentrations of TNF-α and low levels of IL-10 and TGF-β1 in the peripheral blood of AD dogs point at the functional insufficiency of Treg cells in patients with AD. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0805-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alicja Majewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland.
| | - Małgorzata Gajewska
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Kourou Dembele
- Department of Small Animal Diseases with Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Henryk Maciejewski
- Department of Computer Engineering, Wroclaw University of Technology, Wrocław, Poland
| | - Adam Prostek
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Michał Jank
- Veterinary Institute, Faculty of Veterinary Medicine and Animal Sciences, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
25
|
Wassmer SC, Grau GER. Platelets as pathogenetic effectors and killer cells in cerebral malaria. Expert Rev Hematol 2016; 9:515-7. [DOI: 10.1080/17474086.2016.1179571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Activated Neutrophils Are Associated with Pediatric Cerebral Malaria Vasculopathy in Malawian Children. mBio 2016; 7:e01300-15. [PMID: 26884431 PMCID: PMC4791846 DOI: 10.1128/mbio.01300-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most patients with cerebral malaria (CM) sustain cerebral microvascular sequestration of Plasmodium falciparum-infected red blood cells (iRBCs). Although many young children are infected with P. falciparum, CM remains a rare outcome; thus, we hypothesized that specific host conditions facilitate iRBC cerebral sequestration. To identify these host factors, we compared the peripheral whole-blood transcriptomes of Malawian children with iRBC cerebral sequestration, identified as malarial-retinopathy-positive CM (Ret+CM), to the transcriptomes of children with CM and no cerebral iRBC sequestration, defined as malarial-retinopathy-negative CM (Ret-CM). Ret+CM was associated with upregulation of 103 gene set pathways, including cytokine, blood coagulation, and extracellular matrix (ECM) pathways (P < 0.01; false-discovery rate [FDR] of <0.05). Neutrophil transcripts were the most highly upregulated individual transcripts in Ret+CM patients. Activated neutrophils can modulate diverse host processes, including the ECM, inflammation, and platelet biology to potentially facilitate parasite sequestration. Therefore, we compared plasma neutrophil proteins and neutrophil chemotaxis between Ret+CM and Ret-CM patients. Plasma levels of human neutrophil elastase, myeloperoxidase, and proteinase 3, but not lactoferrin or lipocalin, were elevated in Ret+CM patients, and neutrophil chemotaxis was impaired, possibly related to increased plasma heme. Neutrophils were rarely seen in CM brain microvasculature autopsy samples, and no neutrophil extracellular traps were found, suggesting that a putative neutrophil effect on endothelial cell biology results from neutrophil soluble factors rather than direct neutrophil cellular tissue effects. Meanwhile, children with Ret-CM had lower levels of inflammation, higher levels of alpha interferon, and upregulation of Toll-like receptor pathways and other host transcriptional pathways, which may represent responses that do not favor cerebral iRBC sequestration. There were approximately 198 million cases of malaria worldwide in 2013, with an estimated 584,000 deaths occurring mostly in sub-Saharan African children. CM is a severe and rare form of Plasmodium falciparum infection and is associated with high rates of mortality and neurological morbidity, despite antimalarial treatment. A greater understanding of the pathophysiology of CM would allow the development of adjunctive therapies to improve clinical outcomes. A hallmark of CM is cerebral microvasculature sequestration of P. falciparum-infected red blood cells (iRBCs), which results in vasculopathy in some patients. Our data provide a global analysis of the host pathways associated with CM and newly identify an association of activated neutrophils with brain iRBC sequestration. Products of activated neutrophils could alter endothelial cell receptors and coagulation to facilitate iRBC adherence. Future studies can now examine the role of neutrophils in CM pathogenesis to improve health outcomes.
Collapse
|
27
|
Emerging roles for hemostatic dysfunction in malaria pathogenesis. Blood 2016; 127:2281-8. [PMID: 26851291 DOI: 10.1182/blood-2015-11-636464] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/27/2016] [Indexed: 11/20/2022] Open
Abstract
Severe Plasmodium falciparum malaria remains a leading cause of mortality, particularly in sub-Saharan Africa where it accounts for up to 1 million deaths per annum. In spite of the significant mortality and morbidity associated with cerebral malaria (CM), the molecular mechanisms involved in the pathophysiology of severe malaria remain surprisingly poorly understood. Previous studies have demonstrated that sequestration of P falciparum-infected erythrocytes within the microvasculature of the brain plays a key role in the development of CM. In addition, there is convincing evidence that both endothelial cell activation and platelets play critical roles in the modulating the pathogenesis of severe P falciparum malaria. In this review, we provide an overview of recent studies that have identified novel roles through which hemostatic dysfunction may directly influence malaria pathogenesis. In particular, we focus on emerging data suggesting that von Willebrand factor, coagulation cascade activation, and dysfunction of the protein C pathway may be of specific importance in this context. These collective insights underscore a growing appreciation of the important, but poorly understood, role of hemostatic dysfunction in malaria progression and, importantly, illuminate potential approaches for novel therapeutic strategies. Given that the mortality rate associated with CM remains on the order of 20% despite the availability of effective antimalarial therapy, development of adjunctive therapies that can attenuate CM progression clearly represents a major unmet need. These emerging data are thus not only of basic scientific interest, but also of direct clinical significance.
Collapse
|
28
|
Riedl J, Mordmüller B, Koder S, Pabinger I, Kremsner PG, Hoffman SL, Ramharter M, Ay C. Alterations of blood coagulation in controlled human malaria infection. Malar J 2016; 15:15. [PMID: 26743539 PMCID: PMC4705755 DOI: 10.1186/s12936-015-1079-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/29/2015] [Indexed: 12/31/2022] Open
Abstract
Background Alterations of blood coagulation are thought to be involved in malaria pathogenesis. This study had the aim to investigate changes of blood coagulation under the standardized conditions of controlled human malaria infection. Methods In a clinical trial aseptic, purified, cryopreserved Plasmodium falciparum sporozoites were intravenously (n = 24) or intradermally (n = 6) injected into 30 healthy volunteers. Twenty-two participants developed parasitaemia. Serial blood samples before and during prepatent period and at parasitaemia, diagnosed by microscopic assessment of thick blood smear, were obtained. Biomarkers of blood coagulation (thrombin generation potential, D-dimer, prothrombin fragment 1 + 2, von Willebrand factor, ADAMTS13 activity and soluble P-selectin) were determined. Results At first detection of P. falciparum parasitaemia, 72.7 % of volunteers had peak thrombin generation 10 % above their baseline. Overall, peak thrombin generation was 17.7 % higher at parasitaemia compared to baseline [median (25th–75th percentile): 225.4 nM (168.1–295.6) vs. 191.5 nM (138.2–231.9); p = 0.026]. There were no significant changes of other coagulation parameters. Conclusions The thrombin generation potential, an in vitro blood coagulation test, which reflects an individual´s global coagulation status, was increased by 17.7 % at very early stages of P. falciparum malaria, suggesting a hypercoagulable state may be induced, even when parasite density is low. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1079-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Riedl
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.
| | - Silvia Koder
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Ingrid Pabinger
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.
| | | | - Michael Ramharter
- Clinical Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| | - Cihan Ay
- Clinical Division of Haematology and Haemostaseology, Department of Medicine I, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
29
|
Samanta S, Samanta S, Jain K, Sinha B, Haldar R. Ultrasound: An ode to perioperative complicated malaria. J Anaesthesiol Clin Pharmacol 2015; 31:570-2. [PMID: 26702226 PMCID: PMC4676258 DOI: 10.4103/0970-9185.169100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Sukhen Samanta
- Department of Anesthesia and Critical Care (Trauma Centre), JPNA Trauma Centre, AIIMS, New Delhi, India
| | - Sujay Samanta
- Department of Critical Care Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Kajal Jain
- Department of Anaesthesia and Intensive Care, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bireswar Sinha
- Department of Community Medicine, Lady Hardinge Medical College, New Delhi, India
| | - Rudrashish Haldar
- Department of Anesthesia, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| |
Collapse
|
30
|
Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 2015; 5:75. [PMID: 26579500 PMCID: PMC4621481 DOI: 10.3389/fcimb.2015.00075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | | | | | - Saroj K Mishra
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Samuel Crocodile Wassmer
- Department of Microbiology, New York University School of Medicine New York, NY, USA ; Department of Pathology, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
31
|
Moxon CA, Chisala NV, Mzikamanda R, MacCormick I, Harding S, Downey C, Molyneux M, Seydel KB, Taylor TE, Heyderman RS, Toh CH. Laboratory evidence of disseminated intravascular coagulation is associated with a fatal outcome in children with cerebral malaria despite an absence of clinically evident thrombosis or bleeding. J Thromb Haemost 2015; 13:1653-64. [PMID: 26186686 PMCID: PMC4605993 DOI: 10.1111/jth.13060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/18/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND A procoagulant state is implicated in cerebral malaria (CM) pathogenesis, but whether disseminated intravascular coagulation (DIC) is present or associated with a fatal outcome is unclear. OBJECTIVES To determine the frequency of overt DIC, according to ISTH criteria, in children with fatal and non-fatal CM. METHODS/PATIENTS Malawian children were recruited into a prospective cohort study in the following diagnostic groups: retinopathy-positive CM (n = 140), retinopathy-negative CM (n = 36), non-malarial coma (n = 14), uncomplicated malaria (UM), (n = 91), mild non-malarial febrile illness (n = 85), and healthy controls (n = 36). Assays in the ISTH DIC criteria were performed, and three fibrin-related markers, i.e. protein C, antithrombin, and soluble thrombomodulin, were measured. RESULTS AND CONCLUSIONS Data enabling assignment of the presence or absence of 'overt DIC' were available for 98 of 140 children with retinopathy-positive CM. Overt DIC was present in 19 (19%), and was associated with a fatal outcome (odds ratio [OR] 3.068; 95% confidence interval [CI] 1.085-8.609; P = 0.035]. The levels of the three fibrin-related markers and soluble thrombomodulin were higher in CM patients than in UM patients (all P < 0.001). The mean fibrin degradation product level was higher in fatal CM patients (71.3 μg mL(-1) [95% CI 49.0-93.6]) than in non-fatal CM patients (48.0 μg mL(-1) [95% CI 37.7-58.2]; P = 0.032), but, in multivariate logistic regression, thrombomodulin was the only coagulation-related marker that was independently associated with a fatal outcome (OR 1.084 for each ng mL(-1) increase [95% CI 1.017-1.156]; P = 0.014). Despite these laboratory derangements, no child in the study had clinically evident bleeding or thrombosis. An overt DIC score and high thrombomodulin levels are associated with a fatal outcome in CM, but infrequently indicate a consumptive coagulopathy.
Collapse
Affiliation(s)
- C A Moxon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - N V Chisala
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - R Mzikamanda
- University of Malawi College of Medicine, Blantyre, Malawi
| | - I MacCormick
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- University of Malawi College of Medicine, Blantyre, Malawi
| | - S Harding
- Institute of Aging and Chronic Disease, University of Liverpool, Liverpool, UK
| | - C Downey
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| | - M Molyneux
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - K B Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - T E Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi
| | - R S Heyderman
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Malawi-Liverpool Wellcome Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - C-H Toh
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Roald Dahl Haemostasis & Thrombosis Centre, Royal Liverpool University Hospital, Liverpool, UK
| |
Collapse
|
32
|
Wassmer SC, Taylor TE, Rathod PK, Mishra SK, Mohanty S, Arevalo-Herrera M, Duraisingh MT, Smith JD. Investigating the Pathogenesis of Severe Malaria: A Multidisciplinary and Cross-Geographical Approach. Am J Trop Med Hyg 2015; 93:42-56. [PMID: 26259939 PMCID: PMC4574273 DOI: 10.4269/ajtmh.14-0841] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/10/2015] [Indexed: 01/14/2023] Open
Abstract
More than a century after the discovery of Plasmodium spp. parasites, the pathogenesis of severe malaria is still not well understood. The majority of malaria cases are caused by Plasmodium falciparum and Plasmodium vivax, which differ in virulence, red blood cell tropism, cytoadhesion of infected erythrocytes, and dormant liver hypnozoite stages. Cerebral malaria coma is one of the most severe manifestations of P. falciparum infection. Insights into its complex pathophysiology are emerging through a combination of autopsy, neuroimaging, parasite binding, and endothelial characterizations. Nevertheless, important questions remain regarding why some patients develop life-threatening conditions while the majority of P. falciparum-infected individuals do not, and why clinical presentations differ between children and adults. For P. vivax, there is renewed recognition of severe malaria, but an understanding of the factors influencing disease severity is limited and remains an important research topic. Shedding light on the underlying disease mechanisms will be necessary to implement effective diagnostic tools for identifying and classifying severe malaria syndromes and developing new therapeutic approaches for severe disease. This review highlights progress and outstanding questions in severe malaria pathophysiology and summarizes key areas of pathogenesis research within the International Centers of Excellence for Malaria Research program.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joseph D. Smith
- Division of Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York; Department of Pathology, Sydney Medical School, The University of Sydney, Sydney, Australia; Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan; Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi; Departments of Chemistry and Global Health, University of Washington, Seattle, Washington; Department of Internal Medicine, Ispat General Hospital, Orissa, India; Caucaseco Scientific Research Center, Cali, Colombia; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; Seattle Biomedical Research Institute, Seattle, Washington; Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
33
|
Petersen JEV, Bouwens EAM, Tamayo I, Turner L, Wang CW, Stins M, Theander TG, Hermida J, Mosnier LO, Lavstsen T. Protein C system defects inflicted by the malaria parasite protein PfEMP1 can be overcome by a soluble EPCR variant. Thromb Haemost 2015; 114:1038-48. [PMID: 26155776 DOI: 10.1160/th15-01-0018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/23/2015] [Indexed: 12/23/2022]
Abstract
The Endothelial Protein C receptor (EPCR) is essential for the anticoagulant and cytoprotective functions of the Protein C (PC) system. Selected variants of the malaria parasite protein, Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) associated with severe malaria, including cerebral malaria, specifically target EPCR on vascular endothelial cells. Here, we examine the cellular response to PfEMP1 engagement to elucidate its role in malaria pathogenesis. Binding of the CIDRα1.1 domain of PfEMP1 to EPCR obstructed activated PC (APC) binding to EPCR and induced a loss of cellular EPCR functions. CIDRα1.1 severely impaired endothelial PC activation and effectively blocked APC-mediated activation of protease-activated receptor-1 (PAR1) and associated barrier protective effects of APC on endothelial cells. A soluble EPCR variant (E86A-sEPCR) bound CIDRα1.1 with high affinity and did not interfere with (A)PC binding to cellular EPCR. E86A-sEPCR used as a decoy to capture PfEMP1, permitted normal PC activation on endothelial cells, normal barrier protective effects of APC, and greatly reduced cytoadhesion of infected erythrocytes to brain endothelial cells. These data imply important contributions of PfEMP1-induced protein C pathway defects in the pathogenesis of severe malaria. Furthermore, the E86A-sEPCR decoy provides a proof-of-principle strategy for the development of novel adjunct therapies for severe malaria.
Collapse
Affiliation(s)
- Jens E V Petersen
- Jens E. V. Petersen, Centre for Medical Parasitology, Dept. of International Health, Immunology & Microbiology, University of Copenhagen and Dept. of Infectious Diseases, Rigshospitalet, 1014 Copenhagen, Denmark, Tel.: +45 35327549, Fax: +45 35327851, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, Daneman R, Frevert U. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog 2014; 10:e1004528. [PMID: 25474413 PMCID: PMC4256476 DOI: 10.1371/journal.ppat.1004528] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.
Collapse
Affiliation(s)
- Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Fabien Sohet
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Natasha M. Girgis
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Uma Mahesh Gundra
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - P'ng Loke
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Cabrera A, Neculai D, Kain KC. CD36 and malaria: friends or foes? A decade of data provides some answers. Trends Parasitol 2014; 30:436-44. [PMID: 25113859 DOI: 10.1016/j.pt.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
Abstract
The past 10 years have generated new insights into the complex interaction between CD36 (cluster of differentiation 36) and malaria. These range from the crystallization of the CD36 homolog, LIMPII (lysosomal integral membrane protein II), permitting modeling of CD36 and its binding to diverse ligands, to cell biology-based studies of CD36 and large population genetic studies assessing the association of CD36 polymorphisms and malarial disease severity. Collectively these lines of evidence indicate that a receptor other than CD36 is associated with severity. CD36 plays an important role in innate immunity and in the phagocytic uptake of multiple pathogens including malaria. CD36 polymorphisms lack association with severity, and isolates that cause severe disease primarily bind to endothelial protein C receptor (EPCR) rather than to CD36.
Collapse
Affiliation(s)
- Ana Cabrera
- Sandra Ann Rotman (SAR) Laboratories, SAR Centre, Toronto General Hospital, University Health Network, Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dante Neculai
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra Ann Rotman (SAR) Laboratories, SAR Centre, Toronto General Hospital, University Health Network, Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
36
|
Mohanty S, Taylor TE, Kampondeni S, Potchen MJ, Panda P, Majhi M, Mishra SK, Wassmer SC. Magnetic resonance imaging during life: the key to unlock cerebral malaria pathogenesis? Malar J 2014; 13:276. [PMID: 25038815 PMCID: PMC4114090 DOI: 10.1186/1475-2875-13-276] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
Understanding the mechanisms underlying the pathophysiology of cerebral malaria in patients with Plasmodium falciparum infection is necessary to implement new curative interventions. While autopsy-based studies shed some light on several pathological events that are believed to be crucial in the development of this neurologic syndrome, their investigative potential is limited and has not allowed the identification of causes of death in patients who succumb to it. This can only be achieved by comparing features between patients who die from cerebral malaria and those who survive. In this review, several alternative approaches recently developed to facilitate the comparison of specific parameters between fatal, non-fatal cerebral malaria and uncomplicated malaria patients are described, as well as their limitations. The emergence of neuroimaging as a revolutionary tool in identifying critical structural and functional modifications of the brain during cerebral malaria is discussed and highly promising areas of clinical research using magnetic resonance imaging are highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Samuel C Wassmer
- Department of Microbiology, Division of Parasitology, New York University School of Medicine, 341 East 25th Street, New York NY 10010, USA.
| |
Collapse
|
37
|
Bachmann J, Burté F, Pramana S, Conte I, Brown BJ, Orimadegun AE, Ajetunmobi WA, Afolabi NK, Akinkunmi F, Omokhodion S, Akinbami FO, Shokunbi WA, Kampf C, Pawitan Y, Uhlén M, Sodeinde O, Schwenk JM, Wahlgren M, Fernandez-Reyes D, Nilsson P. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog 2014; 10:e1004038. [PMID: 24743550 PMCID: PMC3990714 DOI: 10.1371/journal.ppat.1004038] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 02/06/2014] [Indexed: 01/21/2023] Open
Abstract
Systemic inflammation and sequestration of parasitized erythrocytes are central processes in the pathophysiology of severe Plasmodium falciparum childhood malaria. However, it is still not understood why some children are more at risks to develop malaria complications than others. To identify human proteins in plasma related to childhood malaria syndromes, multiplex antibody suspension bead arrays were employed. Out of the 1,015 proteins analyzed in plasma from more than 700 children, 41 differed between malaria infected children and community controls, whereas 13 discriminated uncomplicated malaria from severe malaria syndromes. Markers of oxidative stress were found related to severe malaria anemia while markers of endothelial activation, platelet adhesion and muscular damage were identified in relation to children with cerebral malaria. These findings suggest the presence of generalized vascular inflammation, vascular wall modulations, activation of endothelium and unbalanced glucose metabolism in severe malaria. The increased levels of specific muscle proteins in plasma implicate potential muscle damage and microvasculature lesions during the course of cerebral malaria. Why do some malaria-infected children develop severe and lethal forms of the disease, while others only have mild forms? In order to try to find potential answers or clues to this question, we have here analyzed more than 1,000 different human proteins in the blood of more than 500 malaria-infected children from Ibadan in Nigeria, a holoendemic malaria region. We identified several proteins that were present at higher levels in the blood from the children that developed severe malaria in comparison to those that did not. Some of the most interesting identified proteins were muscle specific proteins, which indicate that damaged muscles could be a discriminatory pathologic event in cerebral malaria compared to other malaria cases. These findings will hopefully lead to an increased understanding of the disease and may contribute to the development of clinical algorithms that could predict which children are more at risks to severe malaria. This in turn will be of high value in the management of these children in already overloaded tertiary-care health facilities in urban large densely-populated sub-Saharan cities with holoendemic malaria such as in the case of Ibadan and Lagos.
Collapse
Affiliation(s)
- Julie Bachmann
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Florence Burté
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Setia Pramana
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ianina Conte
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
| | - Biobele J. Brown
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Adebola E. Orimadegun
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Wasiu A. Ajetunmobi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Nathaniel K. Afolabi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Francis Akinkunmi
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
| | - Samuel Omokhodion
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Felix O. Akinbami
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Wuraola A. Shokunbi
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Caroline Kampf
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Yudi Pawitan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Mathias Uhlén
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Olugbemiro Sodeinde
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
| | - Jochen M. Schwenk
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (MW); (DFR); (PN)
| | - Delmiro Fernandez-Reyes
- Division of Parasitology, Medical Research Council National Institute for Medical Research, London, United Kingdom
- Department of Paediatrics, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Department of Haematology, College of Medicine, University of Ibadan, University College Hospital, Ibadan, Nigeria
- Childhood Malaria Research Group, University College Hospital, Ibadan, Nigeria
- Brighton & Sussex Medical School, Sussex University, Brighton, United Kingdom
- * E-mail: (MW); (DFR); (PN)
| | - Peter Nilsson
- SciLifeLab Stockholm, School of Biotechnology, KTH-Royal Institute of Technology, Stockholm, Sweden
- * E-mail: (MW); (DFR); (PN)
| |
Collapse
|
38
|
MacCormick IJC, Beare NAV, Taylor TE, Barrera V, White VA, Hiscott P, Molyneux ME, Dhillon B, Harding SP. Cerebral malaria in children: using the retina to study the brain. ACTA ACUST UNITED AC 2014; 137:2119-42. [PMID: 24578549 PMCID: PMC4107732 DOI: 10.1093/brain/awu001] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral malaria is a dangerous complication of Plasmodium falciparum infection, which takes a devastating toll on children in sub-Saharan Africa. Although autopsy studies have improved understanding of cerebral malaria pathology in fatal cases, information about in vivo neurovascular pathogenesis is scarce because brain tissue is inaccessible in life. Surrogate markers may provide insight into pathogenesis and thereby facilitate clinical studies with the ultimate aim of improving the treatment and prognosis of cerebral malaria. The retina is an attractive source of potential surrogate markers for paediatric cerebral malaria because, in this condition, the retina seems to sustain microvascular damage similar to that of the brain. In paediatric cerebral malaria a combination of retinal signs correlates, in fatal cases, with the severity of brain pathology, and has diagnostic and prognostic significance. Unlike the brain, the retina is accessible to high-resolution, non-invasive imaging. We aimed to determine the extent to which paediatric malarial retinopathy reflects cerebrovascular damage by reviewing the literature to compare retinal and cerebral manifestations of retinopathy-positive paediatric cerebral malaria. We then compared retina and brain in terms of anatomical and physiological features that could help to account for similarities and differences in vascular pathology. These comparisons address the question of whether it is biologically plausible to draw conclusions about unseen cerebral vascular pathogenesis from the visible retinal vasculature in retinopathy-positive paediatric cerebral malaria. Our work addresses an important cause of death and neurodisability in sub-Saharan Africa. We critically appraise evidence for associations between retina and brain neurovasculature in health and disease, and in the process we develop new hypotheses about why these vascular beds are susceptible to sequestration of parasitized erythrocytes.
Collapse
Affiliation(s)
- Ian J C MacCormick
- 1 Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi2 University of Liverpool, Department of Eye and Vision Science, Faculty of Health & Life Sciences, University of Liverpool Room 356, 4th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK
| | - Nicholas A V Beare
- 2 University of Liverpool, Department of Eye and Vision Science, Faculty of Health & Life Sciences, University of Liverpool Room 356, 4th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK3 Royal Liverpool University Hospital, St. Paul's Eye Unit, Prescot St, Liverpool, Merseyside L7 8XP, UK
| | - Terrie E Taylor
- 5 Blantyre Malaria Project, Blantyre, Malawi6 Michigan State University, Department of Osteopathic Medical Specialities, West Fee Hall, 909 Fee Road, Room B305, East Lansing, MI 48824, USA
| | - Valentina Barrera
- 2 University of Liverpool, Department of Eye and Vision Science, Faculty of Health & Life Sciences, University of Liverpool Room 356, 4th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK
| | - Valerie A White
- 7 Vancouver General Hospital, Department of Pathology and Laboratory Medicine, Vancouver, B.C. V5Z1M9, Canada
| | - Paul Hiscott
- 2 University of Liverpool, Department of Eye and Vision Science, Faculty of Health & Life Sciences, University of Liverpool Room 356, 4th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK
| | - Malcolm E Molyneux
- 1 Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi4 University of Malawi College of Medicine, College of Medicine, P/Bag 360 Chichiri, Blantyre 3 Malawi8 Liverpool School of Tropical Medicine, Liverpool School of Tropical Medicine, Pembroke Place , Liverpool, L3 5QA , UK
| | - Baljean Dhillon
- 9 University of Edinburgh, Department of Ophthalmology, Edinburgh, UK10 Princess Alexandra Eye Pavilion, Edinburgh, UK
| | - Simon P Harding
- 2 University of Liverpool, Department of Eye and Vision Science, Faculty of Health & Life Sciences, University of Liverpool Room 356, 4th Floor, UCD Building, Daulby Street, Liverpool L69 3GA, UK3 Royal Liverpool University Hospital, St. Paul's Eye Unit, Prescot St, Liverpool, Merseyside L7 8XP, UK
| |
Collapse
|
39
|
Thachil J, Owusu-Ofori S, Bates I. Haematological Diseases in the Tropics. MANSON'S TROPICAL INFECTIOUS DISEASES 2014. [PMCID: PMC7167525 DOI: 10.1016/b978-0-7020-5101-2.00066-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Smith JD, Rowe JA, Higgins MK, Lavstsen T. Malaria's deadly grip: cytoadhesion of Plasmodium falciparum-infected erythrocytes. Cell Microbiol 2013; 15:1976-83. [PMID: 23957661 PMCID: PMC3836831 DOI: 10.1111/cmi.12183] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022]
Abstract
Cytoadhesion of Plasmodium falciparum-infected erythrocytes to host microvasculature is a key virulence determinant. Parasite binding is mediated by a large family of clonally variant adhesion proteins, termed P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by var genes and expressed at the infected erythrocyte surface. Although PfEMP1 proteins have extensively diverged under opposing selection pressure to maintain ligand binding while avoiding antibody-mediated detection, recent work has revealed they can be classified into different groups based on chromosome location and domain composition. This grouping reflects functional specialization of PfEMP1 proteins for different human host and microvascular binding niches and appears to be maintained by gene recombination hierarchies. Inone extreme, a specific PfEMP1 variant is associated with placental binding and malaria during pregnancy, while other PfEMP1 subtypes appear to be specialized for infection of malaria naïve hosts. Here, we discuss recent findings on the origins and evolution of the var gene family, the structure-function of PfEMP1 proteins, and a distinct subset of PfEMP1 variants that have been associated with severe childhood malaria.
Collapse
Affiliation(s)
- Joseph D. Smith
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America, 98109
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - J. Alexandra Rowe
- Centre for Immunity, Infection and Evolution, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| | - Matthew K. Higgins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of International Health, Immunology & Microbiology, University of Copenhagen and Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
41
|
Abstract
Of all the outcomes of Plasmodium falciparum infection, the coma of cerebral malaria (CM) is particularly deadly. Malariologists have long wondered how some patients develop this organ-specific syndrome. Data from two recent publications support a novel mechanism of CM pathogenesis in which infected erythrocytes (IEs) express specific virulence proteins that mediate IE binding to the endothelial protein C receptor (EPCR). Malaria-associated depletion of EPCR, with subsequent impairment of the protein C system promotes a proinflammatory, procoagulant state in brain microvessels.
Collapse
|
42
|
Martins YC, Daniel-Ribeiro CT. A new hypothesis on the manifestation of cerebral malaria: the secret is in the liver. Med Hypotheses 2013; 81:777-83. [PMID: 23978689 DOI: 10.1016/j.mehy.2013.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/06/2013] [Indexed: 02/06/2023]
Abstract
Despite the abundance of information on cerebral malaria (CM), the pathogenesis of this disease is not completely understood. At present, two nonexclusive dominant hypotheses exist to explain how the neurological syndrome manifests: the sequestration (or mechanical) hypothesis and the inflammatory hypothesis. The sequestration hypothesis states that sequestration of Plasmodium falciparum-parasitized red blood cells (pRBCs) to brain capillary endothelia causes obstruction of capillary blood flow followed by brain tissue anoxia and coma. The inflammatory hypothesis postulates that P. falciparum infection releases toxic molecules in the circulation, inducing an imbalanced systemic inflammatory response that leads to coagulopathy, brain endothelial cell dysfunction, accumulation of leukocytes in the brain microcirculation, blood brain barrier (BBB) leakage, cerebral vasoconstriction, edema, and coma. However, both hypotheses, even when considered together, are not sufficient to fully explain the pathogenesis of CM. Here, we propose that the development of acute liver failure (ALF) together with BBB breakdown are the necessary and sufficient conditions for the genesis of CM. ALF is characterized by coagulopathy and hepatic encephalopathy (HE) in a patient without pre-existing liver disease. Signs of hepatic dysfunction have been shown to occur in 2.5-40% of CM patients. In addition, recent studies with murine models demonstrated that mice presenting experimental cerebral malaria (ECM) had hepatic damage and brain metabolic changes characteristic of HE. However, the occurrence of CM in patients with mild or without apparent hepatocellular liver damage and the presence of liver damage in non-CM murine models indicate that the development of ALF during malaria infection is not the single factor responsible for neuropathology. To solve this problem, we also propose that BBB breakdown contributes to the pathogenesis of CM and synergizes with hepatic failure to cause neurological signs and symptoms. BBB dysfunction would thus occur in CM by a mechanism similar to the one occurring in sepsis and is in agreement with the inflammatory hypothesis. Nevertheless, differently from in the inflammatory hypothesis, BBB leakage would facilitate the penetration of ammonia and other toxins into the brain parenchyma, but would not be sufficient to cause CM when occurring alone. We believe our hypothesis better explains the pathogenesis of CM, does not have problems to deal with the exception data not explained by the previous hypotheses, and reveals new targets for adjunctive therapy.
Collapse
Affiliation(s)
- Yuri Chaves Martins
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz and Centro de Pesquisa Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, RJ, Brazil; Department of Pathology, Albert Einstein College of Medicine, The Bronx, NY, USA.
| | | |
Collapse
|
43
|
Loss of endothelial protein C receptors links coagulation and inflammation to parasite sequestration in cerebral malaria in African children. Blood 2013; 122:842-51. [PMID: 23741007 DOI: 10.1182/blood-2013-03-490219] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of mortality in African children and the mechanisms underlying its development, namely how malaria-infected erythrocytes (IEs) cause disease and why the brain is preferentially affected, remain unclear. Brain microhemorrhages in CM suggest a clotting disorder, but whether this phenomenon is important in pathogenesis is debated. We hypothesized that localized cerebral microvascular thrombosis in CM is caused by a decreased expression of the anticoagulant and protective receptors thrombomodulin (TM) and endothelial protein C receptor (EPCR) and that low constitutive expression of these regulatory molecules in the brain make it particularly vulnerable. Autopsies from Malawian children with CM showed cerebral fibrin clots and loss of EPCR, colocalized with sequestered IEs. Using a novel assay to examine endothelial phenotype ex vivo using subcutaneous microvessels, we demonstrated that loss of EPCR and TM at sites of IE cytoadherence is detectible in nonfatal CM. In contrast, although clotting factor activation was seen in the blood of CM patients, this was compensated and did not disseminate. Because of the pleiotropic nature of EPCR and TM, these data implicate disruption of the endothelial protective properties at vulnerable sites and particularly in the brain, linking coagulation and inflammation with IE sequestration.
Collapse
|
44
|
Sahu U, Mohapatra BN, Kar SK, Ranjit M. Promoter polymorphisms in the ATP binding cassette transporter gene influence production of cell-derived microparticles and are highly associated with susceptibility to severe malaria in humans. Infect Immun 2013; 81:1287-94. [PMID: 23381994 PMCID: PMC3639614 DOI: 10.1128/iai.01175-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/25/2013] [Indexed: 11/20/2022] Open
Abstract
Microparticle (MP) efflux is known to be mediated by the ABCA1 protein, and the plasma level of these cell-derived MPs is elevated considerably during human malarial infection. Therefore, two polymorphisms at positions -477 and -320 in the promoter of the ABCA1 gene were genotyped and tested for association with the plasma MP level in four groups of malaria patients segregated according to the clinical severity, i.e., cerebral malaria (CM), multiorgan dysfunction (MOD), noncerebral severe malaria, and uncomplicated malaria (UM). The TruCount tube-based flow cytometric method was used for the exact quantification of different cell-derived MPs in patients. Polymorphisms in the ABCA1 gene promoter were analyzed by use of the PCR/two-primer-pair method, followed by restriction fragment length polymorphism, in 428 malaria patients. The level of circulating plasma MPs was significantly higher in febrile patients with Plasmodium falciparum infection, especially in CM patients compared to healthy individuals. The homozygous wild-type -477 and -320 genotype was observed to be significantly higher in patients with severe malaria. These patients also showed marked increases in the plasma MP numbers compared to UM patients. We report here for the first time an association of ABCA1 promoter polymorphisms with susceptibility to severe malaria, especially to CM and MOD, indicating the protective effect of the mutant variant of the polymorphism. We hypothesize that the -477T and -320G polymorphisms affect the downregulation of MP efflux and may be a predictor of organ complication during P. falciparum malarial infections.
Collapse
Affiliation(s)
- Upasana Sahu
- Division of Molecular Biology, Regional Medical Research Centre, Bhubaneswar, Orissa, India
| | | | - Shantanu K. Kar
- Division of Molecular Biology, Regional Medical Research Centre, Bhubaneswar, Orissa, India
| | - Manoranjan Ranjit
- Division of Molecular Biology, Regional Medical Research Centre, Bhubaneswar, Orissa, India
| |
Collapse
|
45
|
Pai N, Ghosh K, Shetty S. Acquired and Heritable Thrombophilia in Indian Patients With Pediatric Deep Venous Thrombosis (DVT). Clin Appl Thromb Hemost 2013; 20:573-6. [PMID: 23406614 DOI: 10.1177/1076029613476339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Deep venous thrombosis (DVT) in children is more often associated with underlying pathological conditions than with hereditary thrombophilia. The present study is a retrospective analysis of thrombophilia in 285 pediatric patients with venous thrombosis at different sites. Four common thrombophilia markers, that is protein C, protein S, antithrombin III, and factor V Leiden (FVL) mutation, were analyzed. Thrombosis in hepatic and portal veins was more common in pediatric patients (73%) when compared to other sites (27%). Overall, hereditary thrombophilia accounted for 15.5% of the patients with venous thrombosis. The FVL mutation, which was the major causative factor in Budd-Chiari syndrome and portal vein thrombosis cases in the adult group, was not a major contributing factor in pediatric group, that is, 1.8% of the patients. In conclusion, the risk factors for venous thrombosis vary in different age groups.
Collapse
Affiliation(s)
- Navin Pai
- National Institute of Immunohaematology (ICMR), KEM Hospital, Mumbai, India
| | - Kanjaksha Ghosh
- National Institute of Immunohaematology (ICMR), KEM Hospital, Mumbai, India
| | - Shrimati Shetty
- National Institute of Immunohaematology (ICMR), KEM Hospital, Mumbai, India
| |
Collapse
|
46
|
Nacer A, Movila A, Baer K, Mikolajczak SA, Kappe SHI, Frevert U. Neuroimmunological blood brain barrier opening in experimental cerebral malaria. PLoS Pathog 2012; 8:e1002982. [PMID: 23133375 PMCID: PMC3486917 DOI: 10.1371/journal.ppat.1002982] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 09/07/2012] [Indexed: 12/31/2022] Open
Abstract
Plasmodium falciparum malaria is responsible for nearly one million annual deaths worldwide. Because of the difficulty in monitoring the pathogenesis of cerebral malaria in humans, we conducted a study in various mouse models to better understand disease progression in experimental cerebral malaria (ECM). We compared the effect on the integrity of the blood brain barrier (BBB) and the histopathology of the brain of P. berghei ANKA, a known ECM model, P. berghei NK65, generally thought not to induce ECM, P. yoelii 17XL, originally reported to induce human cerebral malaria-like histopathology, and P. yoelii YM. As expected, P. berghei ANKA infection caused neurological signs, cerebral hemorrhages, and BBB dysfunction in CBA/CaJ and Swiss Webster mice, while Balb/c and A/J mice were resistant. Surprisingly, PbNK induced ECM in CBA/CaJ mice, while all other mice were resistant. P. yoelii 17XL and P. yoelii YM caused lethal hyperparasitemia in all mouse strains; histopathological alterations, BBB dysfunction, or neurological signs were not observed. Intravital imaging revealed that infected erythrocytes containing mature parasites passed slowly through capillaries making intimate contact with the endothelium, but did not arrest. Except for relatively rare microhemorrhages, mice with ECM presented no obvious histopathological alterations that would explain the widespread disruption of the BBB. Intravital imaging did reveal, however, that postcapillary venules, but not capillaries or arterioles, from mice with ECM, but not hyperparasitemia, exhibit platelet marginalization, extravascular fibrin deposition, CD14 expression, and extensive vascular leakage. Blockage of LFA-1 mediated cellular interactions prevented leukocyte adhesion, vascular leakage, neurological signs, and death from ECM. The endothelial barrier-stabilizing mediators imatinib and FTY720 inhibited vascular leakage and neurological signs and prolonged survival to ECM. Thus, it appears that neurological signs and coma in ECM are due to regulated opening of paracellular-junctional and transcellular-vesicular fluid transport pathways at the neuroimmunological BBB. Plasmodium falciparum, the deadliest of all human malaria parasites, can cause cerebral malaria, a severe and frequently fatal complication of this devastating disease. Young children are predominantly at risk and may progress rapidly from the first signs of neurological involvement to coma and death. Here we used a murine model for high-resolution in vivo imaging to demonstrate that cerebral malaria, but not high parasitemia and severe anemia, is associated with extensive leakage of fluid from cerebral blood vessels into the brain tissue. This vascular leakage occurs downstream from the capillary bed, at the neuroimmunological blood brain barrier, a site recently recognized as the immune cell entry point into the brain during neuroinflammation. Vascular leakage is closely associated with the appearance of neurological signs suggesting that the ultimate cause of brain edema, coma and death in cerebral malaria is a widespread opening of the neuroimmunological blood brain barrier. Indeed, vascular leakage, neurological signs, and death from ECM can be prevented with endothelial barrier-stabilizing drugs. Based on the unique role of this anatomical feature in neuroinflammation, our findings are expected to have implications for other infectious diseases and autoimmune disorders of the central nervous system.
Collapse
Affiliation(s)
- Adela Nacer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Kerstin Baer
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | | | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Dasari P, Bhakdi S. Pathogenesis of malaria revisited. Med Microbiol Immunol 2012; 201:599-604. [PMID: 22955244 DOI: 10.1007/s00430-012-0265-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 08/24/2012] [Indexed: 11/28/2022]
Abstract
Plasmodium falciparum malaria claims 1 million lives around the globe every year. Parasitemia can reach remarkably high levels. The developing parasite digests hemoglobin and converts the waste product to hemozoin alias malaria pigment. These processes occur in a vesicular compartment named the digestive vacuole (DV). Each parasitized cell releases one DV upon rupture. Myriads of DVs thus gain entry into the blood, but whether they trigger pathobiological events has never been investigated. We recently discovered that the DV membrane simultaneously activates the two major enzyme cascades in blood, complement and coagulation. Activation of both is known to occur in patients with severe malaria, so discovery of the common trigger has large consequences. The DV membrane but not the merozoite has the capacity to spontaneously activate the alternative complement and intrinsic clotting pathway. Ejection of merozoites and the DV into the bloodstream, therefore, results in selective opsonization and phagocytosis of the DV, leaving merozoites free to invade new cells. The DV membrane furthermore has the capacity to assemble prothrombinase, the key convertase of the intrinsic clotting pathway. The dual capacity of the DV to activate both complement and coagulation can be suppressed by low-molecular-weight dextran sulfate. This agent protects experimental animals from the detrimental consequences, resulting from intravenous application of purified DVs. Phagocytosis of DVs not only deploys PMN away from merozoites, but also drives the cells into a state of functional exhaustion. This may be one reason for the enhanced susceptibility of patients with severe malaria toward systemic bacterial infections. Together, these findings indicate that the DV may represent a hitherto unrecognized, important determinant of parasite pathogenicity.
Collapse
Affiliation(s)
- Prasad Dasari
- Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg University Mainz, Hochhaus Augustusplatz, 55101 Mainz, Germany
| | | |
Collapse
|
48
|
Frevert U, Movila A, Nikolskaia OV, Raper J, Mackey ZB, Abdulla M, McKerrow J, Grab DJ. Early invasion of brain parenchyma by African trypanosomes. PLoS One 2012; 7:e43913. [PMID: 22952808 PMCID: PMC3432051 DOI: 10.1371/journal.pone.0043913] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/26/2012] [Indexed: 12/11/2022] Open
Abstract
Human African trypanosomiasis or sleeping sickness is a vector-borne parasitic disease that has a major impact on human health and welfare in sub-Saharan countries. Based mostly on data from animal models, it is currently thought that trypanosome entry into the brain occurs by initial infection of the choroid plexus and the circumventricular organs followed days to weeks later by entry into the brain parenchyma. However, Trypanosoma brucei bloodstream forms rapidly cross human brain microvascular endothelial cells in vitro and appear to be able to enter the murine brain without inflicting cerebral injury. Using a murine model and intravital brain imaging, we show that bloodstream forms of T. b. brucei and T. b. rhodesiense enter the brain parenchyma within hours, before a significant level of microvascular inflammation is detectable. Extravascular bloodstream forms were viable as indicated by motility and cell division, and remained detectable for at least 3 days post infection suggesting the potential for parasite survival in the brain parenchyma. Vascular inflammation, as reflected by leukocyte recruitment and emigration from cortical microvessels, became apparent only with increasing parasitemia at later stages of the infection, but was not associated with neurological signs. Extravascular trypanosomes were predominantly associated with postcapillary venules suggesting that early brain infection occurs by parasite passage across the neuroimmunological blood brain barrier. Thus, trypanosomes can invade the murine brain parenchyma during the early stages of the disease before meningoencephalitis is fully established. Whether individual trypanosomes can act alone or require the interaction from a quorum of parasites remains to be shown. The significance of these findings for disease development is now testable.
Collapse
Affiliation(s)
- Ute Frevert
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Olga V. Nikolskaia
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Jayne Raper
- Department of Biological Sciences, Hunter College of CUNY, New York, New York, United States of America
| | - Zachary B. Mackey
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Maha Abdulla
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - James McKerrow
- Department of Pathology, University of California San Francisco, San Francisco, California, United States of America
| | - Dennis J. Grab
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
49
|
Delabranche X, Berger A, Boisramé-Helms J, Meziani F. Microparticles and infectious diseases. Med Mal Infect 2012; 42:335-43. [PMID: 22766273 DOI: 10.1016/j.medmal.2012.05.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 04/16/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022]
Abstract
Membrane shedding with microvesicle (MV) release after membrane budding due to cell stimulation is a highly conserved intercellular interplay. MV can be released by micro-organisms or by host cells in the course of infectious diseases. Host MVs are divided according to cell compartment origin in microparticles (MPs) from plasma membrane and exosomes from intracellular membranes. MPs are cell fragments resulting from plasma membrane reorganization characterized by phosphatidylserine (PhtdSer) content and parental cell antigens on membrane. The role of MPs in physiology and pathophysiology is not yet well elucidated; they are a pool of bioactive molecules able to transmit a pro-inflammatory message to neighboring or target cells. The first acknowledged function of MP was the dissemination of a procoagulant potential via PhtdSer and it is now obvious than MPs bear tissue factor (TF). Such MPs have been implicated in the coagulation disorders observed during sepsis and septic shock. MPs have been implicated in the regulation of vascular tone and cardiac dysfunction in experimental sepsis. Beside a non-specific role, pathogens such as Neisseria meningitidis and Ebola Virus can specifically activate blood coagulation after TF-bearing MPs release in the bloodstream with disseminated intravascular coagulopathy and Purpura fulminans. The role of MPs in host-pathogen interactions is also fundamental in Chagas disease, where MPs could allow immune evasion by inhibiting C3 convertase. During cerebral malaria, MPs play a complex role facilitating the activation of brain endothelium that contributes to amplify vascular obstruction by parasitized erythrocytes. Phagocytosis of HIV induced MPs expressing PhtdSer by monocytes/macrophages results in cellular infection and non-inflammatory response via up-regulation of TGF-β.
Collapse
Affiliation(s)
- X Delabranche
- Service de réanimation médicale, nouvel hôpital civil, hôpitaux universitaires de Strasbourg, 1, place de l'Hôpital, 67091 Strasbourg cedex, France
| | | | | | | |
Collapse
|
50
|
Ramos TN, Darley MM, Weckbach S, Stahel PF, Tomlinson S, Barnum SR. The C5 convertase is not required for activation of the terminal complement pathway in murine experimental cerebral malaria. J Biol Chem 2012; 287:24734-8. [PMID: 22689574 DOI: 10.1074/jbc.c112.378364] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Cerebral malaria (CM) is the most severe manifestation of clinical malaria syndromes and has a high fatality rate especially in the developing world. Recent studies demonstrated that C5(-/-) mice are resistant to experimental CM (ECM) and that protection was due to the inability to form the membrane attack complex. Unexpectedly, we observed that C4(-/-) and factor B(-/-) mice were fully susceptible to disease, indicating that activation of the classical or alternative pathways is not required for ECM. C3(-/-) mice were also susceptible to ECM, indicating that the canonical C5 convertases are not required for ECM development and progression. Abrogation of ECM by treatment with anti-C9 antibody and detection of C5a in serum of C3(-/-) mice confirmed that C5 activation occurs in ECM independent of C5 convertases. Our data indicate that activation of C5 in ECM likely occurs via coagulation enzymes of the extrinsic protease pathway.
Collapse
Affiliation(s)
- Theresa N Ramos
- Department of Microbiology, University of Alabama, Birmingham, Alabama 35294, USA
| | | | | | | | | | | |
Collapse
|