1
|
Pavlova NN, Thompson CB. Oncogenic Control of Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041531. [PMID: 38565265 PMCID: PMC11444253 DOI: 10.1101/cshperspect.a041531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A cell committed to proliferation must reshape its metabolism to enable robust yet balanced production of building blocks for the assembly of proteins, lipids, nucleic acids, and other macromolecules, from which two functional daughter cells can be produced. The metabolic remodeling associated with proliferation is orchestrated by a number of pro-proliferative signaling nodes, which include phosphatidylinositol-3 kinase (PI3K), the RAS family of small GTPases, and transcription factor c-myc In metazoan cells, these signals are activated in a paracrine manner via growth factor-mediated activation of receptor (or receptor-associated) tyrosine kinases. Such stimuli are limited in duration and therefore allow the metabolism of target cells to return to the resting state once the proliferation demands have been satisfied. Cancer cells acquire activating genetic alterations within common pro-proliferative signaling nodes. These alterations lock cellular nutrient uptake and utilization into a perpetual progrowth state, leading to the aberrant accumulation and spread of cancer cells.
Collapse
Affiliation(s)
- Natalya N Pavlova
- Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
2
|
Han Y, Pu Y, Liu X, Liu Z, Chen Y, Tang L, Zhou J, Song Q, Ji Q. YTHDF1 regulates GID8-mediated glutamine metabolism to promote colorectal cancer progression in m6A-dependent manner. Cancer Lett 2024; 601:217186. [PMID: 39151722 DOI: 10.1016/j.canlet.2024.217186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Dysregulation of epigenetics is a hallmark of cancer development, and YTHDF1 stands out as a crucial epigenetic regulator with the highest DNA copy number variation among all N6-methyladenosine (m6A) regulators in colorectal cancer (CRC) patients. Here, we aimed to investigate the specific contribution of YTHDF1 overexpression to CRC progression and its consequences. Through multiple bioinformatic analyses of human cancer databases and clinical CRC samples, we identified GID8/Twa1 as a crucial downstream target of YTHDF1. YTHDF1 manipulates GID8 translation efficiency in an m6A-dependent manner, and high expression of GID8 is associated with more aggressive tumor progression and poor overall survival. Mechanistically, GID8 is intimately associated with glutamine metabolic demands by maintaining active glutamine uptake and metabolism through the regulation of excitatory amino acid transporter 1 (SLC1A3) and glutaminase (GLS), thereby facilitating the malignant progression of CRC. Inhibition of GID8 attenuated CRC proliferation and metastasis both in vitro and in vivo. In summary, we identified a previously unknown target pertaining to glutamine uptake and metabolism in tumor cells, underscoring the potential of GID8 in the treatment of CRC.
Collapse
Affiliation(s)
- Yicun Han
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yunzhou Pu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaodie Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhiyi Liu
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongqi Chen
- Department of Pathology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lei Tang
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Zhou
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Liver Disease Department of Integrative Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, 315000, China
| | - Qing Song
- Department of Medical Oncology, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu, 215007, China.
| | - Qing Ji
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
3
|
Geng P, Ye F, Dou P, Hu C, He J, Zhao J, Li Q, Bao M, Li X, Liu X, Xu G. HIF-1α-HPRT1 axis promotes tumorigenesis and gefitinib resistance by enhancing purine metabolism in EGFR-mutant lung adenocarcinoma. J Exp Clin Cancer Res 2024; 43:269. [PMID: 39343971 PMCID: PMC11441087 DOI: 10.1186/s13046-024-03184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The mutations of oncogenic epidermal growth factor receptor (EGFR) is an important cause of lung adenocarcinoma (LUAD) malignance. It has been knowm that metabolic reprogramming is an important hallmark of malignant tumors, and purine metabolism is a key metabolic pathway for tumor progression and drug resistance, but its relationship with the EGFR-mutant LUAD is unclear. METHODS Metabolic reprogramming was studied through capillary electrophoresis-time of flight mass spectrometry (CE-TOF/MS)-based metabolic profiling analysis. Cell proliferation in vitro was evaluated by EdU staining and cell cycle assay. Tumorigenicity in vivo was tested by subcutaneous tumor formation experiment in nude mice. The binding of hypoxia-inducible factor-1 alpha (HIF-1α) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) was detected by DNA pull‑down assay and Chromatin immunoprecipitation (ChIP) assays. HIF-1α, HPRT1, DNA damage and cell apoptosis related genes were examined by western blot. In addition, RNA sequencing, mass spectrometry and bioinformatics analysis were performed. RESULTS We found that mutated EGFR (muEGFR) upregulates HPRT1 to promote purine metabolism and tumorigenesis of EGFR-mutant LUAD. Mechanistically, muEGFR increases HIF-1α expression through protein stability. Meanwhile, up-regulated HIF-1α bound to the promoter of HPRT1 and transcriptionally activates HPRT1 expression, enhancing purine metabolism to maintain rapid tumor cell proliferation in EGFR-mutant LUAD. Further, gefitinib inhibited the synthesis of purine nucleotides, and HPRT1 inhibition increased the sensitivity of gefitinib to EGFR-mutant LUAD. CONCLUSIONS Our study reveals that muEGFR-HIF-1α-HPRT1 axis plays a key role in EGFR-mutant LUAD and provides a new strategy-inhibiting purine metabolism for treating EGFR-mutant LUAD.
Collapse
Affiliation(s)
- Pengyu Geng
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China
| | - Fei Ye
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China
| | - Peng Dou
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China
| | - Chunxiu Hu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China
| | - Jiarui He
- Clinical Laboratory, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, 116023, China
| | - Jinhui Zhao
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China
| | - Qi Li
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China
| | - Miao Bao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shanxi Province, 710082, China
| | - Xiangnan Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, China.
| | - Xinyu Liu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China.
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China.
| | - Guowang Xu
- State Key Laboratory of Medical Proteomics, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning Province, 116023, China.
- Liaoning Province Key Laboratory of Metabolomics, Dalian, Liaoning Province, 116023, China.
| |
Collapse
|
4
|
Yu H, Wang C, Ke S, Xu Y, Lu S, Feng Z, Bai M, Qian B, Xu Y, Li Z, Yin B, Li X, Hua Y, Zhou M, Li Z, Fu Y, Ma Y. An integrative pan-cancer analysis of MASP1 and the potential clinical implications for the tumor immune microenvironment. Int J Biol Macromol 2024; 280:135834. [PMID: 39307490 DOI: 10.1016/j.ijbiomac.2024.135834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
Mannose-binding lectin-associated serine protease 1 (MASP1) plays a crucial role in the complement lectin pathway and the mediation of immune responses. However, comprehensive research on MASP1 across various cancer types has not been performed to date. This study aimed to evaluate the significance of MASP1 in pan-cancer. The Cancer Genome Atlas (TCGA), UCSC Xena and Genotype Tissue Expression (GTEx) databases were used to evaluate the expression profiles, genomic features, prognostic relevance, and immune microenvironment associations of MASP1 across 33 cancer types. We observed significant dysregulation of MASP1 expression in multiple cancers, with strong associations between MASP1 expression levels and diagnostic value as well as patient prognosis. Mechanistic insights revealed significant correlations between MASP1 levels and various immunological and genomic factors, including tumor-infiltrating immune cells (TIICs), immune-related genes, mismatch repair (MMR), tumor mutation burden (TMB), and microsatellite instability (MSI), highlighting a critical regulatory function of MASP1 within the tumor immune microenvironment (TIME). In vitro and in vivo experiments demonstrated that MASP1 expression was markedly decreased in liver hepatocellular carcinoma (LIHC). Moreover, the overexpression of MASP1 in hepatocellular carcinoma (HCC) cell lines significantly inhibited their proliferation, invasion and migration. In conclusion, MASP1 exhibits differential expression in the pan-cancer analyses and might play an important role in TIME. MASP1 is a promising prognostic biomarker and a potential target for immunological research, particularly in LIHC.
Collapse
Affiliation(s)
- Hongjun Yu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chaoqun Wang
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Shanjia Ke
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanan Xu
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Xihu University, Hangzhou, China
| | - Shounan Lu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhigang Feng
- The First Department of General Surgery, Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Miaoyu Bai
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Baolin Qian
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Xu
- Department of Pediatrics, Hainan Hospital of PLA General Hospital, Hainan, China
| | - Zihao Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Yin
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinglong Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Menghua Zhou
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Yong Ma
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of Minimally Invasive Hepatic Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Eisenreich W, Leberfing J, Rudel T, Heesemann J, Goebel W. Interactions of SARS-CoV-2 with Human Target Cells-A Metabolic View. Int J Mol Sci 2024; 25:9977. [PMID: 39337465 PMCID: PMC11432161 DOI: 10.3390/ijms25189977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Viruses are obligate intracellular parasites, and they exploit the cellular pathways and resources of their respective host cells to survive and successfully multiply. The strategies of viruses concerning how to take advantage of the metabolic capabilities of host cells for their own replication can vary considerably. The most common metabolic alterations triggered by viruses affect the central carbon metabolism of infected host cells, in particular glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. The upregulation of these processes is aimed to increase the supply of nucleotides, amino acids, and lipids since these metabolic products are crucial for efficient viral proliferation. In detail, however, this manipulation may affect multiple sites and regulatory mechanisms of host-cell metabolism, depending not only on the specific viruses but also on the type of infected host cells. In this review, we report metabolic situations and reprogramming in different human host cells, tissues, and organs that are favorable for acute and persistent SARS-CoV-2 infection. This knowledge may be fundamental for the development of host-directed therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Julian Leberfing
- Structural Membrane Biochemistry, Bavarian NMR Center (BNMRZ), Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85747 Garching, Germany;
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, 97074 Würzburg, Germany;
| | - Jürgen Heesemann
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| | - Werner Goebel
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, 80336 München, Germany; (J.H.); (W.G.)
| |
Collapse
|
6
|
Cortellino S, D'Angelo M, Quintiliani M, Giordano A. Cancer knocks you out by fasting: Cachexia as a consequence of metabolic alterations in cancer. J Cell Physiol 2024:e31417. [PMID: 39245862 DOI: 10.1002/jcp.31417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/18/2024] [Accepted: 08/09/2024] [Indexed: 09/10/2024]
Abstract
Neoplastic transformation reprograms tumor and surrounding host cell metabolism, increasing nutrient consumption and depletion in the tumor microenvironment. Tumors uptake nutrients from neighboring normal tissues or the bloodstream to meet energy and anabolic demands. Tumor-induced chronic inflammation, a high-energy process, also consumes nutrients to sustain its dysfunctional activities. These tumor-related metabolic and physiological changes, including chronic inflammation, negatively impact systemic metabolism and physiology. Furthermore, the adverse effects of antitumor therapy and tumor obstruction impair the endocrine, neural, and gastrointestinal systems, thereby confounding the systemic status of patients. These alterations result in decreased appetite, impaired nutrient absorption, inflammation, and shift from anabolic to catabolic metabolism. Consequently, cancer patients often suffer from malnutrition, which worsens prognosis and increases susceptibility to secondary adverse events. This review explores how neoplastic transformation affects tumor and microenvironment metabolism and inflammation, leading to poor prognosis, and discusses potential strategies and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), School for Advanced Studies, Federico II University, Naples, Italy
- SHRO Italia Foundation ETS, Candiolo, Turin, Italy
| | - Margherita D'Angelo
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Soares RB, Pinto J, Amaro F, Manguinhas R, Gil N, Rosell R, Batinic-Haberle I, Fernandes AS, Oliveira NG, Guedes de Pinho P. Impact of the redox-active MnTnHex-2-PyP 5+ and cisplatin on the metabolome of non-small cell lung cancer cells. Biochem Pharmacol 2024; 227:116424. [PMID: 39004232 DOI: 10.1016/j.bcp.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/07/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Redox-based cancer therapeutic strategies aim to raise reactive oxygen species (ROS) levels in cancer cells, thus modifying their redox status, and eventually inducing cell death. Promising compounds, known as superoxide dismutase mimics (SODm), e.g. MnTnHex-2-Py5+ (MnTnHex), could increase intracellular H2O2 in cancer cells with deficient ROS removal systems and therefore enhance radio- and chemotherapy efficacy. We have previously shown that MnTnHex was cytotoxic either alone or combined with cisplatin to non-small cell lung cancer (NSCLC) cells. To gain a deeper understanding of the effects and safety of this compound, it is crucial to analyze the metabolic alterations that take place within the cell. Our goal was thus to study the intracellular metabolome (intracellular metabolites) of NSCLC cells (A549 and H1975) using nuclear magnetic resonance (NMR) spectroscopy-based metabolomics to evaluate the changes in cellular metabolism upon exposure to MnTnHex per se or in combination with cisplatin. 1H NMR metabolomics revealed a higher number of significantly altered metabolites in A549 cells exposed to MnTnHex alone or combined with cisplatin in comparison with non-treated cells (nine dysregulated metabolites), suggesting an impact on aminoacyl-tRNA biosynthesis, glycolysis/gluconeogenesis, taurine, hypotaurine, glycerophospholipid, pyruvate, arginine and proline metabolisms. Regarding H1975 cells, significant alterations in the levels of six metabolites were observed upon co-treatment with MnTnHex and cisplatin, suggesting dysregulations in aminoacyl-tRNA biosynthesis, arginine and proline metabolism, pyruvate metabolism, and glycolysis/gluconeogenesis. These findings help us to understand the impact of MnTnHex on NSCLC cells. Importantly, specific altered metabolites, such as taurine, may contribute to the chemosensitizing effects of MnTnHex.
Collapse
Affiliation(s)
- Rita B Soares
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal; Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Filipa Amaro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal
| | - Nuno Gil
- Lung Unit, Champalimaud Clinical Centre, Champalimaud Foundation, Av. Brasília, 1400-038 Lisbon, Portugal
| | - Rafael Rosell
- Dr. Rosell Oncology Institute, 08028 Barcelona, Spain; Institute Germans Trias i Pujol, 08916 Badalona, Barcelona, Spain
| | - Ines Batinic-Haberle
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ana S Fernandes
- Universidade Lusófona's Research Center for Biosciences & Health Technologies (CBIOS), Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
8
|
Krieger MR, Abrahamian M, He KL, Atamdede S, Hakimjavadi H, Momcilovic M, Ostrow D, Maggo SD, Tsang YP, Gai X, Chanfreau GF, Shackelford DB, Teitell MA, Koehler CM. Trafficking of mitochondrial double-stranded RNA from mitochondria to the cytosol. Life Sci Alliance 2024; 7:e202302396. [PMID: 38955468 PMCID: PMC11220484 DOI: 10.26508/lsa.202302396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.
Collapse
Affiliation(s)
- Matthew R Krieger
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Kevin L He
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Sean Atamdede
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | | | - Milica Momcilovic
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Simran Ds Maggo
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yik Pui Tsang
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Xiaowu Gai
- Department of Pathology, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guillaume F Chanfreau
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - David B Shackelford
- Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
| | - Michael A Teitell
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, UCLA, Los Angeles, CA, USA
- NanoSystems Institute, UCLA, Los Angeles, CA, USA
| | - Carla M Koehler
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
9
|
Bezwada D, Perelli L, Lesner NP, Cai L, Brooks B, Wu Z, Vu HS, Sondhi V, Cassidy DL, Kasitinon S, Kelekar S, Cai F, Aurora AB, Patrick M, Leach A, Ghandour R, Zhang Y, Do D, McDaniel P, Sudderth J, Dumesnil D, House S, Rosales T, Poole AM, Lotan Y, Woldu S, Bagrodia A, Meng X, Cadeddu JA, Mishra P, Garcia-Bermudez J, Pedrosa I, Kapur P, Courtney KD, Malloy CR, Genovese G, Margulis V, DeBerardinis RJ. Mitochondrial complex I promotes kidney cancer metastasis. Nature 2024; 633:923-931. [PMID: 39143213 PMCID: PMC11424252 DOI: 10.1038/s41586-024-07812-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
Most kidney cancers are metabolically dysfunctional1-4, but how this dysfunction affects cancer progression in humans is unknown. We infused 13C-labelled nutrients in over 80 patients with kidney cancer during surgical tumour resection. Labelling from [U-13C]glucose varies across subtypes, indicating that the kidney environment alone cannot account for all tumour metabolic reprogramming. Compared with the adjacent kidney, clear cell renal cell carcinomas (ccRCCs) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in ex vivo organotypic cultures, indicating that suppressed labelling is tissue intrinsic. [1,2-13C]acetate and [U-13C]glutamine infusions in patients, coupled with measurements of respiration in isolated human kidney and tumour mitochondria, reveal lower electron transport chain activity in ccRCCs that contributes to decreased oxidative and enhanced reductive TCA cycle labelling. However, ccRCC metastases unexpectedly have enhanced TCA cycle labelling compared with that of primary ccRCCs, indicating a divergent metabolic program during metastasis in patients. In mice, stimulating respiration or NADH recycling in kidney cancer cells is sufficient to promote metastasis, whereas inhibiting electron transport chain complex I decreases metastasis. These findings in humans and mice indicate that metabolic properties and liabilities evolve during kidney cancer progression, and that mitochondrial function is limiting for metastasis but not growth at the original site.
Collapse
Affiliation(s)
- Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas P Lesner
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel L Cassidy
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stacy Kasitinon
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arin B Aurora
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - McKenzie Patrick
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ashley Leach
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rashed Ghandour
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuanyuan Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phyllis McDaniel
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jessica Sudderth
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dennis Dumesnil
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara House
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tracy Rosales
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alan M Poole
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Solomon Woldu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aditya Bagrodia
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaosong Meng
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeffrey A Cadeddu
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Pedrosa
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kevin D Courtney
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Craig R Malloy
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giannicola Genovese
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vitaly Margulis
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Alifano E, Prieto M, Alifano M. Glucose metabolism transcriptome clustering identifies subsets of resectable lung adenocarcinoma with different prognoses. JTCVS OPEN 2024; 20:194-201. [PMID: 39296466 PMCID: PMC11405996 DOI: 10.1016/j.xjon.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/06/2024] [Accepted: 06/17/2024] [Indexed: 09/21/2024]
Abstract
Objectives Reprogramming of energy metabolism is a well-established hallmark of cancer, with aerobic glycolysis classically considered a prominent feature. We investigate the heterogeneity in glucose metabolism pathways within resectable primary lung adenocarcinoma and its clinical significance. Methods Using The Cancer Genome Atlas data, RNA expressions were extracted from 489 primary lung adenocarcinoma samples. Prognostic influence of glycolytic, aerobic, and mitochondrial markers (monocarboxylate transporter [MCT]4, MCT1, and translocase of outer mitochondrial membrane 20, respectively) was assessed using Kaplan-Meier analysis. Clustering of 35 genes involved in glucose metabolism was performed using the k-means method. The clusters were then analyzed for associations with demographic, clinical, and pathologic variables. Overall survival was assessed using the Kaplan-Meier estimator. Multivariate analysis was performed to assess the independent prognostic value of cluster membership. Results Classical statistical approach showed that higher expression of MCT4 was associated with a significantly worse prognosis. Increased expression of translocase of outer mitochondrial membrane 20 was associated with a nonsignificant trend toward better prognosis, and increased expression of MCT1 was associated with a better outcome. Clustering identified 3 major metabolic phenotypes, dominantly hypometabolic, dominantly oxidative, and dominantly mixed oxidative/glycolytic with significantly different pathologic stage distribution and prognosis; mixed oxidative/glycolytic was associated with worse survival. Cluster membership was independently associated with survival. Conclusions This study demonstrates the existence of distinct glucose metabolism clusters in resectable lung adenocarcinoma, providing valuable prognostic information. The findings highlight the potential relevance of considering metabolic profiles when designing strategies for reprogramming energy metabolism. Further studies are warranted to validate these findings in different cancer types and populations.
Collapse
Affiliation(s)
- Enzo Alifano
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| | - Mathilde Prieto
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, Centre Université de Paris, Paris University, Paris, France
| |
Collapse
|
11
|
Lee JY, Reyes N, Woo SH, Goel S, Stratton F, Kuang C, Mansfield AS, LaFave LM, Peng T. Senescent fibroblasts in the tumor stroma rewire lung cancer metabolism and plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605645. [PMID: 39131266 PMCID: PMC11312578 DOI: 10.1101/2024.07.29.605645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Senescence has been demonstrated to either inhibit or promote tumorigenesis. Resolving this paradox requires spatial mapping and functional characterization of senescent cells in the native tumor niche. Here, we identified senescent p16 Ink4a + cancer-associated fibroblasts with a secretory phenotype that promotes fatty acid uptake and utilization by aggressive lung adenocarcinoma driven by Kras and p53 mutations. Furthermore, rewiring of lung cancer metabolism by p16 Ink4a + cancer-associated fibroblasts also altered tumor cell identity to a highly plastic/dedifferentiated state associated with progression in murine and human LUAD. Our ex vivo senolytic screening platform identified XL888, a HSP90 inhibitor, that cleared p16 Ink4a + cancer-associated fibroblasts in vivo. XL888 administration after establishment of advanced lung adenocarcinoma significantly reduced tumor burden concurrent with the loss of plastic tumor cells. Our study identified a druggable component of the tumor stroma that fulfills the metabolic requirement of tumor cells to acquire a more aggressive phenotype.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Nabora Reyes
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Sang-Ho Woo
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Sakshi Goel
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Fia Stratton
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chaoyuan Kuang
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Aaron S. Mansfield
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905
| | - Lindsay M. LaFave
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tien Peng
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
- Lead contact
| |
Collapse
|
12
|
Wu Z, Bezwada D, Cai F, Harris RC, Ko B, Sondhi V, Pan C, Vu HS, Nguyen PT, Faubert B, Cai L, Chen H, Martin-Sandoval M, Do D, Gu W, Zhang Y, Zhang Y, Brooks B, Kelekar S, Zacharias LG, Oaxaca KC, Patricio JS, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. Cell Metab 2024; 36:1504-1520.e9. [PMID: 38876105 PMCID: PMC11240302 DOI: 10.1016/j.cmet.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 03/11/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Mitochondria house many metabolic pathways required for homeostasis and growth. To explore how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts from patients with various mitochondrial disorders and cancer cells with electron transport chain (ETC) blockade. These analyses revealed extensive perturbations in purine metabolism, and stable isotope tracing demonstrated that ETC defects suppress de novo purine synthesis while enhancing purine salvage. In human lung cancer, tumors with markers of low oxidative mitochondrial metabolism exhibit enhanced expression of the salvage enzyme hypoxanthine phosphoribosyl transferase 1 (HPRT1) and high levels of the HPRT1 product inosine monophosphate. Mechanistically, ETC blockade activates the pentose phosphate pathway, providing phosphoribosyl diphosphate to drive purine salvage supplied by uptake of extracellular bases. Blocking HPRT1 sensitizes cancer cells to ETC inhibition. These findings demonstrate how cells remodel purine metabolism upon ETC blockade and uncover a new metabolic vulnerability in tumors with low respiration.
Collapse
Affiliation(s)
- Zheng Wu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Divya Bezwada
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Feng Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert C Harris
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bookyung Ko
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Varun Sondhi
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chunxiao Pan
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Phong T Nguyen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brandon Faubert
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Ling Cai
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hongli Chen
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty Martin-Sandoval
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Duyen Do
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuanyuan Zhang
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bailey Brooks
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sherwin Kelekar
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren G Zacharias
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - K Celeste Oaxaca
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joao S Patricio
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Thomas P Mathews
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Javier Garcia-Bermudez
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Min Ni
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Bhattacharya R, Brown JS, Gatenby RA, Ibrahim-Hashim A. A gene for all seasons: The evolutionary consequences of HIF-1 in carcinogenesis, tumor growth and metastasis. Semin Cancer Biol 2024; 102-103:17-24. [PMID: 38969311 DOI: 10.1016/j.semcancer.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/23/2024] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Oxygen played a pivotal role in the evolution of multicellularity during the Cambrian Explosion. Not surprisingly, responses to fluctuating oxygen concentrations are integral to the evolution of cancer-a disease characterized by the breakdown of multicellularity. Poorly organized tumor vasculature results in chaotic patterns of blood flow characterized by large spatial and temporal variations in intra-tumoral oxygen concentrations. Hypoxia-inducible growth factor (HIF-1) plays a pivotal role in enabling cells to adapt, metabolize, and proliferate in low oxygen conditions. HIF-1 is often constitutively activated in cancers, underscoring its importance in cancer progression. Here, we argue that the phenotypic changes mediated by HIF-1, in addition to adapting the cancer cells to their local environment, also "pre-adapt" them for proliferation at distant, metastatic sites. HIF-1-mediated adaptations include a metabolic shift towards anaerobic respiration or glycolysis, activation of cell survival mechanisms like phenotypic plasticity and epigenetic reprogramming, and formation of tumor vasculature through angiogenesis. Hypoxia induced epigenetic reprogramming can trigger epithelial to mesenchymal transition in cancer cells-the first step in the metastatic cascade. Highly glycolytic cells facilitate local invasion by acidifying the tumor microenvironment. New blood vessels, formed due to angiogenesis, provide cancer cells a conduit to the circulatory system. Moreover, survival mechanisms acquired by cancer cells in the primary site allow them to remodel tissue at the metastatic site generating tumor promoting microenvironment. Thus, hypoxia in the primary tumor promoted adaptations conducive to all stages of the metastatic cascade from the initial escape entry into a blood vessel, intravascular survival, extravasation into distant tissues, and establishment of secondary tumors.
Collapse
Affiliation(s)
- Ranjini Bhattacharya
- Department of Cancer Biology, University of South Florida, United States; Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Evolutionary Biology, University of Illinois, at Chicago, United States
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, United States; Department of Radiology, H. Lee Moffitt Cancer Center, United States.
| | - Arig Ibrahim-Hashim
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center, United States.
| |
Collapse
|
14
|
Niepmann M. Importance of Michaelis Constants for Cancer Cell Redox Balance and Lactate Secretion-Revisiting the Warburg Effect. Cancers (Basel) 2024; 16:2290. [PMID: 39001354 PMCID: PMC11240417 DOI: 10.3390/cancers16132290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer cells metabolize a large fraction of glucose to lactate, even under a sufficient oxygen supply. This phenomenon-the "Warburg Effect"-is often regarded as not yet understood. Cancer cells change gene expression to increase the uptake and utilization of glucose for biosynthesis pathways and glycolysis, but they do not adequately up-regulate the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Thereby, an increased glycolytic flux causes an increased production of cytosolic NADH. However, since the corresponding gene expression changes are not neatly fine-tuned in the cancer cells, cytosolic NAD+ must often be regenerated by loading excess electrons onto pyruvate and secreting the resulting lactate, even under sufficient oxygen supply. Interestingly, the Michaelis constants (KM values) of the enzymes at the pyruvate junction are sufficient to explain the priorities for pyruvate utilization in cancer cells: 1. mitochondrial OXPHOS for efficient ATP production, 2. electrons that exceed OXPHOS capacity need to be disposed of and secreted as lactate, and 3. biosynthesis reactions for cancer cell growth. In other words, a number of cytosolic electrons need to take the "emergency exit" from the cell by lactate secretion to maintain the cytosolic redox balance.
Collapse
Affiliation(s)
- Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| |
Collapse
|
15
|
Xie AX, Tansey W, Reznik E. UnitedMet harnesses RNA-metabolite covariation to impute metabolite levels in clinical samples. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.24.24307903. [PMID: 38826234 PMCID: PMC11142294 DOI: 10.1101/2024.05.24.24307903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Comprehensively studying metabolism requires the measurement of metabolite levels. However, in contrast to the broad availability of gene expression data, metabolites are rarely measured in large molecularly-defined cohorts of tissue samples. To address this basic barrier to metabolic discovery, we propose a Bayesian framework ("UnitedMet") which leverages the empirical strength of RNA-metabolite covariation to impute otherwise unmeasured metabolite levels from widely available transcriptomic data. We demonstrate that UnitedMet is equally capable of imputing whole pool sizes as well as the outcomes of isotope tracing experiments. We apply UnitedMet to investigate the metabolic impact of driver mutations in kidney cancer, identifying a novel association between BAP1 and a highly oxidative tumor phenotype. We similarly apply UnitedMet to determine that advanced kidney cancers upregulate oxidative phosphorylation relative to early-stage disease, that oxidative metabolism in kidney cancer is associated with inferior outcomes to combination therapy, and that kidney cancer metastases themselves demonstrate elevated oxidative phosphorylation relative to primary tumors. UnitedMet therefore enables the assessment of metabolic phenotypes in contexts where metabolite measurements were not taken or are otherwise infeasible, opening new avenues for the generation and evaluation of metabolite-centered hypotheses. UnitedMet is open source and publicly available (https://github.com/reznik-lab/UnitedMet).
Collapse
Affiliation(s)
- Amy X. Xie
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
- Biochemistry, Structural Biology, Cell Biology, Developmental Biology and Molecular Biology Graduate Program, Weill Cornell Medicine, New York, NY
| | - Wesley Tansey
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, NY NY 10065
| |
Collapse
|
16
|
Yan F, Liu C, Song D, Zeng Y, Zhan Y, Zhuang X, Qiao T, Wu D, Cheng Y, Chen H. Integration of clinical phenoms and metabolomics facilitates precision medicine for lung cancer. Cell Biol Toxicol 2024; 40:25. [PMID: 38691184 PMCID: PMC11063108 DOI: 10.1007/s10565-024-09861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Chanjuan Liu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Xiang'an Hospital, Xiamen University School of Medicine, Xiamen, 361101, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, 366 North Longchuan Rd, Shanghai, 200237, China.
| |
Collapse
|
17
|
Liu R, Li B, Zi J, Zhang R, Yu M, Zhou J, Pu Y, Xiong W. The dual role of LOXL4 in the pathogenesis and development of human malignant tumors: a narrative review. Transl Cancer Res 2024; 13:2026-2042. [PMID: 38737700 PMCID: PMC11082665 DOI: 10.21037/tcr-23-2003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/16/2024] [Indexed: 05/14/2024]
Abstract
Background and Objective Lysyl oxidase-like protein 4 (LOXL4) is a secreted copper-dependent amine oxidase involved in the assembly and maintenance of extracellular matrix (ECM), playing a critical role in ECM formation and repair. Tumor-stroma interactions and ECM dysregulation are closely associated with the mechanisms underlying tumor initiation and progression. LOXL4 is the latest identified member of the lysyl oxidase (LOX) protein family. Currently, there is limited and controversial research on the role of LOXL4 in human malignancies. Its specific regulatory pathways, mechanisms, and roles in the occurrence, development, and treatment of malignancies remain incompletely understood. This article aims to illustrate the primary protein structure and the function of LOXL4 protein, and the relationship between LOXL4 protein and the occurrence and development of human malignant tumors to provide a reference for further clinical research. Methods We searched the English literature on LOXL4 in the occurrence and development of various malignant tumors in PubMed and Web of Science. The search keywords include "cancer" "LOXL4" "malignant tumor" "tumorigenesis and development", etc. Key Content and Findings LOXL4 is up-regulated in human gastric cancer, breast cancer, ovarian cancer, head and neck squamous cell carcinoma, esophageal carcinoma and colorectal cancer, but down-regulated in human bladder cancer and lung cancer and inhibits tumor growth. There are two conflicting reports of both upregulation and downregulation in hepatocellular carcinoma, suggesting that LOXL4 has a bidirectional effect of promoting or inhibiting cancer in different types of human malignant tumors. We further explore the application prospect of LOXL4 protein in the study of malignant tumors, laying a theoretical foundation for the clinical diagnosis, treatment and screening of prognostic markers of malignant tumors. Conclusions LOXL4 exerts a bidirectional regulatory role, either inhibiting or promoting tumors depending on the type of cancer. We still need more research to further confirm the molecular mechanism of LOXL4 in cancer progression.
Collapse
Affiliation(s)
- Ruai Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Bin Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Jiaji Zi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Ruopeng Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Min Yu
- Laboratory of Biochemistry and Molecular Biology, College of Life Sciences, Yunnan University, Kunming, China
| | - Jinghua Zhou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Yuanqian Pu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory of Clinical Biochemistry Test of Yunnan Province, College of Basic Medical Sciences, Dali University, Dali, China
| |
Collapse
|
18
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
19
|
Li J, Zhang D, Wang S, Yu P, Sun J, Zhang Y, Meng X, Li J, Xiang L. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer. J Adv Res 2024:S2090-1232(24)00085-7. [PMID: 38432394 DOI: 10.1016/j.jare.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/29/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024] Open
Abstract
INTRODUCTION Baicalein, a bioactive component of Scutellaria baicalensis Georgi, has been shown to promote apoptosis in non-small cell lung cancer cells. However, previous studies have not determined if baicalein exerts proapoptotic effects by modulating the metabolic pathways. OBJECTIVE To investigate if baicalein induces apoptosis in lung cancer cells by modulating the glutamine-mTOR metabolic pathway. METHODS The in vivo anti-lung cancer activity of baicalein (50, 100, and 200 mg/kg) was evaluated using a xenograft model. In vitro experiments were used to assess the efficacy of baicalein (for H1299: 12.5, 25, and 50 μM; for A549: 10, 20, and 40 μM) on lung cancer cell proliferation, colony formation, and apoptosis. Metabolomics analysis was performed using liquid chromatography-mass spectrometry. The binding of baicalein to glutamine transporters and glutaminase was examined using molecular docking. The overexpression of glutamine transporters was validated using qRT-PCR and western blot analyses. The levels of ASCT2, LAT1, GLS1, p-mTOR, mTOR, and apoptosis-related proteins were evaluated using western blot analysis. RESULTS Baicalein inhibited lung cancer xenograft tumor growth in vivo and suppressed proliferation and promoted apoptosis in lung cancer cells in vitro. Additionally, baicalein altered amino acid metabolites, especially glutamine metabolites, in H1299 and A549 cells. Mechanistically, baicalein interacted with glutamine transporters as well as glutaminase and inhibited their activation. The expression of mTOR, an apoptosis-related protein and downstream target of glutamine metabolism, was also inhibited by baicalein treatment. Importantly, we next demonstrated the suppression of mTOR signaling and the induction of apoptosis by baicalein were achieved by regulating glutamine metabolism. CONCLUSION Baicalein inhibited the mTOR signaling pathway and induced apoptosis by downregulating glutamine metabolism. The potential of baicalein to induce apoptosis in lung cancer cells by selectively targeting the glutamine-mTOR pathway suggests an encouraging approach for treating lung cancer.
Collapse
Affiliation(s)
- Jingyang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Di Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peng Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiayi Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Juan Li
- Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China.
| | - Li Xiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Menyhárt O, Győrffy B. Dietary approaches for exploiting metabolic vulnerabilities in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189062. [PMID: 38158024 DOI: 10.1016/j.bbcan.2023.189062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Renewed interest in tumor metabolism sparked an enthusiasm for dietary interventions to prevent and treat cancer. Changes in diet impact circulating nutrient levels in the plasma and the tumor microenvironment, and preclinical studies suggest that dietary approaches, including caloric and nutrient restrictions, can modulate tumor initiation, progression, and metastasis. Cancers are heterogeneous in their metabolic dependencies and preferred energy sources and can be addicted to glucose, fructose, amino acids, or lipids for survival and growth. This dependence is influenced by tumor type, anatomical location, tissue of origin, aberrant signaling, and the microenvironment. This review summarizes nutrient dependencies and the related signaling pathway activations that provide targets for nutritional interventions. We examine popular dietary approaches used as adjuvants to anticancer therapies, encompassing caloric restrictions, including time-restricted feeding, intermittent fasting, fasting-mimicking diets (FMDs), and nutrient restrictions, notably the ketogenic diet. Despite promising results, much of the knowledge on dietary restrictions comes from in vitro and animal studies, which may not accurately reflect real-life situations. Further research is needed to determine the optimal duration, timing, safety, and efficacy of dietary restrictions for different cancers and treatments. In addition, well-designed human trials are necessary to establish the link between specific metabolic vulnerabilities and targeted dietary interventions. However, low patient compliance in clinical trials remains a significant challenge.
Collapse
Affiliation(s)
- Otília Menyhárt
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Balázs Győrffy
- Semmelweis University, Department of Bioinformatics, Tűzoltó u. 7-9, H-1094 Budapest, Hungary; Research Centre for Natural Sciences, Cancer Biomarker Research Group, Institute of Enzymology, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2, H-1117 Budapest, Hungary.
| |
Collapse
|
21
|
Sheikhshabani SH, Modarres P, Ghafouri‐Fard S, Amini‐Farsani Z, Khodaee L, Shaygan N, Amini‐Farsani Z, Omrani MD. Meta-analysis of microarray data to determine gene indicators involved in cisplatin resistance in non-small cell lung cancer. Cancer Rep (Hoboken) 2024; 7:e1970. [PMID: 38351531 PMCID: PMC10864718 DOI: 10.1002/cnr2.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/02/2023] [Accepted: 12/28/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Lung cancer is a major cause of cancer-related mortality worldwide, with a 5-year survival rate of approximately 22%. Cisplatin is one of the standard first-line chemotherapeutic agents for non-small cell lung cancer (NSCLC), but its efficacy is often limited by the development of resistance. Despite extensive research on the molecular mechanisms of chemoresistance, the underlying causes remain elusive and complex. AIMS We analyzed three microarray datasets to find the gene signature and key pathways related to cisplatin resistance in NSCLC. METHODS AND RESULTS We compared the gene expression of sensitive and resistant NSCLC cell lines treated with cisplatin. We found 274 DEGs, including 111 upregulated and 163 downregulated genes, in the resistant group. Gene set enrichment analysis showed the potential roles of several DEGs, such as TUBB2B, MAPK7, TUBAL3, MAP2K5, SMUG1, NTHL1, PARP3, NTRK1, G6PD, PDK1, HEY1, YTHDF2, CD274, and MAGEA1, in cisplatin resistance. Functional analysis revealed the involvement of pathways, such as gap junction, base excision repair, central carbon metabolism, and Notch signaling in the resistant cell lines. CONCLUSION We identified several molecular factors that contribute to cisplatin resistance in NSCLC cell lines, involving genes and pathways that regulate gap junction communication, DNA damage repair, ROS balance, EMT induction, and stemness maintenance. These genes and pathways could be targets for future studies to overcome cisplatin resistance in NSCLC.
Collapse
Affiliation(s)
| | - Paratoo Modarres
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Soudeh Ghafouri‐Fard
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zeinab Amini‐Farsani
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Lavin Khodaee
- Department of Biotechnology and Plant BreedingIslamic Azad University Science and Research BranchTehranIran
| | - Nasibeh Shaygan
- Department of Medical GeneticsShahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Amini‐Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of StatisticsLudwig‐Maximilian‐Universität MünchenMunichGermany
- Department of StatisticsLorestan UniversityKhorramabadIran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research CenterShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
22
|
Li N, Chamkha I, Verma G, Swoboda S, Lindstedt M, Greiff L, Elmér E, Ehinger J. Human papillomavirus-associated head and neck squamous cell carcinoma cells rely on glycolysis and display reduced oxidative phosphorylation. Front Oncol 2024; 13:1304106. [PMID: 38273844 PMCID: PMC10808639 DOI: 10.3389/fonc.2023.1304106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Head and neck squamous cell carcinoma (HNSCC) constitutes a heterogeneous group of cancers. Human papilloma virus (HPV) is associated with a subtype of HNSCC with a better response to treatment and more favorable prognosis. Mitochondrial function and metabolism vary depending on cancer type and can be related to tumor aggressiveness. This study aims to characterize the metabolism of HPV-positive and HPV-negative HNSCC cell lines. Methods Oxidative phosphorylation (OXPHOS) and glycolysis were assessed in intact cells, in four HNSCC cell lines using Seahorse XF Analyzer. OXPHOS was further studied in permeabilized cells using high-resolution respirometry in an Oroboros O2K. Metabolomic analysis was performed using mass spectroscopy. Results The HPV-negative cell lines were found to display a higher OXPHOS capacity and were also able to upregulate glycolysis when needed. The HPV-positive cell line had a higher basal glycolytic rate but lower spare OXPHOS capacity. These cells were also unable to increase respiration in response to succinate, unlike the HPV-negative cells. In the metabolomic analysis, the HPV-positive cells showed a higher kynurenine/tryptophan ratio. Discussion HPV-positive HNSCC preferred glycolysis to compensate for lower OXPHOS reserves, while the HPV-negative HNSCC displayed a more versatile metabolism, which might be related to increased tumor aggressiveness. The higher kynurenine/tryptophan ratio of HPV-positive HNSCC might be related to increased indoleamine 2,3-dioxygenase activity due to the carcinoma's viral origin. This study highlights important metabolic differences between HPV-positive and HPV-negative cancers and suggests that future metabolic targets for cancer treatment should be individualized based on specific tumor metabolism.
Collapse
Affiliation(s)
- Nora Li
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Imen Chamkha
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Gaurav Verma
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sabine Swoboda
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Lennart Greiff
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johannes Ehinger
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences Lund, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Tian T, Leng Y, Tang B, Dong X, Ren Q, Liang J, Liu T, Liu Y, Feng W, Liu S, Zhou Y, Zhao H, Shen L. The oncogenic role and regulatory mechanism of PGK1 in human non-small cell lung cancer. Biol Direct 2024; 19:1. [PMID: 38163864 PMCID: PMC10759362 DOI: 10.1186/s13062-023-00448-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Phosphoglycerate kinase 1 (PGK1) is a metabolic enzyme that participates in various biological and pathological processes. Dysregulated PGK1 has been observed in numerous malignancies. However, whether and how PGK1 affects non-small cell lung cancer (NSCLC) is not yet fully elucidated. METHODS Herein, the non-metabolic function of PGK1 in NSCLC was explored by integrating bioinformatics analyses, cellular experiments, and nude mouse xenograft models. The upstream regulators and downstream targets of PGK1 were examined using multiple techniques such as RNA sequencing, a dual-luciferase reporter assay, Co-immunoprecipitation, and Western blotting. RESULTS We confirmed that PGK1 was upregulated in NSCLC and this upregulation was associated with poor prognosis. Further in vitro and in vivo experiments demonstrated the promoting effects of PGK1 on NSCLC cell growth and metastasis. Additionally, we discovered that PGK1 interacted with and could be O-GlcNAcylated by OGT. The inhibition of PGK1 O-GlcNAcylation through OGT silencing or mutation at the T255 O-GlcNAcylation site could weaken PGK1-mediated NSCLC cell proliferation, colony formation, migration, and invasion. We also found that a low miR-24-3p level led to an increase in OGT expression. Additionally, PGK1 exerted its oncogenic properties by augmenting ERK phosphorylation and MCM4 expression. CONCLUSIONS PGK1 acted as a crucial mediator in controlling NSCLC progression. The miR-24-3p/OGT axis was responsible for PGK1 O-GlcNAcylation, and ERK/MCM4 were the downstream effectors of PGK1. It appears that PGK1 might be an attractive therapeutic target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Tian Tian
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yahui Leng
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Bingbing Tang
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiaoxia Dong
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Qiulei Ren
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Jingyin Liang
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Tianhui Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yanni Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Wenxiao Feng
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Song Liu
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Yang Zhou
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Hongyan Zhao
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| | - Li Shen
- Department of Biochemistry, School of Basic Medicine, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
24
|
Jiang W, Xu Z, Huang L, Qin F, Yuan L, Sun Y, Qin J, Deng K, Zheng T, Long X, Li S. Construction of 11 metabolic-related lncRNAs to predict the prognosis in lung adenocarcinoma. BMC Med Genomics 2023; 16:330. [PMID: 38110999 PMCID: PMC10726503 DOI: 10.1186/s12920-023-01764-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE To explore the metabolism-related lncRNAs in the tumorigenesis of lung adenocarcinoma. METHODS The transcriptome data and clinical information about lung adenocarcinoma patients were acquired in TCGA (The Cancer Genome Atlas). Metabolism-related genes were from the GSEA (Gene Set Enrichment Analysis) database. Through differential expression analysis and Pearson correlation analysis, lncRNAs about lung adenocarcinoma metabolism were identified. The samples were separated into the training and validation sets in the proportion of 2:1. The prognostic lncRNAs were determined by univariate Cox regression analysis and LASSO (Least absolute shrinkage and selection operator) regression. A risk model was built using Multivariate Cox regression analysis, evaluated by the internal validation data. The model prediction ability was assessed by subgroup analysis. The Nomogram was constructed by combining clinical indicators with independent prognostic significance and risk scores. C-index, calibration curve, DCA (Decision Curve Analysis) clinical decision and ROC (Receiver Operating Characteristic Curve) curves were obtained to assess the prediction ability of the model. Based on the CIBERSORT analysis, the correlation between lncRNAs and tumor infiltrating lymphocytes was obtained. RESULTS From 497 lung adenocarcinoma and 54 paracancerous samples, 233 metabolic-related and 11 prognostic-related lncRNAs were further screened. According to the findings of the survival study, the low-risk group had a greater OS (Overall survival) than the high-risk group. ROC analysis indicated AUC (Area Under Curve) value was 0.726. Then, a nomogram with T, N stage and risk ratings was developed according to COX regression analysis. The C-index was 0.743, and the AUC values of 3- and 5-year survival were 0.741 and 0.775, respectively. The above results suggested the nomogram had a good prediction ability. The results based on the CIBERSORT algorithm demonstrated the lncRNAs used to construct the model had a strong correlation with the polarization of immune cells. CONCLUSIONS The study identified 11 metabolic-related lncRNAs for lung adenocarcinoma prognosis, on which basis a prognostic risk scoring model was created. This model may have a good predictive potential for lung adenocarcinoma.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Zhanyu Xu
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Liuliu Huang
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Fanglu Qin
- Department of Scientific Research, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Liqiang Yuan
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu Sun
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Junqi Qin
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Kun Deng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Tiaozhan Zheng
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiaomao Long
- Department of Cardiothoracic vascular Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region (Guangxi academy of medical sciences), Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Shikang Li
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| |
Collapse
|
25
|
Bartman CR, Faubert B, Rabinowitz JD, DeBerardinis RJ. Metabolic pathway analysis using stable isotopes in patients with cancer. Nat Rev Cancer 2023; 23:863-878. [PMID: 37907620 PMCID: PMC11161207 DOI: 10.1038/s41568-023-00632-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 11/02/2023]
Abstract
Metabolic reprogramming is central to malignant transformation and cancer cell growth. How tumours use nutrients and the relative rates of reprogrammed pathways are areas of intense investigation. Tumour metabolism is determined by a complex and incompletely defined combination of factors intrinsic and extrinsic to cancer cells. This complexity increases the value of assessing cancer metabolism in disease-relevant microenvironments, including in patients with cancer. Stable-isotope tracing is an informative, versatile method for probing tumour metabolism in vivo. It has been used extensively in preclinical models of cancer and, with increasing frequency, in patients with cancer. In this Review, we describe approaches for using in vivo isotope tracing to define fuel preferences and pathway engagement in tumours, along with some of the principles that have emerged from this work. Stable-isotope infusions reported so far have revealed that in humans, tumours use a diverse set of nutrients to supply central metabolic pathways, including the tricarboxylic acid cycle and amino acid synthesis. Emerging data suggest that some activities detected by stable-isotope tracing correlate with poor clinical outcomes and may drive cancer progression. We also discuss current challenges in isotope tracing, including comparisons of in vivo and in vitro models, and opportunities for future discovery in tumour metabolism.
Collapse
Affiliation(s)
- Caroline R Bartman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Brandon Faubert
- Department of Medicine, Section of Hematology/Oncology, University of Chicago, Chicago, IL, USA
| | - Joshua D Rabinowitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute and Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Shen X, Dong P, Kong J, Sun N, Wang F, Sang L, Xu Y, Zhang M, Chen X, Guo R, Wang S, Lin Q, Jiang Z, Xu S, Zhang C, Bian Z, Wang W, Guo R. Targeted single-cell RNA sequencing analysis reveals metabolic reprogramming and the ferroptosis-resistant state in hematologic malignancies. Cell Biochem Funct 2023; 41:1343-1356. [PMID: 37823726 DOI: 10.1002/cbf.3869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Hematologic malignancies are the most common hematopoietic diseases and a major public health concern. However, the mechanisms underlying myeloid tumors remain unknown owing to the intricate interplay between mutations and diverse clonal evolution patterns, as evidenced by the analysis of bulk cell-derived omics data. Several single-cell omics techniques have been used to characterize the hierarchies and altered immune microenvironments of hematologic malignancies. The comprehensive single-cell atlas of hematologic malignancies provides novel opportunities for personalized combinatorial targeted treatments, avoiding unwanted chemo-toxicity. In the present study, we performed transcriptome sequencing by combining single-cell RNA sequencing (scRNA-seq) with a targeted oncogenic gene panel for acute myeloid leukemia, overcoming the limitations of scRNA-seq in detecting oncogenic mutations. The distribution of oncogenic IDH1, IDH2, and KRAS mutations in each cell type was identified in the bone marrow (BM) samples of each patient. Our findings suggest that ferroptosis and metabolic reprogramming are involved in the tumorigenesis and chemotherapy resistance of oncogenic mutation-carrying cells. Biological progression via IDH1, IDH2, and KRAS mutations arrests hematopoietic maturation. Our study findings provide a rationale for using primary BM cells for personalized treatment in clinical settings.
Collapse
Affiliation(s)
- Xiaohui Shen
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peiyuan Dong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Nannan Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lina Sang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Xu
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, China
| | - Rong Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quande Lin
- Department of Hematology, The Afliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Zhongxing Jiang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Congli Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhilei Bian
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Weimin Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Rongqun Guo
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Li X, Ma W, Liu H, Wang D, Su L, Yang X. Integrative pan-cancer analysis of cuproplasia-associated genes for the genomic and clinical characterization of 33 tumors. Chin Med J (Engl) 2023; 136:2621-2631. [PMID: 37027423 PMCID: PMC10617821 DOI: 10.1097/cm9.0000000000002343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND The molecular mechanisms driving tumorigenesis have continually been the focus of researchers. Cuproplasia is defined as copper-dependent cell growth and proliferation, including its primary and secondary roles in tumor formation and proliferation through signaling pathways. In this study, we analyzed the differences in the expression of cuproplasia-associated genes (CAGs) in pan-cancerous tissues and investigated their role in immune-regulation and tumor prognostication. METHODS Raw data from 11,057 cancer samples were acquired from multiple databases. Pan-cancer analysis was conducted to analyze the CAG expression, single-nucleotide variants, copy number variants, methylation signatures, and genomic signatures of micro RNA (miRNA)-messenger RNA (mRNA) interactions. The Genomics of Drug Sensitivity in Cancer and the Cancer Therapeutics Response Portal databases were used to evaluate drug sensitivity and resistance against CAGs. Using single-sample Gene Set Enrichment Analysis (ssGSEA) and Immune Cell Abundance Identifier database, immune cell infiltration was analyzed with the ssGSEA score as the standard. RESULTS Aberrantly expressed CAGs were found in multiple cancers. The frequency of single-nucleotide variations in CAGs ranged from 1% to 54% among different cancers. Furthermore, the correlation between CAG expression in the tumor microenvironment and immune cell infiltration varied among different cancers. ATP7A and ATP7B were negatively correlated with macrophages in 16 tumors including breast invasive carcinoma and esophageal carcinoma, while the converse was true for MT1A and MT2A . In addition, we established cuproplasia scores and demonstrated their strong correlation with patient prognosis, immunotherapy responsiveness, and disease progression ( P <0.05). Finally, we identified potential candidate drugs by matching gene targets with existing drugs. CONCLUSIONS This study reports the genomic characterization and clinical features of CAGs in pan-cancers. It helps clarify the relationship between CAGs and tumorigenesis, and may be helpful in the development of biomarkers and new therapeutic agents.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Weining Ma
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Hui Liu
- Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200060, China
| | - Deming Wang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Lixin Su
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| | - Xitao Yang
- Department of Interventional Therapy, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China
| |
Collapse
|
28
|
Kou F, Wu L, Zheng Y, Yi Y, Ji Z, Huang Z, Guo S, Yang L. HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma. Oncogene 2023; 42:3407-3421. [PMID: 37794134 DOI: 10.1038/s41388-023-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
High-mobility group box 1 (HMGB1) can enhance the stability and accessibility of nucleus binding sites to nucleosomes and transcription factors. Recently, HMGB1 has been recognized as a positive regulator of tumor glutamine, and its overexpression has been correlated with tumorigenesis and cancer progression. However, functions and mechanisms of HMGB1 in regulation of glycolysis during cancer progression in lung adenocarcinoma (LUAD) is still unclear. Here, we found that intracellular HMGB1 was consistently upregulated in LUAD specimens, and positively relevant to tumor grade and poor survival. HMGB1 facilitated glycolysis and promoted metastasis through physical interaction with SET and HAT1, forming HMGB1/SET/HAT1 complex that inhibited H3K9 and H3K27 acetylation in LUAD. The functional proteins complex coordinated histone modification to suppress the expression of SASH1, thus further facilitating glycolysis and inducing the metastasis in vitro and in vivo. Consistent with this, the expression of SASH1 was negatively correlated with HMGB1, SET and GLUT1, and positively correlated with HAT1 in human LUAD specimens. Clinically, LUAD patients with high expression of HMGB1 and low expression of SASH1 exhibited the worst clinical outcomes. Overall, the findings of this study revealed the critical role of HMGB1 in glycolysis and metastasis by attenuating H3K9ace and H3K27ace through physical interacted with SET and HAT1, which may facilitate future targeted therapies.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Zhenyu Ji
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shiwei Guo
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
29
|
Ma Z, Wang L, Huang X, Ji H, Wang H, Yang Y, Ma Y, Chen J. Construction of the metabolism-related models for predicting prognosis and infiltrating immune phenotype in lung squamous cell carcinoma. J Cancer 2023; 14:3539-3549. [PMID: 38021151 PMCID: PMC10647197 DOI: 10.7150/jca.86942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/07/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose: Cancers often display disorder metabolism, which closely related to the poor outcome of patients. We aimed to establish prognostic models using metabolism-associated genes, and identify the key factor involved in metabolism in lung squamous cell carcinoma (LUSC). Materials and Methods: R package 'TCGA biolinks' was used to download the mRNA sequencing data of LUSC from TCGA. The clusterProfiler package was performed to analyze biological pathways. The online tool GEPIA2 and cox regression method were applied to identify the two gene lists associated with metabolism and prognosis of LUSC. The lasso modeling was conducted to establish prognostic models. The quantiseq method was used to identify the cellular abundance of expression matrix in TCGA-LUSC dataset. Immunohistochemistry and western blotting were done to evaluate the STXBP1 expression in LUSC samples. Lactate assay and ATP detection were performed to assess metabolic effect, and CCK8 assay was done to test cell proliferation in the LUSC cells with overexpression and suppression of STXBP1. Results: Two lists of survival-metabolism-associated genes (11 and 28 genes) were identified and applied in the prognostic model 1 and model 2 construction from TCGA-LUSC dataset. High-risk LUSC patients associated with poor survival in the training cohort and the test cohort of both model 1 and model 2. Higher ROC values for 10- year survival was shown in model 2 than in model 1. In addition, macrophage M1, macrophage M2, neutrophil, and T regulatory cell were enriched in the high-risk group of model 2. STXBP1 was the only optimized gene in both model 1 and model 2, and related to the poor outcome of LUSC patients. Furthermore, STXBP1 associated with infiltrating immune cells, and increased lactate, ATP levels, and cell proliferation. Conclusion: Our finding provides the metabolism-associated models to predict prognosis of LUSC patients. STXBP1, as the key optimized gene in the model, promotes metabolic progress to increase lactate and ATP levels in LUSC cells.
Collapse
Affiliation(s)
- Zeming Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Liang Wang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Xiaoyun Huang
- Department of Computational Oncology, Intelliphecy, Shenzhen, China; Center for Systems Biology, Intelliphecy, Shenzhen, China
| | - Hong Ji
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 100142, People's Republic of China
| | - Haoyang Wang
- Beijing International Bilingual Academy, People's Republic of China
| | - Yue Yang
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Yuanyuan Ma
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| | - Jinfeng Chen
- Department of Thoracic Surgery II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, 100142, People's Republic of China
| |
Collapse
|
30
|
Fuller H, Zhu Y, Nicholas J, Chatelaine HA, Drzymalla EM, Sarvestani AK, Julián-Serrano S, Tahir UA, Sinnott-Armstrong N, Raffield LM, Rahnavard A, Hua X, Shutta KH, Darst BF. Metabolomic epidemiology offers insights into disease aetiology. Nat Metab 2023; 5:1656-1672. [PMID: 37872285 PMCID: PMC11164316 DOI: 10.1038/s42255-023-00903-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Metabolomic epidemiology is the high-throughput study of the relationship between metabolites and health-related traits. This emerging and rapidly growing field has improved our understanding of disease aetiology and contributed to advances in precision medicine. As the field continues to develop, metabolomic epidemiology could lead to the discovery of diagnostic biomarkers predictive of disease risk, aiding in earlier disease detection and better prognosis. In this Review, we discuss key advances facilitated by the field of metabolomic epidemiology for a range of conditions, including cardiometabolic diseases, cancer, Alzheimer's disease and COVID-19, with a focus on potential clinical utility. Core principles in metabolomic epidemiology, including study design, causal inference methods and multi-omic integration, are briefly discussed. Future directions required for clinical translation of metabolomic epidemiology findings are summarized, emphasizing public health implications. Further work is needed to establish which metabolites reproducibly improve clinical risk prediction in diverse populations and are causally related to disease progression.
Collapse
Affiliation(s)
- Harriett Fuller
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiwen Zhu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jayna Nicholas
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Haley A Chatelaine
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Emily M Drzymalla
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Afrand K Sarvestani
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | | | - Usman A Tahir
- Department of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ali Rahnavard
- Computational Biology Institute, Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC, USA
| | - Xinwei Hua
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Katherine H Shutta
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Burcu F Darst
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
31
|
Minami JK, Morrow D, Bayley NA, Fernandez EG, Salinas JJ, Tse C, Zhu H, Su B, Plawat R, Jones A, Sammarco A, Liau LM, Graeber TG, Williams KJ, Cloughesy TF, Dixon SJ, Bensinger SJ, Nathanson DA. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 2023; 41:1048-1060.e9. [PMID: 37236196 PMCID: PMC10330677 DOI: 10.1016/j.ccell.2023.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.
Collapse
Affiliation(s)
- Jenna K Minami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle Morrow
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer J Salinas
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baolong Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rhea Plawat
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony Jones
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Sammarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Wang S, Liu B, Huang J, He H, Li L, Tao A. Cell-in-cell promotes lung cancer malignancy by enhancing glucose metabolism through mitochondria transfer. Exp Cell Res 2023:113665. [PMID: 37236579 DOI: 10.1016/j.yexcr.2023.113665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
Heterotypic cell-in-cell structure (CICs) is the definition of the entry of one type of living cells into another type of cell. CICs between immune cells and tumor cells have been found to correlate with malignancy in many cancers. Since tumor immune microenvironment promotes non-small cell lung cancer (NSCLC) progression and drug resistance, we wondered the potential significance of heterotypic CICs in NSCLC. Heterotypic CICs was analyzed by histochemistry in an expanded spectrum of clinical lung cancer tissue specimens. In vitro study was performed using the mouse lung cancer cell line LLC and splenocytes. Our results revealed that CICs formed by lung cancer cells and infiltrated lymphocytes were correlated with malignancy of NSCLC. In addition, we found CICs mediated the transfer of lymphocyte mitochondria to tumor cells, and promoted cancer cell proliferation and anti-cytotoxicity by activating MAPK pathway and up-regulating PD-L1 expression. Furthermore, CICs induces glucose metabolism reprogramming of lung cancer cells by upregulating glucose intake and glycolytic enzyme. Our findings suggest that CICs formed by lung cancer cell and lymphocyte contribute to NSCLC progression and reprogramming of glucose metabolism, and might represent a previously undescribed pathway for drug resistance of NSCLC.
Collapse
Affiliation(s)
- Shan Wang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Bowen Liu
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Jiahao Huang
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Huiru He
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Linmei Li
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China
| | - Ailin Tao
- The Second Affiliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Center for Inflammation, Immunology & Immune-mediated Disease, Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
33
|
Schwaiger-Haber M, Stancliffe E, Anbukumar DS, Sells B, Yi J, Cho K, Adkins-Travis K, Chheda MG, Shriver LP, Patti GJ. Using mass spectrometry imaging to map fluxes quantitatively in the tumor ecosystem. Nat Commun 2023; 14:2876. [PMID: 37208361 DOI: 10.1038/s41467-023-38403-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023] Open
Abstract
Tumors are comprised of a multitude of cell types spanning different microenvironments. Mass spectrometry imaging (MSI) has the potential to identify metabolic patterns within the tumor ecosystem and surrounding tissues, but conventional workflows have not yet fully integrated the breadth of experimental techniques in metabolomics. Here, we combine MSI, stable isotope labeling, and a spatial variant of Isotopologue Spectral Analysis to map distributions of metabolite abundances, nutrient contributions, and metabolic turnover fluxes across the brains of mice harboring GL261 glioma, a widely used model for glioblastoma. When integrated with MSI, the combination of ion mobility, desorption electrospray ionization, and matrix assisted laser desorption ionization reveals alterations in multiple anabolic pathways. De novo fatty acid synthesis flux is increased by approximately 3-fold in glioma relative to surrounding healthy tissue. Fatty acid elongation flux is elevated even higher at 8-fold relative to surrounding healthy tissue and highlights the importance of elongase activity in glioma.
Collapse
Affiliation(s)
- Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Ethan Stancliffe
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Dhanalakshmi S Anbukumar
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Blake Sells
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jia Yi
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kevin Cho
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Kayla Adkins-Travis
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Leah P Shriver
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA.
- Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
34
|
Wu Z, Bezwada D, Harris RC, Pan C, Nguyen PT, Faubert B, Cai L, Cai F, Vu HS, Chen H, Sandoval MM, Do D, Gu W, Zhang Y, Ko B, Brooks B, Kelekar S, Zhang Y, Zacharias LG, Oaxaca KC, Mathews TP, Garcia-Bermudez J, Ni M, DeBerardinis RJ. Electron transport chain inhibition increases cellular dependence on purine transport and salvage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540429. [PMID: 37214913 PMCID: PMC10197673 DOI: 10.1101/2023.05.11.540429] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cancer cells reprogram their metabolism to support cell growth and proliferation in harsh environments. While many studies have documented the importance of mitochondrial oxidative phosphorylation (OXPHOS) in tumor growth, some cancer cells experience conditions of reduced OXPHOS in vivo and induce alternative metabolic pathways to compensate. To assess how human cells respond to mitochondrial dysfunction, we performed metabolomics in fibroblasts and plasma from patients with inborn errors of mitochondrial metabolism, and in cancer cells subjected to inhibition of the electron transport chain (ETC). All these analyses revealed extensive perturbations in purine-related metabolites; in non-small cell lung cancer (NSCLC) cells, ETC blockade led to purine metabolite accumulation arising from a reduced cytosolic NAD + /NADH ratio (NADH reductive stress). Stable isotope tracing demonstrated that ETC deficiency suppressed de novo purine nucleotide synthesis while enhancing purine salvage. Analysis of NSCLC patients infused with [U- 13 C]glucose revealed that tumors with markers of low oxidative mitochondrial metabolism exhibited high expression of the purine salvage enzyme HPRT1 and abundant levels of the HPRT1 product inosine monophosphate (IMP). ETC blockade also induced production of ribose-5' phosphate (R5P) by the pentose phosphate pathway (PPP) and import of purine nucleobases. Blocking either HPRT1 or nucleoside transporters sensitized cancer cells to ETC inhibition, and overexpressing nucleoside transporters was sufficient to drive growth of NSCLC xenografts. Collectively, this study mechanistically delineates how cells compensate for suppressed purine metabolism in response to ETC blockade, and uncovers a new metabolic vulnerability in tumors experiencing NADH excess.
Collapse
|
35
|
Cao Y, Dai Z, Xie G, Liu G, Guo L, Zhang J. A novel metabolic-related gene signature for predicting clinical prognosis and immune microenvironment in head and neck squamous cell carcinoma. Exp Cell Res 2023; 428:113628. [PMID: 37149080 DOI: 10.1016/j.yexcr.2023.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
OBJECTIVES Metabolic reprogramming is not only an essential hallmark in the progression of head and neck squamous cell carcinoma (HNSCC), but also an important regulator of cancer cell adaptation to tumor microenvironment (TME). However, the potential mechanism of metabolic reprogramming in TME of HNSCC is still unknown. METHODS The head and neck squamous cell carcinoma with survival information were obtained the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The metabolic-related genes were identified by differential analysis and survival analysis. Univariate and multivariate Cox regression analyses were applied to determine an overall estimate of metabolic-related risk signature and related clinical parameters. The sensitivity and specificity of the risk signature were evaluated by time-dependent receiver operation characteristic (ROC) curves. TME immune cell infiltration mediated by metabolic-related genes was explored by gene set enrichment analysis (GSEA) and correlation analysis. RESULTS Seven metabolic-related genes (SMS, MTHFD2, HPRT1, DNMT1, PYGL, ADA, and P4HA1) were identified to develop a metabolic-related risk signature. The low-risk group had a better overall survival compared to that of the high-risk group in the TCGA and GSE65858 cohorts. The AUCs for 1-, 3-, and 5-year overall survival were 0.646 vs. 0.673, 0.694 vs. 0.639, and 0.673 vs. 0.573, respectively. The AUC vale of risk score was 0.727 vs. 0.673. The low-risk group was associated with immune cell infiltration in the TME. CONCLUSIONS The metabolic-related risk signature were constructed and validated, which could involve in regulating the immune cell infiltration in the TME and act as an independent biomarker that predicted the prognosis of HNSCC.
Collapse
Affiliation(s)
- Yongxin Cao
- Department of Oncology, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zili Dai
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Guofeng Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Guihong Liu
- Department of Radiation Oncology, Dongguan Tungwah Hospital, Dongguan, China
| | - Liyi Guo
- Department of Oncology and Hematology, The Six People's Hospital of Huizhou City, Huiyang Hospital Affiliated to Southern Medical University, Huizhou, China.
| | - Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China; Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Abstract
The uptake and metabolism of nutrients support fundamental cellular process from bioenergetics to biomass production and cell fate regulation. While many studies of cell metabolism focus on cancer cells, the principles of metabolism elucidated in cancer cells apply to a wide range of mammalian cells. The goal of this review is to discuss how the field of cancer metabolism provides a framework for revealing principles of cell metabolism and for dissecting the metabolic networks that allow cells to meet their specific demands. Understanding context-specific metabolic preferences and liabilities will unlock new approaches to target cancer cells to improve patient care.
Collapse
Affiliation(s)
- Lydia W S Finley
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
37
|
Stein BD, Ferrarone JR, Gardner EE, Chang JW, Wu D, Hollstein PE, Liang RJ, Yuan M, Chen Q, Coukos JS, Sindelar M, Ngo B, Gross SS, Shaw RJ, Zhang C, Asara JM, Moellering RE, Varmus H, Cantley LC. LKB1-Dependent Regulation of TPI1 Creates a Divergent Metabolic Liability between Human and Mouse Lung Adenocarcinoma. Cancer Discov 2023; 13:1002-1025. [PMID: 36715544 PMCID: PMC10068449 DOI: 10.1158/2159-8290.cd-22-0805] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/14/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
KRAS is the most frequently mutated oncogene in human lung adenocarcinomas (hLUAD), and activating mutations frequently co-occur with loss-of-function mutations in TP53 or STK11/LKB1. However, mutation of all three genes is rarely observed in hLUAD, even though engineered comutation is highly aggressive in mouse lung adenocarcinoma (mLUAD). Here, we provide a mechanistic explanation for this difference by uncovering an evolutionary divergence in the regulation of triosephosphate isomerase (TPI1). In hLUAD, TPI1 activity is regulated via phosphorylation at Ser21 by the salt inducible kinases (SIK) in an LKB1-dependent manner, modulating flux between the completion of glycolysis and production of glycerol lipids. In mice, Ser21 of TPI1 is a Cys residue that can be oxidized to alter TPI1 activity without a need for SIKs or LKB1. Our findings suggest this metabolic flexibility is critical in rapidly growing cells with KRAS and TP53 mutations, explaining why the loss of LKB1 creates a liability in these tumors. SIGNIFICANCE Utilizing phosphoproteomics and metabolomics in genetically engineered human cell lines and genetically engineered mouse models (GEMM), we uncover an evolutionary divergence in metabolic regulation within a clinically relevant genotype of human LUAD with therapeutic implications. Our data provide a cautionary example of the limits of GEMMs as tools to study human diseases such as cancers. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Benjamin D. Stein
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - John R. Ferrarone
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Eric E. Gardner
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Jae Won Chang
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - David Wu
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Pablo E. Hollstein
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Roger J. Liang
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Min Yuan
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - John S. Coukos
- Department of Chemistry, University of Chicago, Chicago, Illinois
| | - Miriam Sindelar
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Bryan Ngo
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, New York
| | - Reuben J. Shaw
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California
| | - Chen Zhang
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - John M. Asara
- Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | | | - Harold Varmus
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lewis C. Cantley
- Sandra and Edward Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, New York
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Zhu G, Zhang W, Zhao Y, Chen T, Yuan H, Liu Y, Guo G, Liu Z, Wang X. Single-Cell Metabolomics-Based Strategy for Studying the Mechanisms of Drug Action. Anal Chem 2023; 95:4712-4720. [PMID: 36857711 DOI: 10.1021/acs.analchem.2c05351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Studying the mechanisms of drug antitumor activity at the single-cell level can provide information about the responses of cell subpopulations to drug therapy, which is essential for the accurate treatment of cancer. Due to the small size of single cells and the low contents of metabolites, metabolomics-based approaches to studying the mechanisms of drug action at the single-cell level are lacking. Herein, we develop a label-free platform for studying the mechanisms of drug action based on single-cell metabolomics (sMDA-scM) by integrating intact living-cell electro-launching ionization mass spectrometry (ILCEI-MS) with metabolomics analysis. Using this platform, we reveal that non-small-cell lung cancer (NSCLC) cells treated by gefitinib can be clustered into two cell subpopulations with different metabolic responses. The glutathione metabolic pathway of the subpopulation containing 14.4% of the cells is not significantly affected by gefitinib, exhibiting certain resistance characteristics. The presence of these cells masked the judgment of whether cysteine and methionine metabolic pathway was remarkably influenced in the analysis of overall average results, revealing the heterogeneity of the response of single NSCLC cells to gefitinib treatment. The findings provide a basis for evaluating the early therapeutic effects of clinical medicines and insights for overcoming drug resistance in NSCLC subpopulations.
Collapse
Affiliation(s)
- Guizhen Zhu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Wenmei Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Yaoyao Zhao
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Tian Chen
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Hanyu Yuan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Yuanxing Liu
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China.,Minzu University of China, Beijing 100081, China
| | - Zhihong Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
39
|
Abstract
Tumours exhibit notable metabolic alterations compared with their corresponding normal tissue counterparts. These metabolic alterations can support anabolic growth, enable survival in hostile environments and regulate gene expression programmes that promote malignant progression. Whether these metabolic changes are selected for during malignant transformation or can themselves be drivers of tumour initiation is unclear. However, intriguingly, many of the major bottlenecks for tumour initiation - control of cell fate, survival and proliferation - are all amenable to metabolic regulation. In this article, we review evidence demonstrating a critical role for metabolic pathways in processes that support the earliest stages of tumour development. We discuss how cell-intrinsic factors, such as the cell of origin or transforming oncogene, and cell-extrinsic factors, such as local nutrient availability, promote or restrain tumour initiation. Deeper insight into how metabolic pathways control tumour initiation will improve our ability to design metabolic interventions to limit tumour incidence.
Collapse
Affiliation(s)
- Julia S Brunner
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia W S Finley
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
40
|
Ou L, Cai X, Zeng W, Huang L, Deng Q, Tang H, Chen Z, Zhou H, Lin Y, Liu L, Liang W. Laboratory blood test profiling reveals distinct biochemical and hemocyte features of KRAS mutated non-small cell lung cancer. J Thorac Dis 2023; 15:365-375. [PMID: 36910115 PMCID: PMC9992621 DOI: 10.21037/jtd-22-829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/09/2022] [Indexed: 03/05/2023]
Abstract
BACKGROUND The testing for capability of some routine blood test parameters to reflect the biology of non-small cell lung carcinoma with different driver mutations is of great interest and practice significance. We aim to screen these variables and, if allowed, develop a novel predictive model based on results of these routine blood tests commonly performed in clinical practice to inform which can help doctors assess the patient's genetic mutation status as early as possible before surgery. METHODS For the exploration cohort, we included 1,595 patients who were diagnosed with non-small cell lung cancer (NSCLC) and genetically profiled by a next-generation sequencing panel in the First Affiliated Hospital of Guangzhou Medical University. The external validation cohort, which consists of 197 NSCLC cancer patients from Sun Yat-sen University Cancer Hospital, was subsequently established. RESULTS We analyzed the association between 46 frequently tested laboratory variables and different genetic mutation types. KRAS mutation was found to be a unique subtype that exclusively correlated with several blood parameters in our study. Least absolute shrinkage and selection operator (LASSO) regression was performed, and the following parameters were found to be significantly associated with KRAS mutation: triglycerides [odds ratio (OR) =1.63], arterial oxygen partial pressure (OR =0.97), uric acid (OR =1.01), basophil count (OR =1.41), eosinophil count (OR =1.146), fibrinogen (OR =1.42), standard bicarbonate (OR =0.85), high-density lipoprotein cholesterol (OR =0.18), alpha-L-fucosidase (OR =1.07). The areas under the receiver-operator characteristic curve in the training set and the external validation set were 0.85 [95% confidence interval (CI): 0.81-0.88] and 0.81 (95% CI: 0.71-0.91), respectively. CONCLUSIONS We developed a non-invasive, more cost-effective predictive model of NSCLC based on routinely available variables, with practical predictive power. This model can be used as a practical screening tool to guide the use of more specialized and expensive molecular assays for KRAS mutation in NSCLC. However, further studies are warranted to investigate the mechanism underlying such association between KRAS mutations and the related parameters of blood tests.
Collapse
Affiliation(s)
- Limin Ou
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wenchuang Zeng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Liyan Huang
- The Translational Medicine Laboratory, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Qiuhua Deng
- The Translational Medicine Laboratory, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Hailing Tang
- The Translational Medicine Laboratory, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Zhuxing Chen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Huan Zhou
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liping Liu
- The Translational Medicine Laboratory, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease and National Clinical Research Centre for Respiratory Disease, Guangzhou, China
| |
Collapse
|
41
|
Li L, Chao Z, Waikeong U, Xiao J, Ge Y, Wang Y, Xiong Z, Ma S, Wang Z, Hu Z, Zeng X. Metabolic classifications of renal cell carcinoma reveal intrinsic connections with clinical and immune characteristics. J Transl Med 2023; 21:146. [PMID: 36829161 PMCID: PMC9960222 DOI: 10.1186/s12967-023-03978-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/08/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Kidney cancer undergoes a dramatic metabolic shift and has demonstrated responsiveness to immunotherapeutic intervention. However, metabolic classification and the associations between metabolic alterations and immune infiltration in Renal cell carcinoma still remain elucidative. METHODS Unsupervised consensus clustering was conducted on the TCGA cohorts for metabolic classification. GESA, mRNAsi, prognosis, clinical features, mutation load, immune infiltration and differentially expressed gene differences among different clusters were compared. The prognosis model and nomograms were constructed based on metabolic gene signatures and verified using external ICGC datasets. Immunohistochemical results from Human Protein Atlas database and Tongji hospital were used to validate gene expression levels in normal tissues and tumor samples. CCK8, apoptosis analysis, qPCR, subcutaneously implanted murine models and flowcytometry analysis were applied to investigate the roles of ACAA2 in tumor progression and anti-tumor immunity. RESULTS Renal cell carcinoma was classified into 3 metabolic subclusters and the subcluster with low metabolic profiles displayed the poorest prognosis, highest invasiveness and AJCC grade, enhanced immune infiltration but suppressive immunophenotypes. ACAA2, ACAT1, ASRGL1, AKR1B10, ABCC2, ANGPTL4 were identified to construct the 6 gene-signature prognosis model and verified both internally and externally with ICGC cohorts. ACAA2 was demonstrated as a tumor suppressor and was associated with higher immune infiltration and elevated PD-1 expression of CD8+ T cells. CONCLUSIONS Our research proposed a new metabolic classification method for RCC and revealed intrinsic associations between metabolic phenotypes and immune profiles. The identified gene signatures might serve as key factors bridging tumor metabolism and tumor immunity and warrant further in-depth investigations.
Collapse
Affiliation(s)
- Le Li
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zheng Chao
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Un Waikeong
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Jun Xiao
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Yue Ge
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Yanan Wang
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zezhong Xiong
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Sheng Ma
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zhihua Wang
- grid.412793.a0000 0004 1799 5032Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China.
| | - Xing Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Rd, Wuhan, China.
| |
Collapse
|
42
|
A Proposed Methodology to Deal with the Impact of In Vitro Cellular Matrix on the Analytical Performances of a Targeted Metabolomic LC-HRMS Method. Int J Mol Sci 2023; 24:ijms24043770. [PMID: 36835182 PMCID: PMC9965333 DOI: 10.3390/ijms24043770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Performances of metabolomic methods have been widely studied on biological matrices such as serum, plasma, and urine; but much less on in vitro cell extracts. While the impact of cell culture and sample preparation on results are well-described, the specific effect of the in vitro cellular matrix on the analytical performance remains uncertain. The aim of the present work was to study the impact of this matrix on the analytical performance of an LC-HRMS metabolomic method. For this purpose, experiments were performed on total extracts from two cell lines (MDA-MB-231 and HepaRG) using different cell numbers. Matrix effects, carryover, linearity, and variability of the method were studied. Results showed that the performances of the method depend on the nature of the endogenous metabolite, the cell number, and the nature of the cell line. These three parameters should, therefore, be considered for the processing of experiments and the interpretation of results depending on whether the study focuses on a limited number of metabolites or aims to establish a metabolic signature.
Collapse
|
43
|
Bezwada D, Lesner NP, Brooks B, Vu HS, Wu Z, Cai L, Kasitinon S, Kelekar S, Cai F, Aurora AB, Patrick M, Leach A, Ghandour R, Zhang Y, Do D, Sudderth J, Dumesnil D, House S, Rosales T, Poole AM, Lotan Y, Woldu S, Bagrodia A, Meng X, Cadeddu JA, Mishra P, Pedrosa I, Kapur P, Courtney KD, Malloy CR, Margulis V, DeBerardinis RJ. Mitochondrial metabolism in primary and metastatic human kidney cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527285. [PMID: 36798172 PMCID: PMC9934542 DOI: 10.1101/2023.02.06.527285] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
Most kidney cancers display evidence of metabolic dysfunction1-4 but how this relates to cancer progression in humans is unknown. We used a multidisciplinary approach to infuse 13C-labeled nutrients during surgical tumour resection in over 70 patients with kidney cancer. Labeling from [U-13C]glucose varies across cancer subtypes, indicating that the kidney environment alone cannot account for all metabolic reprogramming in these tumours. Compared to the adjacent kidney, clear cell renal cell carcinomas (ccRCC) display suppressed labelling of tricarboxylic acid (TCA) cycle intermediates in vivo and in organotypic slices cultured ex vivo, indicating that suppressed labeling is tissue intrinsic. Infusions of [1,2-13C]acetate and [U-13C]glutamine in patients, coupled with respiratory flux of mitochondria isolated from kidney and tumour tissue, reveal primary defects in mitochondrial function in human ccRCC. However, ccRCC metastases unexpectedly have enhanced labeling of TCA cycle intermediates compared to primary ccRCCs, indicating a divergent metabolic program during ccRCC metastasis in patients. In mice, stimulating respiration in ccRCC cells is sufficient to promote metastatic colonization. Altogether, these findings indicate that metabolic properties evolve during human kidney cancer progression, and suggest that mitochondrial respiration may be limiting for ccRCC metastasis but not for ccRCC growth at the site of origin.
Collapse
Affiliation(s)
| | | | | | - Hieu S. Vu
- Children’s Medical Center Research Institute
| | - Zheng Wu
- Children’s Medical Center Research Institute
| | - Ling Cai
- Children’s Medical Center Research Institute
- Quantitative Biomedical Research Center
| | | | | | - Feng Cai
- Children’s Medical Center Research Institute
| | | | | | | | | | | | - Duyen Do
- Children’s Medical Center Research Institute
| | | | | | - Sara House
- Children’s Medical Center Research Institute
| | | | - Alan M. Poole
- Children’s Medical Center Research Institute
- Department of Pediatrics
| | | | | | | | | | | | - Prashant Mishra
- Children’s Medical Center Research Institute
- Department of Pediatrics
| | - Ivan Pedrosa
- Department of Urology
- Department of Radiology
- Kidney Cancer Program
| | - Payal Kapur
- Department of Urology
- Kidney Cancer Program
- Department of Pathology
| | | | - Craig R. Malloy
- Department of Radiology
- Department of Internal Medicine
- Advanced Imaging Research Center
| | | | - Ralph J. DeBerardinis
- Children’s Medical Center Research Institute
- Department of Pediatrics
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
44
|
The application of patient-derived organoid in the research of lung cancer. Cell Oncol (Dordr) 2023; 46:503-519. [PMID: 36696006 DOI: 10.1007/s13402-023-00771-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Lung cancer is the most common cancer and the leading cause of cancer-related death worldwide. However, mechanisms of its progression remained unclear and new treatments against this disease are rapidly emerging. As a novel preclinical model, patient-derived organoid (PDO) can also be established from the patient's tumor tissue and cultured in the laboratory, which preserves the key biological characteristics of the original tumor. Compared to the patient-derived xenograft (PDX) model of lung cancer, the culture success rate is improved, and the time and cost of model establishment are largely reduced. PDO is also expected to provide a more individual model to predict the efficacy of anti-cancer treatment in vitro. This paper summarizes the current application of PDO in the translational research of lung cancer.
Collapse
|
45
|
Zhou X, Tian C, Cao Y, Zhao M, Wang K. The role of serine metabolism in lung cancer: From oncogenesis to tumor treatment. Front Genet 2023; 13:1084609. [PMID: 36699468 PMCID: PMC9868472 DOI: 10.3389/fgene.2022.1084609] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Metabolic reprogramming is an important hallmark of malignant tumors. Serine is a non-essential amino acid involved in cell proliferation. Serine metabolism, especially the de novo serine synthesis pathway, forms a metabolic network with glycolysis, folate cycle, and one-carbon metabolism, which is essential for rapidly proliferating cells. Owing to the rapid development in metabolomics, abnormal serine metabolism may serve as a biomarker for the early diagnosis and pathological typing of tumors. Targeting serine metabolism also plays an essential role in precision and personalized cancer therapy. This article is a systematic review of de novo serine biosynthesis and the link between serine and folate metabolism in tumorigenesis, particularly in lung cancer. In addition, we discuss the potential of serine metabolism to improve tumor treatment.
Collapse
|
46
|
Dai Z, Zhang W, Zhou L, Huang J. Probing Lipid Peroxidation in Ferroptosis: Emphasizing the Utilization of C11-BODIPY-Based Protocols. Methods Mol Biol 2023; 2712:61-72. [PMID: 37578696 DOI: 10.1007/978-1-0716-3433-2_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Ferroptosis is a form of regulated cell death that relies on iron and is characterized by the accumulation of lipid peroxides, resulting in oncotic cell swelling and eventual disruption of cellular membranes. Lipid peroxidation, a hallmark of ferroptosis, refers to the oxidative deterioration of lipids that contain carbon-carbon double bonds, particularly polyunsaturated fatty acids (PUFAs). Understanding the molecular mechanisms underlying the interplay between ferroptosis and lipid peroxidation and identifying reliable techniques for assessing lipid peroxidation levels are crucial for further advancements in this field of research. Various methods have been developed to detect lipid peroxidation levels, including C11-BODIPY (BODIPY™ 581/591 C11), liperfluo, 4-hydroxynonenal (4-HNE), malondialdehyde (MDA), Click-iT LAA (linoleamide alkyne), and liquid chromatography-mass spectrometry (LC-MS)-based epilipidomics (redox lipidomics). Currently, one of the most commonly used and effective methods is the C11-BODIPY assay, which utilizes a fluorescent probe that selectively sensitizes lipid peroxidation in cell membranes. Incorporating advanced techniques such as flow cytometry and fluorescence microscopy with C11-BODIPY dye is essential for accurate assessment of lipid peroxidation levels in ferroptosis. This chapter aims to provide comprehensive experimental protocols for detecting lipid peroxidation levels indicative of ferroptosis using C11-BODIPY staining and subsequent detection via flow cytometry and fluorescence microscopy.
Collapse
Affiliation(s)
- Zhangshuai Dai
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Wanting Zhang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Liqun Zhou
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Junqi Huang
- Key Laboratory for Regenerative Medicine, Ministry of Education, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Andrade de Oliveira K, Sengupta S, Yadav AK, Clarke R. The complex nature of heterogeneity and its roles in breast cancer biology and therapeutic responsiveness. Front Endocrinol (Lausanne) 2023; 14:1083048. [PMID: 36909339 PMCID: PMC9997040 DOI: 10.3389/fendo.2023.1083048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/02/2023] [Indexed: 02/25/2023] Open
Abstract
Heterogeneity is a complex feature of cells and tissues with many interacting components. Depending on the nature of the research context, interacting features of cellular, drug response, genetic, molecular, spatial, temporal, and vascular heterogeneity may be present. We describe the various forms of heterogeneity with examples of their interactions and how they play a role in affecting cellular phenotype and drug responses in breast cancer. While cellular heterogeneity may be the most widely described and invoked, many forms of heterogeneity are evident within the tumor microenvironment and affect responses to the endocrine and cytotoxic drugs widely used in standard clinical care. Drug response heterogeneity is a critical determinant of clinical response and curative potential and also is multifaceted when encountered. The interactive nature of some forms of heterogeneity is readily apparent. For example, the process of metastasis has the properties of both temporal and spatial heterogeneity within the host, whereas each individual metastatic deposit may exhibit cellular, genetic, molecular, and vascular heterogeneity. This review describes the many forms of heterogeneity, their integrated activities, and offers some insights into how heterogeneity may be understood and studied in the future.
Collapse
Affiliation(s)
- Karla Andrade de Oliveira
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- Department of Biochemistry and Pharmacology, Universidade Federal do Piaui, Piauí, Brazil
| | - Surojeet Sengupta
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Anil Kumar Yadav
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Robert Clarke
- The Hormel Institute, University of Minnesota, Austin, MN, United States
- *Correspondence: Robert Clarke,
| |
Collapse
|
48
|
Xia M, Wang S, Wang L, Mei Y, Tu Y, Gao L. The role of lactate metabolism-related LncRNAs in the prognosis, mutation, and tumor microenvironment of papillary thyroid cancer. Front Endocrinol (Lausanne) 2023; 14:1062317. [PMID: 37025405 PMCID: PMC10070953 DOI: 10.3389/fendo.2023.1062317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 03/07/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Lactate, a byproduct of glucose metabolism, is primarily utilized for gluconeogenesis and numerous cellular and organismal life processes. Interestingly, many studies have demonstrated a correlation between lactate metabolism and tumor development. However, the relationship between long non-coding RNAs (lncRNAs) and lactate metabolism in papillary thyroid cancer (PTC) remains to be explored. METHODS Lactate metabolism-related lncRNAs (LRLs) were obtained by differential expression and correlation analyses, and the risk model was further constructed by least absolute shrinkage and selection operator analysis (Lasso) and Cox analysis. Clinical, immune, tumor mutation, and enrichment analyses were performed based on the risk model. The expression level of six LRLs was tested using RT-PCR. RESULTS This study found several lncRNAs linked to lactate metabolism in both The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) datasets. Using Cox regression analysis, 303 lactate LRLs were found to be substantially associated with prognosis. Lasso was done on the TCGA cohort. Six LRLs were identified as independent predictive indicators for the development of a PTC prognostic risk model. The cohort was separated into two groups based on the median risk score (0.39717 -0.39771). Subsequently, Kaplan-Meier survival analysis and multivariate Cox regression analysis revealed that the high-risk group had a lower survival probability and that the risk score was an independent predictive factor of prognosis. In addition, a nomogram that can easily predict the 1-, 3-, and 5-year survival rates of PTC patients was established. Furthermore, the association between PTC prognostic factors and tumor microenvironment (TME), immune escape, as well as tumor somatic mutation status was investigated in high- and low-risk groups. Lastly, gene expression analysis was used to confirm the differential expression levels of the six LRLs. CONCLUSION In conclusion, we have constructed a prognostic model that can predict the prognosis, mutation status, and TME of PTC patients. The model may have great clinical significance in the comprehensive evaluation of PTC patients.
Collapse
Affiliation(s)
- Minqi Xia
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Wang
- Department of Infection Prevention and Control Office, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ling Gao,
| | - Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Tu
- Department of Breast & Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Ling Gao,
| |
Collapse
|
49
|
Lin YS, Chen YC, Chen TE, Cheng ML, Lynn KS, Shah P, Chen JS, Huang RFS. Probing Folate-Responsive and Stage-Sensitive Metabolomics and Transcriptional Co-Expression Network Markers to Predict Prognosis of Non-Small Cell Lung Cancer Patients. Nutrients 2022; 15:nu15010003. [PMID: 36615660 PMCID: PMC9823804 DOI: 10.3390/nu15010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Tumour metabolomics and transcriptomics co-expression network as related to biological folate alteration and cancer malignancy remains unexplored in human non-small cell lung cancers (NSCLC). To probe the diagnostic biomarkers, tumour and pair lung tissue samples (n = 56) from 97 NSCLC patients were profiled for ultra-performance liquid chromatography tandem mass spectrometry (UPLC/MS/MS)-analysed metabolomics, targeted transcriptionomics, and clinical folate traits. Weighted Gene Co-expression Network Analysis (WGCNA) was performed. Tumour lactate was identified as the top VIP marker to predict advance NSCLC (AUC = 0.765, Sig = 0.017, CI 0.58-0.95). Low folate (LF)-tumours vs. adjacent lungs displayed higher glycolytic index of lactate and glutamine-associated amino acids in enriched biological pathways of amino sugar and glutathione metabolism specific to advance NSCLCs. WGCNA classified the green module for hub serine-navigated glutamine metabolites inversely associated with tumour and RBC folate, which module metabolites co-expressed with a predominant up-regulation of LF-responsive metabolic genes in glucose transport (GLUT1), de no serine synthesis (PHGDH, PSPH, and PSAT1), folate cycle (SHMT1/2 and PCFR), and down-regulation in glutaminolysis (SLC1A5, SLC7A5, GLS, and GLUD1). The LF-responsive WGCNA markers predicted poor survival rates in lung cancer patients, which could aid in optimizing folate intervention for better prognosis of NSCLCs susceptible to folate malnutrition.
Collapse
Affiliation(s)
- Yu-Shun Lin
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yen-Chu Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Tzu-En Chen
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ke-Shiuan Lynn
- Department of Mathematics, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Pramod Shah
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Praexisio Taiwan Inc., New Taipei City 22180, Taiwan
| | - Jin-Shing Chen
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| | - Rwei-Fen S. Huang
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 242062, Taiwan
- Correspondence: (J.-S.C.); (R.-F.S.H.); Tel.: +886-2-2905-2512 (R.-F.S.H.)
| |
Collapse
|
50
|
Ding J, Feng YQ. Mass spectrometry-based metabolomics for clinical study: Recent progresses and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|