1
|
Diensthuber G, Novoa EM. Charting the epitranscriptomic landscape across RNA biotypes using native RNA nanopore sequencing. Mol Cell 2025; 85:276-289. [PMID: 39824168 DOI: 10.1016/j.molcel.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/20/2025]
Abstract
RNA modifications are conserved chemical features found in all domains of life and across diverse RNA biotypes, shaping gene expression profiles and enabling rapid responses to environmental changes. Their broad chemical diversity and dynamic nature pose significant challenges for studying them comprehensively. These limitations can now be addressed through direct RNA nanopore sequencing (DRS), which allows simultaneous identification of diverse RNA modification types at single-molecule and single-nucleotide resolution. Here, we review recent efforts pioneering the use of DRS to better understand the epitranscriptomic landscape. We highlight how DRS can be applied to investigate different RNA biotypes, emphasizing the use of specialized library preparation protocols and downstream bioinformatic workflows to detect both natural and synthetic RNA modifications. Finally, we provide a perspective on the future role of DRS in epitranscriptomic research, highlighting remaining challenges and emerging opportunities from improved sequencing yields and accuracy enabled by the latest DRS chemistry.
Collapse
Affiliation(s)
- Gregor Diensthuber
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain
| | - Eva Maria Novoa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra, Barcelona 08003, Spain; ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Giraldo-Ocampo S, Valiente-Echeverría F, Soto-Rifo R. Host RNA-Binding Proteins as Regulators of HIV-1 Replication. Viruses 2024; 17:43. [PMID: 39861832 PMCID: PMC11768693 DOI: 10.3390/v17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.
Collapse
Affiliation(s)
- Sebastian Giraldo-Ocampo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Fernando Valiente-Echeverría
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| | - Ricardo Soto-Rifo
- Laboratory of Molecular and Cellular Virology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (S.G.-O.); (F.V.-E.)
- Center for HIV/AIDS Integral Research (CHAIR), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
- Millennium Institute in Immunology and Immunotherapy, Santiago 8380453, Chile
| |
Collapse
|
3
|
Kamel W, Ruscica V, Embarc-Buh A, de Laurent ZR, Garcia-Moreno M, Demyanenko Y, Orton RJ, Noerenberg M, Madhusudhan M, Iselin L, Järvelin AI, Hannan M, Kitano E, Moore S, Merits A, Davis I, Mohammed S, Castello A. Alphavirus infection triggers selective cytoplasmic translocation of nuclear RBPs with moonlighting antiviral roles. Mol Cell 2024; 84:4896-4911.e7. [PMID: 39642884 DOI: 10.1016/j.molcel.2024.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 12/09/2024]
Abstract
RNA is a central molecule for viruses; however, the interactions that viral RNA (vRNA) establishes with the host cell is only starting to be elucidated. Here, we determine the ribonucleoprotein (RNP) composition of the prototypical arthropod-borne Sindbis virus (SINV). We show that SINV RNAs engage with hundreds of cellular proteins, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection. We demonstrate that these nuclear RBPs are selectively translocated to the cytoplasm after infection, where they accumulate in the viral replication organelles (ROs). These nuclear RBPs strongly suppress viral gene expression, with activities spanning viral species and families. Particularly, the U2 small nuclear RNP (snRNP) emerges as an antiviral complex, with both its U2 small nuclear RNA (snRNA) and protein components contributing to the recognition of the vRNA and the antiviral phenotype. These results suggest that the U2 snRNP has RNA-driven antiviral activity in a mechanism reminiscent of the RNAi pathway.
Collapse
Affiliation(s)
- Wael Kamel
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| | - Vincenzo Ruscica
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Azman Embarc-Buh
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Zaydah R de Laurent
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Yana Demyanenko
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Richard J Orton
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Marko Noerenberg
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Meghana Madhusudhan
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Louisa Iselin
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK; Nuffield Department of Medicine, University of Oxford, Peter Medawar Building for Pathogen Research,11, Oxford OX1 3SY, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maximilian Hannan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Eduardo Kitano
- The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK
| | - Samantha Moore
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK
| | - Andres Merits
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; The Rosalind Franklin Institute, Didcot, Oxfordshire OX11 0FA, UK; Department of Chemistry, University of Oxford, Mansfield Road 16, Oxford OX1 3TA, UK.
| | - Alfredo Castello
- MRC, University of Glasgow Centre for Virus Research, Glasgow G61 1QH, Scotland, UK.
| |
Collapse
|
4
|
Xiang JS, Schafer DM, Rothamel KL, Yeo GW. Decoding protein-RNA interactions using CLIP-based methodologies. Nat Rev Genet 2024; 25:879-895. [PMID: 38982239 DOI: 10.1038/s41576-024-00749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/11/2024]
Abstract
Protein-RNA interactions are central to all RNA processing events, with pivotal roles in the regulation of gene expression and cellular functions. Dysregulation of these interactions has been increasingly linked to the pathogenesis of human diseases. High-throughput approaches to identify RNA-binding proteins and their binding sites on RNA - in particular, ultraviolet crosslinking followed by immunoprecipitation (CLIP) - have helped to map the RNA interactome, yielding transcriptome-wide protein-RNA atlases that have contributed to key mechanistic insights into gene expression and gene-regulatory networks. Here, we review these recent advances, explore the effects of cellular context on RNA binding, and discuss how these insights are shaping our understanding of cellular biology. We also review the potential therapeutic applications arising from new knowledge of protein-RNA interactions.
Collapse
Affiliation(s)
- Joy S Xiang
- Division of Biomedical Sciences, UC Riverside, Riverside, CA, USA
| | - Danielle M Schafer
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute and Stem Cell Program, UC San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, UC San Diego, La Jolla, CA, USA.
- Sanford Laboratories for Innovative Medicines, La Jolla, CA, USA.
| |
Collapse
|
5
|
Feng R, Li D, Yan Z, Li X, Xie J. EMCV VP2 degrades IFI16 through Caspase-dependent apoptosis to evade IFI16-STING pathway. Virol J 2024; 21:296. [PMID: 39551733 PMCID: PMC11571899 DOI: 10.1186/s12985-024-02568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024] Open
Abstract
Interferon (IFN)-γ inducible protein 16 (IFI16), a key DNA sensor, triggers downstream STING-dependent type I interferon (IFN-I) production and antiviral immunity. However, how the IFI16-STING signaling pathway is regulated by EMCV infection is still not well elucidated. In this study, we investigated the interaction between IFI16 and EMCV. Results indicated EMCV infection suppressed IFI16 expression in A549 cells. This study reveals that IFI16 plays an active role in combating EMCV. Screening viral proteins in conjunction with IFI16, we found that the EMCV VP2 protein hinders the antiviral response mediated by IFI16 by causing degradation of the IFI16 protein via the caspase-dependent apoptosis pathway. Our study communicates the antiviral role of the IFI16-STING pathway during EMCV infection. Importantly, this study unveils the novel mechanism by which VP2 counteracts the innate immune signaling activated by foreign DNA.
Collapse
Affiliation(s)
- Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
- Engineering Research Center of Key Technology and Industrialization of Cell-based Vaccine, Ministry of Education, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
- College of Life Science and Engineering, Northwest Minzu University, No. 1 Xibeixincun, Lanzhou, 730030, China.
| |
Collapse
|
6
|
Hanson WA, Romero Agosto GA, Rouskin S. Viral RNA Interactome: The Ultimate Researcher's Guide to RNA-Protein Interactions. Viruses 2024; 16:1702. [PMID: 39599817 PMCID: PMC11599142 DOI: 10.3390/v16111702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
RNA molecules in the cell are bound by a multitude of RNA-binding proteins (RBPs) with a variety of regulatory consequences. Often, interactions with these RNA-binding proteins are facilitated by the complex secondary and tertiary structures of RNA molecules. Viral RNAs especially are known to be heavily structured and interact with many RBPs, with roles including genome packaging, immune evasion, enhancing replication and transcription, and increasing translation efficiency. As such, the RNA-protein interactome represents a critical facet of the viral replication cycle. Characterization of these interactions is necessary for the development of novel therapeutics targeted at the disruption of essential replication cycle events. In this review, we aim to summarize the various roles of RNA structures in shaping the RNA-protein interactome, the regulatory roles of these interactions, as well as up-to-date methods developed for the characterization of the interactome and directions for novel, RNA-directed therapeutics.
Collapse
Affiliation(s)
| | | | - Silvi Rouskin
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; (W.A.H.); (G.A.R.A.)
| |
Collapse
|
7
|
Castello A, Álvarez L, Kamel W, Iselin L, Hennig J. Exploring the expanding universe of host-virus interactions mediated by viral RNA. Mol Cell 2024; 84:3706-3721. [PMID: 39366356 DOI: 10.1016/j.molcel.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
RNA is a central molecule in RNA virus biology; however, the interactions that it establishes with the host cell are only starting to be elucidated. In recent years, a methodology revolution has dramatically expanded the scope of host-virus interactions involving the viral RNA (vRNA). A second wave of method development has enabled the precise study of these protein-vRNA interactions in a life cycle stage-dependent manner, as well as providing insights into the interactome of specific vRNA species. This review discusses these technical advances and describes the new regulatory mechanisms that have been identified through their use. Among these, we discuss the importance of vRNA in regulating protein function through a process known as riboregulation. We envision that the elucidation of vRNA interactomes will open new avenues of research, including pathways to the discovery of host factors with therapeutic potential against viruses.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK.
| | - Lucía Álvarez
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany
| | - Wael Kamel
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Louisa Iselin
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G611QH, Scotland, UK
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, 69117 Heidelberg, Germany; Department of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
8
|
Street LA, Rothamel KL, Brannan KW, Jin W, Bokor BJ, Dong K, Rhine K, Madrigal A, Al-Azzam N, Kim JK, Ma Y, Gorhe D, Abdou A, Wolin E, Mizrahi O, Ahdout J, Mujumdar M, Doron-Mandel E, Jovanovic M, Yeo GW. Large-scale map of RNA-binding protein interactomes across the mRNA life cycle. Mol Cell 2024; 84:3790-3809.e8. [PMID: 39303721 PMCID: PMC11530141 DOI: 10.1016/j.molcel.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 04/18/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
mRNAs interact with RNA-binding proteins (RBPs) throughout their processing and maturation. While efforts have assigned RBPs to RNA substrates, less exploration has leveraged protein-protein interactions (PPIs) to study proteins in mRNA life-cycle stages. We generated an RNA-aware, RBP-centric PPI map across the mRNA life cycle in human cells by immunopurification-mass spectrometry (IP-MS) of ∼100 endogenous RBPs with and without RNase, augmented by size exclusion chromatography-mass spectrometry (SEC-MS). We identify 8,742 known and 20,802 unreported interactions between 1,125 proteins and determine that 73% of the IP-MS-identified interactions are RNA regulated. Our interactome links many proteins, some with unknown functions, to specific mRNA life-cycle stages, with nearly half associated with multiple stages. We demonstrate the value of this resource by characterizing the splicing and export functions of enhancer of rudimentary homolog (ERH), and by showing that small nuclear ribonucleoprotein U5 subunit 200 (SNRNP200) interacts with stress granule proteins and binds cytoplasmic RNA differently during stress.
Collapse
Affiliation(s)
- Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Katherine L Rothamel
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Kristopher W Brannan
- Center for RNA Therapeutics, Houston Methodist Research Institute, Houston, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, USA
| | - Wenhao Jin
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin J Bokor
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kevin Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Kevin Rhine
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Assael Madrigal
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenny Kim Kim
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Yanzhe Ma
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Darvesh Gorhe
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ahmed Abdou
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joshua Ahdout
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Mayuresh Mujumdar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ella Doron-Mandel
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA; Sanford Stem Cell Institute, Innovation Center, San Diego, CA, USA.
| |
Collapse
|
9
|
McSweeney K, Hoover P, Ramirez-Solano M, Liu Q, Schwartz JR. Overexpression of human SAMD9 inhibits protein translation and alters MYC signaling resulting in cell cycle arrest. Exp Hematol 2024; 137:104249. [PMID: 38848876 DOI: 10.1016/j.exphem.2024.104249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
Inherited bone marrow failure syndromes often result from pathogenic mutations in genes that are important for ribosome function, namely, Diamond-Blackfan anemia, Shwachman-Diamond syndrome, and dyskeratosis congenita. Germline mutations in SAMD9 are a frequent genetic lesion resulting in an inherited bone marrow failure syndrome with monosomy 7; some patients have severe multisystem syndromes that include myelodysplasia. The association of germline SAMD9 mutations and bone marrow failure is clear; however, to date, there is no reliable method to predict whether a novel SAMD9 mutation is pathogenic unless it is accompanied by an obvious family history and/or clinical syndrome. The difficulty with pathogenicity prediction is, in part, due to the incomplete understanding of the biological functions of SAMD9. We used a SAMD9-targeted, inducible CRISPRa system and RNA sequencing to better understand the global transcriptional changes that result from transcriptional manipulation of SAMD9. Supporting recent discoveries that SAMD9 acts as a ACNase specific for phenylalanine tRNA (tRNA-Phe), we confirmed with crosslinking and solid-phase purification that SAMD9 is an RNA binding protein and analyzed how overexpression of tRNA-Phe may reverse transcriptomic changes caused by SAMD9 activation. Our data show that overexpression of SAMD9 from the endogenous locus results in decreased cell proliferation, cell cycle progression, and global protein translation. When SAMD9 contains a gain-of-function mutation (p.E1136Q), these functional phenotypes are exacerbated but only partially rescued with tRNA-Phe overexpression, suggesting additional molecular actions of SAMD9. Additionally, we demonstrate that gene expression pathways important for ribosome biogenesis and MYC signaling are the most significantly impacted by SAMD9 overexpression.
Collapse
Affiliation(s)
- Kristen McSweeney
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Paul Hoover
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Jason R Schwartz
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
10
|
Wright MT, Timalsina B, Garcia Lopez V, Hermanson JN, Garcia S, Plate L. Time-resolved interactome profiling deconvolutes secretory protein quality control dynamics. Mol Syst Biol 2024; 20:1049-1075. [PMID: 39103653 PMCID: PMC11369088 DOI: 10.1038/s44320-024-00058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/07/2024] Open
Abstract
Many cellular processes are governed by protein-protein interactions that require tight spatial and temporal regulation. Accordingly, it is necessary to understand the dynamics of these interactions to fully comprehend and elucidate cellular processes and pathological disease states. To map de novo protein-protein interactions with time resolution at an organelle-wide scale, we developed a quantitative mass spectrometry method, time-resolved interactome profiling (TRIP). We apply TRIP to elucidate aberrant protein interaction dynamics that lead to the protein misfolding disease congenital hypothyroidism. We deconvolute altered temporal interactions of the thyroid hormone precursor thyroglobulin with pathways implicated in hypothyroidism pathophysiology, such as Hsp70-/90-assisted folding, disulfide/redox processing, and N-glycosylation. Functional siRNA screening identified VCP and TEX264 as key protein degradation components whose inhibition selectively rescues mutant prohormone secretion. Ultimately, our results provide novel insight into the temporal coordination of protein homeostasis, and our TRIP method should find broad applications in investigating protein-folding diseases and cellular processes.
Collapse
Affiliation(s)
- Madison T Wright
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Bibek Timalsina
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Valeria Garcia Lopez
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Jake N Hermanson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Sarah Garcia
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37240, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Horner SM, Reaves JV. Recent insights into N 6-methyladenosine during viral infection. Curr Opin Genet Dev 2024; 87:102213. [PMID: 38901100 DOI: 10.1016/j.gde.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
The RNA modification of N6-methyladenosine (m6A) controls many aspects of RNA function that impact biological processes, including viral infection. In this review, we highlight recent work that shapes our current understanding of the diverse mechanisms by which m6A can regulate viral infection by acting on viral or cellular mRNA molecules. We focus on emerging concepts and understanding, including how viral infection alters the localization and function of m6A machinery proteins, how m6A regulates antiviral innate immunity, and the multiple roles of m6A in regulating specific viral infections. We also summarize the recent studies on m6A during SARS-CoV-2 infection, focusing on points of convergence and divergence. Ultimately, this review provides a snapshot of the latest research on m6A during viral infection.
Collapse
Affiliation(s)
- Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Jordan V Reaves
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
12
|
Li F, Zeng C, Liu J, Wang L, Yuan X, Yuan L, Xia X, Huang W. The YTH domain-containing protein family: Emerging players in immunomodulation and tumour immunotherapy targets. Clin Transl Med 2024; 14:e1784. [PMID: 39135292 PMCID: PMC11319238 DOI: 10.1002/ctm2.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND The modification of N6-methyladenosine (m6A) plays a pivotal role in tumor by altering both innate and adaptive immune systems through various pathways, including the regulation of messenger RNA. The YTH domain protein family, acting as "readers" of m6A modifications, affects RNA splicing, stability, and immunogenicity, thereby playing essential roles in immune regulation and antitumor immunity. Despite their significance, the impact of the YTH domain protein family on tumor initiation and progression, as well as their involvement in tumor immune regulation and therapy, remains underexplored and lacks comprehensive review. CONCLUSION This review introduces the molecular characteristics of the YTH domain protein family and their physiological and pathological roles in biological behavior, emphasizing their mechanisms in regulating immune responses and antitumor immunity. Additionally, the review discusses the roles of the YTH domain protein family in immune-related diseases and tumor resistance, highlighting that abnormal expression or dysfunction of YTH proteins is closely linked to tumor resistance. KEY POINTS This review provides an in-depth understanding of the YTH domain protein family in immune regulation and antitumor immunity, suggesting new strategies and directions for immunotherapy of related diseases. These insights not only deepen our comprehension of m6A modifications and YTH protein functions but also pave the way for future research and clinical applications.
Collapse
Affiliation(s)
- Fenghe Li
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Chong Zeng
- Department of Respiratory and Critical Care MedicineThe Seventh Affiliated Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Jie Liu
- Department of PathologyThe Affiliated Changsha Central Hospital, Hengyang Medical School, University of South ChinaChangshaHunanChina
| | - Lei Wang
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute, School of Basic Medical Science, Central South UniversityChangshaHunanChina
| | - Xiaorui Yuan
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Li Yuan
- Department of Nuclear MedicineThe Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaomeng Xia
- Department of Gynaecology and ObstetricsSecond Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Huang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center of Geriatric DisordersXiangya HospitalCentral South UniversityChangshaChina
- Research Center of Carcinogenesis and Targeted TherapyXiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
13
|
Dupont M, Krischuns T, Gianetto QG, Paisant S, Bonazza S, Brault JB, Douché T, Arragain B, Florez-Prada A, Perez-Perri J, Hentze M, Cusack S, Matondo M, Isel C, Courtney D, Naffakh N. The RBPome of influenza A virus NP-mRNA reveals a role for TDP-43 in viral replication. Nucleic Acids Res 2024; 52:7188-7210. [PMID: 38686810 PMCID: PMC11229366 DOI: 10.1093/nar/gkae291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/02/2024] Open
Abstract
Genome-wide approaches have significantly advanced our knowledge of the repertoire of RNA-binding proteins (RBPs) that associate with cellular polyadenylated mRNAs within eukaryotic cells. Recent studies focusing on the RBP interactomes of viral mRNAs, notably SARS-Cov-2, have revealed both similarities and differences between the RBP profiles of viral and cellular mRNAs. However, the RBPome of influenza virus mRNAs remains unexplored. Herein, we identify RBPs that associate with the viral mRNA encoding the nucleoprotein (NP) of an influenza A virus. Focusing on TDP-43, we show that it binds several influenza mRNAs beyond the NP-mRNA, and that its depletion results in lower levels of viral mRNAs and proteins within infected cells, and a decreased yield of infectious viral particles. We provide evidence that the viral polymerase recruits TDP-43 onto viral mRNAs through a direct interaction with the disordered C-terminal domain of TDP-43. Notably, other RBPs found to be associated with influenza virus mRNAs also interact with the viral polymerase, which points to a role of the polymerase in orchestrating the assembly of viral messenger ribonucleoproteins.
Collapse
Affiliation(s)
- Maud Dupont
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HUB, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Jean-Baptiste Brault
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Benoît Arragain
- European Molecular Biology Laboratory, 38042Grenoble, France
| | | | | | | | - Stephen Cusack
- European Molecular Biology Laboratory, 38042Grenoble, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology, Paris, France
| | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| | - David G Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, BelfastBT9 7BL, Northern Ireland
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, RNA Biology and Influenza Viruses, Paris, France
| |
Collapse
|
14
|
Choi Y, Um B, Na Y, Kim J, Kim JS, Kim VN. Time-resolved profiling of RNA binding proteins throughout the mRNA life cycle. Mol Cell 2024; 84:1764-1782.e10. [PMID: 38593806 DOI: 10.1016/j.molcel.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 03/14/2024] [Indexed: 04/11/2024]
Abstract
mRNAs continually change their protein partners throughout their lifetimes, yet our understanding of mRNA-protein complex (mRNP) remodeling is limited by a lack of temporal data. Here, we present time-resolved mRNA interactome data by performing pulse metabolic labeling with photoactivatable ribonucleoside in human cells, UVA crosslinking, poly(A)+ RNA isolation, and mass spectrometry. This longitudinal approach allowed the quantification of over 700 RNA binding proteins (RBPs) across ten time points. Overall, the sequential order of mRNA binding aligns well with known functions, subcellular locations, and molecular interactions. However, we also observed RBPs with unexpected dynamics: the transcription-export (TREX) complex recruited posttranscriptionally after nuclear export factor 1 (NXF1) binding, challenging the current view of transcription-coupled mRNA export, and stress granule proteins prevalent in aged mRNPs, indicating roles in late stages of the mRNA life cycle. To systematically identify mRBPs with unknown functions, we employed machine learning to compare mRNA binding dynamics with Gene Ontology (GO) annotations. Our data can be explored at chronology.rna.snu.ac.kr.
Collapse
Affiliation(s)
- Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Buyeon Um
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeesoo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Republic of Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
15
|
Bonazza S, Coutts HL, Sukumar S, Turkington HL, Courtney DG. Identifying cellular RNA-binding proteins during infection uncovers a role for MKRN2 in influenza mRNA trafficking. PLoS Pathog 2024; 20:e1012231. [PMID: 38753876 PMCID: PMC11135703 DOI: 10.1371/journal.ppat.1012231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/29/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Utilisation of RNA-binding proteins (RBPs) is an important aspect of post-transcriptional regulation of viral RNA. Viruses such as influenza A viruses (IAV) interact with RBPs to regulate processes including splicing, nuclear export and trafficking, while also encoding RBPs within their genomes, such as NP and NS1. But with almost 1000 RBPs encoded within the human genome it is still unclear what role, if any, many of these proteins play during viral replication. Using the RNA interactome capture (RIC) technique, we isolated RBPs from IAV infected cells to unravel the RBPome of mRNAs from IAV infected human cells. This led to the identification of one particular RBP, MKRN2, that associates with and positively regulates IAV mRNA. Through further validation, we determined that MKRN2 is involved in the nuclear-cytoplasmic trafficking of IAV mRNA potentially through an association with the RNA export mediator GLE1. In the absence of MKRN2, IAV mRNAs accumulate in the nucleus of infected cells, which may lead to their degradation by the nuclear RNA exosome complex. MKRN2, therefore, appears to be required for the efficient nuclear export of IAV mRNAs in human cells.
Collapse
Affiliation(s)
- Stefano Bonazza
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Leigh Coutts
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Swathi Sukumar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Hannah Louise Turkington
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - David Gary Courtney
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
16
|
Bley H, Krisp C, Schöbel A, Hehner J, Schneider L, Becker M, Stegmann C, Heidenfels E, Nguyen-Dinh V, Schlüter H, Gerold G, Herker E. Proximity labeling of host factor ANXA3 in HCV infection reveals a novel LARP1 function in viral entry. J Biol Chem 2024; 300:107286. [PMID: 38636657 PMCID: PMC11101947 DOI: 10.1016/j.jbc.2024.107286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
Hepatitis C virus (HCV) infection is tightly connected to the lipid metabolism with lipid droplets (LDs) serving as assembly sites for progeny virions. A previous LD proteome analysis identified annexin A3 (ANXA3) as an important HCV host factor that is enriched at LDs in infected cells and required for HCV morphogenesis. To further characterize ANXA3 function in HCV, we performed proximity labeling using ANXA3-BioID2 as bait in HCV-infected cells. Two of the top proteins identified proximal to ANXA3 during HCV infection were the La-related protein 1 (LARP1) and the ADP ribosylation factor-like protein 8B (ARL8B), both of which have been previously described to act in HCV particle production. In follow-up experiments, ARL8B functioned as a pro-viral HCV host factor without localizing to LDs and thus likely independent of ANXA3. In contrast, LARP1 interacts with HCV core protein in an RNA-dependent manner and is translocated to LDs by core protein. Knockdown of LARP1 decreased HCV spreading without altering HCV RNA replication or viral titers. Unexpectedly, entry of HCV particles and E1/E2-pseudotyped lentiviral particles was reduced by LARP1 depletion, whereas particle production was not altered. Using a recombinant vesicular stomatitis virus (VSV)ΔG entry assay, we showed that LARP1 depletion also decreased entry of VSV with VSV, MERS, and CHIKV glycoproteins. Therefore, our data expand the role of LARP1 as an HCV host factor that is most prominently involved in the early steps of infection, likely contributing to endocytosis of viral particles through the pleiotropic effect LARP1 has on the cellular translatome.
Collapse
Affiliation(s)
- Hanna Bley
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Christoph Krisp
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Julia Hehner
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Laura Schneider
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Miriam Becker
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Cora Stegmann
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany
| | - Elisa Heidenfels
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Van Nguyen-Dinh
- Institute of Virology, Philipps-University Marburg, Marburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Gerold
- Institute for Biochemistry & Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hanover, Hanover, Germany; Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, Umeå, Sweden
| | - Eva Herker
- Institute of Virology, Philipps-University Marburg, Marburg, Germany.
| |
Collapse
|
17
|
Bottardi S, Layne T, Ramòn AC, Quansah N, Wurtele H, Affar EB, Milot E. MNDA, a PYHIN factor involved in transcriptional regulation and apoptosis control in leukocytes. Front Immunol 2024; 15:1395035. [PMID: 38680493 PMCID: PMC11045911 DOI: 10.3389/fimmu.2024.1395035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammation control is critical during the innate immune response. Such response is triggered by the detection of molecules originating from pathogens or damaged host cells by pattern-recognition receptors (PRRs). PRRs subsequently initiate intra-cellular signalling through different pathways, resulting in i) the production of inflammatory cytokines, including type I interferon (IFN), and ii) the initiation of a cascade of events that promote both immediate host responses as well as adaptive immune responses. All human PYRIN and HIN-200 domains (PYHIN) protein family members were initially proposed to be PRRs, although this view has been challenged by reports that revealed their impact on other cellular mechanisms. Of relevance here, the human PYHIN factor myeloid nuclear differentiation antigen (MNDA) has recently been shown to directly control the transcription of genes encoding factors that regulate programmed cell death and inflammation. While MNDA is mainly found in the nucleus of leukocytes of both myeloid (neutrophils and monocytes) and lymphoid (B-cell) origin, its subcellular localization has been shown to be modulated in response to genotoxic agents that induce apoptosis and by bacterial constituents, mediators of inflammation. Prior studies have noted the importance of MNDA as a marker for certain forms of lymphoma, and as a clinical prognostic factor for hematopoietic diseases characterized by defective regulation of apoptosis. Abnormal expression of MNDA has also been associated with altered levels of cytokines and other inflammatory mediators. Refining our comprehension of the regulatory mechanisms governing the expression of MNDA and other PYHIN proteins, as well as enhancing our definition of their molecular functions, could significantly influence the management and treatment strategies of numerous human diseases. Here, we review the current state of knowledge regarding PYHIN proteins and their role in innate and adaptive immune responses. Emphasis will be placed on the regulation, function, and relevance of MNDA expression in the control of gene transcription and RNA stability during cell death and inflammation.
Collapse
Affiliation(s)
- Stefania Bottardi
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Taylorjade Layne
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
| | - Ailyn C. Ramòn
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Norreen Quansah
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Hugo Wurtele
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - El Bachir Affar
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Eric Milot
- Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Est-de-l’Île de Montreal, Montreal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
18
|
Chengcheng Z, Qingqing Z, Xiaomiao H, Wei L, Xiaorong Z, Yantao W. IFI16 plays a critical role in avian reovirus induced cellular immunosuppression and suppresses virus replication. Poult Sci 2024; 103:103506. [PMID: 38335672 PMCID: PMC10869280 DOI: 10.1016/j.psj.2024.103506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/20/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Avian reovirus (ARV), which commonly induces viral arthritis or tenosynovitis and immunosuppression in chickens, is associated with the nonstructural protein p17 that plays a crucial role in viral replication and regulates cellular signaling pathways through its interaction with cellular proteins. In our previous study, we identified the host protein IFN-γ-inducible protein-16 (IFI16) as an interacting partner of ARV p17 through yeast two-hybrid screening. In the current study, we further confirmed the interaction between IFI16 and p17 protein using coimmunoprecipitation, glutathione S-transferase (GST)-pulldown assay, and laser confocal microscopy techniques. Additionally, we found that the amino acid of p1761-119 is responsible for mediating the interaction with the HINa and HINb domains of IFI16. Interestingly, we observed a significant increase in IFI16 expression upon ARV infection or p17 protein exposure. Moreover, the replication of ARV was found to be largely influenced by the quantity of IFI16 protein. Overexpression of IFI16 led to a significant decrease in ARV replication, while knockdown of the IFI16 expression led to the contrary result. Additionally, our findings demonstrate that IFI16 plays a crucial role in the induction of inflammatory cytokines IFN-β and IL-1β during ARV infection as confirmed by qRT-PCR and ELISA analyses. In conclusion, our study provides novel insights into the functional role of p17 protein and the pathogenic mechanism underlying ARV infection, particularly its association with inflammatory response. Furthermore, it offers new perspectives for identifying potential therapeutic targets against ARV infection.
Collapse
Affiliation(s)
- Zhang Chengcheng
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Zhang Qingqing
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Hu Xiaomiao
- Yangzhou Vocational University, Yangzhou 225009, China
| | - Li Wei
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences/Livestock and Poultry Epidemic Diseases Research Center of Anhui Province/Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, Anhui 230031, China
| | - Zhang Xiaorong
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China
| | - Wu Yantao
- College of Veterinary Medicine, Yangzhou University; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
19
|
Baquero-Pérez B, Yonchev ID, Delgado-Tejedor A, Medina R, Puig-Torrents M, Sudbery I, Begik O, Wilson SA, Novoa EM, Díez J. N 6-methyladenosine modification is not a general trait of viral RNA genomes. Nat Commun 2024; 15:1964. [PMID: 38467633 PMCID: PMC10928186 DOI: 10.1038/s41467-024-46278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/16/2024] [Indexed: 03/13/2024] Open
Abstract
Despite the nuclear localization of the m6A machinery, the genomes of multiple exclusively-cytoplasmic RNA viruses, such as chikungunya (CHIKV) and dengue (DENV), are reported to be extensively m6A-modified. However, these findings are mostly based on m6A-Seq, an antibody-dependent technique with a high rate of false positives. Here, we address the presence of m6A in CHIKV and DENV RNAs. For this, we combine m6A-Seq and the antibody-independent SELECT and nanopore direct RNA sequencing techniques with functional, molecular, and mutagenesis studies. Following this comprehensive analysis, we find no evidence of m6A modification in CHIKV or DENV transcripts. Furthermore, depletion of key components of the host m6A machinery does not affect CHIKV or DENV infection. Moreover, CHIKV or DENV infection has no effect on the m6A machinery's localization. Our results challenge the prevailing notion that m6A modification is a general feature of cytoplasmic RNA viruses and underscore the importance of validating RNA modifications with orthogonal approaches.
Collapse
Affiliation(s)
- Belinda Baquero-Pérez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ivaylo D Yonchev
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anna Delgado-Tejedor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Rebeca Medina
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Mireia Puig-Torrents
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Ian Sudbery
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Oguzhan Begik
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Stuart A Wilson
- Sheffield Institute for Nucleic Acids (SInFoNiA) and School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Eva Maria Novoa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| | - Juana Díez
- Molecular Virology Group, Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Tan L, Guo Z, Wang X, Kim DY, Li R. Utilization of nanopore direct RNA sequencing to analyze viral RNA modifications. mSystems 2024; 9:e0116323. [PMID: 38294229 PMCID: PMC10878088 DOI: 10.1128/msystems.01163-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 02/01/2024] Open
Abstract
Modifications on viral RNAs (vRNAs), either genomic RNAs or RNA transcripts, have complex effects on the viral life cycle and cellular responses to viral infection. The advent of Oxford Nanopore Technologies Direct RNA Sequencing provides a new strategy for studying RNA modifications. To this end, multiple computational tools have been developed, but a systemic evaluation of their performance in mapping vRNA modifications is lacking. Here, 10 computational tools were tested using the Sindbis virus (SINV) RNAs isolated from infected mammalian (BHK-21) or mosquito (C6/36) cells, with in vitro-transcribed RNAs serving as modification-free control. Three single-mode approaches were shown to be inapplicable in the viral context, and three out of seven comparative methods required cutoff adjustments to reduce false-positive predictions. Utilizing optimized cutoffs, an integrated analysis of comparative tools suggested that the intersected predictions of Tombo_com and xPore were significantly enriched compared with the background. Consequently, a pipeline integrating Tombo_com and xPore was proposed for vRNA modification detection; the performance of which was supported by N6-methyladenosine prediction in severe acute respiratory syndrome coronavirus 2 RNAs using publicly available data. When applied to SINV RNAs, this pipeline revealed more intensive modifications in subgenomic RNAs than in genomic RNAs. Modified uridines were frequently identified, exhibiting substantive overlapping between vRNAs generated in different cell lines. On the other hand, the interpretation of other modifications remained unclear, underlining the limitations of the current computational tools despite their notable potential.IMPORTANCEComputational approaches utilizing Oxford Nanopore Technologies Direct RNA Sequencing data were almost exclusively designed to map eukaryotic epitranscriptomes. Therefore, extra caution must be exercised when using these tools to detect vRNA modifications, as in most cases, vRNA modification profiles should be regarded as unknown epitranscriptomes without prior knowledge. Here, we comprehensively evaluated the performance of 10 computational tools in detecting vRNA modification sites. All tested single-mode methods failed to differentiate native and in vitro-transcribed samples. Using optimized cutoff values, seven tested comparative tools generated very different predictions. An integrated analysis showed significant enrichment of Tombo_com and xPore predictions against the background. A pipeline for vRNA modification detection was proposed accordingly and applied to Sindbis virus RNAs. In conclusion, our study underscores the need for the careful application of computational tools to analyze viral epitranscriptomics. It also offers insights into alphaviral RNA modifications, although further validation is required.
Collapse
Affiliation(s)
- Lu Tan
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Zhihao Guo
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaoming Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Dal Young Kim
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Runsheng Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- Tung Biomedical Sciences Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
21
|
Amahong K, Zhang W, Liu Y, Li T, Huang S, Han L, Tao L, Zhu F. RVvictor: Virus RNA-directed molecular interactions for RNA virus infection. Comput Biol Med 2024; 169:107886. [PMID: 38157777 DOI: 10.1016/j.compbiomed.2023.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
RNA viruses are major human pathogens that cause seasonal epidemics and occasional pandemic outbreaks. Due to the nature of their RNA genomes, it is anticipated that virus's RNA interacts with host protein (INTPRO), messenger RNA (INTmRNA), and non-coding RNA (INTncRNA) to perform their particular functions during their transcription and replication. In other words, thus, it is urgently needed to have such valuable data on virus RNA-directed molecular interactions (especially INTPROs), which are highly anticipated to attract broad research interests in the fields of RNA virus translation and replication. In this study, a new database was constructed to describe the virus RNA-directed interaction (INTPRO, INTmRNA, INTncRNA) for RNA virus (RVvictor). This database is unique in a) unambiguously characterizing the interactions between viruses RNAs and host proteins, b) providing, for the first time, the most systematic RNA-directed interaction data resources in providing clues to understand the molecular mechanisms of RNA viruses' translation, and replication, and c) in RVvictor, comprehensive enrichment analysis is conducted for each virus RNA based on its associated target genes/proteins, and the enrichment results were explicitly illustrated using various graphs. We found significant enrichment of a suite of pathways related to infection, translation, and replication, e.g., HIV infection, coronavirus disease, regulation of viral genome replication, and so on. Due to the devastating and persistent threat posed by the RNA virus, RVvictor constructed, for the first time, a possible network of cross-talk in RNA-directed interaction, which may ultimately explain the pathogenicity of RNA virus infection. The knowledge base might help develop new anti-viral therapeutic targets in the future. It's now free and publicly accessible at: https://idrblab.org/rvvictor/.
Collapse
Affiliation(s)
- Kuerbannisha Amahong
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Wei Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Yuhong Liu
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China
| | - Teng Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Shijie Huang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| | - Lianyi Han
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, 315211, China.
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicines, School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China.
| |
Collapse
|
22
|
Dang Y, Li J, Li Y, Wang Y, Zhao Y, Zhao N, Li W, Zhang H, Ye C, Ma H, Zhang L, Liu H, Dong Y, Yao M, Lei Y, Xu Z, Zhang F, Ye W. N-acetyltransferase 10 regulates alphavirus replication via N4-acetylcytidine (ac4C) modification of the lymphocyte antigen six family member E (LY6E) mRNA. J Virol 2024; 98:e0135023. [PMID: 38169284 PMCID: PMC10805074 DOI: 10.1128/jvi.01350-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024] Open
Abstract
Epitranscriptomic RNA modifications can regulate the stability of mRNA and affect cellular and viral RNA functions. The N4-acetylcytidine (ac4C) modification in the RNA viral genome was recently found to promote viral replication; however, the mechanism by which RNA acetylation in the host mRNA regulates viral replication remains unclear. To help elucidate this mechanism, the roles of N-acetyltransferase 10 (NAT10) and ac4C during the infection and replication processes of the alphavirus, Sindbis virus (SINV), were investigated. Cellular NAT10 was upregulated, and ac4C modifications were promoted after alphavirus infection, while the loss of NAT10 or inhibition of its N-acetyltransferase activity reduced alphavirus replication. The NAT10 enhanced alphavirus replication as it helped to maintain the stability of lymphocyte antigen six family member E mRNA, which is a multifunctional interferon-stimulated gene that promotes alphavirus replication. The ac4C modification was thus found to have a non-conventional role in the virus life cycle through regulating host mRNA stability instead of viral mRNA, and its inhibition could be a potential target in the development of new alphavirus antivirals.IMPORTANCEThe role of N4-acetylcytidine (ac4C) modification in host mRNA and virus replication is not yet fully understood. In this study, the role of ac4C in the regulation of Sindbis virus (SINV), a prototype alphavirus infection, was investigated. SINV infection results in increased levels of N-acetyltransferase 10 (NAT10) and increases the ac4C modification level of cellular RNA. The NAT10 was found to positively regulate SINV infection in an N-acetyltransferase activity-dependent manner. Mechanistically, the NAT10 modifies lymphocyte antigen six family member E (LY6E) mRNA-the ac4C modification site within the 3'-untranslated region (UTR) of LY6E mRNA, which is essential for its translation and stability. The findings of this study demonstrate that NAT10 regulated mRNA stability and translation efficiency not only through the 5'-UTR or coding sequence but also via the 3'-UTR region. The ac4C modification of host mRNA stability instead of viral mRNA impacting the viral life cycle was thus identified, indicating that the inhibition of ac4C could be a potential target when developing alphavirus antivirals.
Collapse
Affiliation(s)
- Yamei Dang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Jia Li
- Department of Neurology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, AMMS, Beijing, China
| | - Yuan Wang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yajing Zhao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, School of Stomatology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Ningbo Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Wanying Li
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
- Department of Pathogenic Biology, School of Preclinical Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Chuantao Ye
- Department of Infectious Diseases, Tangdu Hospital, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - He Liu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Min Yao
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Fanglin Zhang
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| | - Wei Ye
- Department of Microbiology, Airforce Medical University (Fourth Military Medical University), Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Chen Y, Wang W, Zhang W, He M, Li Y, Qu G, Tong J. Emerging roles of biological m 6A proteins in regulating virus infection: A review. Int J Biol Macromol 2023; 253:126934. [PMID: 37722640 DOI: 10.1016/j.ijbiomac.2023.126934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent chemical modifications of intracellular RNA, which recently emerging as a multifaceted effector of viral genomic RNA. As a dynamic process, three groups of biological proteins control the levels of m6A modification in eukaryocyte, designed as m6A writers, erasers, and readers. The m6A writers comprising of methyltransferases complex initiate the modification process. On the contrary, the m6A erasers ALKBH5 or FTO abolish the modification through three-step demethylation: m6A to N6-hydroxymethyl adenosine (hm6A), then hm6A to N6-methyladenosine (f6A), and finally f6A to adenosine. The known m6A readers include the YTH family and the hnRNP family. As m6A modification regulates RNA nuclear exportation, stability, and translation, m6A proteins commonly participate in virus infection by regulating viral genomic RNA synthesis. Moreover, m6A proteins establish molecular linkages between virus genome/viral encode proteins and host cells proteins via their multifunctional roles in cellular RNA metabolism. The m6A writers and erasers directly impact interferon expression and macrophage innate immune responses, facilitating them to act as anti-/pro-viral factors. The m6A readers enable to alter cell metabolism and stress granules (SGs) production to regulate virus-host interactions. Here, the latest progress of m6A proteins in regulating viral infection is reviewed. Demonstrating the roles of m6A proteins will enhance the understanding of epigenetic regulation of virus infection and stimulate the development of novel antiviral strategies.
Collapse
Affiliation(s)
- Yuran Chen
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wenjing Wang
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Mei He
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Yuming Li
- School of Public Health, Shandong First Medical University, Shandong Academy of Medical Sciences, Ji'nan 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University, Shandong Academy of Medical Sciences, Tai'an 271000, China.
| | - Guosheng Qu
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| | - Jie Tong
- College of Life Science, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China.
| |
Collapse
|
24
|
Meyer L, Duquénois I, Gellenoncourt S, Pellerin M, Marcadet-Hauss A, Pavio N, Doceul V. Identification of interferon-stimulated genes with modulated expression during hepatitis E virus infection in pig liver tissues and human HepaRG cells. Front Immunol 2023; 14:1291186. [PMID: 38058490 PMCID: PMC10696647 DOI: 10.3389/fimmu.2023.1291186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
Introduction Hepatitis E virus (HEV) is a common cause of enterically transmitted acute hepatitis worldwide. The virus is transmitted by the fecal-oral route via the consumption of contaminated water supplies and is also a zoonotic foodborne pathogen. Swine are the main reservoir of zoonotic HEV. In humans, HEV infection is usually asymptomatic or causes acute hepatitis that is self-limited. However, fulminant hepatic failure and chronic cases of HEV infection can occur in some patients. In contrast, HEV infection in pigs remains asymptomatic, although the virus replicates efficiently, suggesting that swine are able to control the virus pathogenesis. Upon viral infection, IFN is secreted and activates cellular pathways leading to the expression of many IFN-stimulated genes (ISGs). ISGs can restrict the replication of specific viruses and establish an antiviral state within infected and neighboring cells. Methods In this study, we used PCR arrays to determine the expression level of up to 168 ISGs and other IFN-related genes in the liver tissues of pigs infected with zoonotic HEV-3c and HEV-3f and in human bipotent liver HepaRG cells persistently infected with HEV-3f. Results and discussion The expression of 12 and 25 ISGs was found to be up-regulated in infected swine livers and HepaRG cells, respectively. The expression of CXCL10, IFIT2, MX2, OASL and OAS2 was up-regulated in both species. Increased expression of IFI16 mRNA was also found in swine liver tissues. This study contributes to the identification of potential ISGs that could play a role in the control or persistence of HEV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Virginie Doceul
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Agence Nationale de Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail (ANSES), École Nationale Vétérinaire d'Alfort (ENVA), UMR Virology, Maisons-Alfort, France
| |
Collapse
|
25
|
Thompson MG, Horner SM. The Evil DExH/D: Chikungunya virus runs but cannot hide from DDX39A. Mol Cell 2023; 83:3948-3949. [PMID: 37977114 DOI: 10.1016/j.molcel.2023.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
In this issue, Tapescu et al.1 identify DDX39A as a novel antiviral protein that acts on conserved features of alphavirus RNA to limit infection in an IFN-independent manner.
Collapse
Affiliation(s)
- Matthew G Thompson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Stacy M Horner
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA; Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
26
|
Garrett TJ, Coatsworth H, Mahmud I, Hamerly T, Stephenson CJ, Ayers JB, Yazd HS, Miller MR, Lednicky JA, Dinglasan RR. Niclosamide as a chemical probe for analyzing SARS-CoV-2 modulation of host cell lipid metabolism. Front Microbiol 2023; 14:1251065. [PMID: 37901834 PMCID: PMC10603251 DOI: 10.3389/fmicb.2023.1251065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction SARS-CoV-2 subverts host cell processes to facilitate rapid replication and dissemination, and this leads to pathological inflammation. Methods We used niclosamide (NIC), a poorly soluble anti-helminth drug identified initially for repurposed treatment of COVID-19, which activates the cells' autophagic and lipophagic processes as a chemical probe to determine if it can modulate the host cell's total lipid profile that would otherwise be either amplified or reduced during SARS-CoV-2 infection. Results Through parallel lipidomic and transcriptomic analyses we observed massive reorganization of lipid profiles of SARS-CoV-2 infected Vero E6 cells, especially with triglycerides, which were elevated early during virus replication, but decreased thereafter, as well as plasmalogens, which were elevated at later timepoints during virus replication, but were also elevated under normal cell growth. These findings suggested a complex interplay of lipid profile reorganization involving plasmalogen metabolism. We also observed that NIC treatment of both low and high viral loads does not affect virus entry. Instead, NIC treatment reduced the abundance of plasmalogens, diacylglycerides, and ceramides, which we found elevated during virus infection in the absence of NIC, resulting in a significant reduction in the production of infectious virions. Unexpectedly, at higher viral loads, NIC treatment also resulted in elevated triglyceride levels, and induced significant changes in phospholipid metabolism. Discussion We posit that future screens of approved or new partner drugs should prioritize compounds that effectively counter SARS-CoV-2 subversion of lipid metabolism, thereby reducing virus replication, egress, and the subsequent regulation of key lipid mediators of pathological inflammation.
Collapse
Affiliation(s)
- Timothy J. Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Heather Coatsworth
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Iqbal Mahmud
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, United States
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, United States
| | - Timothy Hamerly
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Caroline J. Stephenson
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Jasmine B. Ayers
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Hoda S. Yazd
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Megan R. Miller
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - John A. Lednicky
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL, United States
| | - Rhoel R. Dinglasan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Yang D, Zhao G, Zhang HM. m 6A reader proteins: the executive factors in modulating viral replication and host immune response. Front Cell Infect Microbiol 2023; 13:1151069. [PMID: 37325513 PMCID: PMC10266107 DOI: 10.3389/fcimb.2023.1151069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/17/2023] Open
Abstract
N6-Methyladenosine (m6A) modification is the most abundant covalent modification of RNA. It is a reversible and dynamic process induced by various cellular stresses including viral infection. Many m6A methylations have been discovered, including on the genome of RNA viruses and on RNA transcripts of DNA viruses, and these methylations play a positive or negative role on the viral life cycle depending on the viral species. The m6A machinery, including the writer, eraser, and reader proteins, achieves its gene regulatory role by functioning in an orchestrated manner. Notably, data suggest that the biological effects of m6A on target mRNAs predominantly depend on the recognition and binding of different m6A readers. These readers include, but are not limited to, the YT521-B homology (YTH) domain family, heterogeneous nuclear ribonucleoproteins (HNRNPs), insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs), and many others discovered recently. Indeed, m6A readers have been recognized not only as regulators of RNA metabolism but also as participants in a variety of biological processes, although some of these reported roles are still controversial. Here, we will summarize the recent advances in the discovery, classification, and functional characterization of m6A reader proteins, particularly focusing on their roles and mechanisms of action in RNA metabolism, gene expression, and viral replication. In addition, we also briefly discuss the m6A-associated host immune responses in viral infection.
Collapse
Affiliation(s)
- Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Guangze Zhao
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| | - Huifang Mary Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, BC, Canada
| |
Collapse
|
28
|
Arcos S, Han AX, te Velthuis AJW, Russell CA, Lauring AS. Mutual information networks reveal evolutionary relationships within the influenza A virus polymerase. Virus Evol 2023; 9:vead037. [PMID: 37325086 PMCID: PMC10263469 DOI: 10.1093/ve/vead037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The influenza A virus (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (polymerase basic protein 2, polymerase basic protein 1, and polymerase acidic protein). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI (wMI) metric and demonstrate that wMI outperforms raw MI through simulations using a well-sampled severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included hemagglutinin (HA) in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitch-hiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.
Collapse
|
29
|
Balzarini S, Van Ende R, Voet A, Geuten K. A widely applicable and cost-effective method for specific RNA-protein complex isolation. Sci Rep 2023; 13:6898. [PMID: 37106019 PMCID: PMC10140378 DOI: 10.1038/s41598-023-34157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/24/2023] [Indexed: 04/29/2023] Open
Abstract
Although methodological advances have been made over the past years, a widely applicable, easily scalable and cost-effective procedure that can be routinely used to isolate specific ribonucleoprotein complexes (RNPs) remains elusive. We describe the "Silica-based Acidic Phase Separation (SAPS)-capture" workflow. This versatile method combines previously described techniques in a cost-effective, optimal and widely applicable protocol. The specific RNP isolation procedure is performed on a pre-purified RNP sample instead of cell lysate. This combination of protocols results in an increased RNP/bead ratio and by consequence a reduced experimental cost. To validate the method, the 18S rRNP of S. cerevisiae was captured and to illustrate its applicability we isolated the complete repertoire of RNPs in A. thaliana. The procedure we describe can provide the community with a powerful tool to advance the study of the ribonome of a specific RNA molecule in any organism or tissue type.
Collapse
Affiliation(s)
- Sam Balzarini
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Roosje Van Ende
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium
| | - Arnout Voet
- Lab of biomolecular modelling and design, KU Leuven, 3001, Leuven, Belgium
| | - Koen Geuten
- Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001, Leuven, Belgium.
| |
Collapse
|
30
|
Amurri L, Horvat B, Iampietro M. Interplay between RNA viruses and cGAS/STING axis in innate immunity. Front Cell Infect Microbiol 2023; 13:1172739. [PMID: 37077526 PMCID: PMC10106766 DOI: 10.3389/fcimb.2023.1172739] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the function of cGAS/STING signalling axis in the innate immune response to DNA viruses is well deciphered, increasing evidence demonstrates its significant contribution in the control of RNA virus infections. After the first evidence of cGAS/STING antagonism by flaviviruses, STING activation has been detected following infection by various enveloped RNA viruses. It has been discovered that numerous viral families have implemented advanced strategies to antagonize STING pathway through their evolutionary path. This review summarizes the characterized cGAS/STING escape strategies to date, together with the proposed mechanisms of STING signalling activation perpetrated by RNA viruses and discusses possible therapeutic approaches. Further studies regarding the interaction between RNA viruses and cGAS/STING-mediated immunity could lead to major discoveries important for the understanding of immunopathogenesis and for the treatment of RNA viral infections.
Collapse
|
31
|
Steinmetz B, Smok I, Bikaki M, Leitner A. Protein-RNA interactions: from mass spectrometry to drug discovery. Essays Biochem 2023; 67:175-186. [PMID: 36866608 PMCID: PMC10070478 DOI: 10.1042/ebc20220177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 03/04/2023]
Abstract
Proteins and RNAs are fundamental parts of biological systems, and their interactions affect many essential cellular processes. Therefore, it is crucial to understand at a molecular and at a systems level how proteins and RNAs form complexes and mutually affect their functions. In the present mini-review, we will first provide an overview of different mass spectrometry (MS)-based methods to study the RNA-binding proteome (RBPome), most of which are based on photochemical cross-linking. As we will show, some of these methods are also able to provide higher-resolution information about binding sites, which are important for the structural characterisation of protein-RNA interactions. In addition, classical structural biology techniques such as nuclear magnetic resonance (NMR) spectroscopy and biophysical methods such as electron paramagnetic resonance (EPR) spectroscopy and fluorescence-based methods contribute to a detailed understanding of the interactions between these two classes of biomolecules. We will discuss the relevance of such interactions in the context of the formation of membrane-less organelles (MLOs) by liquid-liquid phase separation (LLPS) processes and their emerging importance as targets for drug discovery.
Collapse
Affiliation(s)
- Benjamin Steinmetz
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Izabela Smok
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
- RNA Biology PhD Program, University of Zurich and ETH Zürich, Zurich, Switzerland
| | - Maria Bikaki
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zurich, Switzerland
| |
Collapse
|
32
|
IFN-Induced PARPs—Sensors of Foreign Nucleic Acids? Pathogens 2023; 12:pathogens12030457. [PMID: 36986379 PMCID: PMC10057411 DOI: 10.3390/pathogens12030457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Cells have developed different strategies to cope with viral infections. Key to initiating a defense response against viruses is the ability to distinguish foreign molecules from their own. One central mechanism is the perception of foreign nucleic acids by host proteins which, in turn, initiate an efficient immune response. Nucleic acid sensing pattern recognition receptors have evolved, each targeting specific features to discriminate viral from host RNA. These are complemented by several RNA-binding proteins that assist in sensing of foreign RNAs. There is increasing evidence that the interferon-inducible ADP-ribosyltransferases (ARTs; PARP9—PARP15) contribute to immune defense and attenuation of viruses. However, their activation, subsequent targets, and precise mechanisms of interference with viruses and their propagation are still largely unknown. Best known for its antiviral activities and its role as RNA sensor is PARP13. In addition, PARP9 has been recently described as sensor for viral RNA. Here we will discuss recent findings suggesting that some PARPs function in antiviral innate immunity. We expand on these findings and integrate this information into a concept that outlines how the different PARPs might function as sensors of foreign RNA. We speculate about possible consequences of RNA binding with regard to the catalytic activities of PARPs, substrate specificity and signaling, which together result in antiviral activities.
Collapse
|
33
|
Chen L, Gao Y, Xu S, Yuan J, Wang M, Li T, Gong J. N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms. Front Immunol 2023; 14:1162607. [PMID: 36999016 PMCID: PMC10043241 DOI: 10.3389/fimmu.2023.1162607] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
As the most abundant and conserved internal modification in eukaryote RNAs, N6-methyladenosine (m6A) is involved in a wide range of physiological and pathological processes. The YT521-B homology (YTH) domain-containing family proteins (YTHDFs), including YTHDF1, YTHDF2, and YTHDF3, are a class of cytoplasmic m6A-binding proteins defined by the vertebrate YTH domain, and exert extensive functions in regulating RNA destiny. Distinct expression patterns of the YTHDF family in specific cell types or developmental stages result in prominent differences in multiple biological processes, such as embryonic development, stem cell fate, fat metabolism, neuromodulation, cardiovascular effect, infection, immunity, and tumorigenesis. The YTHDF family mediates tumor proliferation, metastasis, metabolism, drug resistance, and immunity, and possesses the potential of predictive and therapeutic biomarkers. Here, we mainly summary the structures, roles, and mechanisms of the YTHDF family in physiological and pathological processes, especially in multiple cancers, as well as their current limitations and future considerations. This will provide novel angles for deciphering m6A regulation in a biological system.
Collapse
Affiliation(s)
- Lin Chen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Simiao Xu
- Division of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Branch of National Clinical Research Center for Metabolic Disease, Wuhan, China
| | - Jinxiong Yuan
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianyu Li
- Trauma Center/Department of Emergency and Traumatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Gong
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jun Gong,
| |
Collapse
|
34
|
Arcos S, Han AX, Te Velthuis AJW, Russell CA, Lauring AS. Mutual information networks reveal evolutionary relationships within the influenza A virus polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528850. [PMID: 36824962 PMCID: PMC9949103 DOI: 10.1101/2023.02.16.528850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The influenza A (IAV) RNA polymerase is an essential driver of IAV evolution. Mutations that the polymerase introduces into viral genome segments during replication are the ultimate source of genetic variation, including within the three subunits of the IAV polymerase (PB2, PB1, and PA). Evolutionary analysis of the IAV polymerase is complicated, because changes in mutation rate, replication speed, and drug resistance involve epistatic interactions among its subunits. In order to study the evolution of the human seasonal H3N2 polymerase since the 1968 pandemic, we identified pairwise evolutionary relationships among ∼7000 H3N2 polymerase sequences using mutual information (MI), which measures the information gained about the identity of one residue when a second residue is known. To account for uneven sampling of viral sequences over time, we developed a weighted MI metric (wMI) and demonstrate that wMI outperforms raw MI through simulations using a well-sampled SARS-CoV-2 dataset. We then constructed wMI networks of the H3N2 polymerase to extend the inherently pairwise wMI statistic to encompass relationships among larger groups of residues. We included HA in the wMI network to distinguish between functional wMI relationships within the polymerase and those potentially due to hitchhiking on antigenic changes in HA. The wMI networks reveal coevolutionary relationships among residues with roles in replication and encapsidation. Inclusion of HA highlighted polymerase-only subgraphs containing residues with roles in the enzymatic functions of the polymerase and host adaptability. This work provides insight into the factors that drive and constrain the rapid evolution of influenza viruses.
Collapse
|
35
|
Li G, Tang Z, Fan W, Wang X, Huang L, Jia Y, Wang M, Hu Z, Zhou Y. Atlas of interactions between SARS-CoV-2 macromolecules and host proteins. CELL INSIGHT 2023; 2:100068. [PMID: 37192911 PMCID: PMC9670597 DOI: 10.1016/j.cellin.2022.100068] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
The proteins and RNAs of viruses extensively interact with host proteins after infection. We collected and reanalyzed all available datasets of protein-protein and RNA-protein interactions related to SARS-CoV-2. We investigated the reproducibility of those interactions and made strict filters to identify highly confident interactions. We systematically analyzed the interaction network and identified preferred subcellular localizations of viral proteins, some of which such as ORF8 in ER and ORF7A/B in ER membrane were validated using dual fluorescence imaging. Moreover, we showed that viral proteins frequently interact with host machinery related to protein processing in ER and vesicle-associated processes. Integrating the protein- and RNA-interactomes, we found that SARS-CoV-2 RNA and its N protein closely interacted with stress granules including 40 core factors, of which we specifically validated G3BP1, IGF2BP1, and MOV10 using RIP and Co-IP assays. Combining CRISPR screening results, we further identified 86 antiviral and 62 proviral factors and associated drugs. Using network diffusion, we found additional 44 interacting proteins including two proviral factors previously validated. Furthermore, we showed that this atlas could be applied to identify the complications associated with COVID-19. All data are available in the AIMaP database (https://mvip.whu.edu.cn/aimap/) for users to easily explore the interaction map.
Collapse
Affiliation(s)
- Guangnan Li
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Zhidong Tang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Weiliang Fan
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Xi Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li Huang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Yu Jia
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yu Zhou
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Institute for Advanced Studies, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
|
37
|
Castello A, Iselin L. Viral RNA Is a Hub for Critical Host-Virus Interactions. Subcell Biochem 2023; 106:365-385. [PMID: 38159234 DOI: 10.1007/978-3-031-40086-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA is a central molecule in the life cycle of viruses, acting not only as messenger (m)RNA but also as a genome. Given these critical roles, it is not surprising that viral RNA is a hub for host-virus interactions. However, the interactome of viral RNAs remains largely unknown. This chapter discusses the importance of cellular RNA-binding proteins in virus infection and the emergent approaches developed to uncover and characterise them.
Collapse
Affiliation(s)
- Alfredo Castello
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Louisa Iselin
- MRC University of Glasgow Centre for Virus Research, Glasgow, UK
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
38
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
39
|
Zheng M, Lin Y, Wang W, Zhao Y, Bao X. Application of nucleoside or nucleotide analogues in RNA dynamics and RNA-binding protein analysis. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1722. [PMID: 35218164 DOI: 10.1002/wrna.1722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cellular RNAs undergo dynamic changes during RNA biological processes, which are tightly orchestrated by RNA-binding proteins (RBPs). Yet, the investigation of RNA dynamics is hurdled by highly abundant steady-state RNAs, which make the signals of dynamic RNAs less detectable. Notably, the exert of nucleoside or nucleotide analogue-based RNA technologies has provided a remarkable platform for RNA dynamics research, revealing diverse unnoticed features in RNA metabolism. In this review, we focus on the application of two types of analogue-based RNA sequencing, antigen-/antibody- and click chemistry-based methodologies, and summarize the RNA dynamics features revealed. Moreover, we discuss emerging single-cell newly transcribed RNA sequencing methodologies based on nucleoside analogue labeling, which provides novel insights into RNA dynamics regulation at single-cell resolution. On the other hand, we also emphasize the identification of RBPs that interact with polyA, non-polyA RNAs, or newly transcribed RNAs and also their associated RNA-binding domains at genomewide level through ultraviolet crosslinking and mass spectrometry in different contexts. We anticipated that further modification and development of these analogue-based RNA and RBP capture technologies will aid in obtaining an unprecedented understanding of RNA biology. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Methods > RNA Analyses in Cells.
Collapse
Affiliation(s)
- Meifeng Zheng
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yingying Lin
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- The Center for Infection and Immunity Study, School of Medicine, Sun Yat-sen University, Guangming Science City, Shenzhen, China
| | - Wei Wang
- Center for Biosafety, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Xichen Bao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Cell Lineage and Atlas, Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
40
|
Guy C, Bowie AG. Recent insights into innate immune nucleic acid sensing during viral infection. Curr Opin Immunol 2022; 78:102250. [PMID: 36209576 DOI: 10.1016/j.coi.2022.102250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Recent advances in our understanding of nucleic acid pattern-recognition receptor (PRR) sensing of viruses have revealed a previously unappreciated level of complexity of the host antiviral response. As well as direct recognition of viral nucleic acid by PRRs, viruses also induce the release of host nucleic acid from the nucleus and mitochondria into the cytosol, which boosts nucleic acid activation of antiviral PRRs. Crosstalk and cooperation between DNA- and RNA-recognition signaling pathways has also been revealed, as has direct restriction of viral genomes in an interferon-independent manner by PRRs, and new roles for inflammasomes in sensing viral nucleic acid. Further, newly identified viral-evasion strategies targeting PRR pathways emphasize the importance of nucleic acid detection during viral infection at the host-pathogen innate immune interface.
Collapse
Affiliation(s)
- Coralie Guy
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
41
|
Lara-Reyna S, Caseley EA, Topping J, Rodrigues F, Jimenez Macias J, Lawler SE, McDermott MF. Inflammasome activation: from molecular mechanisms to autoinflammation. Clin Transl Immunology 2022; 11:e1404. [PMID: 35832835 PMCID: PMC9262628 DOI: 10.1002/cti2.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
Inflammasomes are assembled by innate immune sensors that cells employ to detect a range of danger signals and respond with pro-inflammatory signalling. Inflammasomes activate inflammatory caspases, which trigger a cascade of molecular events with the potential to compromise cellular integrity and release the IL-1β and IL-18 pro-inflammatory cytokines. Several molecular mechanisms, working in concert, ensure that inflammasome activation is tightly regulated; these include NLRP3 post-translational modifications, ubiquitination and phosphorylation, as well as single-domain proteins that competitively bind to key inflammasome components, such as the CARD-only proteins (COPs) and PYD-only proteins (POPs). These diverse regulatory systems ensure that a suitable level of inflammation is initiated to counteract any cellular insult, while simultaneously preserving tissue architecture. When inflammasomes are aberrantly activated can drive excessive production of pro-inflammatory cytokines and cell death, leading to tissue damage. In several autoinflammatory conditions, inflammasomes are aberrantly activated with subsequent development of clinical features that reflect the degree of underlying tissue and organ damage. Several of the resulting disease complications may be successfully controlled by anti-inflammatory drugs and/or specific cytokine inhibitors, in addition to more recently developed small-molecule inhibitors. In this review, we will explore the molecular processes underlying the activation of several inflammasomes and highlight their role during health and disease. We also describe the detrimental effects of these inflammasome complexes, in some pathological conditions, and review current therapeutic approaches as well as future prospective treatments.
Collapse
Affiliation(s)
- Samuel Lara-Reyna
- Institute of Microbiology and Infection University of Birmingham Birmingham UK
| | - Emily A Caseley
- School of Biomedical Sciences, Faculty of Biological Sciences University of Leeds Leeds UK
| | - Joanne Topping
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| | - François Rodrigues
- AP-HP, Hôpital Tenon, Sorbonne Université, Service de Médecine interne Centre de Référence des Maladies Auto-inflammatoires et des Amyloses d'origine inflammatoire (CEREMAIA) Paris France
| | - Jorge Jimenez Macias
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Sean E Lawler
- Harvey Cushing Neuro-Oncology Laboratories, Department of Neurosurgery, Brigham and Women's Hospital Harvard Medical School Boston Massachusetts USA.,Brown Cancer Centre, Department of Pathology and Laboratory Medicine Brown University Providence Rhode Island USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital University of Leeds Leeds UK
| |
Collapse
|
42
|
Westcott CE, Qazi S, Maiocco AM, Mukhopadhyay S, Sokoloski KJ. Binding of hnRNP I-vRNA Regulates Sindbis Virus Structural Protein Expression to Promote Particle Infectivity. Viruses 2022; 14:v14071423. [PMID: 35891402 PMCID: PMC9318202 DOI: 10.3390/v14071423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/09/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Alphaviruses cause significant outbreaks of febrile illness and debilitating multi-joint arthritis for prolonged periods after initial infection. We have previously reported that several host hnRNP proteins bind to the Sindbis virus (SINV) RNAs, and disrupting the sites of these RNA-protein interactions results in decreased viral titers in tissue culture models of infection. Intriguingly, the primary molecular defect associated with the disruption of the hnRNP interactions is enhanced viral structural protein expression; however, the precise underlying mechanisms spurring the enhanced gene expression remain unknown. Moreover, our previous efforts were unable to functionally dissect whether the observed phenotypes were due to the loss of hnRNP binding or the incorporation of polymorphisms into the primary nucleotide sequence of SINV. To determine if the loss of hnRNP binding was the primary cause of attenuation or if the disruption of the RNA sequence itself was responsible for the observed phenotypes, we utilized an innovative protein tethering approach to restore the binding of the hnRNP proteins in the absence of the native interaction site. Specifically, we reconstituted the hnRNP I interaction by incorporating the 20nt bovine immunodeficiency virus transactivation RNA response (BIV-TAR) at the site of the native hnRNP I interaction sequence, which will bind with high specificity to proteins tagged with a TAT peptide. The reestablishment of the hnRNP I-vRNA interaction via the BIV-TAR/TAT tethering approach restored the phenotype back to wild-type levels. This included an apparent decrease in structural protein expression in the absence of the native primary nucleotide sequences corresponding to the hnRNP I interaction site. Collectively, the characterization of the hnRNP I interaction site elucidated the role of hnRNPs during viral infection.
Collapse
Affiliation(s)
- Claire E. Westcott
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Shefah Qazi
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Anna M. Maiocco
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Suchetana Mukhopadhyay
- Department of Biology, Indiana University—Bloomington, Bloomington, IN 47405, USA; (S.Q.); (S.M.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Center for Predictive Medicine and Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: ; Tel.: +1-(502)-852-1249
| |
Collapse
|
43
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
44
|
Koliński M, Kałużna E, Piwecka M. RNA–protein interactomes as invaluable resources to study RNA viruses: Insights from SARS CoV‐2 studies. WIRES RNA 2022; 13:e1727. [PMID: 35343064 PMCID: PMC9111084 DOI: 10.1002/wrna.1727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Understanding the molecular mechanisms of severe respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection is essential for the successful development of therapeutic strategies against the COVID‐19 pandemic. Numerous studies have focused on the identification of host factors and cellular pathways involved in the viral replication cycle. The speed and magnitude of hijacking the translation machinery of host mRNA, and shutting down host transcription are still not well understood. Since SARS‐CoV‐2 relies on host RNA‐binding proteins for the infection progression, several efforts have been made to define the SARS‐CoV‐2 RNA‐bound proteomes (RNA–protein interactomes). Methodologies that enable the systemic capture of protein interactors of given RNA in vivo have been adapted for the identification of the SARS‐CoV‐2 RNA interactome. The obtained proteomic data aided by genome‐wide and targeted CRISPR perturbation screens, revealed host factors with either pro‐ or anti‐viral activity and highlighted cellular processes and factors involved in host response. We focus here on the recent studies on SARS‐CoV‐2 RNA–protein interactomes, with regard to both the technological aspects of RNA interactome capture methods and the obtained results. We also summarize several related studies, which were used in the interpretation of the SARS‐CoV‐2 RNA–protein interactomes. These studies provided the selection of host factors that are potentially suitable candidates for antiviral therapy. Finally, we underscore the importance of RNA–protein interactome studies in regard to the effective development of antiviral strategies against current and future threats. This article is categorized under:RNA Interactions with Proteins and Other Molecules > Protein‐RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells
Collapse
Affiliation(s)
- Marcin Koliński
- Department of Non‐Coding RNAs Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan Poland
| | - Ewelina Kałużna
- Department of Non‐Coding RNAs Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan Poland
| | - Monika Piwecka
- Department of Non‐Coding RNAs Institute of Bioorganic Chemistry, Polish Academy of Sciences Poznan Poland
| |
Collapse
|
45
|
Webb LG, Fernandez-Sesma A. RNA viruses and the cGAS-STING pathway: reframing our understanding of innate immune sensing. Curr Opin Virol 2022; 53:101206. [PMID: 35180533 DOI: 10.1016/j.coviro.2022.101206] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
Abstract
The past decade has provided critical information about the cytoplasmic innate immune sensing pathway of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING). These discoveries have broadened our understanding of the interconnectedness of the cGAS-STING pathway with autophagy, programmed cell death, Rig-I-like receptor (RLR) signaling, DNA independent interferon induction, and how this pathway responds to RNA virus infection. These advances highlight how multiple families of RNA viruses are restricted by and in turn have mechanisms to inhibit cGAS-STING dependent type-I interferon (IFN-I) induction. Here we review recent discoveries of how and why the cGAS-STING pathway responds to infection with RNA viruses, novel findings of RNA viral antagonism of the cGAS-STING innate immune sensing pathway, and attempt to provide context for a shift in thinking as to how critical this DNA sensing pathway is for the restriction of a wide range of RNA viruses.
Collapse
Affiliation(s)
- Laurence G Webb
- The Icahn School of Medicine at Mount Sinai, United States; Mount Sinai Department of Microbiology, United States
| | - Ana Fernandez-Sesma
- The Icahn School of Medicine at Mount Sinai, United States; Mount Sinai Department of Microbiology, United States.
| |
Collapse
|
46
|
Schneider WM, Hoffmann HH. Flavivirus-host interactions: an expanding network of proviral and antiviral factors. Curr Opin Virol 2022; 52:71-77. [PMID: 34896863 PMCID: PMC8655497 DOI: 10.1016/j.coviro.2021.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Flaviviruses are zoonotic pathogens transmitted by the bite of infected mosquitos and ticks and represent a constant burden to human health. Here we review recent literature aimed at uncovering how flaviviruses interact with the cells that they infect. A better understanding of these interactions may ultimately lead to novel therapeutic targets. We highlight several studies that employed low-biased methods to discover new protein-protein, protein-RNA, and genetic interactions, and spotlight recent work characterizing the host protein, TMEM41B, which has been shown to be critical for infection by diverse flaviviruses and coronaviruses.
Collapse
Affiliation(s)
- William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
47
|
Iselin L, Palmalux N, Kamel W, Simmonds P, Mohammed S, Castello A. Uncovering viral RNA-host cell interactions on a proteome-wide scale. Trends Biochem Sci 2022; 47:23-38. [PMID: 34509361 PMCID: PMC9187521 DOI: 10.1016/j.tibs.2021.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/12/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023]
Abstract
RNA viruses interact with a wide range of cellular RNA-binding proteins (RBPs) during their life cycle. The prevalence of these host-virus interactions has been highlighted by new methods that elucidate the composition of viral ribonucleoproteins (vRNPs). Applied to 11 viruses so far, these approaches have revealed hundreds of cellular RBPs that interact with viral (v)RNA in infected cells. However, consistency across methods is limited, raising questions about methodological considerations when designing and interpreting these studies. Here, we discuss these caveats and, through comparing available vRNA interactomes, describe RBPs that are consistently identified as vRNP components and outline their potential roles in infection. In summary, these novel approaches have uncovered a new universe of host-virus interactions holding great therapeutic potential.
Collapse
Affiliation(s)
- Louisa Iselin
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK; Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, (UK)
| | - Wael Kamel
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK; MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, (UK)
| | - Peter Simmonds
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK; The Rosalind Franklin Institute, Oxfordshire, OX11 0FA, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, OX1 3QU, Oxford, UK; MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow G61 1QH, Scotland, (UK).
| |
Collapse
|
48
|
Chen Z, Zhong X, Xia M, Zhong J. The roles and mechanisms of the m6A reader protein YTHDF1 in tumor biology and human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:1270-1279. [PMID: 34853726 PMCID: PMC8609105 DOI: 10.1016/j.omtn.2021.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
YTHDF1 is the most versatile and powerful reader protein of N6-methyladenosine (m6A)-modified RNA, and it can recognize both G(m6A)C and A(m6A)C RNAs as ligands without sequence selectivity. YTHDF1 regulates target gene expression by different mechanisms, such as promoting translation or regulating the stability of mRNA. Numerous studies have shown that YTHDF1 plays an important role in tumor biology and nontumor lesions by mediating the protein translation of important genes or by affecting the expression of key factors involved in many important cell signaling pathways. Therefore, in this review we focus on some of the roles of YTHDF1 in tumor biology and diseases.
Collapse
Affiliation(s)
- Zuyao Chen
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Department of Otorhinolaryngology, The First Affiliated Hospital, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Xiaolin Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Min Xia
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Jing Zhong
- Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,The First Affiliated Hospital, Institute Center of Clinical Medicine, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China.,Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
49
|
Pennemann FL, Mussabekova A, Urban C, Stukalov A, Andersen LL, Grass V, Lavacca TM, Holze C, Oubraham L, Benamrouche Y, Girardi E, Boulos RE, Hartmann R, Superti-Furga G, Habjan M, Imler JL, Meignin C, Pichlmair A. Cross-species analysis of viral nucleic acid interacting proteins identifies TAOKs as innate immune regulators. Nat Commun 2021; 12:7009. [PMID: 34853303 PMCID: PMC8636641 DOI: 10.1038/s41467-021-27192-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022] Open
Abstract
The cell intrinsic antiviral response of multicellular organisms developed over millions of years and critically relies on the ability to sense and eliminate viral nucleic acids. Here we use an affinity proteomics approach in evolutionary distant species (human, mouse and fly) to identify proteins that are conserved in their ability to associate with diverse viral nucleic acids. This approach shows a core of orthologous proteins targeting viral genetic material and species-specific interactions. Functional characterization of the influence of 181 candidates on replication of 6 distinct viruses in human cells and flies identifies 128 nucleic acid binding proteins with an impact on virus growth. We identify the family of TAO kinases (TAOK1, -2 and -3) as dsRNA-interacting antiviral proteins and show their requirement for type-I interferon induction. Depletion of TAO kinases in mammals or flies leads to an impaired response to virus infection characterized by a reduced induction of interferon stimulated genes in mammals and impaired expression of srg1 and diedel in flies. Overall, our study shows a larger set of proteins able to mediate the interaction between viral genetic material and host factors than anticipated so far, attesting to the ancestral roots of innate immunity and to the lineage-specific pressures exerted by viruses.
Collapse
Affiliation(s)
- Friederike L Pennemann
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Assel Mussabekova
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Christian Urban
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Line Lykke Andersen
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Vincent Grass
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Teresa Maria Lavacca
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Lila Oubraham
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Yasmine Benamrouche
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Enrico Girardi
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
| | - Rasha E Boulos
- Computer Science and Mathematics Department, School of Arts and Science, Lebanese American University, Byblos, Lebanon
| | - Rune Hartmann
- Aarhus University, Department of Molecular Biology and Genetics - Structural Biology, Aarhus, Denmark
| | - Giulio Superti-Furga
- CeMM - Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Jean-Luc Imler
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Carine Meignin
- Université de Strasbourg, CNRS UPR9022, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany.
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany.
- German Center for Infection Research (DZIF), Munich partner site, Munich, Germany.
| |
Collapse
|
50
|
Cai C, Tang YD, Xu G, Zheng C. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cell Mol Life Sci 2021; 78:7427-7434. [PMID: 34714359 PMCID: PMC8554519 DOI: 10.1007/s00018-021-04001-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Viral infections pose a severe threat to humans by causing many infectious, even fatal, diseases, such as the current pandemic disease (COVID-19) since 2019, and understanding how the host innate immune system recognizes viruses has become more important. Endosomal and cytosolic sensors can detect viral nucleic acids to induce type I interferon and proinflammatory cytokines, subsequently inducing interferon-stimulated genes for restricting viral infection. Although viral RNA and DNA sensing generally rely on diverse receptors and adaptors, the crosstalk between DNA and RNA sensing is gradually appreciated. This minireview highlights the overlap between the RNA- and DNA-sensing mechanisms in antiviral innate immunity, which significantly amplifies the antiviral innate responses to restrict viral infection and might be a potential novel target for preventing and treating viral diseases.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guocai Xu
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|