1
|
Kursheed F, Naz E, Mateen S, Kulsoom U. CRISPR applications in microbial World: Assessing the opportunities and challenges. Gene 2025; 935:149075. [PMID: 39489225 DOI: 10.1016/j.gene.2024.149075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
Genome editing has emerged during the past few decades in the scientific research area to manipulate genetic composition, obtain desired traits, and deal with biological challenges by exploring genetic traits and their sequences at a level of precision. The discovery of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) as a genome editing tool has offered a much better understanding of cellular and molecular mechanisms. This technology emerges as one of the most promising candidates for genome editing, offering several advantages over other techniques such as high accuracy and specificity. In the microbial world, CRISPR/Cas technology enables researchers to manipulate the genetic makeup of micro-organisms, allowing them to achieve almost impossible tasks. This technology initially discovered as a bacterial defense mechanism, is now being used for gene cutting and editing to explore more of its dimensions. CRISPR/Cas 9 systems are highly efficient and flexible, leading to its widespread uses in microbial research areas. Although this technology is widely used in the scientific community, many challenges, including off-target activity, low efficiency of Homology Directed Repair (HDR), and ethical considerations, still need to be overcome before it can be widely used. As CRISPR/Cas technology has revolutionized the field of microbiology, this review article aimed to present a comprehensive overview highlighting a brief history, basic mechanisms, and its application in the microbial world along with accessing the opportunities and challenges.
Collapse
Affiliation(s)
- Farhan Kursheed
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan.
| | - Esha Naz
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Sana Mateen
- Department of Microbiology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Ume Kulsoom
- Department of Biotechnology, Faculty of Engineering, Science and Technology (FEST). Research Officer, Office of Research Innovation and Commercialization (ORIC), Hamdard University, Karachi 74600, Pakistan, Pakistan.
| |
Collapse
|
2
|
Shen Y, Zhao X, Zheng C, Chen Q. CRISPR-Mediated Construction of Gene-Knockout Mice for Investigating Antiviral Innate Immunity. Methods Mol Biol 2025; 2854:61-74. [PMID: 39192119 DOI: 10.1007/978-1-0716-4108-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
With the rapid development of CRISPR-Cas9 technology, gene editing has become a powerful tool for studying gene function. Specifically, in the study of the mechanisms by which natural immune responses combat viral infections, gene knockout mouse models have provided an indispensable platform. This article describes a detailed protocol for constructing gene knockout mice using the CRISPR-Cas9 system. This field focuses on the design of single-guide RNAs (sgRNAs) targeting the antiviral immune gene cGAS, embryo microinjection, and screening and verification of gene editing outcomes. Furthermore, this study provides methods for using cGAS gene knockout mice to analyze the role of specific genes in natural immune responses. Through this protocol, researchers can efficiently generate specific gene knockout mouse models, which not only helps in understanding the functions of the immune system but also offers a powerful experimental tool for exploring the mechanisms of antiviral innate immunity.
Collapse
Affiliation(s)
- Yangkun Shen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China
| | - Xiangqian Zhao
- The Cancer Center, Union Hospital, Fujian Medical University, Fu Zhou, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, AB, Canada
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, China.
| |
Collapse
|
3
|
Li G, Zhou J, Gao N, Liu R, Shen J. Establishment of a rapid detection method for Mycoplasma pneumoniae based on RPA-CRISPR-Cas12a technology. Clin Chim Acta 2025; 564:119906. [PMID: 39127296 DOI: 10.1016/j.cca.2024.119906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Mycoplasma pneumoniae can cause respiratory infections and pneumonia, posing a serious threat to the health of children and adolescents. Early diagnosis of Mycoplasma pneumoniae infection is crucial for clinical treatment. Currently, diagnostic methods for Mycoplasma pneumoniae infection include pathogen detection, molecular biology techniques, and bacterial culture, all of which have certain limitations. Here, we developed a rapid, simple, and accurate detection method for Mycoplasma pneumoniae that does not rely on large equipment or complex operations. This technology combines the CRISPR-Cas12a system with recombinase polymerase amplification (RPA), allowing the detection results to be observed through fluorescence curves and immunochromatographic lateral flow strips.It has been validated that RPA-CRISPR/Cas12a fluorescence analysis and RPA-CRISPR/Cas12-immunochromatographic exhibit no cross-reactivity with other common pathogens, and The established detection limit was ascertained to be as low as 102 copies/µL.Additionally, 49 clinical samples were tested and compared with fluorescence quantitative polymerase chain reaction, demonstrating a sensitivity and specificity of 100%. This platform exhibits promising clinical performance and holds significant potential for clinical application, particularly in settings with limited resources, such as clinical care points or resource-constrained areas.
Collapse
Affiliation(s)
- Ge Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 230022; Anhui Public Health Clinical Center, Hefei, Anhui, China, 230012
| | - Jing Zhou
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 230022; Anhui Public Health Clinical Center, Hefei, Anhui, China, 230012
| | - Nana Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 230022; Anhui Public Health Clinical Center, Hefei, Anhui, China, 230012
| | - Runde Liu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 230022; Anhui Public Health Clinical Center, Hefei, Anhui, China, 230012
| | - Jilu Shen
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China, 230022; Anhui Public Health Clinical Center, Hefei, Anhui, China, 230012.
| |
Collapse
|
4
|
Song X, Chen Z, Sun W, Yang H, Guo L, Zhao Y, Li Y, Ren Z, Shi J, Liu C, Ma P, Huang X, Ji Q, Sun B. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage. Nucleic Acids Res 2024; 52:14030-14042. [PMID: 39530229 DOI: 10.1093/nar/gkae989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages. We find that following the protospacer DNA unwinding and non-target strand (NTS) DNA nicking, AsCas12f1 surprisingly carries out bidirectional exonucleolytic cleavage from the nick. Subsequently, DNA unwinding is extended to the out-of-protospacer region, and AsCas12f1 gradually digests the unwound DNA beyond the protospacer. Eventually, the single endonucleolytic target-strand DNA cleavage at 3 nt downstream of the protospacer readily dissociates the ternary AsCas12f1-sgRNA-DNA complex from the protospacer adjacent motif-distal end, leaving a staggered double-strand DNA break. The coupling between the unwinding and cleavage of both protospacer and out-of-protospacer DNA is promoted by Mg2+. Kinetic analysis on the engineered AsCas12f1-v5.1 variant identifies the only accelerated step of the protospacer NTS DNA trimming within the sequential DNA cleavage. Our findings provide a dynamic view of AsCas12f1 catalyzing DNA unwinding-coupled nucleolytic cleavage and help with practical improvements of Cas12f-based genome editing tools.
Collapse
Affiliation(s)
- Xiaoxuan Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | | | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Yin JA, Frick L, Scheidmann MC, Liu T, Trevisan C, Dhingra A, Spinelli A, Wu Y, Yao L, Vena DL, Knapp B, Guo J, De Cecco E, Ging K, Armani A, Oakeley EJ, Nigsch F, Jenzer J, Haegele J, Pikusa M, Täger J, Rodriguez-Nieto S, Bouris V, Ribeiro R, Baroni F, Bedi MS, Berry S, Losa M, Hornemann S, Kampmann M, Pelkmans L, Hoepfner D, Heutink P, Aguzzi A. Arrayed CRISPR libraries for the genome-wide activation, deletion and silencing of human protein-coding genes. Nat Biomed Eng 2024:10.1038/s41551-024-01278-4. [PMID: 39633028 DOI: 10.1038/s41551-024-01278-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/04/2024] [Indexed: 12/07/2024]
Abstract
Arrayed CRISPR libraries extend the scope of gene-perturbation screens to non-selectable cell phenotypes. However, library generation requires assembling thousands of vectors expressing single-guide RNAs (sgRNAs). Here, by leveraging massively parallel plasmid-cloning methodology, we show that arrayed libraries can be constructed for the genome-wide ablation (19,936 plasmids) of human protein-coding genes and for their activation and epigenetic silencing (22,442 plasmids), with each plasmid encoding an array of four non-overlapping sgRNAs designed to tolerate most human DNA polymorphisms. The quadruple-sgRNA libraries yielded high perturbation efficacies in deletion (75-99%) and silencing (76-92%) experiments and substantial fold changes in activation experiments. Moreover, an arrayed activation screen of 1,634 human transcription factors uncovered 11 novel regulators of the cellular prion protein PrPC, screening with a pooled version of the ablation library led to the identification of 5 novel modifiers of autophagy that otherwise went undetected, and 'post-pooling' individually produced lentiviruses eliminated template-switching artefacts and enhanced the performance of pooled screens for epigenetic silencing. Quadruple-sgRNA arrayed libraries are a powerful and versatile resource for targeted genome-wide perturbations.
Collapse
Affiliation(s)
- Jiang-An Yin
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| | - Lukas Frick
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manuel C Scheidmann
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Tingting Liu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Chiara Trevisan
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Ashutosh Dhingra
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anna Spinelli
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Yancheng Wu
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Longping Yao
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Dalila Laura Vena
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Britta Knapp
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jingjing Guo
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Kathi Ging
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Andrea Armani
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
- Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Edward J Oakeley
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Florian Nigsch
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joel Jenzer
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Jasmin Haegele
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Michal Pikusa
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Joachim Täger
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | - Vangelis Bouris
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Rafaela Ribeiro
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Federico Baroni
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Manmeet Sakshi Bedi
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Scott Berry
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Marco Losa
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Simone Hornemann
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Dominic Hoepfner
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Kong X, Li T, Yang H. AAV-mediated gene therapies by miniature gene editing tools. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2540-2553. [PMID: 39388062 DOI: 10.1007/s11427-023-2608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 10/15/2024]
Abstract
The advent of CRISPR-Cas has revolutionized precise gene editing. While pioneering CRISPR nucleases like Cas9 and Cas12 generate targeted DNA double-strand breaks (DSB) for knockout or homology-directed repair, next generation CRISPR technologies enable gene editing without DNA DSB. Base editors directly convert bases, prime editors make diverse alterations, and dead Cas-regulator fusions allow nuanced control of gene expression, avoiding potentially risks like translocations. Meanwhile, the discovery of diminutive Cas12 orthologs and Obligate Mobile Element-Guided Activity (OMEGA) nucleases has overcome cargo limitations of adeno-associated viral vectors, expanding prospects for in vivo therapeutic delivery. Here, we review the ever-evolving landscape of cutting-edge gene editing tools, focusing on miniature Cas12 orthologs and OMEGA effectors amenable to single AAV packaging. We also summarize CRISPR therapies delivered using AAV vectors, discuss challenges such as efficiency and specificity, and look to the future of this transformative field of in vivo gene editing enabled by AAV vectors delivery.
Collapse
Affiliation(s)
- Xiangfeng Kong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Tong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China
| | - Hui Yang
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 201210, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- HuidaGene Therapeutics Co., Ltd., Shanghai, 200131, China.
| |
Collapse
|
7
|
Lei T, Wang Y, Zhang Y, Yang Y, Cao J, Huang J, Chen J, Chen H, Zhang J, Wang L, Xu X, Gale RP, Wang L. Leveraging CRISPR gene editing technology to optimize the efficacy, safety and accessibility of CAR T-cell therapy. Leukemia 2024; 38:2517-2543. [PMID: 39455854 PMCID: PMC11588664 DOI: 10.1038/s41375-024-02444-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Chimeric Antigen Receptor (CAR)-T-cell therapy has revolutionized cancer immune therapy. However, challenges remain including increasing efficacy, reducing adverse events and increasing accessibility. Use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology can effectively perform various functions such as precise integration, multi-gene editing, and genome-wide functional regulation. Additionally, CRISPR screening using large-scale guide RNA (gRNA) genetic perturbation provides an unbiased approach to understanding mechanisms underlying anti-cancer efficacy of CAR T-cells. Several emerging CRISPR tools with high specificity, controllability and efficiency are useful to modify CAR T-cells and identify new targets. In this review we summarize potential uses of the CRISPR system to improve results of CAR T-cells therapy including optimizing efficacy and safety and, developing universal CAR T-cells. We discuss challenges facing CRISPR gene editing and propose solutions highlighting future research directions in CAR T-cell therapy.
Collapse
Affiliation(s)
- Tao Lei
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yazhuo Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Yufei Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiaying Cao
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiansong Huang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiali Chen
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Huajing Chen
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Jiayi Zhang
- The First School of Clinical Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510145, China
| | - Luzheng Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College of Science, Technology and Medicine, London, UK.
| | - Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|
8
|
Liu W, Pan Y, Zhang Y, Dong C, Huang L, Lian J. Intracellularly synthesized ssDNA for continuous genome engineering. Trends Biotechnol 2024:S0167-7799(24)00293-2. [PMID: 39537537 DOI: 10.1016/j.tibtech.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Yu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
9
|
Borah A, Singh S, Chattopadhyay R, Kaur J, Bari VK. Integration of CRISPR/Cas9 with multi-omics technologies to engineer secondary metabolite productions in medicinal plant: Challenges and Prospects. Funct Integr Genomics 2024; 24:207. [PMID: 39496976 DOI: 10.1007/s10142-024-01486-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/06/2024]
Abstract
Plants acts as living chemical factories that may create a large variety of secondary metabolites, most of which are used in pharmaceutical products. The production of these secondary metabolites is often much lower. Moreover, the primary constraint after discovering potential metabolites is the capacity to manufacture sufficiently for use in industrial and therapeutic contexts. The development of omics technology has brought revolutionary discoveries in various scientific fields, including transcriptomics, metabolomics, and genome sequencing. The metabolic pathways leading to the utilization of new secondary metabolites in the pharmaceutical industry can be identified with the use of these technologies. Genome editing (GEd) is a versatile technology primarily used for site-directed DNA insertions, deletions, replacements, base editing, and activation/repression at the targeted locus. Utilizing GEd techniques such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR-associated protein 9), metabolic pathways engineered to synthesize bioactive metabolites optimally. This article will briefly discuss omics and CRISPR/Cas9-based methods to improve secondary metabolite production in medicinal plants.
Collapse
Affiliation(s)
- Anupriya Borah
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Shailey Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Rituja Chattopadhyay
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India
| | - Jaspreet Kaur
- RT-PCR Testing Laboratory, District Hospital, Hoshiarpur, India
| | - Vinay Kumar Bari
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, VPO- Ghudda, Bathinda, India.
| |
Collapse
|
10
|
Wu J, Liu Y, Ou L, Gan T, Zhangding Z, Yuan S, Liu X, Liu M, Li J, Yin J, Xin C, Tian Y, Hu J. Transfer of mitochondrial DNA into the nuclear genome during induced DNA breaks. Nat Commun 2024; 15:9438. [PMID: 39487167 PMCID: PMC11530683 DOI: 10.1038/s41467-024-53806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Mitochondria serve as the cellular powerhouse, and their distinct DNA makes them a prospective target for gene editing to treat genetic disorders. However, the impact of genome editing on mitochondrial DNA (mtDNA) stability remains a mystery. Our study reveals previously unknown risks of genome editing that both nuclear and mitochondrial editing cause discernible transfer of mitochondrial DNA segments into the nuclear genome in various cell types including human cell lines, primary T cells, and mouse embryos. Furthermore, drug-induced mitochondrial stresses and mtDNA breaks exacerbate this transfer of mtDNA into the nuclear genome. Notably, we observe that mitochondrial editors, including mitoTALEN and recently developed base editor DdCBE, can also enhance crosstalk between mtDNA and the nuclear genome. Moreover, we provide a practical solution by co-expressing TREX1 or TREX2 exonucleases during DdCBE editing. These findings imply genome instability of mitochondria during induced DNA breaks and explain the origins of mitochondrial-nuclear DNA segments.
Collapse
Affiliation(s)
- Jinchun Wu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Yang Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Liqiong Ou
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Gan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China
| | - Zhengrong Zhangding
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Shaopeng Yuan
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Xinyi Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Mengzhu Liu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianhang Yin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Changchang Xin
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhi Hu
- State Key Laboratory of Protein and Plant Gene Research, Genome Editing Research Center, School of Life Sciences, PKU-THU Center for Life Sciences, Peking University, Beijing, China.
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Zheng Z, Liu T, Chai N, Zeng D, Zhang R, Wu Y, Hang J, Liu Y, Deng Q, Tan J, Liu J, Xie X, Liu Y, Zhu Q. PhieDBEs: a DBD-containing, PAM-flexible, high-efficiency dual base editor toolbox with wide targeting scope for use in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3164-3174. [PMID: 39031643 PMCID: PMC11500981 DOI: 10.1111/pbi.14438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024]
Abstract
Dual base editors (DBEs) enable simultaneous A-to-G and C-to-T conversions, expanding mutation types. However, low editing efficiency and narrow targeting range limit the widespread use of DBEs in plants. The single-strand DNA binding domain of RAD51 DBD can be fused to base editors to improve their editing efficiency. However, it remains unclear how the DBD affects dual base editing performance in plants. In this study, we generated a series of novel plant DBE-SpGn tools consisting of nine constructs using the high-activity cytidine deaminase evoFERNY, adenosine deaminase TadA8e and DBD in various fusion modes with the PAM-flexible Streptococcus pyogenes Cas9 (SpCas9) nickase variant SpGn (with NG-PAM). By analysing their editing performance on 48 targets in rice, we found that DBE-SpGn constructs containing a single DBD and deaminases located at the N-terminus of SpGn exhibited the highest editing efficiencies. Meanwhile, constructs with deaminases located at the C-terminus and/or multiple DBDs failed to function normally and exhibited inhibited editing activity. We identified three particularly high-efficiency dual base editors (C-A-SpGn, C-A-D-SpGn and A-C-D-SpGn), named PhieDBEs (Plant high-efficiency dual base editors), capable of producing efficient dual base conversions within a narrow editing window (M5 ~ M9, M = A/C). The editing efficiency of C-A-D-SpGn was as high as 95.2% at certain target sites, with frequencies of simultaneous C-to-T and A-to-G conversions as high as 81.0%. In summary, PhieDBEs (especially C-A-D-SpGn) can produce diverse mutants and may prove useful in a wide variety of applications, including plant functional genomics, precise mutagenesis, directed evolution and crop genetic improvement, among others.
Collapse
Affiliation(s)
- Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Dongchang Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University)Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal UniversityGuilinChina
| | - Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yang Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiaxuan Hang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yuxin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qindi Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jiantao Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High‐Quality Rice in Southern China (Co‐construction by Ministry and Province)Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering LaboratoryGuangzhouChina
| | - Jialin Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
12
|
Peccoud SJ, Hernandez SI, Kar DM, Berezin CT, Peccoud J. Self-Documenting Plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620927. [PMID: 39554086 PMCID: PMC11565722 DOI: 10.1101/2024.10.29.620927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Biological products produced by plasmids underscore the bioeconomy, thus ensuring the sequences of physical DNA constructs match their expected designs is critical. Yet, the veriWication of plasmids remains a difWicult and overlooked step in the production process. We developed a web application to generate certiWicates that embed information about a plasmid and its designer within the sequence itself. Plasmids can be sequenced de novo and upon sequencing and assembly upload, plasmid sequences can be veriWied with a Winite number of errors corrected. Users can also encode GenBank or plain text Wiles in certiWicate sequences to store additional data or documentation associated with a plasmid within the sequence. CertiWicate insertion does not adversely affect bacterial DNA yields nor functional protein expression in mammalian cells. This technology accelerates and simpliWies plasmid veriWication and has the potential to transform bioproduction, biosurveillance, and the protection of intellectual property in the life sciences.
Collapse
|
13
|
Hesami M, Pepe M, Spitzer-Rimon B, Eskandari M, Jones AMP. Epigenetic factors related to recalcitrance in plant biotechnology. Genome 2024. [PMID: 39471459 DOI: 10.1139/gen-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ben Spitzer-Rimon
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
14
|
Luo Q, Liu YG. Breeding herbicide-resistant rice (Oryza sativa) using CRISPR-Cas gene editing and other technologies. PLANT COMMUNICATIONS 2024:101172. [PMID: 39397365 DOI: 10.1016/j.xplc.2024.101172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
The emergence of herbicide-resistant weeds in crop fields and the extensive use of herbicides have led to a decrease in rice (Oryza sativa) yields and an increase in production costs. To address these challenges, researchers have focused on the discovery of new germplasm resources with herbicide resistance. The most promising candidate genes have been functionally studied and applied in rice breeding. Here, we review recent progress in the breeding of herbicide-resistant rice. We provide examples of various techniques used to breed herbicide-resistant rice, such as physical and chemical mutagenesis, genetic transformation, and CRISPR-Cas-mediated gene editing. We highlight factors involved in the breeding of herbicide-resistant rice, including target genes, rice varieties, degrees of herbicide resistance, and research tools. Finally, we suggest methods for breeding herbicide-resistant rice that could potentially be used for weed management in direct-seeding farm systems.
Collapse
Affiliation(s)
- Qiyu Luo
- Guangdong Laboratory for Lingnan Modern Agriculture, The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yao-Guang Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, The State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
15
|
Chen Y, Wu J, Gao EB, Lu Y, Qiu H. A rapid visualization method for detecting rotavirus A by combining nuclear acid sequence-based amplification with the CRISPR-Cas12a assay. J Med Microbiol 2024; 73. [PMID: 39360804 PMCID: PMC11448473 DOI: 10.1099/jmm.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
Introduction. Rotavirus A is the most common pathogen causing diarrhoea in children less than 5 years, leading to severe complications such as dehydration, electrolyte imbalances, acidosis, myocarditis, convulsions, pneumonia, and other life-threatening conditions.Gap statement. There is an urgent need for a rapid and efficient nucleic acid detection strategy to enable early diagnosis and treatment, preventing rotavirus transmission and associated complications.Aim. This article aimed to develop a nuclear acid sequence-based amplification (NASBA)-Cas12a system for detecting rotavirus A using fluorescence intensity or lateral flow strips.Methodology. The NASBA technology was combined with the clustered regularly interspaced short palindromic repeats-Cas12a system to establish a NASBA-Cas12a system for detecting rotavirus A.Results. The NASBA-Cas12a system could detect rotavirus A at 37 ℃ within 70 min and had no cross-reactivity with other viruses, achieving a limit of detection of 1.2 copies μl-1. This system demonstrated a sensitivity of 100%, specificity of 90%, positive predictive value of 97.22% and negative predictive value of 100%. The kappa value was 0.933, indicating that the NASBA-Cas12a system was highly consistent with reverse transcription-PCR.Conclusion. The NASBA-Cas12a system exhibited high sensitivity and specificity for detecting rotavirus A, showing great potential for clinical application.
Collapse
Affiliation(s)
- Yue Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang 315000, PR China
| | - Junhua Wu
- Department of Pediatrics, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang 315000, PR China
| | - E-Bin Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, PR China
| | - Yanbo Lu
- Department of Pediatrics, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang 315000, PR China
| | - Haiyan Qiu
- Department of Pediatrics, The Affiliated Women and Children's Hospital of Ningbo University, Ningbo, Zhejiang 315000, PR China
| |
Collapse
|
16
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Jaybhaye SG, Chavhan RL, Hinge VR, Deshmukh AS, Kadam US. CRISPR-Cas assisted diagnostics of plant viruses and challenges. Virology 2024; 597:110160. [PMID: 38955083 DOI: 10.1016/j.virol.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024]
Abstract
Plant viruses threaten global food security by infecting commercial crops, highlighting the critical need for efficient virus detection to enable timely preventive measures. Current techniques rely on polymerase chain reaction (PCR) for viral genome amplification and require laboratory conditions. This review explores the applications of CRISPR-Cas assisted diagnostic tools, specifically CRISPR-Cas12a and CRISPR-Cas13a/d systems for plant virus detection and analysis. The CRISPR-Cas12a system can detect viral DNA/RNA amplicons and can be coupled with PCR or isothermal amplification, allowing multiplexed detection in plants with mixed infections. Recent studies have eliminated the need for expensive RNA purification, streamlining the process by providing a visible readout through lateral flow strips. The CRISPR-Cas13a/d system can directly detect viral RNA with minimal preamplification, offering a proportional readout to the viral load. These approaches enable rapid viral diagnostics within 30 min of leaf harvest, making them valuable for onsite field applications. Timely identification of diseases associated with pathogens is crucial for effective treatment; yet developing rapid, specific, sensitive, and cost-effective diagnostic technologies remains challenging. The current gold standard, PCR technology, has drawbacks such as lengthy operational cycles, high costs, and demanding requirements. Here we update the technical advancements of CRISPR-Cas in viral detection, providing insights into future developments, versatile applications, and potential clinical translation. There is a need for approaches enabling field plant viral nucleic acid detection with high sensitivity, specificity, affordability, and portability. Despite challenges, CRISPR-Cas-mediated pathogen diagnostic solutions hold robust capabilities, paving the way for ideal diagnostic tools. Alternative applications in virus research are also explored, acknowledging the technology's limitations and challenges.
Collapse
Affiliation(s)
- Siddhant G Jaybhaye
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Rahul L Chavhan
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Vidya R Hinge
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Abhijit S Deshmukh
- Vilasrao Deshmukh College of Agricultural Biotechnology, Nanded Road, Latur, Vasantrao Naik Marathwada Krishi Vidyapeeth, Maharashtra, India
| | - Ulhas S Kadam
- Plant Molecular Biology and Biotechnology Research Centre (PMBBRC), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Gyeongsangnam-do, South Korea.
| |
Collapse
|
18
|
Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm (Beijing) 2024; 5:e645. [PMID: 39156766 PMCID: PMC11329757 DOI: 10.1002/mco2.645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 08/20/2024] Open
Abstract
Gene therapy has witnessed substantial advancements in recent years, becoming a constructive tactic for treating various human diseases. This review presents a comprehensive overview of these developments, with a focus on their diverse applications in different disease contexts. It explores the evolution of gene delivery systems, encompassing viral (like adeno-associated virus; AAV) and nonviral approaches, and evaluates their inherent strengths and limitations. Moreover, the review delves into the progress made in targeting specific tissues and cell types, spanning the eye, liver, muscles, and central nervous system, among others, using these gene technologies. This targeted approach is crucial in addressing a broad spectrum of genetic disorders, such as inherited lysosomal storage diseases, neurodegenerative disorders, and cardiovascular diseases. Recent clinical trials and successful outcomes in gene therapy, particularly those involving AAV and the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins, are highlighted, illuminating the transformative potentials of this approach in disease treatment. The review summarizes the current status of gene therapy, its prospects, and its capacity to significantly ameliorate patient outcomes and quality of life. By offering comprehensive analysis, this review provides invaluable insights for researchers, clinicians, and stakeholders, enriching the ongoing discourse on the trajectory of disease treatment.
Collapse
Affiliation(s)
- Fanfei Liu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| | - Ruiting Li
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Zilin Zhu
- College of Life SciencesSichuan UniversityChengduSichuanChina
| | - Yang Yang
- Department of OphthalmologyWest China HospitalChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalChengduSichuanChina
| | - Fang Lu
- Department of OphthalmologyWest China HospitalChengduSichuanChina
| |
Collapse
|
19
|
Li B, Sun C, Li J, Gao C. Targeted genome-modification tools and their advanced applications in crop breeding. Nat Rev Genet 2024; 25:603-622. [PMID: 38658741 DOI: 10.1038/s41576-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
Crop improvement by genome editing involves the targeted alteration of genes to improve plant traits, such as stress tolerance, disease resistance or nutritional content. Techniques for the targeted modification of genomes have evolved from generating random mutations to precise base substitutions, followed by insertions, substitutions and deletions of small DNA fragments, and are finally starting to achieve precision manipulation of large DNA segments. Recent developments in base editing, prime editing and other CRISPR-associated systems have laid a solid technological foundation to enable plant basic research and precise molecular breeding. In this Review, we systematically outline the technological principles underlying precise and targeted genome-modification methods. We also review methods for the delivery of genome-editing reagents in plants and outline emerging crop-breeding strategies based on targeted genome modification. Finally, we consider potential future developments in precise genome-editing technologies, delivery methods and crop-breeding approaches, as well as regulatory policies for genome-editing products.
Collapse
Affiliation(s)
- Boshu Li
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Sun
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiayang Li
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Gao
- New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
20
|
Li Y, Ahamed Younis D, He C, Ni C, Liu R, Zhou Y, Sun Z, Lin H, Xiao Z, Sun B. Engineered IRES-mediated promoter-free insulin-producing cells reverse hyperglycemia. Front Endocrinol (Lausanne) 2024; 15:1439351. [PMID: 39279997 PMCID: PMC11392723 DOI: 10.3389/fendo.2024.1439351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024] Open
Abstract
Background Endogenous insulin supplementation is essential for individuals with type 1 diabetes (T1D). However, current treatments, including pancreas transplantation, insulin injections, and oral medications, have significant limitations. The development of engineered cells that can secrete endogenous insulin offers a promising new therapeutic strategy for type 1 diabetes (T1D). This approach could potentially circumvent autoimmune responses associated with the transplantation of differentiated β-cells or systemic delivery of viral vectors. Methods We utilized CRISPR/Cas9 gene editing coupled with homology-directed repair (HDR) to precisely integrate a promoter-free EMCVIRES-insulin cassette into the 3' untranslated region (UTR) of the GAPDH gene in human HEK-293T cells. Subsequently quantified insulin expression levels in these engineered cells, the viability and functionality of the engineered cells when seeded on different cell vectors (GelMA and Cytopore I) were also assessed. Finally, we investigated the therapeutic potential of EMCVIRES-based insulin secretion circuits in reversing Hyperglycaemia in T1D mice. Result Our results demonstrate that HDR-mediated gene editing successfully integrated the IRES-insulin loop into the genome of HEK-293T cells, a non-endocrine cell line, enabling the expression of human-derived insulin. Furthermore, Cytopore I microcarriers facilitated cell attachment and proliferation during in vitro culture and enhanced cell survival post-transplantation. Transplantation of these cell-laden microcarriers into mice led to the development of a stable, fat-encapsulated structure. This structure exhibited the expression of the platelet-endothelial cell adhesion molecule CD31, and no significant immune rejection was observed throughout the experiment. Diabetic mice that received the cell carriers reversed hyperglycemia, and blood glucose fluctuations under simulated feeding stimuli were very similar to those of healthy mice. Conclusion In summary, our study demonstrates that Cytopore I microcarriers are biocompatible and promote long-term cell survival in vivo. The promoter-free EMCVIRES-insulin loop enables non-endocrine cells to secrete mature insulin, leading to a rapid reduction in glucose levels. We have presented a novel promoter-free genetic engineering strategy for insulin secretion and proposed an efficient cell transplantation method. Our findings suggest the potential to expand the range of cell sources available for the treatment of diabetes, offering new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Yumin Li
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Doulathunnisa Ahamed Younis
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| | - Cong He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory for Bio functional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing, China
| | - Chengming Ni
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rui Liu
- Department of Genetic Engineering, College of Natural Science, University of Suwon, Hwaseong, Kyunggi-Do, Republic of Korea
| | - Yunting Zhou
- Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zilin Sun
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Hao Lin
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Zhongdang Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Bo Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
21
|
Xing W, Li D, Wang W, Liu JJG, Chen C. Conformational dynamics of CasX (Cas12e) in mediating DNA cleavage revealed by single-molecule FRET. Nucleic Acids Res 2024; 52:9014-9027. [PMID: 38994558 PMCID: PMC11347132 DOI: 10.1093/nar/gkae604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
CasX (also known as Cas12e), a Class 2 CRISPR-Cas system, shows promise in genome editing due to its smaller size compared to the widely used Cas9 and Cas12a. Although the structures of CasX-sgRNA-DNA ternary complexes have been resolved and uncover a distinctive NTSB domain, the dynamic behaviors of CasX are not well characterized. In this study, we employed single-molecule and biochemical assays to investigate the conformational dynamics of two CasX homologs, DpbCasX and PlmCasX, from DNA binding to target cleavage and fragment release. Our results indicate that CasX cleaves the non-target strand and the target strand sequentially with relative irreversible dynamics. The two CasX homologs exhibited different cleavage patterns and specificities. The dynamic characterization of CasX also reveals a PAM-proximal seed region, providing guidance for CasX-based effector design. Further studies elucidate the mechanistic basis for why modification of sgRNA and the NTSB domain can affect its activity. Interestingly, CasX has less effective target search efficiency than Cas9 and Cas12a, potentially accounting for its lower genome editing efficiency. This observation opens a new avenue for future protein engineering.
Collapse
Affiliation(s)
- Wenjing Xing
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Danyuan Li
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjuan Wang
- Technology Center for Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun-Jie Gogo Liu
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chunlai Chen
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
22
|
Schep R, Trauernicht M, Vergara X, Friskes A, Morris B, Gregoricchio S, Manzo SG, Zwart W, Beijersbergen R, Medema RH, van Steensel B. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. Nucleic Acids Res 2024; 52:8815-8832. [PMID: 38953163 PMCID: PMC11347147 DOI: 10.1093/nar/gkae570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
The efficiency and outcome of CRISPR/Cas9 editing depends on the chromatin state at the cut site. It has been shown that changing the chromatin state can influence both the efficiency and repair outcome, and epigenetic drugs have been used to improve Cas9 editing. However, because the target proteins of these drugs are not homogeneously distributed across the genome, the efficacy of these drugs may be expected to vary from locus to locus. Here, we systematically analyzed this chromatin context-dependency for 160 epigenetic drugs. We used a human cell line with 19 stably integrated reporters to induce a double-stranded break in different chromatin environments. We then measured Cas9 editing efficiency and repair pathway usage by sequencing the mutational signatures. We identified 58 drugs that modulate Cas9 editing efficiency and/or repair outcome dependent on the local chromatin environment. For example, we find a subset of histone deacetylase inhibitors that improve Cas9 editing efficiency throughout all types of heterochromatin (e.g. PCI-24781), while others were only effective in euchromatin and H3K27me3-marked regions (e.g. apicidin). In summary, this study reveals that most epigenetic drugs alter CRISPR editing in a chromatin-dependent manner, and provides a resource to improve Cas9 editing more selectively at the desired location.
Collapse
Affiliation(s)
- Ruben Schep
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Max Trauernicht
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Xabier Vergara
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Anoek Friskes
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Ben Morris
- Division of Molecular Carcinogenesis, 1066 CX Amsterdam, The Netherlands
| | - Sebastian Gregoricchio
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Stefano G Manzo
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Oncode Institute, The Netherlands
- Division of Oncogenomics, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - René H Medema
- Oncode Institute, The Netherlands
- Division of Cell Biology, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Oncode Institute, The Netherlands
- Division of Molecular Genetics, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
23
|
Ali N, Vora C, Mathuria A, Kataria N, Mani I. Advances in CRISPR-Cas systems for gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:59-81. [PMID: 39266188 DOI: 10.1016/bs.pmbts.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
CRISPR-Cas technology has revolutionized microbiome research by enabling precise genetic manipulation of microbial communities. This review explores its diverse applications in gut microbiome studies, probiotic development, microbiome diagnostics, pathogen targeting, and microbial community engineering. Engineered bacteriophages and conjugative probiotics exemplify CRISPR-Cas's capability for targeted bacterial manipulation, offering promising strategies against antibiotic-resistant infections and other gut-related disorders. CRISPR-Cas systems also enhance probiotic efficacy by improving stress tolerance and colonization in the gastrointestinal tract. CRISPR-based techniques in diagnostics enable early intervention by enabling fast and sensitive pathogen identification. Furthermore, CRISPR-mediated gene editing allows tailored modification of microbial populations, mitigating risks associated with horizontal gene transfer and enhancing environmental and health outcomes. Despite its transformative potential, ethical and regulatory challenges loom large, demanding robust frameworks to guide its responsible application. This chapter highlights CRISPR-Cas's pivotal role in advancing microbiome research toward personalized medicine and microbial therapeutics while emphasizing the imperative of balanced ethical deliberations and comprehensive regulatory oversight.
Collapse
Affiliation(s)
- Namra Ali
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India
| | - Chaitali Vora
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Anshu Mathuria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Naina Kataria
- Department of Biochemistry, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
24
|
Chen W, Zhang J, Wei H, Su J, Lin J, Liang X, Chen J, Zhou R, Li L, Lu Z, Sun G. Rapid and sensitive detection of methicillin-resistant Staphylococcus aureus through the RPA- PfAgo system. Front Microbiol 2024; 15:1422574. [PMID: 39234537 PMCID: PMC11371615 DOI: 10.3389/fmicb.2024.1422574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Both the incidence and mortality rates associated with methicillin-resistant Staphylococcus aureus (MRSA) have progressively increased worldwide. A nucleic acid testing system was developed in response, enabling swift and precise detection of Staphylococcus aureus (S. aureus) and its MRSA infection status. This facilitates improved prevention and control of MRSA infections. Methods In this work, we introduce a novel assay platform developed by integrating Pyrococcus furiosus Argonaute (PfAgo) with recombinase polymerase amplification (RPA), which was designed for the simultaneous detection of the nuc and mecA genes in MRSA. Results This innovative approach enables visual MRSA detection within 55 mins, boasting a detection limit of 102 copies/μL. Characterized by its high specificity, the platform accurately identifies MRSA infections without cross-reactivity to other clinical pathogens, highlighting its unique capability for S. aureus infection diagnostics amidst bacterial diversity. Validation of this method was performed on 40 clinical isolates, demonstrating a 95.0% accuracy rate in comparison to the established Vitek2-COMPACT system. Discussion The RPA-PfAgo platform has emerged as a superior diagnostic tool, offering enhanced sensitivity, specificity, and identification efficacy for MRSA detection. Our findings underscore the potential of this platform to significantly improve the diagnosis and management of MRSA infection.
Collapse
Affiliation(s)
- Weizhong Chen
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Jiexiu Zhang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, China
| | - Huagui Wei
- School of Laboratory Medicine, Youjiang Medical University for Nationalities, Baize, China
| | - Jie Su
- Department of Laboratory, Chaozhou Central Hospital, Chaozhou, China
| | - Jie Lin
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Xueyan Liang
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Jiangtao Chen
- Department of Laboratory, Huizhou Central Hospital, Huizhou, China
| | - Rong Zhou
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Lin Li
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Zefang Lu
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| | - Guangyu Sun
- Chaozhou People's Hospital, Shantou University Medical College, Chaozhou, China
| |
Collapse
|
25
|
Tian J, Tang Z, Niu R, Zhou Y, Yang D, Chen D, Luo M, Mou R, Yuan M, Xu G. Engineering disease-resistant plants with alternative translation efficiency by switching uORF types through CRISPR. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1715-1726. [PMID: 38679667 DOI: 10.1007/s11427-024-2588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Engineering disease-resistant plants can be a powerful solution to the issue of food security. However, it requires addressing two fundamental questions: what genes to express and how to control their expressions. To find a solution, we screen CRISPR-edited upstream open reading frame (uORF) variants in rice, aiming to optimize translational control of disease-related genes. By switching uORF types of the 5'-leader from Arabidopsis TBF1, we modulate the ribosome accessibility to the downstream firefly luciferase. We assume that by switching uORF types using CRISPR, we could generate uORF variants with alternative translation efficiency (CRISPR-aTrE-uORF). These variants, capable of boosting translation for resistance-associated genes and dampening it for susceptible ones, can help pinpoint previously unidentified genes with optimal expression levels. To test the assumption, we screened edited uORF variants and found that enhanced translational suppression of the plastic glutamine synthetase 2 can provide broad-spectrum disease resistance in rice with minimal fitness costs. This strategy, which involves modifying uORFs from none to some, or from some to none or different ones, demonstrates how translational agriculture can speed up the development of disease-resistant crops. This is vital for tackling the food security challenges we face due to growing populations and changing climates.
Collapse
Affiliation(s)
- Jingjing Tian
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Tang
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Ruixia Niu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Yulu Zhou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dan Yang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Dan Chen
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Luo
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Rui Mou
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
26
|
Zhou P, Hu M, Li Q, Yang G. Both intrinsic and microenvironmental factors contribute to the regulation of stem cell quiescence. J Cell Physiol 2024; 239:e31325. [PMID: 38860372 DOI: 10.1002/jcp.31325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Precise regulation of stem cell quiescence is essential for tissue development and homeostasis. Therefore, its aberrant regulation is intimately correlated with various human diseases. However, the detailed mechanisms of stem cell quiescence and its specific role in the pathogenesis of various diseases remain to be determined. Recent studies have revealed that the intrinsic and microenvironmental factors are the potential candidates responsible for the orderly switch between the dormant and activated states of stem cells. In addition, defects in signaling pathways related to internal and external factors of stem cells might contribute to the initiation and development of diseases by altering the dormancy of stem cells. In this review, we focus on the mechanisms underlying stem cell quiescence, especially the involvement of intrinsic and microenvironmental factors. In addition, we discuss the relationship between the anomalies of stem cell quiescence and related diseases, hopefully providing therapeutic insights for developing novel treatments.
Collapse
Affiliation(s)
- Ping Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Mingzheng Hu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Guiwen Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
27
|
Kafida M, Karela M, Giakountis A. RNA-Independent Regulatory Functions of lncRNA in Complex Disease. Cancers (Basel) 2024; 16:2728. [PMID: 39123456 PMCID: PMC11311644 DOI: 10.3390/cancers16152728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.
Collapse
Affiliation(s)
| | | | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Mezourlo, 41500 Larissa, Greece
| |
Collapse
|
28
|
Weiss T, Kumar J, Chen C, Guo S, Schlegel O, Lutterman J, Ling K, Zhang F. Dual activities of an X-family DNA polymerase regulate CRISPR-induced insertional mutagenesis across species. Nat Commun 2024; 15:6293. [PMID: 39060288 PMCID: PMC11282277 DOI: 10.1038/s41467-024-50676-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
The canonical non-homologous end joining (c-NHEJ) repair pathway, generally viewed as stochastic, has recently been shown to produce predictable outcomes in CRISPR-Cas9 mutagenesis. This predictability, mainly in 1-bp insertions and small deletions, has led to the development of in-silico prediction programs for various animal species. However, the predictability of CRISPR-induced mutation profiles across species remained elusive. Comparing CRISPR-Cas9 repair outcomes between human and plant species reveals significant differences in 1-bp insertion profiles. The high predictability observed in human cells links to the template-dependent activity of human Polλ. Yet plant Polλ exhibits dual activities, generating 1-bp insertions through both templated and non-templated manners. Polλ knockout in plants leads to deletion-only mutations, while its overexpression enhances 1-bp insertion rates. Two conserved motifs are identified to modulate plant Polλ's dual activities. These findings unveil the mechanism behind species-specific CRISPR-Cas9-induced insertion profiles and offer strategies for predictable, precise genome editing through c-NHEJ.
Collapse
Affiliation(s)
- Trevor Weiss
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shengsong Guo
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Oliver Schlegel
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Lutterman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Feng Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
- Center for Precision Plant Genomics, University of Minnesota, Saint Paul, MN, 55108, USA.
- Microbial and Plant Genomics Institute, University of Minnesota, Minneapolis, MN, 55108, USA.
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN, 55108, USA.
| |
Collapse
|
29
|
Gao S, Chen J, Yang Y, Wang G. Understanding the Factors Driving Consumers' Willingness to Pay for Gene-Edited Foods in China. Foods 2024; 13:2348. [PMID: 39123540 PMCID: PMC11311454 DOI: 10.3390/foods13152348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Gene editing contributes to enhancing food security through the creation of novel foods. However, public perception of gene-edited (GE) foods is crucial to their acceptance and adoption. This study expanded the knowledge-attitude-practice model and constructed an integrated framework comprising four dimensions: demographic factors, scientific literacy and beliefs, social trust, and perceptions of gene technology, aimed at explaining the public's attitudes toward GE foods. A questionnaire survey was conducted (N = 649), revealing a positive attitude toward GE foods, with over 80% expressing a certain willingness to pay (WTP) for them. Factors such as income level, subjective knowledge, scientific beliefs, trust in scientists, trust in government, and trust in national technological capabilities and perceived benefits positively correlated with WTP. Conversely, objective knowledge, perceived risks, and perceived ethical concerns were negatively correlated with WTP. The impact of objective knowledge on attitudes toward GE foods demonstrated a significant, nonlinear relationship. Additionally, it is noteworthy that the Chinese public currently exhibits relatively low trust in national technological capabilities, necessitating vigilance against the emergence of conspiracy theories akin to those surrounding genetically modified foods. This research contributes theoretical insights into the public communication of GE foods.
Collapse
Affiliation(s)
| | | | | | - Guoyan Wang
- School of Communication, Soochow University, Suzhou 215123, China; (S.G.); (J.C.); (Y.Y.)
| |
Collapse
|
30
|
Hu T, Ji Q, Ke X, Zhou H, Zhang S, Ma S, Yu C, Ju W, Lu M, Lin Y, Ou Y, Zhou Y, Xiao Y, Xu C, Hu C. Repurposing Type I-A CRISPR-Cas3 for a robust diagnosis of human papillomavirus (HPV). Commun Biol 2024; 7:858. [PMID: 39003402 PMCID: PMC11246428 DOI: 10.1038/s42003-024-06537-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
R-loop-triggered collateral single-stranded DNA (ssDNA) nuclease activity within Class 1 Type I CRISPR-Cas systems holds immense potential for nucleic acid detection. However, the hyperactive ssDNase activity of Cas3 introduces unwanted noise and false-positive results. In this study, we identified a novel Type I-A Cas3 variant derived from Thermococcus siculi, which remains in an auto-inhibited state until it is triggered by Cascade complex and R-loop formation. This Type I-A CRISPR-Cas3 system not only exhibits an expanded protospacer adjacent motif (PAM) recognition capability but also demonstrates remarkable intolerance towards mismatched sequences. Furthermore, it exhibits dual activation modes-responding to both DNA and RNA targets. The culmination of our research efforts has led to the development of the Hyper-Active-Verification Establishment (HAVE, ). This innovation enables swift and precise human papillomavirus (HPV) diagnosis in clinical samples, providing a robust molecular diagnostic tool based on the Type I-A CRISPR-Cas3 system. Our findings contribute to understanding type I-A CRISPR-Cas3 system regulation and facilitate the creation of advanced diagnostic solutions with broad clinical applicability.
Collapse
Affiliation(s)
- Tao Hu
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Xinxin Ke
- Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang, 310052, China
| | - Hufeng Zhou
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Shengsheng Ma
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Chenlin Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjun Ju
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yangjing Ou
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yingsi Zhou
- HuidaGene Therapeutics Inc., Shanghai, China.
| | - Yibei Xiao
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chunlong Xu
- Lingang Laboratory, Shanghai, China.
- School of Life Sciences and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, China.
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
31
|
Hu M, Cheng X, Wu T. Modular CRISPR/Cas12a synergistic activation platform for detection and logic operations. Nucleic Acids Res 2024; 52:7384-7396. [PMID: 38828769 PMCID: PMC11229313 DOI: 10.1093/nar/gkae470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
The revolutionary technology of CRISPR/Cas has reshaped the landscape of molecular biology and molecular engineering. This tool is of interest to researchers in multiple fields, including molecular diagnostics, molecular biochemistry circuits, and information storage. As CRISPR/Cas spreads to more niche areas, new application scenarios and requirements emerge. Developing programmability and compatibility of CRISPR/Cas becomes a critical issue in the new phase. Here, we report a redundancy-based modular CRISPR/Cas12a synergistic activation platform (MCSAP). The position, length, and concentration of the redundancy in the split DNA activators can finely regulate the activity of Cas12a. With the redundant structure as an interface, MCSAP serves as a modular plug-in to seamlessly integrate with the upstream molecular network. MCSAP successfully performs three different tasks: nucleic acid detection, enzyme detection, and logic operation. MCSAP can work as an effector for different molecular networks because of its compatibility and programmability. Our platform provides powerful yet easy-to-use tools and strategies for the fields of DNA nanotechnology, molecular engineering, and molecular biology.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianzhi Cheng
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
32
|
Sun Y, Hu J, Hu Z, Zhou H, Gao Y, Liu Y, Ji Y, Xu G, Guo Y, Zhang Y, Tian Y, Liu X, Zhou S, Liu Y, Li T, Li C, Wan J. Engineer and split an efficient hypercompact CRISPR-CasΦ genome editor in plants. PLANT COMMUNICATIONS 2024; 5:100881. [PMID: 38486456 PMCID: PMC11287130 DOI: 10.1016/j.xplc.2024.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Affiliation(s)
- Yan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjian Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhichao Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Hejie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuhong Gao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yini Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuan Ji
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Gencheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Shirong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Yuqiang Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Hainan Seed Industry Laboratory, Sanya 572025, China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China; Sanya Institute of Nanjing Agricultural University, Hainan Seed Industry Laboratory, Sanya 572025, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm Resources, Nanjing Agricultural University, Nanjing 210095, China; Zhongshan Biological Breeding Laboratory, Nanjing 210095, China; State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
33
|
Liu Y, Kong J, Liu G, Li Z, Xiao Y. Precise Gene Knock-In Tools with Minimized Risk of DSBs: A Trend for Gene Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401797. [PMID: 38728624 PMCID: PMC11267366 DOI: 10.1002/advs.202401797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Gene knock-in refers to the insertion of exogenous functional genes into a target genome to achieve continuous expression. Currently, most knock-in tools are based on site-directed nucleases, which can induce double-strand breaks (DSBs) at the target, following which the designed donors carrying functional genes can be inserted via the endogenous gene repair pathway. The size of donor genes is limited by the characteristics of gene repair, and the DSBs induce risks like genotoxicity. New generation tools, such as prime editing, transposase, and integrase, can insert larger gene fragments while minimizing or eliminating the risk of DSBs, opening new avenues in the development of animal models and gene therapy. However, the elimination of off-target events and the production of delivery carriers with precise requirements remain challenging, restricting the application of the current knock-in treatments to mainly in vitro settings. Here, a comprehensive review of the knock-in tools that do not/minimally rely on DSBs and use other mechanisms is provided. Moreover, the challenges and recent advances of in vivo knock-in treatments in terms of the therapeutic process is discussed. Collectively, the new generation of DSBs-minimizing and large-fragment knock-in tools has revolutionized the field of gene editing, from basic research to clinical treatment.
Collapse
Affiliation(s)
- Yongfeng Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Mudi Meng Honors CollegeChina Pharmaceutical UniversityNanjing210009China
| | - Jianping Kong
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Gongyu Liu
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| | - Zhaoxing Li
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| | - Yibei Xiao
- Department of PharmacologySchool of PharmacyChina Pharmaceutical UniversityNanjing210009China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
- Chongqing Innovation Institute of China Pharmaceutical UniversityChongqing401135China
| |
Collapse
|
34
|
Wang D, Zhang Y, Zhang J, Zhao J. Advances in base editing: A focus on base transversions. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108515. [PMID: 39454989 DOI: 10.1016/j.mrrev.2024.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/29/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Single nucleotide variants (SNVs) constitute the most frequent variants that cause human genetic diseases. Base editors (BEs) comprise a new generation of CRISPR-based technologies, which are considered to have a promising future for curing genetic diseases caused by SNVs as they enable the direct and irreversible correction of base mutations. Two of the early types of BEs, cytosine base editor (CBE) and adenine base editor (ABE), mediate C-to-T, T-to-C, A-to-G, and G-to-A base transition mutations. Together, these represent half of all the known disease-associated SNVs. However, the remaining transversion (i.e., purine-pyrimidine) mutations cannot be restored by direct deamination and so these require the replacement of the entire base. Recently, a variety of base transversion editors were developed and so these add to the currently available BEs enabling the correction of all types of point mutation. However, compared to the base transition editors (including CBEs and ABEs), base transversion editors are still in the early development stage. In this review, we describe the basics and advances of the various base transversion editors, highlight their limitations, and discuss their potential for treating human diseases.
Collapse
Affiliation(s)
- Dawei Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| | - YiZhan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - Jinning Zhang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China
| | - JiaJun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Shandong Provincial Hospital Affiliated to Shandong First Medical University, China; "Chuangxin China" Innovation Base of stem cell and Gene Therapy for endocrine Metabolic diseases, China; Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong 250021, China.
| |
Collapse
|
35
|
Zheng X, Wu B, Liu Y, Simmons SK, Kim K, Clarke GS, Ashiq A, Park J, Li J, Wang Z, Tong L, Wang Q, Rajamani KT, Muñoz-Castañeda R, Mu S, Qi T, Zhang Y, Ngiam ZC, Ohte N, Hanashima C, Wu Z, Xu X, Levin JZ, Jin X. Massively parallel in vivo Perturb-seq reveals cell-type-specific transcriptional networks in cortical development. Cell 2024; 187:3236-3248.e21. [PMID: 38772369 PMCID: PMC11193654 DOI: 10.1016/j.cell.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/30/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024]
Abstract
Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.
Collapse
Affiliation(s)
- Xinhe Zheng
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Boli Wu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yuejia Liu
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Sean K Simmons
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Grace S Clarke
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Abdullah Ashiq
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Joshua Park
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Jiwen Li
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Zhilin Wang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Liqi Tong
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Qizhao Wang
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Keerthi T Rajamani
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Rodrigo Muñoz-Castañeda
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Shang Mu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Tianbo Qi
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Yunxiao Zhang
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA
| | - Zi Chao Ngiam
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Naoto Ohte
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Carina Hanashima
- Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan
| | - Zhuhao Wu
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiangmin Xu
- Center for Neural Circuit Mapping, Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA 92617, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Neuroscience, Dorris Neuroscience Center, Scripps Research, La Jolla, CA 92037, USA.
| |
Collapse
|
36
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
37
|
Ben-Tov D, Mafessoni F, Cucuy A, Honig A, Melamed-Bessudo C, Levy AA. Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks. Nat Commun 2024; 15:5096. [PMID: 38877047 PMCID: PMC11178868 DOI: 10.1038/s41467-024-49410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64-88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15-41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.
Collapse
Affiliation(s)
- Daniela Ben-Tov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amit Cucuy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Arik Honig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
38
|
Liang S, Ma N, Li X, Yun K, Meng QF, Ma K, Yue L, Rao L, Chen X, Wang Z. A Guanidinobenzol-Rich Polymer Overcoming Cascade Delivery Barriers for CRISPR-Cas9 Genome Editing. NANO LETTERS 2024; 24:6872-6880. [PMID: 38683656 DOI: 10.1021/acs.nanolett.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The efficient cytosolic delivery of the CRISPR-Cas9 machinery remains a challenge for genome editing. Herein, we performed ligand screening and identified a guanidinobenzol-rich polymer to overcome the cascade delivery barriers of CRISPR-Cas9 ribonucleoproteins (RNPs) for genome editing. RNPs were stably loaded into the polymeric nanoparticles (PGBA NPs) by their inherent affinity. The polymer facilitated rapid endosomal escape of RNPs via a dynamic multiple-step cascade process. Importantly, the incorporation of fluorescence in the polymer helps to identify the correlation between cellular uptake and editing efficiency, increasing the efficiency up to 70% from the initial 30% for the enrichment of edited cells. The PGBA NPs efficiently deliver RNPs for in vivo gene editing via both local and systemic injections and dramatically reduce PCSK9 level. These results indicate that PGBA NPs enable the cascade delivery of RNPs for genome editing, showing great promise in broadening the therapeutic potential of the CRISPR-Cas9 technique.
Collapse
Affiliation(s)
- Shuang Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Xingang Li
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kaiqing Yun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Qian-Fang Meng
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Kongshuo Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ludan Yue
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Lang Rao
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 1 Biopolis Way, Helios 138667, Singapore
| | - Zhaohui Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
39
|
Gines G, Espada R, Dramé-Maigné A, Baccouche A, Larrouy N, Rondelez Y. Functional analysis of single enzymes combining programmable molecular circuits with droplet-based microfluidics. NATURE NANOTECHNOLOGY 2024; 19:800-809. [PMID: 38409552 DOI: 10.1038/s41565-024-01617-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024]
Abstract
The analysis of proteins at the single-molecule level reveals heterogeneous behaviours that are masked in ensemble-averaged techniques. The digital quantification of enzymes traditionally involves the observation and counting of single molecules partitioned into microcompartments via the conversion of a profluorescent substrate. This strategy, based on linear signal amplification, is limited to a few enzymes with sufficiently high turnover rate. Here we show that combining the sensitivity of an exponential molecular amplifier with the modularity of DNA-enzyme circuits and droplet readout makes it possible to specifically detect, at the single-molecule level, virtually any D(R)NA-related enzymatic activity. This strategy, denoted digital PUMA (Programmable Ultrasensitive Molecular Amplifier), is validated for more than a dozen different enzymes, including many with slow catalytic rate, and down to the extreme limit of apparent single turnover for Streptococcus pyogenes Cas9. Digital counting uniquely yields absolute molar quantification and reveals a large fraction of inactive catalysts in all tested commercial preparations. By monitoring the amplification reaction from single enzyme molecules in real time, we also extract the distribution of activity among the catalyst population, revealing alternative inactivation pathways under various stresses. Our approach dramatically expands the number of enzymes that can benefit from quantification and functional analysis at single-molecule resolution. We anticipate digital PUMA will serve as a versatile framework for accurate enzyme quantification in diagnosis or biotechnological applications. These digital assays may also be utilized to study the origin of protein functional heterogeneity.
Collapse
Affiliation(s)
- Guillaume Gines
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, Paris, France.
| | - Rocίo Espada
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, Paris, France
| | - Adèle Dramé-Maigné
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, Paris, France
| | - Alexandre Baccouche
- LIMMS, IRL 2820 CNRS-Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Nicolas Larrouy
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, Paris, France
| | - Yannick Rondelez
- Laboratoire Gulliver, UMR7083 CNRS/ESPCI Paris-PSL Research University, Paris, France
| |
Collapse
|
40
|
King MB, Perry KN, McAndrew MJ, Lapinaite A. The genetic engineering Swiss army knife. Nat Chem 2024; 16:1034. [PMID: 38844636 DOI: 10.1038/s41557-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Affiliation(s)
- Madeleine B King
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | - Kayla N Perry
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Audrone Lapinaite
- School of Molecular Sciences, Arizona State University, Tempe, AZ, USA.
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
41
|
Palaz F, Ozsoz M, Zarrinpar A, Sahin I. CRISPR in Targeted Therapy and Adoptive T Cell Immunotherapy for Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:975-995. [PMID: 38832119 PMCID: PMC11146628 DOI: 10.2147/jhc.s456683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Despite recent therapeutic advancements, outcomes for advanced hepatocellular carcinoma (HCC) remain unsatisfactory, highlighting the need for novel treatments. The CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology offers innovative treatment approaches, involving genetic manipulation of either cancer cells or adoptive T cells to combat HCC. This review comprehensively assesses the applications of CRISPR systems in HCC treatment, focusing on in vivo targeting of cancer cells and the development of chimeric antigen receptor (CAR) T cells and T cell receptor (TCR)-engineered T cells. We explore potential synergies between CRISPR-based cancer therapeutics and existing treatment options, discussing ongoing clinical trials and the role of CRISPR technology in improving HCC treatment outcomes with advanced safety measures. In summary, this review provides insights into the promising prospects and current challenges of using CRISPR technology in HCC treatment, with the ultimate goal of improving patient outcomes and revolutionizing the landscape of HCC therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, Nicosia, Turkey
| | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL, USA
- University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Ilyas Sahin
- University of Florida Health Cancer Center, Gainesville, FL, USA
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
42
|
Hub T, Cornean A, Round K, Fleming T, Freichel M, Medert R. Streamlined Generation of CRISPR/Cas9-Mediated Single-Cell Knockout Clones in Murine Cell Lines. ACS Pharmacol Transl Sci 2024; 7:1291-1301. [PMID: 38751646 PMCID: PMC11091971 DOI: 10.1021/acsptsci.3c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
Clonal cell lines harboring loss-of-function mutations in genes of interest are crucial for studying the cellular functions of the encoded proteins. Recent advances in genome engineering have converged on the CRISPR/Cas9 technology to quickly and reliably generate frameshift mutations in the target genes across various cell lines and species. Although high on-target cleavage efficiencies can be obtained reproducibly, screening and identifying clones with loss-of-function alleles remains a major bottleneck. Here, we describe a single sgRNA strategy to generate CRISPR/Cas9-mediated frameshift mutations in target genes of mammalian cell lines that can be easily and cost-effectively identified. Given the proliferation of workhorse cell lines such as N2a cells and the resulting clonal expansion of the cell type, our protocol can facilitate the isolation of knockout clonal cell lines and their genetic validation within a period of down to 6-8 weeks.
Collapse
Affiliation(s)
- Tobias Hub
- Institute
of Pharmacology, Heidelberg University, Heidelberg 69120, Germany
| | - Alex Cornean
- Institute
of Pharmacology, Heidelberg University, Heidelberg 69120, Germany
- Partner
Site Heidelberg/Mannheim, DZHK (German Centre
for Cardiovascular Research), Heidelberg, Germany
| | - Kellen Round
- Institute
of Pharmacology, Heidelberg University, Heidelberg 69120, Germany
| | - Thomas Fleming
- Department
of Internal Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg 69120, Germany
- German
Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Marc Freichel
- Institute
of Pharmacology, Heidelberg University, Heidelberg 69120, Germany
- Partner
Site Heidelberg/Mannheim, DZHK (German Centre
for Cardiovascular Research), Heidelberg, Germany
| | - Rebekka Medert
- Institute
of Pharmacology, Heidelberg University, Heidelberg 69120, Germany
- Partner
Site Heidelberg/Mannheim, DZHK (German Centre
for Cardiovascular Research), Heidelberg, Germany
| |
Collapse
|
43
|
Lin CL, Chen WD, Liu L, Cheng L. Chemical control of CRISPR/Cpf1 editing via orthogonal activation and deactivation of crosslinked crRNA. Chem Commun (Camb) 2024; 60:5197-5200. [PMID: 38651297 DOI: 10.1039/d4cc01106f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Through the integration of CRISPR/Cpf1 with optogenetics and a reduction-responsive motif, we have developed a photoactivatable cross-linked crRNA that enables precise genome editing upon light exposure. This system also allows for termination of editing activity through external application of reducing agent. The dual-stimuli-responsive CRISPR/Cpf1 editing process operates in a unique OFF → ON → OFF sequence, making it a valuable tool for investigating time-sensitive biological events.
Collapse
Affiliation(s)
- Cui-Lian Lin
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Da Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Cheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
44
|
Zhang D, Boch J. Development of TALE-adenine base editors in plants. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1067-1077. [PMID: 37997697 PMCID: PMC11022790 DOI: 10.1111/pbi.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/10/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Base editors enable precise nucleotide changes at targeted genomic loci without requiring double-stranded DNA breaks or repair templates. TALE-adenine base editors (TALE-ABEs) are genome editing tools, composed of a DNA-binding domain from transcription activator-like effectors (TALEs), an engineered adenosine deaminase (TadA8e), and a cytosine deaminase domain (DddA), that allow A•T-to-G•C editing in human mitochondrial DNA. However, the editing ability of TALE-ABEs in plants apart from chloroplast DNA has not been described, so far, and the functional role how DddA enhances TadA8e is still unclear. We tested a series of TALE-ABEs with different deaminase fusion architectures in Nicotiana benthamiana and rice. The results indicate that the double-stranded DNA-specific cytosine deaminase DddA can boost the activities of single-stranded DNA-specific deaminases (TadA8e or APOBEC3A) on double-stranded DNA. We analysed A•T-to-G•C editing efficiencies in a β-glucuronidase reporter system and showed precise adenine editing in genomic regions with high product purity in rice protoplasts. Furthermore, we have successfully regenerated rice plants with A•T-to-G•C mutations in the chloroplast genome using TALE-ABE. Consequently, TALE-adenine base editors provide alternatives for crop improvement and gene therapy by editing nuclear or organellar genomes.
Collapse
Affiliation(s)
- Dingbo Zhang
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| | - Jens Boch
- Institute of Plant GeneticsLeibniz Universität HannoverHannoverGermany
| |
Collapse
|
45
|
Xue L, Bu S, Xu M, Wei J, Zhou H, Xu Y, Hao Z, Li Z, Wan J. A sensitive fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies to detect the H1N1 virus. Anal Bioanal Chem 2024; 416:3195-3203. [PMID: 38613682 DOI: 10.1007/s00216-024-05269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024]
Abstract
We propose a sensitive H1N1 virus fluorescence biosensor based on ligation-transcription and CRISPR/Cas13a-assisted cascade amplification strategies. Products are generated via the hybridization of single-stranded DNA (ssDNA) probes containing T7 promoter and crRNA templates to a target RNA sequence using SplintR ligase. This generates large crRNA quantities in the presence of T7 RNA polymerase. At such crRNA quantities, ternary Cas13a, crRNA, and activator complexes are successfully constructed and activate Cas13a to enhance fluorescence signal outputs. The biosensor sensitively and specifically monitored H1N1 viral RNA levels down to 3.23 pM and showed good linearity when H1N1 RNA concentrations were 100 pM-1 µM. Biosensor specificity was also excellent. Importantly, our biosensor may be used to detect other viral RNAs by altering the sequences of the two probe junctions, with potential applications for the clinical diagnosis of viruses and other biomedical studies.
Collapse
Affiliation(s)
- Lulu Xue
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Shengjun Bu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun, 130022, China
| | - Mengyao Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Jiaqi Wei
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Hongyu Zhou
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Yao Xu
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China
| | - Zhuo Hao
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Zehong Li
- College of Life Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Jiayu Wan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| |
Collapse
|
46
|
Rambhatla A, Shah R, Ziouziou I, Kothari P, Salvio G, Gul M, Hamoda T, Kavoussi P, Atmoko W, Toprak T, Birowo P, Ko E, Arafa M, Ghayda RA, Karthikeyan VS, Russo GI, Pinggera GM, Chung E, Harraz AM, Martinez M, Phuoc NHV, Tadros N, Saleh R, Savira M, Colpi GM, Zohdy W, Pescatori E, Park HJ, Fukuhara S, Tsujimura A, Rojas-Cruz C, Marino A, Mak SK, Amar E, Ibrahim W, Sindhwani P, Alhathal N, Busetto GM, Al Hashimi M, El-Sakka A, Ramazan A, Dimitriadis F, Timpano M, Jezek D, Altay B, Zylbersztejn DS, Wong MY, Moon DG, Wyns C, Gamidov S, Akhavizadegan H, Franceschelli A, Aydos K, Quang N, Ashour S, Al Dayel A, Al-Marhoon MS, Micic S, Binsaleh S, Hussein A, Elbardisi H, Mostafa T, Ramsay J, Zachariou A, Abdelrahman IFS, Rajmil O, Kalkanli A, Molina JMC, Bocu K, Duarsa GWK, Çeker G, Serefoglu EC, Bahar F, Gherabi N, Kuroda S, Bouzouita A, Gudeloglu A, Ceyhan E, Hasan MSM, Musa MU, Motawi A, Cho CL, Taniguchi H, Ho CCK, Vazquez JFS, Mutambirwa S, Gungor ND, Bendayan M, Giulioni C, Baser A, Falcone M, Boeri L, Blecher G, Kheradmand A, Sethupathy T, Adriansjah R, Narimani N, Konstantinidis C, Nguyen TT, Japari A, Dolati P, Singh K, Ozer C, Sarikaya S, Sheibak N, Bosco NJ, Özkent MS, Le ST, Sokolakis I, Katz D, Smith R, Truong MN, Le TV, Huang Z, Deger MD, Arslan U, Calik G, Franco G, Rashed A, Kahraman O, Andreadakis S, Putra R, Balercia G, Khalafalla K, Cannarella R, Tuân AÐ, El Meliegy A, Zilaitiene B, Ramirez MLZ, Giacone F, Calogero AE, Makarounis K, Jindal S, Hoai BN, Banthia R, Peña MR, Moorthy D, Adamyan A, Kulaksiz D, Kandil H, Sofikitis N, Salzano C, Jungwirth A, Banka SR, Mierzwa TC, Turunç T, Jain D, Avoyan A, Salacone P, Kadıoğlu A, Gupta C, Lin H, Shamohammadi I, Mogharabian N, Barrett T, Danacıoğlu YO, Crafa A, Daoud S, Malhotra V, Almardawi A, Selim OM, Moussa M, Haghdani S, Duran MB, Kunz Y, Preto M, Eugeni E, Nguyen T, Elshahid AR, Suyono SS, Parikesit D, Nada E, Orozco EG, Boitrelle F, Trang NTM, Jamali M, Nair R, Ruzaev M, Gadda F, Thomas C, Ferreira RH, Gul U, Maruccia S, Kanbur A, Kinzikeeva E, Abumelha SM, Kosgi R, Gokalp F, Soebadi MA, Paul GM, Sajadi H, Gupte D, Ambar RF, Sogutdelen E, Singla K, Basukarno A, Kim SHK, Gilani MAS, Nagao K, Brodjonegoro SR, Rezano A, Elkhouly M, Mazzilli R, Farsi HMA, Ba HN, Alali H, Kafetzis D, Long TQT, Alsaid S, Cuong HBN, Oleksandr K, Mustafa A, Acosta H, Pai H, Şahin B, Arianto E, Teo C, Jayaprakash SP, Rachman RI, Yenice MG, Sefrioui O, Priyadarshi S, Tanic M, Alfatlaw NK, Rizaldi F, Vishwakarma RB, Kanakis G, Cherian DT, Lee J, Galstyan R, Keskin H, Wurzacher J, Seno DH, Noegroho BS, Margiana R, Javed Q, Castiglioni F, Tanwar R, Puigvert A, Kaya C, Purnomo M, Yazbeck C, Amir A, Borges E, Bellavia M, Deswanto IA, Kv V, Liguori G, Minh DH, Siddiqi K, Colombo F, Zini A, Patel N, Çayan S, Al-Kawaz U, Ragab M, Hebrard GH, de la Rosette J, Efesoy O, Hoffmann I, Teixeira TA, Saylam B, Delgadillo D, Agarwal A. Global Practice Patterns and Variations in the Medical and Surgical Management of Non-Obstructive Azoospermia: Results of a World-Wide Survey, Guidelines and Expert Recommendations. World J Mens Health 2024; 42:42.e42. [PMID: 38606867 DOI: 10.5534/wjmh.230339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 04/13/2024] Open
Abstract
PURPOSE Non-obstructive azoospermia (NOA) is a common, but complex problem, with multiple therapeutic options and a lack of clear guidelines. Hence, there is considerable controversy and marked variation in the management of NOA. This survey evaluates contemporary global practices related to medical and surgical management for patients with NOA. MATERIALS AND METHODS A 56-question online survey covering various aspects of the evaluation and management of NOA was sent to specialists around the globe. This paper analyzes the results of the second half of the survey dealing with the management of NOA. Results have been compared to current guidelines, and expert recommendations have been provided using a Delphi process. RESULTS Participants from 49 countries submitted 336 valid responses. Hormonal therapy for 3 to 6 months was suggested before surgical sperm retrieval (SSR) by 29.6% and 23.6% of participants for normogonadotropic hypogonadism and hypergonadotropic hypogonadism respectively. The SSR rate was reported as 50.0% by 26.0% to 50.0% of participants. Interestingly, 46.0% reported successful SSR in <10% of men with Klinefelter syndrome and 41.3% routinely recommended preimplantation genetic testing. Varicocele repair prior to SSR is recommended by 57.7%. Half of the respondents (57.4%) reported using ultrasound to identify the most vascularized areas in the testis for SSR. One-third proceed directly to microdissection testicular sperm extraction (mTESE) in every case of NOA while others use a staged approach. After a failed conventional TESE, 23.8% wait for 3 months, while 33.1% wait for 6 months before proceeding to mTESE. The cut-off of follicle-stimulating hormone for positive SSR was reported to be 12-19 IU/mL by 22.5% of participants and 20-40 IU/mL by 27.8%, while 31.8% reported no upper limit. CONCLUSIONS This is the largest survey to date on the real-world medical and surgical management of NOA by reproductive experts. It demonstrates a diverse practice pattern and highlights the need for evidence-based international consensus guidelines.
Collapse
Affiliation(s)
- Amarnath Rambhatla
- Department of Urology, Henry Ford Health System, Vattikuti Urology Institute, Detroit, MI, USA
| | - Rupin Shah
- Division of Andrology, Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Imad Ziouziou
- Department of Urology, College of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Priyank Kothari
- Department of Urology, Topiwala National Medical College, B.Y.L Nair Charitable Hospital, Mumbai, India
| | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Murat Gul
- Department of Urology, Selçuk University School of Medicine, Konya, Turkey
| | - Taha Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Parviz Kavoussi
- Department of Reproductive Urology, Austin Fertility & Reproductive Medicine/Westlake IVF, Austin, TX, USA
| | - Widi Atmoko
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ponco Birowo
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | | | - Giorgio Ivan Russo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
| | - Ahmed M Harraz
- Department of Urology, Mansoura University Urology and Nephrology Center, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Marlon Martinez
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
| | | | - Nicholas Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Missy Savira
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Giovanni M Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Wael Zohdy
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Edoardo Pescatori
- Andrology and Reproductive Medicine Unit, Next Fertility GynePro, Bologna, Italy
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Shinichiro Fukuhara
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akira Tsujimura
- Department of Urology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Cesar Rojas-Cruz
- Department of Urology, University Hospital of Rostock, Rostock, Germany
| | - Angelo Marino
- Reproductive Medicine Unit, ANDROS Day Surgery Clinic, Palermo, Italy
| | - Siu King Mak
- Department of Surgery, Union Hospital Reproductive Medicine Centre (Tsim Sha Tsui), Kowloon, China
| | - Edouard Amar
- Department of Urology, American Hospital of Paris, Paris, France
| | - Wael Ibrahim
- Department of Obstetrics Gynecology and Reproductive Medicine, Fertility Care Center in Cairo, Cairo, Egypt
| | - Puneet Sindhwani
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Naif Alhathal
- Department of Urology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Manaf Al Hashimi
- Department of Urology, Burjeel Hospital, Abu Dhabi, UAE
- Department of Urology, Khalifa University College of Medicine and Health Science, Abu Dhabi, UAE
| | - Ahmed El-Sakka
- Department of Urology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asci Ramazan
- 45Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Fotios Dimitriadis
- 1st Urology Department, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Massimiliano Timpano
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Davor Jezek
- Department for Transfusion Medicine and Transplantation Biology, Reproductive Tissue Bank, University Hospital Zagreb, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Baris Altay
- Department of Urology, Ege University Medical School, Bornova, Turkey
| | - Daniel Suslik Zylbersztejn
- Department of Surgery, Discipline of Urology, Fleury Group and Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Michael Yc Wong
- Department of Andrology, International Urology, Fertility and Gynecology Centre, Mount Elizabeth Hospital, Singapore
| | - Du Geon Moon
- Department of Urology, Korea University Guro Hospital, Seoul, Korea
| | - Christine Wyns
- Department of Gynaecology-Andrology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Safar Gamidov
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Ministry of Health of Russia, Moscow, Russia
| | - Hamed Akhavizadegan
- Department of Urology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kaan Aydos
- Department of Urology, Ankara University, Ankara, Turkey
| | - Nguyen Quang
- Center for Andrology and Sexual Medicine, Viet Duc University Hospital, Hanoi, Vietnam
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Shedeed Ashour
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | - Saleh Binsaleh
- Division of Urology, Deparment of Surgery, Faculty of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Alayman Hussein
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Haitham Elbardisi
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Taymour Mostafa
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | | | - Islam Fathy Soliman Abdelrahman
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Andrology, Armed Forces College of Medicine, Cairo, Egypt
| | - Osvaldo Rajmil
- Department of Andrology, Fundació Puigvert, Barcelona, Spain
| | - Arif Kalkanli
- Department of Urology, Taksim Education and Research Hospital, Istanbul, Turkey
| | | | - Kadir Bocu
- Urology Department, Niğde Omer Halis Demir University, Faculty of Medicine, Sirnak, Turkey
| | | | - Gökhan Çeker
- Department of Urology, Başakşehir Çam and Sakura City Hospital, Istanbul, Turkey
| | - Ege Can Serefoglu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | - Fahmi Bahar
- Andrology Section, Siloam Sriwijaya Hospital, Palembang, Indonesia
| | - Nazim Gherabi
- Department of Medicine, University of Algiers 1, Algiers, Algeria
| | - Shinnosuke Kuroda
- Department of Urology, Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | | | - Ahmet Gudeloglu
- Department of Urology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Erman Ceyhan
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Mohamed Saeed Mohamed Hasan
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Muhammad Ujudud Musa
- Urology Unit, Department of Surgery, Federal Medical Center, Katsina State, Nigeria
| | - Ahmad Motawi
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Chak-Lam Cho
- Department of Surgery, S. H. Ho Urology Centre, The Chinese University of Hong Kong, Hong Kong
| | - Hisanori Taniguchi
- Department of Urology and Andrology, Kansai Medical University, Osaka, Japan
| | | | | | - Shingai Mutambirwa
- Department of Urology, Dr. George Mukhari Academic Hospital, Sefako Makgatho Health Science University, Medunsa, South Africa
| | - Nur Dokuzeylul Gungor
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and IVF Unit, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Marion Bendayan
- Department of Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment and Development, Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Carlo Giulioni
- Department of Urology, Polytechnic University of Marche, Ancona, Italy
| | - Aykut Baser
- Department of Urology, Faculty of Medicine, Bandırma Onyedi Eylül University, Balıkesir, Turkey
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Luca Boeri
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gideon Blecher
- Department of Surgery, School of Clinical Sciences, Monash University, Melbourne, Australia
- Department of Urology, The Alfred Hospital, Melbourne, Australia
| | - Alireza Kheradmand
- Department of Urology, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Ricky Adriansjah
- Department of Urology, Hasan Sadikin General Hospital, Faculty of Medicine of Padjadjaran University, Bandung, Indonesia
| | - Nima Narimani
- Department of Urology, School of Medicine, Hasheminejad Kidney Center, Iran University of Medical Science, Tehran, Iran
| | | | - Tuan Thanh Nguyen
- Department of Urology, University of California, Irvine, CA, USA
- Department of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Department of Urology, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - Andrian Japari
- Department of Urology, Fertility Clinic, Telogorejo Hospital, Central Java, Indonesia
| | - Parisa Dolati
- Department of Animal Science, Faculty of Agriculture, University of Shiraz, Shiraz, Iran
| | - Keerti Singh
- Department of Preclinical and Health Sciences, Faculty of Medical Sciences, The University of West Indies, Bridgetown, Barbados
- Windsor Medical Centre, Bridgetown, Barbados
| | - Cevahir Ozer
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | - Selcuk Sarikaya
- Department of Urology, Gulhane Research and Training Hospital, University of Health Sciences, Ankara, Turkey
| | - Nadia Sheibak
- Department of Anatomical Sciences, Reproductive Sciences and Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Shahid Akbarabadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Ndagijimana Jean Bosco
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | | | - Sang Thanh Le
- Department of Urology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Urology, Fertility Clinic, Telogorejo Hospital, Central Java, Indonesia
| | - Ioannis Sokolakis
- Department of Urology, Martha-Maria Hospital Nuremberg, Nuremberg, Germany
| | - Darren Katz
- Men's Health Melbourne, Victoria, Australia
- Department of Surgery, Western Precinct, University of Melbourne, Victoria, Australia
- Department of Urology, Western Health, Victoria, Australia
| | - Ryan Smith
- Department of Urology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Manh Nguyen Truong
- Department of Animal Science, Faculty of Agriculture, University of Shiraz, Shiraz, Iran
- Fertility Centre, Hanh Phuc International Hospital, Binh Duong, Vietnam
| | - Tan V Le
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Zhongwei Huang
- Department of Obstetrics and Gynaecology, National University Health Systems, Singapore
| | - Muslim Dogan Deger
- Department of Urology, Edirne Sultan 1st Murat State Hospital, Edirne, Turkey
| | - Umut Arslan
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gokhan Calik
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | - Giorgio Franco
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Ayman Rashed
- 123Department of Urology, Faculty of Medicine, 6th of October University, Giza, Egypt
| | - Oguzhan Kahraman
- Department of Urology, Faculty of Medicine, Baskent University, Ankara, Turkey
| | | | - Rosadi Putra
- Department of Urology, RSUD Ciawi Regional General Hospital, West Java, Indonesia
| | - Giancarlo Balercia
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Kareim Khalafalla
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane, Australia
- Department of Urology, University of Illinois, Chicago, IL, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Anh Ðăng Tuân
- Tam Anh IVF Center, Tam Anh General Hospital, Hanoi, Vietnam
| | - Amr El Meliegy
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Birute Zilaitiene
- Institute of Endocrinology, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | | | - Filippo Giacone
- HERA Center, Unit of Reproductive Medicine, Sant'Agata Li Battiati, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Sunil Jindal
- Department of Andrology & Reproductive Medicine, Jindal Hospital & Fertility Center, Meerut, India
| | - Bac Nguyen Hoai
- Department of Andrology and Sexual Medicine, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Ravi Banthia
- Department of Urology, Western General Hospital, Edinburgh, UK
| | - Marcelo Rodriguez Peña
- Institute of Gynecology and Fertility (IFER), University of Buenos Aires, Buenos Aires, Argentina
| | - Dharani Moorthy
- IVF Department, Swarupa Fertility & IVF Centre, Vijayawada, India
| | - Aram Adamyan
- Department of Urology, Astghik Medical Center, Yerevan, Armenia
| | - Deniz Kulaksiz
- Department of Obstetrics and Gynecology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | | | - Nikolaos Sofikitis
- Department of Urology, Ioannina University School of Medicine, Ioannina, Greece
| | - Ciro Salzano
- PO San Giovanni Bosco, ASL Napoli 1 Centro, Napoli, Italy
| | | | - Surendra Reddy Banka
- Department of Andrology, Androcare Institute of Andrology and Men's Health, Hyderabad, India
| | - Tiago Cesar Mierzwa
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil
| | - Tahsin Turunç
- Urology Clinic, Iskenderun Gelisim Hospital, Iskenderun, Turkey
| | - Divyanu Jain
- Department of Obstetrics and Gynecology, Jaipur Golden Hospital, New Delhi, India
| | - Armen Avoyan
- Department of Obstetrics and Gynecology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Pietro Salacone
- Andrology and Pathophysiology of Reproduction Unit, Santa Maria Goretti Hospital, Latina, Italy
| | - Ateş Kadıoğlu
- Section of Andrology, Department of Urology, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Chirag Gupta
- Department of Urology, Jaipur National University, Jaipur, India
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Iman Shamohammadi
- Department of Urology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasser Mogharabian
- Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Yavuz Onur Danacıoğlu
- Department of Urology, University of Health Science, Istanbul Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Salima Daoud
- Laboratory of Histo-Embryology and Reproductive Biology, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - Vineet Malhotra
- Department of Urology and Andrology, VNA Hospital, New Delhi, India
| | - Abdulmalik Almardawi
- Department of Urology, Prince Sultan Millitary Medical City, Riyadh, Saudi Arabia
| | - Osama Mohamed Selim
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamad Moussa
- Department of Urology, Lebanese University, Beirut, Lebanon
- Department of Urology, Al Zahraa Hospital, UMC, Beirut, Lebanon
| | - Saeid Haghdani
- Andrology Research Center, Yazd Reproductive Science Institute, Isfahan Fertility and Infertility Center, Isfahan, Iran
| | - Mesut Berkan Duran
- Department of Urology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Yannic Kunz
- Department of Urology, University Hospital Innsbruck, Innsbruck, Austria
| | - Mirko Preto
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Elena Eugeni
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Department of Medicine and Medical Specialties, Division of Medical Andrology and Endocrinology of Reproduction, University of Terni, Terni, Italy
| | - Thang Nguyen
- Department of Obstetrics and Gynecology, Kanuni Training and Research Hospital, University of Health Sciences, Trabzon, Turkey
| | - Ahmed Rashad Elshahid
- 123Department of Urology, Faculty of Medicine, 6th of October University, Giza, Egypt
| | | | - Dyandra Parikesit
- Department of Urology, Faculty of Medicine, Universitas Indonesia Hospital, Depok, Indonesia
| | - Essam Nada
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | | | - Florence Boitrelle
- Department of Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment and Development, Paris Saclay University, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | | | - Mounir Jamali
- Department of Urology, Military Teaching Hospital, Rabat, Morocco
| | - Raju Nair
- Department of Reproductive Medicine, Mitera Hospital, Kottayam, India
| | | | - Franco Gadda
- Department of Urology, IRCCS Fondazione Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Charalampos Thomas
- Urology and Neuro-Urology Unit, National Rehabilitation Center, Athens, Greece
| | | | - Umit Gul
- Private EPC Hospital, Adana, Turkey
| | - Serena Maruccia
- Department of Urology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milano, Italy
| | - Ajay Kanbur
- Department of Andrology, Kanbur Clinic, Thane, India
- Department of Urosurgery, Jupiter Hospital, Thane, India
| | | | | | - Raghavender Kosgi
- Department of Andrology and Men's Health, Apollo Hospitals, Hyderabad, India
| | - Fatih Gokalp
- Department of Urology, Faculty of Medicine, Hatay Mustafa Kemal University, Antakya, Turkey
| | | | - Gustavo Marquesine Paul
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hesamoddin Sajadi
- Department of Urology, Bombay Hospital and Medical Research Center, Mumbai, India
| | - Deepak Gupte
- Department of Urology, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Rafael F Ambar
- Department of Urology, Centro Universitario em Saude do ABC, Santo André, Brazil
| | | | - Karun Singla
- Department of Urology, Dr. Dradjat Hospital, Serang, Indonesia
| | | | - Shannon Hee Kyung Kim
- Department of Urology, Macquarie University Faculty of Medicine and Health Sciences, Sydney, Australia
| | | | - Koichi Nagao
- Department of Urology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Sakti Ronggowardhana Brodjonegoro
- Division of Urology, Department of Surgery, Prof. Dr. Sardjito Hospital, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Andri Rezano
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | - Rossella Mazzilli
- Unit of Endocrinology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Hasan M A Farsi
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hung Nguyen Ba
- Andrology Unit, ART Center, Vinmec Times City International Hospital, Hanoi, Vietnam
| | - Hamed Alali
- Department of Urology, Macquarie University Faculty of Medicine and Health Sciences, Sydney, Australia
| | | | - Tran Quang Tien Long
- Department of Obstetrics and Gynecology, Hanoi Obstetrics and Gynecology Hospital, Hanoi, Vietnam
| | - Sami Alsaid
- Department of Andrology, Sexology and STIs, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hoang Bao Ngoc Cuong
- Department of Surgery, Hai Phong University of Medicine and Pharmacy, Hai Phong, Vietnam
| | - Knigavko Oleksandr
- Department of Urology, Nephrology and Andrology Kharkiv National Medical University, Kharkiv, Ukraine
| | - Akhmad Mustafa
- Department of Urology, Hasan Sadikin General Hospital, Faculty of Medicine of Padjadjaran University, Bandung, Indonesia
| | - Herik Acosta
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | | | - Bahadır Şahin
- Department of Urology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Eko Arianto
- Department of Urology, Prof R.D. Kandou Hospital, Manado, Indonesia
| | - Colin Teo
- Department of Urology, Gleneagles Hospital, Singapore
| | | | - Rinaldo Indra Rachman
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Mustafa Gurkan Yenice
- Department of Urology, University of Health Science, Istanbul Bakırköy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey
| | | | - Shivam Priyadarshi
- Department of Urology, Sawai Man Singh Medical College and Hospital, Jaipur, Rajasthan, India
| | - Marko Tanic
- Department of Urology, General Hospital, Cuprija, Serbia
| | - Noor Kareem Alfatlaw
- Fertility Center of Al-Najaf, Al-Sadr Medical City, Babylon Health Directorate, Iraqi Ministry of Health, Baghdad, Iraq
| | - Fikri Rizaldi
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ranjit B Vishwakarma
- Division of Andrology, Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - George Kanakis
- Department of Endocrinology, Diabetes and Metabolism, Athens Naval & VA Hospital, Athens, Greece
| | | | - Joe Lee
- Department of Urology, National University Hospital, Singapore
| | - Raisa Galstyan
- Department of Urology, Yerevan State Medical University, Yerevan, Armenia
| | - Hakan Keskin
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Janan Wurzacher
- Department of Urology, University Hospital Innsbruck, Innsbruck, Austria
| | - Doddy Hami Seno
- Division of Urology, Department of Surgery, Persahabatan General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Bambang S Noegroho
- Department of Urology, Hasan Sadikin General Hospital, Faculty of Medicine of Padjadjaran University, Bandung, Indonesia
| | - Ria Margiana
- Department of Urology, Prof R.D. Kandou Hospital, Manado, Indonesia
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Urology Unit, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Qaisar Javed
- Department of Urology, Al-Ahlia Hospital, Abu Dhabi, UAE
| | | | | | - Ana Puigvert
- Department of Obstetrics and Gynecology, Reproductive Endocrinology and IVF Unit, School of Medicine, Bahcesehir University, Istanbul, Turkey
- Institute of Andrology and Sexual Medicine (IANDROMS), Barcelona, Spain
| | - Coşkun Kaya
- Department of Urology, Health Science University Eskisehir City HPRH, Eskisehir, Turkey
| | | | - Chadi Yazbeck
- Department of Obstetrics Gynecology and Reproductive Medicine, Reprogynes Medical Institute, Paris, France
| | - Azwar Amir
- Department of Urology, Dr Wahidin Sudirohusodo Hospital, Makassar, Indonesia
| | - Edson Borges
- IVF Department, Fertility Assisted Fertilization Center, São Paulo, Brazil
| | - Marina Bellavia
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Isaac Ardianson Deswanto
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Vinod Kv
- Department of Urology, Cure & SK Hospital, Trivandrum, India
| | | | - Dang Hoang Minh
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | | | - Fulvio Colombo
- Andrology and Reproductive Medicine Unit, Next Fertility GynePro, Bologna, Italy
| | - Armand Zini
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Niket Patel
- Akanksha Hospital and Research Institute, Anand, Gujarat, India
| | - Selahittin Çayan
- Department of Urology, University of Mersin School of Medicine, Mersin, Turkey
| | - Ula Al-Kawaz
- High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University, Baghdad, Iraq
| | - Maged Ragab
- Department of Andrology, Tanta University, Tanta, Egypt
| | | | | | - Ozan Efesoy
- Department of Andrology, Tanta University, Tanta, Egypt
| | - Ivan Hoffmann
- Department of Reproductive Medicine and Andrology, University Clinic Halle (Saale), Halle, Germany
- Reproductive Center Dr. Hoffmann, Berlin, Germany
| | - Thiago Afonso Teixeira
- Division of Urology, University Hospital, Federal University of Amapa, Macapá, Brazil
- Men's Health Study Group, Institute for Advanced Studies, University of São Paulo, São Paulo, Brazil
- Androscience-Science and Innovation Center and High Complexity Clinical and Research Andrology Laboratory, São Paulo, Brazil
| | - Barış Saylam
- Department of Urology, University of Mersin School of Medicine, Mersin, Turkey
| | | | | |
Collapse
|
47
|
Lu L, Zhao Y, Li M, Wang X, Zhu J, Liao L, Wang J. Contemporary strategies and approaches for characterizing composition and enhancing biofilm penetration targeting bacterial extracellular polymeric substances. J Pharm Anal 2024; 14:100906. [PMID: 38634060 PMCID: PMC11022105 DOI: 10.1016/j.jpha.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 04/19/2024] Open
Abstract
Extracellular polymeric substances (EPS) constitutes crucial elements within bacterial biofilms, facilitating accelerated antimicrobial resistance and conferring defense against the host's immune cells. Developing precise and effective antibiofilm approaches and strategies, tailored to the specific characteristics of EPS composition, can offer valuable insights for the creation of novel antimicrobial drugs. This, in turn, holds the potential to mitigate the alarming issue of bacterial drug resistance. Current analysis of EPS compositions relies heavily on colorimetric approaches with a significant bias, which is likely due to the selection of a standard compound and the cross-interference of various EPS compounds. Considering the pivotal role of EPS in biofilm functionality, it is imperative for EPS research to delve deeper into the analysis of intricate compositions, moving beyond the current focus on polymeric materials. This necessitates a shift from heavy reliance on colorimetric analytic methods to more comprehensive and nuanced analytical approaches. In this study, we have provided a comprehensive summary of existing analytical methods utilized in the characterization of EPS compositions. Additionally, novel strategies aimed at targeting EPS to enhance biofilm penetration were explored, with a specific focus on highlighting the limitations associated with colorimetric methods. Furthermore, we have outlined the challenges faced in identifying additional components of EPS and propose a prospective research plan to address these challenges. This review has the potential to guide future researchers in the search for novel compounds capable of suppressing EPS, thereby inhibiting biofilm formation. This insight opens up a new avenue for exploration within this research domain.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Yuting Zhao
- Meishan Pharmaceutical Vocational College, School of Pharmacy, Meishan, Sichuan, 620200, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China
| | - Xiaobo Wang
- Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, 646000, China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
48
|
Chrzanowski S, Batra R. CRISPR-Based Gene Editing Techniques in Pediatric Neurological Disorders. Pediatr Neurol 2024; 153:166-174. [PMID: 38394831 DOI: 10.1016/j.pediatrneurol.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024]
Abstract
The emergence of gene editing technologies offers a unique opportunity to develop mutation-specific treatments for pediatric neurological disorders. Gene editing systems can potentially alter disease trajectory by correcting dysfunctional mutations or therapeutically altering gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-based approaches are attractive gene therapy platforms to personalize treatments because of their specificity, ease of design, versatility, and cost. However, many such approaches remain in the early stages of development, with ongoing efforts to optimize editing efficiency, minimize unintended off-target effects, and mitigate pathologic immune responses. Given the rapid evolution of CRISPR-based therapies, it is prudent for the clinically based child neurologist to have a conceptual understanding of what such therapies may entail, including both benefits and risks and how such therapies may be clinically applied. In this review, we describe the fundamentals of CRISPR-based therapies, discuss the opportunities and challenges that have arisen, and highlight preclinical work in several pediatric neurological diseases.
Collapse
Affiliation(s)
- Stephen Chrzanowski
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts; Division of Neuromuscular Medicine, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts.
| | | |
Collapse
|
49
|
Haber Z, Sharma D, Selvaraj KSV, Sade N. Is CRISPR/Cas9-based multi-trait enhancement of wheat forthcoming? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112021. [PMID: 38311249 DOI: 10.1016/j.plantsci.2024.112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technologies have been implemented in recent years in the genome editing of eukaryotes, including plants. The original system of knocking out a single gene by causing a double-strand break (DSB), followed by non-homologous end joining (NHEJ) or Homology-directed repair (HDR) has undergone many adaptations. These adaptations include employing CRISPR/Cas9 to upregulate gene expression or to cause specific small changes to the DNA sequence of the gene-of-interest. In plants, multiplexing, i.e., inducing multiple changes by CRISPR/Cas9, is extremely relevant due to the redundancy of many plant genes, and the time- and labor-consuming generation of stable transgenic plant lines via crossing. Here we discuss relevant examples of various traits, such as yield, biofortification, gluten content, abiotic stress tolerance, and biotic stress resistance, which have been successfully manipulated using CRISPR/Cas9 in plants. While existing studies have primarily focused on proving the impact of CRISPR/Cas9 on a single trait, there is a growing interest among researchers in creating a multi-stress tolerant wheat cultivar 'super wheat', to commercially and sustainably enhance wheat yields under climate change. Due to the complexity of the technical difficulties in generating multi-target CRISPR/Cas9 lines and of the interactions between stress responses, we propose enhancing already commercial local landraces with higher yield traits along with stress tolerances specific to the respective localities, instead of generating a general 'super wheat'. We hope this will serve as the sustainable solution to commercially enhancing crop yields under both stable and challenging environmental conditions.
Collapse
Affiliation(s)
- Zechariah Haber
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - Davinder Sharma
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel
| | - K S Vijai Selvaraj
- Vegetable Research Station, Tamil Nadu Agricultural University, Palur 607102, Tamil Nadu, India
| | - Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
50
|
Chen L, Hong M, Luan C, Gao H, Ru G, Guo X, Zhang D, Zhang S, Li C, Wu J, Randolph PB, Sousa AA, Qu C, Zhu Y, Guan Y, Wang L, Liu M, Feng B, Song G, Liu DR, Li D. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat Biotechnol 2024; 42:638-650. [PMID: 37322276 DOI: 10.1038/s41587-023-01821-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Base editors have substantial promise in basic research and as therapeutic agents for the correction of pathogenic mutations. The development of adenine transversion editors has posed a particular challenge. Here we report a class of base editors that enable efficient adenine transversion, including precise A•T-to-C•G editing. We found that a fusion of mouse alkyladenine DNA glycosylase (mAAG) with nickase Cas9 and deaminase TadA-8e catalyzed adenosine transversion in specific sequence contexts. Laboratory evolution of mAAG significantly increased A-to-C/T conversion efficiency up to 73% and expanded the targeting scope. Further engineering yielded adenine-to-cytosine base editors (ACBEs), including a high-accuracy ACBE-Q variant, that precisely install A-to-C transversions with minimal Cas9-independent off-targeting effects. ACBEs mediated high-efficiency installation or correction of five pathogenic mutations in mouse embryos and human cell lines. Founder mice showed 44-56% average A-to-C edits and allelic frequencies of up to 100%. Adenosine transversion editors substantially expand the capabilities and possible applications of base editing technology.
Collapse
Affiliation(s)
- Liang Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mengjia Hong
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changming Luan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hongyi Gao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Gaomeng Ru
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinyuan Guo
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dujuan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Shun Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Changwei Li
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Alexander A Sousa
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Chao Qu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yifan Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuting Guan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Liren Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Mingyao Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
- BRL Medicine, Inc., Shanghai, China
| | - Bo Feng
- School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Dali Li
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|