1
|
Sridhar S, Modica JA, Sykora DJ, Berns EJ, Mrksich M. Synthesis and Activity of T-Cell Tumor-Directing MegaMolecules. J Am Chem Soc 2024; 146:26801-26807. [PMID: 39167468 DOI: 10.1021/jacs.4c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This paper describes the synthesis, characterization, and functional activity of 26 MegaMolecule-based bispecific antibody mimics for T-cell redirection toward HER2+ cancer cells. The work reports functional bispecific MegaMolecules that bind both receptor targets, and recruit and activate T-cells resulting in lysis of the target tumor cells. Changing the orientation of linkage between Fabs against either HER2 or CD3ε results in an approximately 150-fold range in potency. Increasing scaffold valency from Fab dimers up to tetramers improves the potency of the antibody mimics up to 5-fold, but with diminishing returns in effective dose beyond trimeric formats. Antibody mimics that present either one or two Fabs against either receptor target allows for initial engagement of one cell type over the other. Finally, the antibody mimics significantly reduce HER2+ tumor volumes in a humanized xenograft model of breast cancer.
Collapse
Affiliation(s)
- Sraeyes Sridhar
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin A Modica
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Daniel J Sykora
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Eric J Berns
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Cell & Developmental Biology, Northwestern University, 303 E. Superior Street, Chicago, Illinois 60611, United States
| |
Collapse
|
2
|
Bianchi ME, Rubartelli A, Sitia R. Preferential Secretion of Oxidation-Sensitive Proteins by Unconventional Pathways: Why is This Important for Inflammation? Antioxid Redox Signal 2024; 41:693-705. [PMID: 38916186 DOI: 10.1089/ars.2024.0554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Significance: Fidelity of intercellular communication depends on unambiguous interactions between protein ligands and membrane receptors. Most proteins destined to the extracellular space adopt the required three-dimensional shape as they travel through the endoplasmic reticulum (ER), Golgi complex, and other organelles of the exocytic pathway. However, some proteins, many of which are involved in inflammation, avoid this classical secretory route and follow unconventional pathways to leave the cell. Recent Advances: Stringent quality control systems operate in the ER and cis-Golgi, restricting transport to native conformers, devoid of non-native disulfides and/or reactive thiols. However, some proteins released by living cells require reduced cysteines to exert their extracellular function(s). Remarkably, these proteins lack the secretory signal sequence normally required by secretory proteins for translocation into the ER lumen. Critical Issues: Why do interleukin-1β, high mobility group box 1, and other proinflammatory proteins avoid the ER-Golgi route to reach the intercellular space? These proteins require reactive cysteines for exerting their function. Therefore, eluding thiol-mediated quality control along the exocytic pathway is likely one of the main reasons why extracellular proteins that need to be reduced utilize unconventional pathways of secretion, where a quality control aimed at oxidating native cysteines is not present. Future Directions: Particularly under stress conditions, cells release redox-active enzymes and nonprotein thiol compounds that exert an extracellular control of redox-sensitive protein activity, shaping inflammatory responses. This post-secretion, redox-dependent editing of protein messages is still largely undefined. Understanding the underlying mechanistic events will hopefully provide new tools to control inflammation. Antioxid. Redox Signal. 41, 693-705.
Collapse
Affiliation(s)
- Marco E Bianchi
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milano, Italy
| | - Anna Rubartelli
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milano, Italy
| | - Roberto Sitia
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, Milano, Italy
| |
Collapse
|
3
|
Ortiz Y, Anasti K, Pane AK, Cronin K, Alam SM, Reth M. The CH1 domain influences the expression and antigen sensing of the HIV-specific CH31 IgM-BCR and IgG-BCR. Proc Natl Acad Sci U S A 2024; 121:e2404728121. [PMID: 39042672 PMCID: PMC11295018 DOI: 10.1073/pnas.2404728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
How different classes of the B cell antigen receptor (BCR) sense viral antigens used in vaccination protocols is poorly understood. Here, we study antigen binding and sensing of human Ramos B cells expressing a BCR of either the IgM or IgG1 class with specificity for the CD4-binding-site of the envelope (Env) protein of the HIV-1. Both BCRs carry an identical antigen binding site derived from the broad neutralizing antibody (bnAb) CH31. We find a five times higher expression of the IgG1-BCR in comparison to the IgM-BCR on the surface of transfected Ramos B cells. The two BCR classes also differ from each other in their interaction with cognate HIV Env antigens in that the IgG1-BCR and IgM-BCR bind preferentially to polyvalent and monovalent antigens, respectively. By generating an IgM/IgG1 chimeric BCR, we found that the class-specific BCR expression and antigen-sensing behavior can be transferred with the CH1γ domain from the IgG1-BCR to the IgM-BCR. Thus, the class of CH1 domain has an impact on BCR assembly and expression as well as on antigen sensing.
Collapse
Affiliation(s)
- Yaneth Ortiz
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Faculty of Biology, Signalling Research Centers Centre for Integrative Biological Signalling Studies and Centre for Biological Signalling Studies, University of Freiburg, Freiburg79104, Germany
| | - Kara Anasti
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - Advaiti K. Pane
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - Kenneth Cronin
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
| | - S. Munir Alam
- Department of Medicine & Pathology, Human Vaccine Institute, Duke University, Durham, NC27703
- Deparment of Medicine and Pathology, Duke University, DurhamNC27703
| | - Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Faculty of Biology, Signalling Research Centers Centre for Integrative Biological Signalling Studies and Centre for Biological Signalling Studies, University of Freiburg, Freiburg79104, Germany
| |
Collapse
|
4
|
Hendershot LM, Buck TM, Brodsky JL. The Essential Functions of Molecular Chaperones and Folding Enzymes in Maintaining Endoplasmic Reticulum Homeostasis. J Mol Biol 2024; 436:168418. [PMID: 38143019 DOI: 10.1016/j.jmb.2023.168418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
It has been estimated that up to one-third of the proteins encoded by the human genome enter the endoplasmic reticulum (ER) as extended polypeptide chains where they undergo covalent modifications, fold into their native structures, and assemble into oligomeric protein complexes. The fidelity of these processes is critical to support organellar, cellular, and organismal health, and is perhaps best underscored by the growing number of disease-causing mutations that reduce the fidelity of protein biogenesis in the ER. To meet demands encountered by the diverse protein clientele that mature in the ER, this organelle is populated with a cadre of molecular chaperones that prevent protein aggregation, facilitate protein disulfide isomerization, and lower the activation energy barrier of cis-trans prolyl isomerization. Components of the lectin (glycan-binding) chaperone system also reside within the ER and play numerous roles during protein biogenesis. In addition, the ER houses multiple homologs of select chaperones that can recognize and act upon diverse peptide signatures. Moreover, redundancy helps ensure that folding-compromised substrates are unable to overwhelm essential ER-resident chaperones and enzymes. In contrast, the ER in higher eukaryotic cells possesses a single member of the Hsp70, Hsp90, and Hsp110 chaperone families, even though several homologs of these molecules reside in the cytoplasm. In this review, we discuss specific functions of the many factors that maintain ER quality control, highlight some of their interactions, and describe the vulnerabilities that arise from the absence of multiple members of some chaperone families.
Collapse
Affiliation(s)
- Linda M Hendershot
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| | - Teresa M Buck
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States
| |
Collapse
|
5
|
Choi J, Jeon Y, Roh Y, Jang J, Lee E, Villamante L, Kim M, Kwon MH. The dispensability of V H-V L pairing and the indispensability of V L domain integrity in the IgG1 secretion process. Front Mol Biosci 2024; 11:1346259. [PMID: 38756530 PMCID: PMC11096469 DOI: 10.3389/fmolb.2024.1346259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction: The CH1 domain of IgG antibodies controls assembly and secretion, mediated by the molecular chaperone BiP via the endoplasmic reticulum protein quality control (ERQC) mechanism. However, it is not clear whether the variable domains are necessary for this process. Methods: Here, we generated IgG1 antibodies in which the V domain (VH and/or VL) was either removed or replaced, and then assessed expression, assembly, and secretion in HEK293 cells. Results: All Ig variants formed a covalent linkage between the Cγ1 and Cκ, were successfully secreted in an assembled form. Replacement of the cognate Vκ with a non-secretory pseudo Vκ (ψVκ) hindered secretion of individual or assembled secretion of neither heavy chains (HCs) nor light chains (LCs). The ψLC (ψVκ-Cκ) exhibited a less folded structure compared to the wild type (wt) LC, as evidenced by enhanced stable binding to the molecular chaperone BiP and susceptibility to proteolytic degradation. Molecular dynamics simulation demonstrated dramatic alterations in overall structure of ψFab (Fd-ψLC) from wt Fab. Discussion: These findings suggest that V domains do not initiate HC:LC assembly and secretion; instead, the critical factor governing IgG assembly and secretion is the CH-CL pairing. Additionally, the structural integrity of the VL domain is crucial for IgG secretion. These data offer valuable insight into the design of bioactive molecules based on an IgG backbone.
Collapse
Affiliation(s)
- Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Yerin Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Youngin Roh
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Jeongyun Jang
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Eunbin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Luigie Villamante
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
- Department of Microbiology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
6
|
Trommer J, Lesniowski F, Buchner J, Svilenov HL. Specific features of a scaffolding antibody light chain. Protein Sci 2024; 33:e4990. [PMID: 38607241 PMCID: PMC11010950 DOI: 10.1002/pro.4990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/26/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
The antigen-binding sites in conventional antibodies are formed by hypervariable complementarity-determining regions (CDRs) from both heavy chains (HCs) and light chains (LCs). A deviation from this paradigm is found in a subset of bovine antibodies that bind antigens via an ultra-long CDR. The HCs bearing ultra-long CDRs pair with a restricted set of highly conserved LCs that convey stability to the antibody. Despite the importance of these LCs, their specific features remained unknown. Here, we show that the conserved bovine LC found in antibodies with ultra-long CDRs exhibits a distinct combination of favorable physicochemical properties such as good secretion from mammalian cells, strong dimerization, high stability, and resistance to aggregation. These physicochemical traits of the LCs arise from a combination of the specific sequences in the germline CDRs and a lambda LC framework. In addition to understanding the molecular architecture of antibodies with ultra-long CDRs, our findings reveal fundamental insights into LC characteristics that can guide the design of antibodies with improved properties.
Collapse
Affiliation(s)
- Johanna Trommer
- Center of Functional Protein Assemblies (CPA) and School of Natural Sciences, Department of BiosciencesTechnical University of MunichGarchingGermany
| | - Florian Lesniowski
- Center of Functional Protein Assemblies (CPA) and School of Natural Sciences, Department of BiosciencesTechnical University of MunichGarchingGermany
| | - Johannes Buchner
- Center of Functional Protein Assemblies (CPA) and School of Natural Sciences, Department of BiosciencesTechnical University of MunichGarchingGermany
| | - Hristo L. Svilenov
- Center of Functional Protein Assemblies (CPA) and School of Natural Sciences, Department of BiosciencesTechnical University of MunichGarchingGermany
- Present address:
Faculty of Pharmaceutical SciencesGhent UniversityOttergemsesteenweg 460Ghent9000Belgium
| |
Collapse
|
7
|
Le ND, Nguyen BL, Patil BR, Chun H, Kim S, Nguyen TOO, Mishra S, Tandukar S, Chang JH, Kim DY, Jin SG, Choi HG, Ku SK, Kim J, Kim JO. Antiangiogenic Therapeutic mRNA Delivery Using Lung-Selective Polymeric Nanomedicine for Lung Cancer Treatment. ACS NANO 2024; 18:8392-8410. [PMID: 38450656 DOI: 10.1021/acsnano.3c13039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Therapeutic antibodies that block vascular endothelial growth factor (VEGF) show clinical benefits in treating nonsmall cell lung cancers (NSCLCs) by inhibiting tumor angiogenesis. Nonetheless, the therapeutic effects of systemically administered anti-VEGF antibodies are often hindered in NSCLCs because of their limited distribution in the lungs and their adverse effects on normal tissues. These challenges can be overcome by delivering therapeutic antibodies in their mRNA form to lung endothelial cells, a primary target of VEGF-mediated pulmonary angiogenesis, to suppress the NSCLCs. In this study, we synthesized derivatives of poly(β-amino esters) (PBAEs) and prepared nanoparticles to encapsulate the synthetic mRNA encoding bevacizumab, an anti-VEGF antibody used in the clinic. Optimization of nanoparticle formulations resulted in a selective lung transfection after intravenous administration. Notably, the optimized PBAE nanoparticles were distributed in lung endothelial cells, resulting in the secretion of bevacizumab. We analyzed the protein corona on the lung- and spleen-targeting nanoparticles using proteomics and found distinctive features potentially contributing to their organ-selectivity. Lastly, bevacizumab mRNA delivered by the lung-targeting PBAE nanoparticles more significantly inhibited tumor proliferation and angiogenesis than recombinant bevacizumab protein in orthotopic NSCLC mouse models, supporting the therapeutic potential of bevacizumab mRNA therapy and its selective delivery through lung-targeting nanoparticles. Our proof-of-principle results highlight the clinical benefits of nanoparticle-mediated mRNA therapy in anticancer antibody treatment in preclinical models.
Collapse
Affiliation(s)
- Ngoc Duy Le
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Bao Loc Nguyen
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - HeeSang Chun
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - SiYoon Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | | | - Sunil Mishra
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sudarshan Tandukar
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jae-Hoon Chang
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dong Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Cheonan, 31116, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sae Kwang Ku
- College of Korean Medicine, Daegu Haany University, Gyeongsan, 38610, Republic of Korea
| | - Jeonghwan Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
8
|
Pan A, Bailey CC, Ou T, Xu J, Liu X, Hu B, Crynen G, Skamangas N, Bronkema N, Tran M, Mu H, Zhang X, Yin Y, Alpert MD, He W, Farzan M. In vivo affinity maturation of the HIV-1 Env-binding domain of CD4. RESEARCH SQUARE 2024:rs.3.rs-3922904. [PMID: 38405717 PMCID: PMC10889057 DOI: 10.21203/rs.3.rs-3922904/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Many human proteins have been repurposed as biologics for clinical use. These proteins have been engineered with in vitro techniques that improve affinity for their ligands. However, these approaches do not select against properties that impair efficacy such as protease sensitivity or self-reactivity. Here we engineer the B-cell receptor of primary murine B cells to express a human protein biologic without disrupting their ability to affinity mature. Specifically, CD4 domains 1 and 2 (D1D2) of a half-life enhanced-HIV-1 entry inhibitor CD4-Ig (CD4-Ig-v0) were introduced into the heavy-chain loci of murine B cells, which were then adoptively transferred to wild-type mice. After immunization, transferred B cells proliferated, class switched, affinity matured, and efficiently produced D1D2-presenting antibodies. Somatic hypermutations found in the D1D2-encoding region of engrafted B cells improved binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein (Env) and the neutralization potency of CD4-Ig-v0 by more than ten-fold across a global panel of HIV-1 isolates, without impairing its pharmacokinetic properties. Thus, affinity maturation of non-antibody protein biologics in vivo can guide development of more effective therapeutics.
Collapse
Affiliation(s)
- Andi Pan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Charles C. Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tianling Ou
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xin Liu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Baodan Hu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gogce Crynen
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Tran
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Huihui Mu
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Zhang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenhui He
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Pan A, Bailey CC, Ou T, Xu J, Liu X, Hu B, Crynen G, Skamangas N, Bronkema N, Tran M, Mu H, Zhang X, Yin Y, Alpert MD, He W, Farzan M. In vivo affinity maturation of the HIV-1 Env-binding domain of CD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578630. [PMID: 38370774 PMCID: PMC10871246 DOI: 10.1101/2024.02.03.578630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Many human proteins have been repurposed as biologics for clinical use. These proteins have been engineered with in vitro techniques that improve affinity for their ligands. However, these approaches do not select against properties that impair efficacy such as protease sensitivity or self-reactivity. Here we engineer the B-cell receptor of primary murine B cells to express a human protein biologic without disrupting their ability to affinity mature. Specifically, CD4 domains 1 and 2 (D1D2) of a half-life enhanced-HIV-1 entry inhibitor CD4-Ig (CD4-Ig-v0) were introduced into the heavy-chain loci of murine B cells, which were then adoptively transferred to wild-type mice. After immunization, transferred B cells proliferated, class switched, affinity matured, and efficiently produced D1D2-presenting antibodies. Somatic hypermutations found in the D1D2-encoding region of engrafted B cells improved binding affinity of CD4-Ig-v0 for the HIV-1 envelope glycoprotein (Env) and the neutralization potency of CD4-Ig-v0 by more than ten-fold across a global panel of HIV-1 isolates, without impairing its pharmacokinetic properties. Thus, affinity maturation of non-antibody protein biologics in vivo can guide development of more effective therapeutics.
Collapse
Affiliation(s)
- Andi Pan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Charles C. Bailey
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tianling Ou
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Jinge Xu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Xin Liu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Baodan Hu
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gogce Crynen
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Nickolas Skamangas
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Naomi Bronkema
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mai Tran
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Huihui Mu
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Xia Zhang
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, USA
| | - Yiming Yin
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Wenhui He
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Farzan
- Skaggs Graduate School, Scripps Research, La Jolla, CA 92037, USA
- The Center for Integrated Solutions to Infectious Diseases, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Division of Infectious Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations. Front Bioeng Biotechnol 2024; 12:1352014. [PMID: 38333084 PMCID: PMC10850309 DOI: 10.3389/fbioe.2024.1352014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Bispecific antibodies (bsAbs) have attracted significant attention due to their dual binding activity, which permits simultaneous targeting of antigens and synergistic binding effects beyond what can be obtained even with combinations of conventional monospecific antibodies. Despite the tremendous therapeutic potential, the design and construction of bsAbs are often hampered by practical issues arising from the increased structural complexity as compared to conventional monospecific antibodies. The issues are diverse in nature, spanning from decreased biophysical stability from fusion of exogenous antigen-binding domains to antibody chain mispairing leading to formation of antibody-related impurities that are very difficult to remove. The added complexity requires judicious design considerations as well as extensive molecular engineering to ensure formation of high quality bsAbs with the intended mode of action and favorable drug-like qualities. In this review, we highlight and summarize some of the key considerations in design of bsAbs as well as state-of-the-art engineering principles that can be applied in efficient construction of bsAbs with diverse molecular formats.
Collapse
Affiliation(s)
- Andreas V. Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lasse E. Pedersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Conca W, Saleh SM, Al-Rabiah R, Parhar RS, Abd-Elnaeim M, Al-Hindas H, Tinson A, Kroell KB, Liedl KR, Collison K, Kishore U, Al-Mohanna F. The immunoglobulin A isotype of the Arabian camel ( Camelus dromedarius) preserves the dualistic structure of unconventional single-domain and canonical heavy chains. Front Immunol 2023; 14:1289769. [PMID: 38162642 PMCID: PMC10756906 DOI: 10.3389/fimmu.2023.1289769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction The evolution of adaptive immunity in Camelidae resulted in the concurrent expression of classic heterotetrameric and unconventional homodimeric heavy chain-only IgG antibodies. Heavy chain-only IgG bears a single variable domain and lacks the constant heavy (CH) γ1 domain required for pairing with the light chain. It has not been reported whether this distinctive feature of IgG is also observed in the IgA isotype. Methods Gene-specific primers were used to generate an IgA heavy chain cDNA library derived from RNA extracted from the dromedary's third eyelid where isolated lymphoid follicles and plasma cells abound at inductive and effector sites, respectively. Results Majority of the cDNA clones revealed hallmarks of heavy chain-only antibodies, i.e. camelid-specific amino acid substitutions in framework region 1 and 2, broad length distribution of complementarity determining region 3, and the absence of the CHα1 domain. In a few clones, however, the cDNA of the canonical IgA heavy chain was amplified which included the CHα1 domain, analogous to CHγ1 domain in IgG1 subclass. Moreover, we noticed a short, proline-rich hinge, and, at the N-terminal end of the CHα3 domain, a unique, camelid-specific pentapeptide of undetermined function, designated as the inter-α region. Immunoblots using rabbit anti-camel IgA antibodies raised against CHα2 and CHα3 domains as well as the inter-α region revealed the expression of a ~52 kDa and a ~60 kDa IgA species, corresponding to unconventional and canonical IgA heavy chain, respectively, in the third eyelid, trachea, small and large intestine. In contrast, the leporine anti-CHα1 antibody detected canonical, but not unconventional IgA heavy chain, in all the examined tissues, milk, and serum, in addition to another hitherto unexplored species of ~45 kDa in milk and serum. Immunohistology using anti-CHα domain antibodies confirmed the expression of both variants of IgA heavy chains in plasma cells in the third eyelid's lacrimal gland, conjunctiva, tracheal and intestinal mucosa. Conclusion We found that in the dromedary, the IgA isotype has expanded the immunoglobulin repertoire by co-expressing unconventional and canonical IgA heavy chains, comparable to the IgG class, thus underscoring the crucial role of heavy chain-only antibodies not only in circulation but also at the mucosal frontiers.
Collapse
Affiliation(s)
- Walter Conca
- Department of Executive Health Medicine, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Soad M. Saleh
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Rana Al-Rabiah
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Ranjit Singh Parhar
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Mahmoud Abd-Elnaeim
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hussein Al-Hindas
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alexander Tinson
- Management of Scientific Centers and Presidential Camels, Department of President’s Affairs, Hilli ET and Cloning Centre, Al Ain, United Arab Emirates
| | | | - Klaus Roman Liedl
- Center for Chemistry and Biomedicine, University of Innsbruck, Innsbruck, Austria
| | - Kate Collison
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Futwan Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Dingal PCDP, Carte AN, Montague TG, Lim Suan MB, Schier AF. Molecular mechanisms controlling the biogenesis of the TGF-β signal Vg1. Proc Natl Acad Sci U S A 2023; 120:e2307203120. [PMID: 37844219 PMCID: PMC10614602 DOI: 10.1073/pnas.2307203120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023] Open
Abstract
The TGF-beta signals Vg1 (Dvr1/Gdf3) and Nodal form heterodimers to induce vertebrate mesendoderm. The Vg1 proprotein is a monomer retained in the endoplasmic reticulum (ER) and is processed and secreted upon heterodimerization with Nodal, but the mechanisms underlying Vg1 biogenesis are largely elusive. Here, we clarify the mechanisms underlying Vg1 retention, processing, secretion, and signaling and introduce a Synthetic Processing (SynPro) system that enables the programmed cleavage of ER-resident and extracellular proteins. First, we find that Vg1 can be processed by intra- or extracellular proteases. Second, Vg1 can be processed without Nodal but requires Nodal for secretion and signaling. Third, Vg1-Nodal signaling activity requires Vg1 processing, whereas Nodal can remain unprocessed. Fourth, Vg1 employs exposed cysteines, glycosylated asparagines, and BiP chaperone-binding motifs for monomer retention in the ER. These observations suggest two mechanisms for rapid mesendoderm induction: Chaperone-binding motifs help store Vg1 as an inactive but ready-to-heterodimerize monomer in the ER, and the flexibility of Vg1 processing location allows efficient generation of active heterodimers both intra- and extracellularly. These results establish SynPro as an in vivo processing system and define molecular mechanisms and motifs that facilitate the generation of active TGF-beta heterodimers.
Collapse
Affiliation(s)
- P. C. Dave P. Dingal
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Adam N. Carte
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Systems, Synthetic, and Quantitative Biology Program, Harvard University, Cambridge, MA02138
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Tessa G. Montague
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | - Medel B. Lim Suan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX75080
| | - Alexander F. Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
- Biozentrum, University of Basel, 4056Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, University of Washington, Seattle, WA98109
| |
Collapse
|
13
|
Rakotoarinoro N, Dyck YFK, Krebs SK, Assi MK, Parr MK, Stech M. A disruptive clickable antibody design for the generation of antibody-drug conjugates. Antib Ther 2023; 6:298-310. [PMID: 38107665 PMCID: PMC10720948 DOI: 10.1093/abt/tbad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 12/19/2023] Open
Abstract
Background Antibody-drug conjugates are cancer therapeutics that combine specificity and toxicity. A highly cytotoxic drug is covalently attached to an antibody that directs it to cancer cells. The conjugation of the drug-linker to the antibody is a key point in research and development as well as in industrial production. The consensus is to conjugate the drug to a surface-exposed part of the antibody to ensure maximum conjugation efficiency. However, the hydrophobic nature of the majority of drugs used in antibody-drug conjugates leads to an increased hydrophobicity of the generated antibody-drug conjugates, resulting in higher liver clearance and decreased stability. Methods In contrast, we describe a non-conventional approach in which the drug is conjugated in a buried part of the antibody. To achieve this, a ready-to-click antibody design was created in which an azido-based non-canonical amino acid is introduced within the Fab cavity during antibody synthesis using nonsense suppression technology. The Fab cavity was preferred over the Fc cavity to circumvent issues related to cleavage of the IgG1 lower hinge region in the tumor microenvironment. Results This antibody design significantly increased the hydrophilicity of the generated antibody-drug conjugates compared to the current best-in-class designs based on non-canonical amino acids, while conjugation efficiency and functionality were maintained. The robustness of this native shielding effect and the versatility of this approach were also investigated. Conclusions This pioneer design may become a starting point for the improvement of antibody-drug conjugates and an option to consider for protecting drugs and linkers from unspecific interactions.
Collapse
Affiliation(s)
- Nathanaël Rakotoarinoro
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Yan F K Dyck
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Simon K Krebs
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Miriam-Kousso Assi
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
- Department of Biotechnology, Hamburg University of Applied Sciences, 21033 Hamburg, Germany
| | - Maria K Parr
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Marlitt Stech
- Institute for Cell Therapy and Immunology branch Bioanalytics and Bioprocesses, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 14476 Potsdam-Golm, Germany
| |
Collapse
|
14
|
Righi M, Gannon I, Robson M, Srivastava S, Kokalaki E, Grothier T, Nannini F, Allen C, Bai YV, Sillibourne J, Cordoba S, Thomas S, Pule M. Enhancing CAR T-cell Therapy Using Fab-Based Constitutively Heterodimeric Cytokine Receptors. Cancer Immunol Res 2023; 11:1203-1221. [PMID: 37352396 PMCID: PMC10472109 DOI: 10.1158/2326-6066.cir-22-0640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/15/2023] [Accepted: 06/21/2023] [Indexed: 06/25/2023]
Abstract
Adoptive T-cell therapy aims to achieve lasting tumor clearance, requiring enhanced engraftment and survival of the immune cells. Cytokines are paramount modulators of T-cell survival and proliferation. Cytokine receptors signal via ligand-induced dimerization, and this principle has been hijacked utilizing nonnative dimerization domains. A major limitation of current technologies resides in the absence of a module that recapitulates the natural cytokine receptor heterodimeric pairing. To circumvent this, we created a new engineered cytokine receptor able to constitutively recreate receptor-heterodimer utilizing the heterodimerization domain derived from the IgG1 antibody (dFab_CCR). We found that the signal delivered by the dFab_CCR-IL2 proficiently mimicked the cytokine receptor heterodimerization, with transcriptomic signatures like those obtained by activation of the native IL2 receptor. Moreover, we found that this dimerization structure was agnostic, efficiently activating signaling through four cytokine receptor families. Using a combination of in vivo and in vitro screening approaches, we characterized a library of 18 dFab_CCRs coexpressed with a clinically relevant solid tumor-specific GD2-specific chimeric antigen receptor (CAR). Based on this characterization, we suggest that the coexpression of either the common β-chain GMCSF or the IL18 dFab_CCRs is optimal to improve CAR T-cell expansion, engraftment, and efficacy. Our results demonstrate how Fab dimerization is efficient and versatile in recapitulating a cytokine receptor heterodimerization signal. This module could be applied for the enhancement of adoptive T-cell therapies, as well as therapies based on other immune cell types. Furthermore, these results provide a choice of cytokine signal to incorporate with adoptive T-cell therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Francesco Nannini
- Department of Haematology, University College London, London, United Kingdom
| | | | | | | | | | | | - Martin Pule
- Autolus Therapeutics, London, United Kingdom
- Department of Haematology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Tungekar AA, Ruddock LW. Design of an alternate antibody fragment format that can be produced in the cytoplasm of Escherichia coli. Sci Rep 2023; 13:14188. [PMID: 37648872 PMCID: PMC10469194 DOI: 10.1038/s41598-023-41525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023] Open
Abstract
With increased accessibility and tissue penetration, smaller antibody formats such as antibody fragments (Fab) and single chain variable fragments (scFv) show potential as effective and low-cost choices to full-length antibodies. These formats derived from the modular architecture of antibodies could prove to be game changers for certain therapeutic and diagnostic applications. Microbial hosts have shown tremendous promise as production hosts for antibody fragment formats. However, low target protein yields coupled with the complexity of protein folding result in production limitations. Here, we report an alternative antibody fragment format 'FabH3' designed to overcome some key bottlenecks associated with the folding and production of Fabs. The FabH3 molecule is based on the Fab format with the constant domains replaced by engineered immunoglobulin G1 (IgG1) CH3 domains capable of heterodimerization based on the electrostatic steering approach. We show that this alternative antibody fragment format can be efficiently produced in the cytoplasm of E. coli using the catalyzed disulfide-bond formation system (CyDisCo) in a natively folded state with higher soluble yields than its Fab counterpart and a comparable binding affinity against the target antigen.
Collapse
Affiliation(s)
- Aatir A Tungekar
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland
| | - Lloyd W Ruddock
- Protein and Structural Biology Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90220, Oulu, Finland.
| |
Collapse
|
16
|
Chang J, Rader C, Peng H. A mammalian cell display platform based on scFab transposition. Antib Ther 2023; 6:157-169. [PMID: 37492588 PMCID: PMC10365156 DOI: 10.1093/abt/tbad009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 07/27/2023] Open
Abstract
In vitro display technologies have been successfully utilized for the discovery and evolution of monoclonal antibodies (mAbs) for diagnostic and therapeutic applications, with phage display and yeast display being the most commonly used platforms due to their simplicity and high efficiency. As their prokaryotic or lower eukaryotic host organisms typically have no or different post-translational modifications, several mammalian cell-based display and screening technologies for isolation and optimization of mAbs have emerged and are being developed. We report here a novel and useful mammalian cell display platform based on the PiggyBac transposon system to display mAbs in a single-chain Fab (scFab) format on the surface of HEK293F cells. Immune rabbit antibody libraries encompassing ~7 × 107 independent clones were generated in an all-in-one transposon vector, stably delivered into HEK293F cells and displayed as an scFab with rabbit variable and human constant domains. After one round of magnetic activated cell sorting and two rounds of fluorescence activated cell sorting, mAbs with high affinity in the subnanomolar range and cross-reactivity to the corresponding human and mouse antigens were identified, demonstrating the power of this platform for antibody discovery. We developed a highly efficient mammalian cell display platform based on the PiggyBac transposon system for antibody discovery, which could be further utilized for humanization as well as affinity and specificity maturation.
Collapse
Affiliation(s)
- Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
17
|
Kotler JLM, Street TO. Mechanisms of Protein Quality Control in the Endoplasmic Reticulum by a Coordinated Hsp40-Hsp70-Hsp90 System. Annu Rev Biophys 2023; 52:509-524. [PMID: 37159299 DOI: 10.1146/annurev-biophys-111622-091309] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The Hsp40, Hsp70, and Hsp90 chaperone families are ancient, highly conserved, and critical to cellular protein homeostasis. Hsp40 chaperones can transfer their protein clients to Hsp70, and Hsp70 can transfer clients to Hsp90, but the functional benefits of these transfers are unclear. Recent structural and mechanistic work has opened up the possibility of uncovering how Hsp40, Hsp70, and Hsp90 work together as unified system. In this review, we compile mechanistic data on the ER J-domain protein 3 (ERdj3) (an Hsp40), BiP (an Hsp70), and Grp94 (an Hsp90) chaperones within the endoplasmic reticulum; what is known about how these chaperones work together; and gaps in this understanding. Using calculations, we examine how client transfer could impact the solubilization of aggregates, the folding of soluble proteins, and the triage decisions by which proteins are targeted for degradation. The proposed roles of client transfer among Hsp40-Hsp70-Hsp90 chaperones are new hypotheses, and we discuss potential experimental tests of these ideas.
Collapse
Affiliation(s)
- Judy L M Kotler
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| | - Timothy O Street
- Department of Biochemistry, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
18
|
Pomarici ND, Cacciato R, Kokot J, Fernández-Quintero ML, Liedl KR. Evolution of the Immunoglobulin Isotypes-Variations of Biophysical Properties among Animal Classes. Biomolecules 2023; 13:801. [PMID: 37238671 PMCID: PMC10216798 DOI: 10.3390/biom13050801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The adaptive immune system arose around 500 million years ago in jawed fish, and, since then, it has mediated the immune defense against pathogens in all vertebrates. Antibodies play a central role in the immune reaction, recognizing and attacking external invaders. During the evolutionary process, several immunoglobulin isotypes emerged, each having a characteristic structural organization and dedicated function. In this work, we investigate the evolution of the immunoglobulin isotypes, in order to highlight the relevant features that were preserved over time and the parts that, instead, mutated. The residues that are coupled in the evolution process are often involved in intra- or interdomain interactions, meaning that they are fundamental to maintaining the immunoglobulin fold and to ensuring interactions with other domains. The explosive growth of available sequences allows us to point out the evolutionary conserved residues and compare the biophysical properties among different animal classes and isotypes. Our study offers a general overview of the evolution of immunoglobulin isotypes and advances the knowledge of their characteristic biophysical properties, as a first step in guiding protein design from evolution.
Collapse
Affiliation(s)
| | | | | | - Monica L. Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Klaus R. Liedl
- Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Koga H, Yamano T, Betancur J, Nagatomo S, Ikeda Y, Yamaguchi K, Nabuchi Y, Sato K, Teranishi-Ikawa Y, Sato M, Hirayama H, Hayasaka A, Torizawa T, Haraya K, Sampei Z, Shiraiwa H, Kitazawa T, Igawa T, Kuramochi T. Efficient production of bispecific antibody by FAST-Ig TM and its application to NXT007 for the treatment of hemophilia A. MAbs 2023; 15:2222441. [PMID: 37339067 PMCID: PMC10283433 DOI: 10.1080/19420862.2023.2222441] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Efficient production of bispecific antibodies (BsAbs) in single mammalian cells is essential for basic research and industrial manufacturing. However, preventing unwanted pairing of heavy chains (HCs) and light chains (LCs) is a challenging task. To address this, we created an engineering technology for preferential cognate HC/LC and HC/HC paring called FAST-Ig (Four-chain Assembly by electrostatic Steering Technology - Immunoglobulin), and applied it to NXT007, a BsAb for the treatment of hemophilia A. We introduced charged amino-acid substitutions at the HC/LC interface to facilitate the proper assembly for manufacturing a standard IgG-type BsAb. We generated CH1/CL interface-engineered antibody variants that achieved > 95% correct HC/LC pairing efficiency with favorable pharmacological properties and developability. Among these, we selected a design (C3) that allowed us to separate the mis-paired species with an unintended pharmacological profile using ion-exchange chromatography. Crystal structure analysis demonstrated that the C3 design did not affect the overall structure of both Fabs. To determine the final design for HCs-heterodimerization, we compared the stability of charge-based and knobs into hole-based Fc formats in acidic conditions and selected the more stable charge-based format. FAST-Ig was also applicable to stable CHO cell lines for industrial production and demonstrated robust chain pairing with different subclasses of parent BsAbs. Thus, it can be applied to a wide variety of BsAbs both preclinically and clinically.
Collapse
Affiliation(s)
- Hikaru Koga
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takashi Yamano
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Juan Betancur
- API Process Development Department, Chugai Pharmaceutical Co., Ltd, Ukima, Tokyo, Japan
| | - Satoko Nagatomo
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Yousuke Ikeda
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Kazuki Yamaguchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Yoshiaki Nabuchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kazuki Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | | | - Motohiko Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hiroyuki Hirayama
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hirotake Shiraiwa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Chuo-Ku, Tokyo, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| |
Collapse
|
20
|
Dent M, Mayer KL, Verjan Garcia N, Guo H, Kajiura H, Fujiyama K, Matoba N. Impact of glycoengineering and antidrug antibodies on the anticancer activity of a plant-made lectin-Fc fusion protein. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2217-2230. [PMID: 35900183 PMCID: PMC9616523 DOI: 10.1111/pbi.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/27/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Plants are an efficient production platform for manufacturing glycoengineered monoclonal antibodies and antibody-like molecules. Avaren-Fc (AvFc) is a lectin-Fc fusion protein or lectibody produced in Nicotiana benthamiana, which selectively recognizes cancer-associated high-mannose glycans. In this study, we report the generation of a glycovariant of AvFc that is devoid of plant glycans, including the core α1,3-fucose and β1,2-xylose residues. The successful removal of these glycans was confirmed by glycan analysis using HPLC. This variant, AvFcΔXF , has significantly higher affinity for Fc gamma receptors and induces higher levels of luciferase expression in an antibody-dependent cell-mediated cytotoxicity (ADCC) reporter assay against B16F10 murine melanoma cells without inducing apoptosis or inhibiting proliferation. In the B16F10 flank tumour mouse model, we found that systemic administration of AvFcΔXF , but not an aglycosylated AvFc variant lacking affinity for Fc receptors, significantly delayed the growth of tumours, suggesting that Fc-mediated effector functions were integral. AvFcΔXF treatment also significantly reduced lung metastasis of B16F10 upon intravenous challenge whereas a sugar-binding-deficient mutant failed to show efficacy. Lastly, we determined the impact of antidrug antibodies (ADAs) on drug activity in vivo by pretreating animals with AvFcΔXF before implanting tumours. Despite a significant ADA response induced by the pretreatment, we found that the activity of AvFcΔXF was unaffected by the presence of these antibodies. These results demonstrate that glycoengineering is a powerful strategy to enhance AvFc's antitumor activity.
Collapse
Affiliation(s)
- Matthew Dent
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Katarina L. Mayer
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Noel Verjan Garcia
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Haixun Guo
- Department of RadiologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| | - Hiroyuki Kajiura
- International Center for BiotechnologyOsaka UniversityOsakaJapan
| | | | - Nobuyuki Matoba
- Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKYUSA
- UofL Health – Brown Cancer CenterUniversity of Louisville School of MedicineLouisvilleKYUSA
- Center for Predictive MedicineUniversity of Louisville School of MedicineLouisvilleKYUSA
| |
Collapse
|
21
|
Ong HK, Nguyen NTB, Bi J, Yang Y. Vector design for enhancing expression level and assembly of knob-into-hole based FabscFv-Fc bispecific antibodies in CHO cells. Antib Ther 2022; 5:288-300. [PMID: 36518226 PMCID: PMC9743168 DOI: 10.1093/abt/tbac025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Accepted: 09/28/2022] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Two-armed FabscFv-Fc is a favoured bispecific antibody (BsAb) format due to its advantages of the conventional IgG structure. Production of FabscFv-Fc requires expression of three polypeptide chains, one light chain (LC), one heavy chain (HC) and a scFv fused to the Fc (scFvFc) at optimal ratios. METHODS We designed a set of internal ribosome entry site (IRES)-mediated multi-cistronic vectors tailoring to various expression ratios of the three polypeptides to study how the chain ratios affect the FabscFv-Fc production. RESULTS Expression of HC and scFvFc chains at 1:1 ratio and excess LC gave the highest yield of correctly assembled product. Compared to the use of IRES and multiple promoters, using 2A peptides for co-expression of the three polypeptides gave the highest titre and correctly assembled product. CONCLUSION The results obtained in this work provide insights to the impacts of hetero-chain ratios on the BsAb production.
Collapse
Affiliation(s)
- Han Kee Ong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Ngan T B Nguyen
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Jiawu Bi
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
| |
Collapse
|
22
|
Mann MJ, Flory AR, Oikonomou C, Hayes CA, Melendez-Suchi C, Hendershot LM. Identification of two rate-limiting steps in the degradation of partially folded immunoglobulin light chains. Front Cell Dev Biol 2022; 10:924848. [PMID: 36072336 PMCID: PMC9441772 DOI: 10.3389/fcell.2022.924848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Antibody monomers are produced from two immunoglobulin heavy chains and two light chains that are folded and assembled in the endoplasmic reticulum This process is assisted and monitored by components of the endoplasmic reticulum quality control machinery; an outcome made more fraught by the unusual genetic machinations employed to produce a seemingly unlimited antibody repertoire. Proper functioning of the adaptive immune system is as dependent on the success of this operation, as it is on the ability to identify and degrade those molecules that fail to reach their native state. In this study, two rate-limiting steps were identified in the degradation of a non-secreted κ light chain. Both focus on the constant domain (CL), which has evolved to fold rapidly and very stably to serve as a catalyst for the folding of the heavy chain CH1 domain. The first hurdle is the reduction of the disulfide bond in the CL domain, which is required for retrotranslocation to the cytosol. In spite of being reduced, the CL domain retains structure, giving rise to the second rate-limiting step, the unfolding of this domain at the proteasome, which results in a stalled degradation intermediate.
Collapse
Affiliation(s)
- Melissa J. Mann
- St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Ashley R. Flory
- St Jude Children’s Research Hospital, Memphis, TN, United States
| | - Christina Oikonomou
- St Jude Children’s Research Hospital, Memphis, TN, United States
- University of Tennessee Health Science Center, Memphis, TN, United States
| | | | | | - Linda M. Hendershot
- St Jude Children’s Research Hospital, Memphis, TN, United States
- University of Tennessee Health Science Center, Memphis, TN, United States
- *Correspondence: Linda M. Hendershot,
| |
Collapse
|
23
|
Deans EE, Kotler JLM, Wei WS, Street TO. Electrostatics drive the molecular chaperone BiP to preferentially bind oligomerized states of a client protein. J Mol Biol 2022; 434:167638. [PMID: 35597552 DOI: 10.1016/j.jmb.2022.167638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
Hsp70 chaperones bind short monomeric peptides with a weak characteristic affinity in the low micromolar range, but can also bind some aggregates, fibrils, and amyloids, with low nanomolar affinity. While this differential affinity enables Hsp70 to preferentially target potentially toxic aggregates, it is unknown how a chaperone can differentiate between monomeric and aggregated states of a client protein and why preferential binding is only observed for some aggregated clients but not others. Here we examine the interaction of BiP (the Hsp70 paralog in the endoplasmic reticulum) with the client proIGF2, the pro-protein form of IGF2 that includes a long and mostly disordered E-peptide region that promotes proIGF2 oligomerization. By dissecting the mechanism by which BiP targets proIGF2 and E-peptide oligomers we discover that electrostatic attraction is a powerful driving force for oligomer recognition. We identify the specific BiP binding sites on proIGF2 and as monomers they bind BiP with characteristically weak affinity in the low micromolar range, but electrostatic attraction to E-peptide oligomers boosts the affinity to the low nanomolar level. The dominant role of electrostatics is manifested kinetically as a steering force that accelerates the binding of BiP to E-peptide oligomers by approximately two orders of magnitude as compared against monomeric peptides. Electrostatic targeting of Hsp70 provides an explanation for why preferential binding has been observed for some aggregated clients but not others, as all the currently-documented cases in which Hsp70 binds aggregates with high-affinity involve clients that have an opposite charge to Hsp70.
Collapse
Affiliation(s)
- Erin E Deans
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Judy L M Kotler
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| | - Wei-Shao Wei
- Departments of Physics, Brandeis University, Waltham, Massachusetts 02453
| | - Timothy O Street
- Departments of Biochemistry, Brandeis University, Waltham, Massachusetts 02453
| |
Collapse
|
24
|
Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 2022; 82:1477-1491. [PMID: 35452616 PMCID: PMC9038009 DOI: 10.1016/j.molcel.2022.03.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.
Collapse
Affiliation(s)
- R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| | - Jaleh S. Mesgarzadeh
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Linda M. Hendershot
- Department of Tumor Biology, St Jude Children’s Research Hospital, Memphis, TN 38105,To whom correspondences should be addressed: Linda Hendershot, ; R. Luke Wiseman,
| |
Collapse
|
25
|
Preisendörfer S, Ishikawa Y, Hennen E, Winklmeier S, Schupp JC, Knüppel L, Fernandez IE, Binzenhöfer L, Flatley A, Juan-Guardela BM, Ruppert C, Guenther A, Frankenberger M, Hatz RA, Kneidinger N, Behr J, Feederle R, Schepers A, Hilgendorff A, Kaminski N, Meinl E, Bächinger HP, Eickelberg O, Staab-Weijnitz CA. FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis. Cells 2022; 11:1341. [PMID: 35456020 PMCID: PMC9027113 DOI: 10.3390/cells11081341] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.
Collapse
Affiliation(s)
- Stefan Preisendörfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Jonas C. Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
- Department of Respiratory Medicine, Hannover Medical School, Biomedical Research in End-Stage and Obstructive Lung Disease Hannover, Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany
| | - Larissa Knüppel
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Isis E. Fernandez
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Leonhard Binzenhöfer
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Andrew Flatley
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Brenda M. Juan-Guardela
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), 35392 Giessen, Germany; (C.R.); (A.G.)
| | - Marion Frankenberger
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Rudolf A. Hatz
- Thoraxchirurgisches Zentrum, Klinik für Allgemeine-, Viszeral-, Transplantations-, Gefäß- und Thoraxchirurgie, LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany;
- Asklepios Fachkliniken München-Gauting, 82131 Gauting, Germany
| | - Nikolaus Kneidinger
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Jürgen Behr
- Department of Medicine V, LMU Klinikum, Ludwig-Maximilians-Universität München, Member of the German Center of Lung Research (DZL), 81377 Munich, Germany; (N.K.); (J.B.)
| | - Regina Feederle
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Aloys Schepers
- Monoclonal Antibody Core Facility, Institute for Diabetes and Obesity, Helmholtz-Zentrum München, 85764 Neuherberg, Germany; (A.F.); (R.F.); (A.S.)
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT 06520, USA; (J.C.S.); (B.M.J.-G.); (N.K.)
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and LMU Klinikum, Ludwig-Maximilians-Universität München, 81377 Munich, Germany; (S.W.); (E.M.)
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA; (Y.I.); (H.P.B.)
| | - Oliver Eickelberg
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M bioArchive, Member of the German Center of Lung Research (DZL), Helmholtz-Zentrum München, 81377 Munich, Germany; (S.P.); (E.H.); (L.K.); (I.E.F.); (L.B.); (M.F.); (A.H.); (O.E.)
| |
Collapse
|
26
|
Froning KJ, Sereno A, Huang F, Demarest SJ. Generalizable design parameters for soluble T cell receptor-based T cell engagers. J Immunother Cancer 2022; 10:jitc-2021-004281. [PMID: 35260435 PMCID: PMC8905924 DOI: 10.1136/jitc-2021-004281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/03/2022] Open
Abstract
While most biological and cellular immunotherapies recognize extracellular targets, T cell receptor (TCR) therapeutics are unique in their ability to recognize the much larger pool of intracellular antigens found on virus-infected or cancerous cells. Recombinant T cell receptor (rTCR)-based therapeutics are gaining momentum both preclinically and clinically highlighted by recent positive phase III human clinical trial results for a TCR/CD3 bifunctional protein in uveal melanoma. Unlike antibody-based T cell engagers whose molecular formats have been widely and extensively evaluated, little data exist describing the putative activities of varied bifunctional formats using rTCRs. Here we generate rTCR/anti-CD3 bifunctionals directed toward NY-ESO-1 or MAGE-A3 with a variety of molecular formats. We show that inducing strong redirected lysis activity against tumors displaying either NY-ESO-1 or MAGE-A3 is highly restricted to small, tandem binding formats with an rTCR/antiCD3 Fab demonstrating the highest potency, rTCR/anti-CD3 single chain variable domain fragment showing similar but consistently weaker potency, and IgG-like or IgG-Fc-containing molecules demonstrating poor activity. We believe this is a universal trait of rTCR bifunctionals, given the canonical TCR/human leukocyte antigen structural paradigm.
Collapse
Affiliation(s)
- Karen J Froning
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California, USA
| | - Arlene Sereno
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California, USA
| | - Flora Huang
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California, USA
| | - Stephen J Demarest
- Lilly Biotechnology Center, Eli Lilly and Company, San Diego, California, USA
| |
Collapse
|
27
|
Kim M, Lee J, Choi J, Seo Y, Park G, Jeon J, Jeon Y, Lee MG, Kwon MH. A Recombinant Ig Fragment (IgCw-γεκ) Comprising the Cγ 1-Cε 2-4 and C κ Domains Is an Alternative Reagent to Human IgE. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:772-779. [PMID: 35022271 PMCID: PMC8802548 DOI: 10.4049/jimmunol.2100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Human IgE is useful for immunological assays, such as sensitization of FcεRI-positive cells and IgE measurement. In this study, we report the development of a recombinant Ig fragment, designated IgCw-γεκ, as an alternative reagent to human IgE. IgCw-γεκ (∼130 kDa) comprises two hybrid constant H chain regions (Cγ1-Cε2-4, each ∼53 kDa) and two constant κ L chains (Cκ, each ∼12 kDa) and lacks a V domain. The presence of Cγ1 instead of Cε1 within the H chain increased the production yield and facilitated assembly of the H and L chains. IgCw-γεκ was produced in cultured human embryonic kidney 293F cells, with a yield of ∼27 mg/l. IgCw-γεκ bound to human FcεRIαRs expressed on the surface of rat basophilic leukemia-2H3 cells. A β-hexosaminidase release assay revealed that the biological activity of IgCw-γεκ was comparable with that of IgE. The IgE concentration measured using IgCw-γεκ as a standard was similar to that measured using IgE as a standard. These results suggest that the IgCw-γεκ molecule retains the basic characteristics of IgE, but does not cross-react with Ags, making it an alternative to the IgE isotype references used in a variety of immunological assays.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Jeonghyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Youngsil Seo
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Gyeseo Park
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Jinah Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Yerin Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Mi-Gi Lee
- Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea;
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| |
Collapse
|
28
|
Fernández-Quintero ML, Kroell KB, Grunewald LJ, Fischer ALM, Riccabona JR, Liedl KR. CDR loop interactions can determine heavy and light chain pairing preferences in bispecific antibodies. MAbs 2022; 14:2024118. [PMID: 35090383 PMCID: PMC8803122 DOI: 10.1080/19420862.2021.2024118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
As the current biotherapeutic market is dominated by antibodies, the design of different antibody formats, like bispecific antibodies, is critical to the advancement of the field. In contrast to monovalent antibodies, which consist of two identical antigen-binding sites, bispecific antibodies can target two different epitopes by containing two different antigen-binding sites. Thus, the rise of new formats as successful therapeutics has reignited the interest in advancing and facilitating the efficient production of bispecific antibodies. Here, we investigate the influence of point mutations in the antigen-binding site, the paratope, on heavy and light chain pairing preferences by using molecular dynamics simulations. In agreement with experiments, we find that specific residues in the antibody variable domain (Fv), i.e., the complementarity-determining region (CDR) L3 and H3 loops, determine heavy and light chain pairing preferences. Excitingly, we observe substantial population shifts in CDR-H3 and CDR-L3 loop conformations in solution accompanied by a decrease in bispecific IgG yield. These conformational changes in the CDR3 loops induced by point mutations also influence all other CDR loop conformations and consequentially result in different CDR loop states in solution. However, besides their effect on the obtained CDR loop ensembles, point mutations also lead to distinct interaction patterns in the VH-VL interface. By comparing the interaction patterns among all investigated variants, we observe specific contacts in the interface that drive heavy and light chain pairing. Thus, these findings have broad implications in the field of antibody engineering and design because they provide a mechanistic understanding of antibody interfaces, by identifying critical factors driving the pairing preferences, and thus can help to advance the design of bispecific antibodies.
Collapse
Affiliation(s)
- Monica L Fernández-Quintero
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Katharina B Kroell
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Lukas J Grunewald
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Anna-Lena M Fischer
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Jakob R Riccabona
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Klaus R Liedl
- Department of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Morgan GJ. Transient disorder along pathways to amyloid. Biophys Chem 2021; 281:106711. [PMID: 34839162 DOI: 10.1016/j.bpc.2021.106711] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023]
Abstract
High-resolution structures of amyloid fibrils formed from normally-folded proteins have revealed non-native conformations of the polypeptide chains. Attaining these conformations apparently requires transition from the native state via a highly disordered conformation, in contrast to earlier models that posited a role for assembly of partially folded proteins. Modifications or interactions that extend the lifetime or constrain the conformations of these disordered states could act to enhance or suppress amyloid formation. Understanding how the properties of both the folded and transiently disordered structural ensembles influence the process of amyloid formation is a substantial challenge, but research into the properties of intrinsically disordered proteins will deliver important insights.
Collapse
Affiliation(s)
- Gareth J Morgan
- The Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
30
|
Gong X, Yan H, Ma J, Zhu Z, Zhang S, Xu W, Huang J, Qiu X. Macrophage-Derived Immunoglobulin M Inhibits Inflammatory Responses via Modulating Endoplasmic Reticulum Stress. Cells 2021; 10:cells10112812. [PMID: 34831038 PMCID: PMC8616491 DOI: 10.3390/cells10112812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
Immunoglobulin (Ig), a characteristic marker of B cells, is a multifunctional evolutionary conserved antibody critical for maintaining tissue homeostasis and developing fully protective humoral responses to pathogens. Increasing evidence revealed that Ig is widely expressed in non-immune cells; moreover, Ig produced by different lineages cells plays different biological roles. Recently, it has been reported that monocytes or macrophages also express Ig. However, its function remains unclear. In this study, we further identified that Ig, especially Ig mu heavy chain (IgM), was mainly expressed in mice macrophages. We also analyzed the IgM repertoire characteristic in macrophages and found that the VHDJH rearrangements of macrophage-derived IgM showed a restricted and conservative VHDJH pattern, which differed from the diverse VHDJH rearrangement pattern of the B cell-expressed IgM in an individual. Functional investigation showed that IgM knockdown significantly promoted macrophage migration and FAK/Src-Akt axis activation. Furthermore, some inflammatory cytokines such as MCP1 and IL-6 increased after IgM knockdown under LPS stimulation. A mechanism study revealed that the IgM interacted with binding immunoglobulin protein (Bip) and inhibited inflammatory response and unfolded protein response (UPR) activation in macrophages. Our data elucidate a previously unknown function of IgM in macrophages that explains its ability to act as a novel regulator of Bip to participate in endoplasmic reticulum stress and further regulate the inflammatory response.
Collapse
Affiliation(s)
- Xiaoting Gong
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Huige Yan
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Junfan Ma
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Zhu Zhu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Shenghua Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Weiyan Xu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
| | - Jing Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
- Correspondence: (J.H.); (X.Q.); Tel.: +86-108-280-2846 (J.H.); +86-108-280-5477 (X.Q.)
| | - Xiaoyan Qiu
- Department of Immunology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; (X.G.); (H.Y.); (J.M.); (Z.Z.); (S.Z.); (W.X.)
- NHC Key Laboratory of Medical Immunology, Peking University, Beijing 100191, China
- Key Laboratory of Molecular Immunology, Chinese Academy of Medical Sciences, Beijing 100191, China
- Correspondence: (J.H.); (X.Q.); Tel.: +86-108-280-2846 (J.H.); +86-108-280-5477 (X.Q.)
| |
Collapse
|
31
|
Ricci D, Gidalevitz T, Argon Y. The special unfolded protein response in plasma cells. Immunol Rev 2021; 303:35-51. [PMID: 34368957 DOI: 10.1111/imr.13012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/08/2021] [Indexed: 12/11/2022]
Abstract
The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis. PC use a specialized UPR scheme-they preemptively trigger the UPR via developmental signals and suppress two of the sensors, PERK and ATF6, relying on IRE1 alone. The specialized PC UPR program is tuned to the specific needs at every stage of development-from early biogenesis of secretory apparatus, to massive immunoglobulin expression later. Furthermore, the UPR in PC integrates with other pathways essential in a highly secretory cell-mTOR pathway that ensures efficient synthesis, autophagosomes that recycle components of the synthetic machinery, and apoptotic signaling that controls cell fate in the face of excessive folding stress. This specialized PC program is not shared with other secretory cells, for reasons yet to be defined. In this review, we give a perspective into how and why PC need such a unique UPR program.
Collapse
Affiliation(s)
- Daniela Ricci
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Yair Argon
- Department of Pathology and Lab Medicine, The Childrens' Hospital of Philadelphia and the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Eaglesham JB, Garcia A, Berkmen M. Production of antibodies in SHuffle Escherichia coli strains. Methods Enzymol 2021; 659:105-144. [PMID: 34752282 DOI: 10.1016/bs.mie.2021.06.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Antibodies are globally important macromolecules, used for research, diagnostics, and as therapeutics. The common mammalian antibody immunoglobulin G (IgG) is a complex glycosylated macromolecule, composed of two heavy chains and two light chains held together by multiple disulfide bonds. For this reason, IgG and related antibody fragments are usually produced through secretion from mammalian cell lines, such as Chinese Hamster Ovary cells. However, there is growing interest in production of antibodies in prokaryotic systems due to the potential for rapid and cheap production in a highly genetically manipulable system. Research on oxidative protein folding in prokaryotes has enabled engineering of Escherichia coli strains capable of producing IgG and other disulfide bonded proteins in the cytoplasm, known as SHuffle. In this protocol, we provide a review of research on prokaryotic antibody production, guidelines on cloning of antibody expression constructs, conditions for an initial expression and purification experiment, and parameters which may be optimized for increased purification yields. Last, we discuss the limitations of prokaryotic antibody production, and highlight potential future avenues for research on antibody expression and folding.
Collapse
|
33
|
Guo C, Chen F, Xiao Q, Catterall HB, Robinson JH, Wang Z, Mock M, Hubert R. Expression liabilities in a four-chain bispecific molecule. Biotechnol Bioeng 2021; 118:3744-3759. [PMID: 34110008 DOI: 10.1002/bit.27850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022]
Abstract
Multispecific antibodies, often composed of three to five polypeptide chains, have become increasingly relevant in the development of biotherapeutics. These molecules have mechanisms of action that include redirecting T cells to tumors and blocking multiple pathogenic mediators simultaneously. One of the major challenges for asymmetric multispecific antibodies is generating a high proportion of the correctly paired antibody during production. To understand the causes and effects of chain mispairing impurities in a difficult to express multispecific hetero-IgG, we investigated consequences of individual and pairwise chain expression in mammalian transient expression hosts. We found that one of the two light chains (LC) was not secretion competent when transfected individually or cotransfected with the noncognate heavy chain (HC). Overexpression of this secretion impaired LC reduced cell growth while inducing endoplasmic reticulum stress and CCAAT/enhancer-binding protein homologous protein (CHOP) expression. The majority of this LC was observed as monomer with incomplete intrachain disulfide bonds when expressed individually. Russell bodies (RB) were induced when this LC was co-expressed with the cognate HC. Moreover, one HC paired promiscuously with noncognate LC. These results identify the causes for the low product quality observed from stable cell lines expressing this heteroIgG and suggest mitigation strategies to improve overall process productivity of the correctly paired multispecific antibody. The approach described here provides a general strategy for identifying the molecular and cellular liabilities associated with difficult to express multispecific antibodies.
Collapse
Affiliation(s)
- Cai Guo
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Fuyi Chen
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Qiang Xiao
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Hannah B Catterall
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - John H Robinson
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Zhulun Wang
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., San Francisco, California, USA
| | - Marissa Mock
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - René Hubert
- Department of Therapeutic Discovery, Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| |
Collapse
|
34
|
Trezise S, Nutt SL. The gene regulatory network controlling plasma cell function. Immunol Rev 2021; 303:23-34. [PMID: 34109653 DOI: 10.1111/imr.12988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022]
Abstract
Antibodies are an essential element of the immune response to infection, and in long-term protection upon re-exposure to the same micro-organism. Antibodies are produced by plasmablasts and plasma cells, the terminally differentiated cells of the B lymphocyte lineage. These relatively rare populations, collectively termed antibody secreting cells (ASCs), have developed highly specialized transcriptional and metabolic pathways to facilitate their extraordinarily high rates of antibody synthesis and secretion. In this review, we discuss the gene regulatory network that controls ASC identity and function, with a particular focus on the processes that influence the transcription, translation, folding, modification and secretion of antibodies. We will address how ASCs have adapted their transcriptional, metabolic and protein homeostasis pathways to sustain such high rates of antibody production, and the roles that the major ASC regulators, the transcription factors, Irf4, Blimp-1 and Xbp1, play in co-ordinating these processes.
Collapse
Affiliation(s)
- Stephanie Trezise
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
35
|
Kong KYE, Coelho JPL, Feige MJ, Khmelinskii A. Quality control of mislocalized and orphan proteins. Exp Cell Res 2021; 403:112617. [PMID: 33930402 DOI: 10.1016/j.yexcr.2021.112617] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/10/2021] [Accepted: 04/18/2021] [Indexed: 12/16/2022]
Abstract
A healthy and functional proteome is essential to cell physiology. However, this is constantly being challenged as most steps of protein metabolism are error-prone and changes in the physico-chemical environment can affect protein structure and function, thereby disrupting proteome homeostasis. Among a variety of potential mistakes, proteins can be targeted to incorrect compartments or subunits of protein complexes may fail to assemble properly with their partners, resulting in the formation of mislocalized and orphan proteins, respectively. Quality control systems are in place to handle these aberrant proteins, and to minimize their detrimental impact on cellular functions. Here, we discuss recent findings on quality control mechanisms handling mislocalized and orphan proteins. We highlight common principles involved in their recognition and summarize how accumulation of these aberrant molecules is associated with aging and disease.
Collapse
Affiliation(s)
| | - João P L Coelho
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Matthias J Feige
- Department of Chemistry and Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | | |
Collapse
|
36
|
Specificity of AMPylation of the human chaperone BiP is mediated by TPR motifs of FICD. Nat Commun 2021; 12:2426. [PMID: 33893288 PMCID: PMC8065156 DOI: 10.1038/s41467-021-22596-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
To adapt to fluctuating protein folding loads in the endoplasmic reticulum (ER), the Hsp70 chaperone BiP is reversibly modified with adenosine monophosphate (AMP) by the ER-resident Fic-enzyme FICD/HYPE. The structural basis for BiP binding and AMPylation by FICD has remained elusive due to the transient nature of the enzyme-substrate-complex. Here, we use thiol-reactive derivatives of the cosubstrate adenosine triphosphate (ATP) to covalently stabilize the transient FICD:BiP complex and determine its crystal structure. The complex reveals that the TPR-motifs of FICD bind specifically to the conserved hydrophobic linker of BiP and thus mediate specificity for the domain-docked conformation of BiP. Furthermore, we show that both AMPylation and deAMPylation of BiP are not directly regulated by the presence of unfolded proteins. Together, combining chemical biology, crystallography and biochemistry, our study provides structural insights into a key regulatory mechanism that safeguards ER homeostasis.
Collapse
|
37
|
Gong D, Riley TP, Bzymek KP, Correia AR, Li D, Spahr C, Robinson JH, Case RB, Wang Z, Garces F. Rational selection of building blocks for the assembly of bispecific antibodies. MAbs 2021; 13:1870058. [PMID: 33397191 PMCID: PMC7808324 DOI: 10.1080/19420862.2020.1870058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies, engineered to recognize two targets simultaneously, demonstrate exceptional clinical potential for the therapeutic intervention of complex diseases. However, these molecules are often composed of multiple polypeptide chains of differing sequences. To meet industrial scale productivity, enforcing the correct quaternary assembly of these chains is critical. Here, we describe Chain Selectivity Assessment (CSA), a high-throughput method to rationally select parental monoclonal antibodies (mAbs) to make bispecific antibodies requiring correct heavy/light chain pairing. By deploying CSA, we have successfully identified mAbs that exhibit a native preference toward cognate chain pairing that enables the production of hetero-IgGs without additional engineering. Furthermore, CSA also identified rare light chains (LCs) that permit positive binding of the non-cognate arm in the common LC hetero-IgGs, also without engineering. This rational selection of parental mAbs with favorable developability characteristics is critical to the successful development of bispecific molecules with optimal manufacturability properties.
Collapse
Affiliation(s)
- Danyang Gong
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Timothy P Riley
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Krzysztof P Bzymek
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Ana R Correia
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Danqing Li
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Christopher Spahr
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - John H Robinson
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| | - Ryan B Case
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., San Francisco, CA USA
| | - Zhulun Wang
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., San Francisco, CA USA
| | - Fernando Garces
- Department of Therapeutics Discovery, Amgen Research, Amgen Inc ., Thousand Oaks, CA USA
| |
Collapse
|
38
|
Transgenic Animals for the Generation of Human Antibodies. LEARNING MATERIALS IN BIOSCIENCES 2021. [DOI: 10.1007/978-3-030-54630-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Abstract
Unique, functional, homodimeric heavy chain-only antibodies, devoid of light chains, are circulating in the blood of Camelidae. These antibodies recognize their cognate antigen via one single domain, known as VHH or Nanobody. This serendipitous discovery made three decades ago has stimulated a growing number of researchers to generate highly specific Nanobodies against a myriad of targets. The small size, strict monomeric state, robustness, and easy tailoring of these Nanobodies have inspired many groups to design innovative Nanobody-based multi-domain constructs to explore novel applications. As such, Nanobodies have been employed as an exquisite research tool in structural, cell, and developmental biology. Furthermore, Nanobodies have demonstrated their benefit for more sensitive diagnostic tests. Finally, several Nanobody-based constructs have been designed to develop new therapeutic products.
Collapse
Affiliation(s)
- Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium; .,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian 116023, Liaoning, People's Republic of China
| |
Collapse
|
40
|
Mieczkowski C, Bahmanjah S, Yu Y, Baker J, Raghunathan G, Tomazela D, Hsieh M, McCoy M, Strickland C, Fayadat-Dilman L. Crystal Structure and Characterization of Human Heavy-Chain Only Antibodies Reveals a Novel, Stable Dimeric Structure Similar to Monoclonal Antibodies. Antibodies (Basel) 2020; 9:antib9040066. [PMID: 33266498 PMCID: PMC7709113 DOI: 10.3390/antib9040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/20/2020] [Accepted: 11/09/2020] [Indexed: 11/23/2022] Open
Abstract
We report the novel crystal structure and characterization of symmetrical, homodimeric humanized heavy-chain-only antibodies or dimers (HC2s). HC2s were found to be significantly coexpressed and secreted along with mAbs from transient CHO HC/LC cotransfection, resulting in an unacceptable mAb developability attribute. Expression of full-length HC2s in the absence of LC followed by purification resulted in HC2s with high purity and thermal stability similar to conventional mAbs. The VH and CH1 portion of the heavy chain (or Fd) was also efficiently expressed and yielded a stable, covalent, and reducible dimer (Fd2). Mutagenesis of all heavy chain cysteines involved in disulfide bond formation revealed that Fd2 intermolecular disulfide formation was similar to Fabs and elucidated requirements for Fd2 folding and expression. For one HC2, we solved the crystal structure of the Fd2 domain to 2.9 Å, revealing a highly symmetrical homodimer that is structurally similar to Fabs and is mediated by conserved (CH1) and variable (VH) contacts with all CDRs positioned outward for target binding. Interfacial dimer contacts revealed by the crystal structure were mutated for two HC2s and were found to dramatically affect HC2 formation while maintaining mAb bioactivity, offering a potential means to modulate novel HC2 formation through engineering. These findings indicate that human heavy-chain dimers can be secreted efficiently in the absence of light chains, may show good physicochemical properties and stability, are structurally similar to Fabs, offer insights into their mechanism of formation, and may be amenable as a novel therapeutic modality.
Collapse
Affiliation(s)
- Carl Mieczkowski
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
- Correspondence: ; Tel.: +1-650-496-6501
| | - Soheila Bahmanjah
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Yao Yu
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Jeanne Baker
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Gopalan Raghunathan
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Daniela Tomazela
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark Hsieh
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| | - Mark McCoy
- Department of Pharmacology, Mass Spectrometry & Biophysics, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Corey Strickland
- Department of Chemistry, Modeling and Informatics, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (S.B.); (C.S.)
| | - Laurence Fayadat-Dilman
- Discovery Biologics, Protein Sciences, Merck & Co., Inc., South San Francisco, CA 94080, USA; (Y.Y.); (J.B.); (G.R.); (D.T.); (M.H.); (L.F.-D.)
| |
Collapse
|
41
|
Weber B, Hora M, Kazman P, Pradhan T, Rührnößl F, Reif B, Buchner J. Domain Interactions Determine the Amyloidogenicity of Antibody Light Chain Mutants. J Mol Biol 2020; 432:6187-6199. [PMID: 33058870 DOI: 10.1016/j.jmb.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/13/2022]
Abstract
In antibody light chain amyloidosis (AL), mutant light chains (LCs) or their variable domains (VLs) form fibrils, which accumulate in organs and lead to their failure. The molecular mechanism of this disease is still poorly understood. One of the key open issues is whether the mutant VLs and LCs differ in fibril formation. We addressed this question studying the effects of the VL mutations S20N and R61A within the isolated VL domain and in the full-length LC scaffold. Both VL variants readily form fibrils. Here, we find that in the LC context, the S20N variant is protected from fibril formation while for LC R61A fibril formation is even accelerated compared to VL R61A. Our analyses revealed that the partially unfolded state of the VL R61A domain destabilizes the CL domain by non-native interactions, in turn leading to a further unfolding of the VL domain. In contrast, the folded mutant VL S20N and VL wt form native interactions with CL. These are beneficial for LC stability and promote amyloid resistance. Thus the effects of specific mutations on the VL fold can have opposing effects on LC domain interactions, stability and amyloidogenicity.
Collapse
Affiliation(s)
- Benedikt Weber
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Manuel Hora
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Pamina Kazman
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Tejaswini Pradhan
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Florian Rührnößl
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Bernd Reif
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science Munich at the Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.
| |
Collapse
|
42
|
Deighan WI, Winton VJ, Melani RD, Anderson LC, McGee JP, Schachner LF, Barnidge D, Murray D, Alexander HD, Gibson DS, Deery MJ, McNicholl FP, McLaughlin J, Kelleher NL, Thomas PM. Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing. Clin Chem Lab Med 2020; 59:653-661. [PMID: 33079696 DOI: 10.1515/cclm-2020-1072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022]
Abstract
Objectives Multiple myeloma (MM) is a malignant plasma cell neoplasm, requiring the integration of clinical examination, laboratory and radiological investigations for diagnosis. Detection and isotypic identification of the monoclonal protein(s) and measurement of other relevant biomarkers in serum and urine are pivotal analyses. However, occasionally this approach fails to characterize complex protein signatures. Here we describe the development and application of next generation mass spectrometry (MS) techniques, and a novel adaptation of immunofixation, to interrogate non-canonical monoclonal immunoproteins. Methods Immunoprecipitation immunofixation (IP-IFE) was performed on a Sebia Hydrasys Scan2. Middle-down de novo sequencing and native MS were performed with multiple instruments (21T FT-ICR, Q Exactive HF, Orbitrap Fusion Lumos, and Orbitrap Eclipse). Post-acquisition data analysis was performed using Xcalibur Qual Browser, ProSight Lite, and TDValidator. Results We adapted a novel variation of immunofixation electrophoresis (IFE) with an antibody-specific immunosubtraction step, providing insight into the clonal signature of gamma-zone monoclonal immunoglobulin (M-protein) species. We developed and applied advanced mass spectrometric techniques such as middle-down de novo sequencing to attain in-depth characterization of the primary sequence of an M-protein. Quaternary structures of M-proteins were elucidated by native MS, revealing a previously unprecedented non-covalently associated hetero-tetrameric immunoglobulin. Conclusions Next generation proteomic solutions offer great potential for characterizing complex protein structures and may eventually replace current electrophoretic approaches for the identification and quantification of M-proteins. They can also contribute to greater understanding of MM pathogenesis, enabling classification of patients into new subtypes, improved risk stratification and the potential to inform decisions on future personalized treatment modalities.
Collapse
Affiliation(s)
- W Ian Deighan
- Department of Clinical Chemistry, Altnagelvin Area Hospital, Londonderry, UK
| | - Valerie J Winton
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Rafael D Melani
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, USA
| | - John P McGee
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Luis F Schachner
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - David Barnidge
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - David Murray
- Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - H Denis Alexander
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - David S Gibson
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | | | - Joseph McLaughlin
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, Londonderry, UK
| | - Neil L Kelleher
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| | - Paul M Thomas
- Proteomics Center of Excellence & Departments of Chemistry and Molecular Biology,Northwestern University, Evanston, IL, USA
| |
Collapse
|
43
|
Kozlov G, Gehring K. Calnexin cycle - structural features of the ER chaperone system. FEBS J 2020; 287:4322-4340. [PMID: 32285592 PMCID: PMC7687155 DOI: 10.1111/febs.15330] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022]
Abstract
The endoplasmic reticulum (ER) is the major folding compartment for secreted and membrane proteins and is the site of a specific chaperone system, the calnexin cycle, for folding N-glycosylated proteins. Recent structures of components of the calnexin cycle have deepened our understanding of quality control mechanisms and protein folding pathways in the ER. In the calnexin cycle, proteins carrying monoglucosylated glycans bind to the lectin chaperones calnexin and calreticulin, which recruit a variety of function-specific chaperones to mediate protein disulfide formation, proline isomerization, and general protein folding. Upon trimming by glucosidase II, the glycan without an inner glucose residue is no longer able to bind to the lectin chaperones. For proteins that have not yet folded properly, the enzyme UDP-glucose:glycoprotein glucosyltransferase (UGGT) acts as a checkpoint by adding a glucose back to the N-glycan. This allows the misfolded proteins to re-associate with calnexin and calreticulin for additional rounds of chaperone-mediated refolding and prevents them from exiting the ERs. Here, we review progress in structural studies of the calnexin cycle, which reveal common features of how lectin chaperones recruit function-specific chaperones and how UGGT recognizes misfolded proteins.
Collapse
Affiliation(s)
- Guennadi Kozlov
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| | - Kalle Gehring
- From the Department of Biochemistry & Centre for Structural BiologyMcGill UniversityMontréalQCCanada
| |
Collapse
|
44
|
Lénon M, Ke N, Szady C, Sakhtah H, Ren G, Manta B, Causey B, Berkmen M. Improved production of Humira antibody in the genetically engineered Escherichia coli SHuffle, by co-expression of human PDI-GPx7 fusions. Appl Microbiol Biotechnol 2020; 104:9693-9706. [PMID: 32997203 PMCID: PMC7595990 DOI: 10.1007/s00253-020-10920-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022]
Abstract
Abstract Microbial production of antibodies offers the promise of cheap, fast, and efficient production of antibodies at an industrial scale. Limiting this capacity in prokaryotes is the absence of the post-translational machinery, present in dedicated antibody producing eukaryotic cell lines, such as B cells. There has been few and limited success in producing full-length, correctly folded, and assembled IgG in the cytoplasm of prokaryotic cell lines. One such success was achieved by utilizing the genetically engineered Escherichia coli strain SHuffle with an oxidative cytoplasm. Due to the genetic disruption of reductive pathways, SHuffle cells are under constant oxidative stress, including increased levels of hydrogen peroxide (H2O2). The oxidizing capacity of H2O2 was linked to improved disulfide bond formation, by expressing a fusion of two endoplasmic reticulum-resident proteins, the thiol peroxidase GPx7 and the protein disulfide isomerase, PDI. In concert, these proteins mediate disulfide transfer from H2O2 to target proteins via PDI-Gpx7 fusions. The potential of this new strain was tested with Humira, a blockbuster antibody usually produced in eukaryotic cells. Expression results demonstrate that the new engineered SHuffle strain (SHuffle2) could produce Humira IgG four-fold better than the parental strain, both in shake-flask and in high-density fermentation. These preliminary studies guide the field in genetically engineering eukaryotic redox pathways in prokaryotes for the production of complex macromolecules. Key points • A eukaryotic redox pathway was engineered into the E. coli strain SHuffle in order to improve the yield of the blockbuster antibody Humira. • The best peroxidase-PDI fusion was selected using bioinformatics and in vivo studies. • Improved yields of Humira were demonstrated at shake-flask and high-density fermenters. Electronic supplementary material The online version of this article (10.1007/s00253-020-10920-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marine Lénon
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Department of Microbiology, Stress Adaptation and Metabolism in Enterobacteria Unit, UMR CNRS 2001, Institut Pasteur, 25-28 Rue du Dr Roux, 75015, Paris, France
| | - Na Ke
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Cecily Szady
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Hassan Sakhtah
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Boston Institute of Biotechnology, LLC., Upstream Process Development, 225 Turnpike Road, Southborough, MA, 01772, USA
| | - Guoping Ren
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Bruno Manta
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
- Facultad de Medicina, Departamento de Bioquímica and Centro de Investigaciones Biomédicas, Universidad de la República, CP 11800, Montevideo, Uruguay
| | - Bryce Causey
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Mehmet Berkmen
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA.
| |
Collapse
|
45
|
Kang TH, Seong BL. Solubility, Stability, and Avidity of Recombinant Antibody Fragments Expressed in Microorganisms. Front Microbiol 2020; 11:1927. [PMID: 33101218 PMCID: PMC7546209 DOI: 10.3389/fmicb.2020.01927] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Solubility of recombinant proteins (i.e., the extent of soluble versus insoluble expression in heterogeneous hosts) is the first checkpoint criterion for determining recombinant protein quality. However, even soluble proteins often fail to represent functional activity because of the involvement of non-functional, misfolded, soluble aggregates, which compromise recombinant protein quality. Therefore, screening of solubility and folding competence is crucial for improving the quality of recombinant proteins, especially for therapeutic applications. The issue is often highlighted especially in bacterial recombinant hosts, since bacterial cytoplasm does not provide an optimal environment for the folding of target proteins of mammalian origin. Antibody fragments, such as single-chain variable fragment (scFv), single-chain antibody (scAb), and fragment antigen binding (Fab), have been utilized for numerous applications such as diagnostics, research reagents, or therapeutics. Antibody fragments can be efficiently expressed in microorganisms so that they offer several advantages for diagnostic applications such as low cost and high yield. However, scFv and scAb fragments have generally lower stability to thermal stress than full-length antibodies, necessitating a judicious combination of designer antibodies, and bacterial hosts harnessed with robust chaperone function. In this review, we discuss efforts on not only the production of antibodies or antibody fragments in microorganisms but also scFv stabilization via (i) directed evolution of variants with increased stability using display systems, (ii) stabilization of the interface between variable regions of heavy (VH) and light (VL) chains through the introduction of a non-native covalent bond between the two chains, (iii) rational engineering of VH-VL pair, based on the structure, and (iv) computational approaches. We also review recent advances in stability design, increase in avidity by multimerization, and maintaining the functional competence of chimeric proteins prompted by various types of chaperones.
Collapse
Affiliation(s)
- Tae Hyun Kang
- Biopharmaceutical Chemistry Major, School of Applied Chemistry, Kookmin University, Seoul, South Korea
| | - Baik Lin Seong
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Vaccine Innovative Technology ALliance (VITAL)-Korea, Yonsei University, Seoul, South Korea
| |
Collapse
|
46
|
Morgan GJ, Wall JS. The Process of Amyloid Formation due to Monoclonal Immunoglobulins. Hematol Oncol Clin North Am 2020; 34:1041-1054. [PMID: 33099422 DOI: 10.1016/j.hoc.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Monoclonal antibodies secreted by clonally expanded plasma cells can form a range of pathologic aggregates including amyloid fibrils. The enormous diversity in the sequences of the involved light chains may be responsible for complexity of the disease. Nevertheless, important common features have been recognized. Two recent high-resolution structures of light chain fibrils show related but distinct conformations. The native structure of the light chains is lost when they are incorporated into the amyloid fibrils. The authors discuss the processes that lead to aggregation and describe how existing and emerging therapies aim to prevent aggregation or remove amyloid fibrils from tissues.
Collapse
Affiliation(s)
- Gareth J Morgan
- Amyloidosis Center and Section of Hematology and Medical Oncology, Department of Medicine, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | - Jonathan S Wall
- Amyloidosis and Cancer Theranostics Program, Preclinical and Diagnostic Molecular Imaging Laboratory, The University of Tennessee Graduate School of Medicine, 1924 Alcoa Highway, Knoxville, TN 37920, USA
| |
Collapse
|
47
|
Stutz C, Blein S. A single mutation increases heavy-chain heterodimer assembly of bispecific antibodies by inducing structural disorder in one homodimer species. J Biol Chem 2020; 295:9392-9408. [PMID: 32404368 PMCID: PMC7363136 DOI: 10.1074/jbc.ra119.012335] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/08/2020] [Indexed: 12/31/2022] Open
Abstract
We previously reported efficient heavy-chain assembly of heterodimeric bispecific antibodies by exchanging the interdomain protein interface of the human IgG1 CH3 dimer with the protein interface of the constant α and β domains of the human T-cell receptor, a technology known as bispecific engagement by antibodies based on the T-cell receptor (BEAT). Efficient heterodimerization in mammalian cell transient transfections was observed, but levels were influenced by the nature of the binding arms, particularly in the Fab-scFv-Fc format. In this study, we report a single amino acid change that significantly and consistently improved the heterodimerization rate of this format (≥95%) by inducing partial disorder in one homodimer species without affecting the heterodimer. Correct folding and assembly of the heterodimer were confirmed by the high-resolution (1.88-1.98 Å) crystal structure presented here. Thermal stability and 1-anilinonaphthalene-8-sulfonic acid-binding experiments, comparing original BEAT, mutated BEAT, and "knobs-into-holes" interfaces, suggested a cooperative assembly process of heavy chains in heterodimers. The observed gain in stability of the interfaces could be classified in the following rank order: mutated BEAT > original BEAT > knobs-into-holes. We therefore propose that the superior cooperativity found in BEAT interfaces is the key driver of their greater performance. Furthermore, we show how the mutated BEAT interface can be exploited for the routine preparation of drug candidates, with minimal risk of homodimer contamination using a single Protein A chromatography step.
Collapse
Affiliation(s)
- Cian Stutz
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| | - Stanislas Blein
- Department of Antibody Engineering, Ichnos Sciences S.A., Biopôle Lausanne-Epalinges, Epalinges, Switzerland
| |
Collapse
|
48
|
Tang D, Sandoval W, Lam C, Haley B, Liu P, Xue D, Roy D, Patapoff T, Louie S, Snedecor B, Misaghi S. UBR E3 ligases and the PDIA3 protease control degradation of unfolded antibody heavy chain by ERAD. J Cell Biol 2020; 219:151862. [PMID: 32558906 PMCID: PMC7337499 DOI: 10.1083/jcb.201908087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022] Open
Abstract
Accumulation of unfolded antibody chains in the ER triggers ER stress that may lead to reduced productivity in therapeutic antibody manufacturing processes. We identified UBR4 and UBR5 as ubiquitin E3 ligases involved in HC ER-associated degradation. Knockdown of UBR4 and UBR5 resulted in intracellular accumulation, enhanced secretion, and reduced ubiquitination of HC. In concert with these E3 ligases, PDIA3 was shown to cleave ubiquitinated HC molecules to accelerate HC dislocation. Interestingly, UBR5, and to a lesser degree UBR4, were down-regulated as cellular demand for antibody expression increased in CHO cells during the production phase, or in plasma B cells. Reducing UBR4/UBR5 expression before the production phase increased antibody productivity in CHO cells, possibly by redirecting antibody molecules from degradation to secretion. Altogether we have characterized a novel proteolysis/proteasome-dependent pathway involved in degradation of unfolded antibody HC. Proteins characterized in this pathway may be novel targets for CHO cell engineering.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA
| | - Peter Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Di Xue
- Department of Research Biology, Genentech Inc., South San Francisco, CA
| | - Deepankar Roy
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Tom Patapoff
- Department of Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| |
Collapse
|
49
|
Froning K, Maguire J, Sereno A, Huang F, Chang S, Weichert K, Frommelt AJ, Dong J, Wu X, Austin H, Conner EM, Fitchett JR, Heng AR, Balasubramaniam D, Hilgers MT, Kuhlman B, Demarest SJ. Computational stabilization of T cell receptors allows pairing with antibodies to form bispecifics. Nat Commun 2020; 11:2330. [PMID: 32393818 PMCID: PMC7214467 DOI: 10.1038/s41467-020-16231-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/20/2020] [Indexed: 01/29/2023] Open
Abstract
Recombinant T cell receptors (TCRs) can be used to redirect naïve T cells to eliminate virally infected or cancerous cells; however, they are plagued by low stability and uneven expression. Here, we use molecular modeling to identify mutations in the TCR constant domains (Cα/Cβ) that increase the unfolding temperature of Cα/Cβ by 20 °C, improve the expression of four separate α/β TCRs by 3- to 10-fold, and improve the assembly and stability of TCRs with poor intrinsic stability. The stabilizing mutations rescue the expression of TCRs destabilized through variable domain mutation. The improved stability and folding of the TCRs reduces glycosylation, perhaps through conformational stabilization that restricts access to N-linked glycosylation enzymes. The Cα/Cβ mutations enables antibody-like expression and assembly of well-behaved bispecific molecules that combine an anti-CD3 antibody with the stabilized TCR. These TCR/CD3 bispecifics can redirect T cells to kill tumor cells with target HLA/peptide on their surfaces in vitro.
Collapse
Affiliation(s)
- Karen Froning
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jack Maguire
- Program in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene Sereno
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Flora Huang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Shawn Chang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Kenneth Weichert
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Anton J Frommelt
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jessica Dong
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Xiufeng Wu
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Heather Austin
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Elaine M Conner
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Jonathan R Fitchett
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Aik Roy Heng
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | | | - Mark T Hilgers
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Stephen J Demarest
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
50
|
Xu S, Yang H, Zhuo Y, Yu Y, Liao H, Li S, Yue Y, Su K, Zhang Z. Production of Autoreactive Heavy Chain-Only Antibodies in Systemic Lupus Erythematosus. Front Immunol 2020; 11:632. [PMID: 32431693 PMCID: PMC7214812 DOI: 10.3389/fimmu.2020.00632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 03/19/2020] [Indexed: 02/05/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is characterized by the overproduction of high-affinity autoreactive antibodies. Here, we show that more than 65.8% of 222 recombinant antibodies derived from 8 SLE patients can be secreted as heavy chain-only antibodies (HCAbs) when expressed in HEK-293T cells. The secretion of HCAbs follows the conventional endoplasmic reticulum-Golgi apparatus pathway, despite triggering a weaker unfolded protein response (UPR). Many of the purified SLE HCAbs remain autoreactive and have an even higher affinity for dsDNA, Sm, nucleosome, and cardiolipin than HCAbs from healthy individuals. Extended analyses of the CDR3 region and the heavy chain variable (VH) region of HCAb F3 show that the VH region is responsible for IgH secretion, while the CDR3 region determines its reactivity. Such a high frequency of HCAb secretion cannot fully concur with our current understanding of antibody assembly and secretion. The presence of a large proportion of autoreactive HCAbs in SLE reveals a novel mechanism for the generation of autoreactive antibodies in lupus.
Collapse
Affiliation(s)
- Shu Xu
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Hong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yue Zhuo
- Health Management Center, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hongyan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Song Li
- Department of Medical Oncology, Cancer Center, Qilu Hospital of Shandong University, Jinan, China
| | - Yinshi Yue
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kaihong Su
- Education-Microbiology/Immunology, Department of Medical Education, California University of Science and Medicine, San Bernardino, CA, United States
| | - Zhixin Zhang
- Health Management Center, Institute of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|