1
|
Salvato I, Ricciardi L, Nucera F, Nigro A, Dal Col J, Monaco F, Caramori G, Stellato C. RNA-Binding Proteins as a Molecular Link between COPD and Lung Cancer. COPD 2023; 20:18-30. [PMID: 36655862 DOI: 10.1080/15412555.2022.2107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) represents an independent risk factor for lung cancer development. Accelerated cell senescence, induced by oxidative stress and inflammation, is a common pathogenic determinant of both COPD and lung cancer. The post transcriptional regulation of genes involved in these processes is finely regulated by RNA-binding proteins (RBPs), which regulate mRNA turnover, subcellular localization, splicing and translation. Multiple pro-inflammatory mediators (including cytokines, chemokines, proteins, growth factors and others), responsible of lung microenvironment alteration, are regulated by RBPs. Several mouse models have shown the implication of RBPs in multiple mechanisms that sustain chronic inflammation and neoplastic transformation. However, further studies are required to clarify the role of RBPs in the pathogenic mechanisms shared by lung cancer and COPD, in order to identify novel biomarkers and therapeutic targets. This review will therefore focus on the studies collectively indicating the role of RBPs in oxidative stress and chronic inflammation as common pathogenic mechanisms shared by lung cancer and COPD.
Collapse
Affiliation(s)
- Ilaria Salvato
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Luca Ricciardi
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Annunziata Nigro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, Italy
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
2
|
Reyes-Ramos CA, Ramírez-Jirano LJ, Bitzer-Quintero OK, Vázquez-Medina JP, Gaxiola-Robles R, Zenteno-Savín T. Dolphin leukocytes exhibit an attenuated cytokine response and increase heme oxygenase activity upon exposure to lipopolysaccharides. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111438. [PMID: 37119961 DOI: 10.1016/j.cbpa.2023.111438] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/01/2023]
Abstract
Cetaceans exhibit physiological adaptations that allowed the transition to aquatic life, including a robust antioxidant defense system that prevents injury from repeated exposure to ischemia/reperfusion events associated with breath-hold diving. The signaling cascades that characterize ischemic inflammation in humans are well characterized. In contrast, cetaceans' molecular and biochemical mechanisms that confer tolerance to inflammatory events are poorly understood. Heme oxygenase (HO) is a cytoprotective protein with anti-inflammatory properties. HO catalyzes the first step in the oxidative degradation of heme. The inducible HO-1 isoform is regulated by various stimuli, including hypoxia, oxidant stress, and inflammatory cytokines. The objective of this study was to compare the response of HO-1 and cytokines to a proinflammatory challenge in leukocytes isolated from humans and bottlenose dolphins (Tursiops truncatus). We measured changes in HO activity and expression, and abundance and expression of interleukin 1 beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and heme oxygenase 1 (HMOX1) in leukocytes treated with lipopolysaccharide (LPS) for 24 and 48 h. HO activity increased (p < 0.05) in dolphin (48 h) but not human cells. TNF-α expression increased in human (24 h, 48 h), but not dolphin cells following LPS stimulation. LPS-induced cytokine expression was lower in dolphin than in human leukocytes, suggesting a blunted cytokine response in bottlenose dolphin leukocytes treated with LPS. Results suggest species-specific regulation of inflammatory cytokines in leukocytes treated with LPS, which may lead to differential responses to a pro-inflammatory challenge between marine and terrestrial mammals.
Collapse
Affiliation(s)
- Carlos A Reyes-Ramos
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico
| | - Luis Javier Ramírez-Jirano
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Independencia Oriente, 44340 Guadalajara, Jalisco, Mexico
| | - Oscar Kurt Bitzer-Quintero
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Independencia Oriente, 44340 Guadalajara, Jalisco, Mexico
| | - José Pablo Vázquez-Medina
- Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720-3140, USA
| | - Ramón Gaxiola-Robles
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico; Hospital General de Zona No.1, Instituto Mexicano del Seguro Social, 5 de Febrero y Héroes de la Independencia, Centro, La Paz, Baja California Sur C.P. 23000, Mexico
| | - Tania Zenteno-Savín
- Centro de Investigaciones Biológicas del Noroeste, S.C. Planeación Ambiental y Conservación, Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, Baja California Sur C.P. 23096, Mexico.
| |
Collapse
|
3
|
Scinicariello S, Soderholm A, Schäfer M, Shulkina A, Schwartz I, Hacker K, Gogova R, Kalis R, Froussios K, Budroni V, Bestehorn A, Clausen T, Kovarik P, Zuber J, Versteeg GA. HUWE1 controls tristetraprolin proteasomal degradation by regulating its phosphorylation. eLife 2023; 12:e83159. [PMID: 36961408 PMCID: PMC10038661 DOI: 10.7554/elife.83159] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023] Open
Abstract
Tristetraprolin (TTP) is a critical negative immune regulator. It binds AU-rich elements in the untranslated-regions of many mRNAs encoding pro-inflammatory mediators, thereby accelerating their decay. A key but poorly understood mechanism of TTP regulation is its timely proteolytic removal: TTP is degraded by the proteasome through yet unidentified phosphorylation-controlled drivers. In this study, we set out to identify factors controlling TTP stability. Cellular assays showed that TTP is strongly lysine-ubiquitinated, which is required for its turnover. A genetic screen identified the ubiquitin E3 ligase HUWE1 as a strong regulator of TTP proteasomal degradation, which we found to control TTP stability indirectly by regulating its phosphorylation. Pharmacological assessment of multiple kinases revealed that HUWE1-regulated TTP phosphorylation and stability was independent of the previously characterized effects of MAPK-mediated S52/S178 phosphorylation. HUWE1 function was dependent on phosphatase and E3 ligase binding sites identified in the TTP C-terminus. Our findings indicate that while phosphorylation of S52/S178 is critical for TTP stabilization at earlier times after pro-inflammatory stimulation, phosphorylation of the TTP C-terminus controls its stability at later stages.
Collapse
Affiliation(s)
- Sara Scinicariello
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Adrian Soderholm
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Markus Schäfer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Alexandra Shulkina
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Irene Schwartz
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Kathrin Hacker
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Rebeca Gogova
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Robert Kalis
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Kimon Froussios
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
| | - Valentina Budroni
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Annika Bestehorn
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Pavel Kovarik
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC)ViennaAustria
- Medical University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| | - Gijs A Versteeg
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Vienna BioCenter (VBC)ViennaAustria
| |
Collapse
|
4
|
Carreño A, Lykke-Andersen J. The Conserved CNOT1 Interaction Motif of Tristetraprolin Regulates ARE-mRNA Decay Independently of the p38 MAPK-MK2 Kinase Pathway. Mol Cell Biol 2022; 42:e0005522. [PMID: 35920669 PMCID: PMC9476947 DOI: 10.1128/mcb.00055-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The regulation of the mRNA decay activator Tristetraprolin (TTP) by the p38 mitogen-activated protein kinase (MAPK) pathway during the mammalian inflammatory response represents a paradigm for the control of mRNA turnover by signaling. TTP activity is regulated through multiple phosphorylation sites, including an evolutionary conserved serine in its CNOT1 Interacting Motif (CIM) whose phosphorylation disrupts an interaction with CNOT1 of the CCR4-NOT deadenylase complex. Here we present evidence that the TTP CIM recruits the CCR4-NOT deadenylase complex and activates mRNA degradation cooperatively with the conserved tryptophan residues of TTP, previously identified to interact with CNOT9. Surprisingly, the TTP CIM remains unphosphorylated and capable of promoting association with the CCR4-NOT complex and mRNA decay upon activation of p38-MAPK-activated kinase MK2, a well-established regulator of TTP activity. The CIM is instead targeted by other kinases including PKCα. These observations suggest that signaling pathways regulate TTP activity in a cooperative manner and that the p38 MAPK-MK2 kinase pathway relies on the activation of additional kinase pathway(s) to fully control TTP function.
Collapse
Affiliation(s)
- Alberto Carreño
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Activation of the MKK3-p38-MK2-ZFP36 Axis by Coronavirus Infection Restricts the Upregulation of AU-Rich Element-Containing Transcripts in Proinflammatory Responses. J Virol 2022; 96:e0208621. [PMID: 34985993 DOI: 10.1128/jvi.02086-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronavirus infections induce the expression of multiple proinflammatory cytokines and chemokines. We have previously shown that in cells infected with gammacoronavirus infectious bronchitis virus (IBV), interleukin 6 (IL-6), and IL-8 were drastically upregulated, and the MAP kinase p38 and the integrated stress response pathways were implicated in this process. In this study, we report that coronavirus infection activates a negative regulatory loop that restricts the upregulation of a number of proinflammatory genes. As revealed by the initial transcriptomic and subsequent validation analyses, the anti-inflammatory adenine-uridine (AU)-rich element (ARE)-binding protein, zinc finger protein 36 (ZFP36), and its related family members were upregulated in cells infected with IBV and three other coronaviruses, alphacoronaviruses porcine epidemic diarrhea virus (PEDV), human coronavirus 229E (HCoV-229E), and betacoronavirus HCoV-OC43, respectively. Characterization of the functional roles of ZFP36 during IBV infection demonstrated that ZFP36 promoted the degradation of transcripts coding for IL-6, IL-8, dual-specificity phosphatase 1 (DUSP1), prostaglandin-endoperoxide synthase 2 (PTGS2) and TNF-α-induced protein 3 (TNFAIP3), through binding to AREs in these transcripts. Consistently, knockdown and inhibition of JNK and p38 kinase activities reduced the expression of ZFP36, as well as the expression of IL-6 and IL-8. On the contrary, overexpression of mitogen-activated protein kinase kinase 3 (MKK3) and MAPKAP kinase-2 (MK2), the upstream and downstream kinases of p38, respectively, increased the expression of ZFP36 and decreased the expression of IL-8. Taken together, this study reveals an important regulatory role of the MKK3-p38-MK2-ZFP36 axis in coronavirus infection-induced proinflammatory response. IMPORTANCE Excessive and uncontrolled induction and release of proinflammatory cytokines and chemokines, the so-called cytokine release syndrome (CRS), would cause life-threatening complications and multiple organ failure in severe coronavirus infections, including severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS) and COVID-19. This study reveals that coronavirus infection also induces the expression of ZFP36, an anti-inflammatory ARE-binding protein, promoting the degradation of ARE-containing transcripts coding for IL-6 and IL-8 as well as a number of other proteins related to inflammatory response. Furthermore, the p38 MAP kinase, its upstream kinase MKK3 and downstream kinase MK2 were shown to play a regulatory role in upregulation of ZFP36 during coronavirus infection cycles. This MKK3-p38-MK2-ZFP36 axis would constitute a potential therapeutic target for severe coronavirus infections.
Collapse
|
6
|
Swain N, Tripathy A, Padhan P, Raghav SK, Gupta B. Toll-like receptor-7 activation in CD8+ T cells modulates inflammatory mediators in patients with rheumatoid arthritis. Rheumatol Int 2022; 42:1235-1245. [PMID: 35142867 DOI: 10.1007/s00296-021-05050-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder of unknown etiology with aberrant immunological responses leading to inflammation, swelling and pain of the joints. CD8+ T cells have been known to be one of the major immune modulators in the progression of RA and the presence of toll-like receptors (TLRs) on these cells further accentuate their role in RA. Herein, we report an increased expression of TLR7 in the endosomes of CD8+ T cells of RA patients correlating with disease severity. The stimulation of TLR7 with Imiquimod (IMQ) in these CD8+ T cells drives the signalling cascade via NFkB and pERK activation and hence an increase in the mRNA transcripts of signature cytokines and cytolytic enzymes. However, a parallel synthesis of Tristetraprolin (TTP), an mRNA destabilizing protein prevents the translation of the mRNA transcripts, leading to a rapid degeneration of the target mRNA. We thus report that a direct TLR7 ligation by its agonist increases cytokine transcript signature but not an equivalent protein surge.
Collapse
Affiliation(s)
- Nitish Swain
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Archana Tripathy
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India
| | - Prasanta Padhan
- Department of Rheumatology, Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Sunil K Raghav
- Laboratory of Immuno-Genomics and Systems Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Bhawna Gupta
- Disease Biology Laboratory, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
7
|
Kočović DM, Bajuk-Bogdanović D, Pećinar I, Nedeljković BB, Daković M, Andjus PR. Assessment of cellular and molecular changes in the rat brain after gamma radiation and radioprotection by anisomycin. JOURNAL OF RADIATION RESEARCH 2021; 62:793-803. [PMID: 34062561 PMCID: PMC8438266 DOI: 10.1093/jrr/rrab045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The objective of the study was to describe cellular and molecular markers of radioprotection by anisomycin, focusing on the changes in rat brain tissue. Two-month-old Wistar rats were exposed to a 60Co radiation source at a dose of 6 Gy, with or without radioprotection with anisomycin (150 mg/kg) administered subcutaneously 30 min before or 3 or 6 h after irradiation. Survivors were analyzed 30 days after treatment. Astroglial and microglial responses were investigated based on the expression of glial markers assessed with immunohistochemistry, and quantitative changes in brain biomolecules were investigated by Raman microspectroscopy. In addition, blood plasma levels of pro-inflammatory (interleukin 6 and tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines were assessed. We found that application of anisomycin either before or after irradiation significantly decreased the expression of the microglial marker Iba-1. We also found an increased intensity of Raman spectral bands related to nucleic acids, as well as an increased level of cytokines when anisomycin was applied after irradiation. This suggests that the radioprotective effects of anisomycin are by decreasing Iba-1 expression and stabilizing genetic material by increasing the level of nucleic acids.
Collapse
Affiliation(s)
- Dušica M Kočović
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Studentski Trg 3, 11 000 Belgrade, Serbia
| | - Danica Bajuk-Bogdanović
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11 000 Belgrade, Serbia
| | - Ilinka Pećinar
- Faculty of Agriculture, Department for Agrobotany, University of Belgrade, Nemanjina 6, 11 080 Belgrade, Serbia
| | - Biljana Božić Nedeljković
- Institute for Physiology and Biochemistry ``Jean Giaja'', Faculty of Biology, University of Belgrade, Studentski Trg 3, 11 000 Belgrade, Serbia
| | - Marko Daković
- Faculty of Physical Chemistry, University of Belgrade, Studentski Trg 12-16, 11 000 Belgrade, Serbia
| | - Pavle R Andjus
- Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Studentski Trg 3, 11 000 Belgrade, Serbia
| |
Collapse
|
8
|
Chen H, Padia R, Li T, Li Y, Li B, Jin L, Huang S. Signaling of MK2 sustains robust AP1 activity for triple negative breast cancer tumorigenesis through direct phosphorylation of JAB1. NPJ Breast Cancer 2021; 7:91. [PMID: 34244488 PMCID: PMC8270897 DOI: 10.1038/s41523-021-00300-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) cells are generally more invasive than estrogen receptor-positive (ER + ) breast cancer cells. Consistent with the importance of activator protein 1 (AP1) transcription factors in invasion, AP1 activity is much higher in TNBC lines than ER + lines. In TNBC cells, robust AP1 activity is facilitated by both ERK and p38MAPK signaling pathways. While ERK signaling pathway regulates AP1 activity by controlling the abundance of AP1 transcription factors, p38MAPK signaling pathway does it by enhancing AP1 binding to AP1 sites without altering their abundance. Here, we show that p38MAPK regulation of AP1 activity involves both MAPKAPK2 (MK2) and JAB1, a known JUN-binding protein. MK2 not only interacts with JAB1 but also directly phosphorylates JAB1 at Ser177 in TNBC cells. Interestingly, Ser177 phosphorylation does not affect JAB1 and JUN interaction. Instead, interfering with p38MAPK signaling pathway or introducing an S to A point mutation at Ser177 of JAB1 reduces JUN recruitment to the AP1 sites in cyclin D1, urokinase plasminogen activator (uPA) and uPA receptor promoters. Moreover, knockdown of JAB1 diminishes >60% of AP1 transcriptional activity in TNBC cells. Taken together, these results indicate that MK2-mediated phosphorylation of JAB1 facilitates JUN recruitment to AP1 sites, thus augmenting AP1 activity. In line with the role of JAB1 in AP1 activity, silencing JAB1 leads to dramatic reduction in TNBC cell growth, in vitro invasion and in vivo tumor outgrowth. This study suggests that the p38MAPK-MK2 signaling pathway promotes TNBC tumorigenesis by sustaining robust AP1 activity.
Collapse
Affiliation(s)
- Haoming Chen
- grid.8547.e0000 0001 0125 2443The Ministry of Education Key Laboratory of Contemporary Anthropology, College of Life Science, Fudan University, Shanghai, China
| | - Ravi Padia
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Tao Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Yue Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Bin Li
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Lingtao Jin
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| | - Shuang Huang
- grid.15276.370000 0004 1936 8091Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL USA
| |
Collapse
|
9
|
Hsieh HH, Chen YA, Chang YJ, Wang HH, Yu YH, Lin SW, Huang YJ, Lin S, Chang CJ. The functional characterization of phosphorylation of tristetraprolin at C-terminal NOT1-binding domain. JOURNAL OF INFLAMMATION-LONDON 2021; 18:22. [PMID: 34090459 PMCID: PMC8180021 DOI: 10.1186/s12950-021-00288-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/20/2021] [Indexed: 12/26/2022]
Abstract
Background Tristetraprolin (TTP) family proteins contain conserved tandem CCCH zinc-finger binding to AU-rich elements and C-terminal NOT1-binding domain. TTP is phosphorylated extensively in cells, and its mRNA destabilization activity is regulated by protein phosphorylation. Methods We generated an antibody against phospho-Serine316 located at the C-terminal NOT1-binding site and examined TTP phosphorylation in LPS-stimulated RAW264.7 cells. Knockout of TTP was created in RAW264.7 cells using CRISPR/Cas9 gene editing to explore TTP functions. Results We demonstrated that Ser316 was phosphorylated by p90 ribosomal S6 kinase 1 (RSK1) and p38-activated protein kinase (MK2) and dephosphorylated by Protein Phosphatase 2A (PP2A). A phosphorylation-mimic mutant of S316D resulted in dissociation with the CCR4-NOT deadenylase complex through weakening interaction with CNOT1. Furthermore, Ser316 and serines 52 and 178 were independently contributed to the CCR4-NOT complex recruitment in the immunoprecipitation assay using phosphor-mimic mutants. In RAW264.7 macrophages, TTP was induced, and Ser316 was phosphorylated through RSK1 and MK2 by LPS stimulation. Knockout of TTP resulted in TNFα mRNA increased due to mRNA stabilization. Overexpression of non-phosphorylated S316A TTP mutant can restore TTP activity and lead to TNFα mRNA decreased. GST pull-down and RNA pull-down analyses demonstrated that endogenous TTP with Ser316 phosphorylation decreased the interaction with CNOT1. Conclusions Our results suggest that the TTP-mediated mRNA stability is modulated by Ser316 phosphorylation via regulating the TTP interaction with the CCR4-NOT deadenylase complex. Supplementary Information The online version contains supplementary material available at 10.1186/s12950-021-00288-2.
Collapse
Affiliation(s)
- Hsin-Hui Hsieh
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1 Sec 4 Roosevelt Rd, Taipei, 106, Taiwan
| | - Yen-An Chen
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1 Sec 4 Roosevelt Rd, Taipei, 106, Taiwan
| | - Yao-Jen Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ya-Han Yu
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1 Sec 4 Roosevelt Rd, Taipei, 106, Taiwan
| | - Sheng-Wei Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yin-Jung Huang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Steven Lin
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1 Sec 4 Roosevelt Rd, Taipei, 106, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Jin Chang
- Graduate Institute of Biochemical Sciences, College of Life Science, National Taiwan University, No. 1 Sec 4 Roosevelt Rd, Taipei, 106, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
10
|
Budroni V, Versteeg GA. Negative Regulation of the Innate Immune Response through Proteasomal Degradation and Deubiquitination. Viruses 2021; 13:584. [PMID: 33808506 PMCID: PMC8066222 DOI: 10.3390/v13040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/25/2022] Open
Abstract
The rapid and dynamic activation of the innate immune system is achieved through complex signaling networks regulated by post-translational modifications modulating the subcellular localization, activity, and abundance of signaling molecules. Many constitutively expressed signaling molecules are present in the cell in inactive forms, and become functionally activated once they are modified with ubiquitin, and, in turn, inactivated by removal of the same post-translational mark. Moreover, upon infection resolution a rapid remodeling of the proteome needs to occur, ensuring the removal of induced response proteins to prevent hyperactivation. This review discusses the current knowledge on the negative regulation of innate immune signaling pathways by deubiquitinating enzymes, and through degradative ubiquitination. It focusses on spatiotemporal regulation of deubiquitinase and E3 ligase activities, mechanisms for re-establishing proteostasis, and degradation through immune-specific feedback mechanisms vs. general protein quality control pathways.
Collapse
Affiliation(s)
| | - Gijs A. Versteeg
- Max Perutz Labs, Department of Microbiology, Immunobiology, and Genetics, University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
11
|
Rezcallah MC, Al-Mazi T, Ammit AJ. Cataloguing the phosphorylation sites of tristetraprolin (TTP): Functional implications for inflammatory diseases. Cell Signal 2020; 78:109868. [PMID: 33276085 DOI: 10.1016/j.cellsig.2020.109868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 01/10/2023]
Abstract
Tristetraprolin (TTP) is a destabilizing mRNA binding protein known to regulate gene expression of a wide variety of targets, including those that control inflammation. TTP expression, regulation and function is controlled by phosphorylation. While the importance of key serine (S) sites (S52 and S178 in mice and S186 in humans) has been recognized, other sites on the hyperphosphorylated TTP protein have more recently emerged as playing an important role in regulating cellular signalling and downstream functions of TTP. In order to propel investigation of TTP and fully exploit its potential as a drug target in inflammatory disease, this review will catalogue TTP phosphorylation sites in both the murine and human TTP protein, the known and unknown roles and functions of these sites, the kinases and phosphatases that act upon TTP and overview methodological approaches to increase our knowledge of this important protein regulated by phosphorylation.
Collapse
Affiliation(s)
- Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Trisha Al-Mazi
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, NSW, Australia; School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Ishii H, Kaneko S, Yanai K, Aomatsu A, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Podocyte Injury in Diabetic Nephropathy. Front Genet 2020; 11:993. [PMID: 33193581 PMCID: PMC7477342 DOI: 10.3389/fgene.2020.00993] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/05/2020] [Indexed: 12/24/2022] Open
Abstract
Diabetic nephropathy is one of the major complications of diabetes mellitus and is the leading cause of end-stage renal disease worldwide. Podocyte injury contributes to the development of diabetic nephropathy. However, the molecules that regulate podocyte injury in diabetic nephropathy have not been fully clarified. MicroRNAs (miRNAs) are small non-coding RNAs that can inhibit the translation of target messenger RNAs. Previous reports have described alteration of the expression levels of many miRNAs in cultured podocyte cells stimulated with a high glucose concentration and podocytes in rodent models of diabetic nephropathy. The associations between podocyte injury and miRNA expression levels in blood, urine, and kidney in patients with diabetic nephropathy have also been reported. Moreover, modulation of the expression of several miRNAs has been shown to have protective effects against podocyte injury in diabetic nephropathy in cultured podocyte cells in vitro and in rodent models of diabetic nephropathy in vivo. Therefore, this review focuses on miRNAs in podocyte injury in diabetic nephropathy, with regard to their potential as biomarkers and miRNA modulation as a therapeutic option.
Collapse
Affiliation(s)
- Hiroki Ishii
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Shohei Kaneko
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Katsunori Yanai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Akinori Aomatsu
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Keiji Hirai
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Susumu Ookawara
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | - Kenichi Ishibashi
- Department of Medical Physiology, Meiji Pharmaceutical University, Kiyose, Japan
| | - Yoshiyuki Morishita
- Division of Nephrology, First Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| |
Collapse
|
13
|
Peng H, Ning H, Wang Q, Lai J, Wei L, Stumpo DJ, Blackshear PJ, Fu M, Hou R, Hoft DF, Liu J. Tristetraprolin Regulates T H17 Cell Function and Ameliorates DSS-Induced Colitis in Mice. Front Immunol 2020; 11:1952. [PMID: 32922402 PMCID: PMC7457025 DOI: 10.3389/fimmu.2020.01952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/20/2020] [Indexed: 02/05/2023] Open
Abstract
TH17 cells have been extensively investigated in inflammation, autoimmune diseases, and cancer. The precise molecular mechanisms for TH17 cell regulation, however, remain elusive, especially regulation at the post-transcriptional level. Tristetraprolin (TTP) is an RNA-binding protein important for degradation of the mRNAs encoding several proinflammatory cytokines. With newly generated T cell-specific TTP conditional knockout mice (CD4CreTTPf/f), we found that aging CD4CreTTPf/f mice displayed an increase of IL-17A in serum and spontaneously developed chronic skin inflammation along with increased effector TH17 cells in the affected skin. TTP inhibited TH17 cell development and function by promoting IL-17A mRNA degradation. In a DSS-induced colitis model, CD4CreTTPf/f mice displayed severe colitis and had more TH17 cells and serum IL-17A compared with wild-type mice. Furthermore, neutralization of IL-17A reduced the severity of colitis. Our results reveal a new mechanism for regulating TH17 function and TH17-mediated inflammation post-transcriptionally by TTP, suggests that TTP might be a novel therapeutic target for the treatment of TH17-mediated diseases.
Collapse
Affiliation(s)
- Hui Peng
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Huan Ning
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Qinghong Wang
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jinping Lai
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Lin Wei
- Department of Immunology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Deborah J. Stumpo
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Perry J. Blackshear
- National Institute of Environmental Health Sciences, Research Triangle, NC, United States
| | - Mingui Fu
- Shock/Trauma Research Center and Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Rong Hou
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
14
|
Sung SSJ, Fu SM. A novel immunofluorescence detection method for renal cell-type specific in situ cytokine production by confocal microscopy. MethodsX 2020; 7:100935. [PMID: 32577408 PMCID: PMC7303990 DOI: 10.1016/j.mex.2020.100935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/20/2020] [Indexed: 11/25/2022] Open
Abstract
The detection of cytokines production in tissues is subjected to significant limitations: (1) Cytokine protein production frequently does not correlate with mRNA levels. (2) Cytokines are secreted rapidly and dissipate from the cellular source, thus making detection difficult. (3) The synthetic rate of many cytokines are low. (4) Tissue fixation ablates antigenic sites and diminishes detection signals. The identification of the cellular sources of cytokines poses an additional challenge because of the lack of suitable and readily available cellular markers. In our renal cytokine production studies in lupus nephritis, we have established methods to resolve problems associated with the identification of cellular sources of pertinent cytokines in the glomerulus and interstitium. Four-color confocal microscopy was used to colocalize cell-type specific markers with cytokines. The cytokine signal was amplified by the incubation of tissue slices in medium containing pan-specific stimulants plus secretion blockers. Tissue fixation was optimized to provide sharp crisp signals. Commercially available Ab suitable for fluorochrome labeling were used to establish cell-specific markers in the tubules and glomeruli. This combination of optimizations allowed us to define the cellular sources of important glomerular cytokines including TNF-α, IL-6, and IL-1β which appear to form a cytokine circuit in glomerulonephritis pathogenesis. ● Tissue stimulation and secretion blocking for cytokine detection ● Fixation optimization and Ab source identification for direct staining ● Colocalization of cytokines and renal cell-type specific markers.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Center for Immunity, Inflammation, and Regenerative Medicine
| | - Shu Man Fu
- Center for Immunity, Inflammation, and Regenerative Medicine.,Division of Rheumatology, Department of Medicine, Charlottesville, VA 22908
| |
Collapse
|
15
|
Uchida Y, Chiba T, Kurimoto R, Asahara H. Post-transcriptional regulation of inflammation by RNA-binding proteins via cis-elements of mRNAs. J Biochem 2019; 166:375-382. [PMID: 31511872 DOI: 10.1093/jb/mvz067] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022] Open
Abstract
In human genome, there are approximately 1,500 RNA-binding proteins (RBPs). They can regulate mRNA stability or translational efficiency via ribosomes and these processes are known as 'post-transcriptional regulation'. Accumulating evidences indicate that post-transcriptional regulation is the determinant of the accurate levels of cytokines mRNAs. While transcriptional regulation of cytokines mRNAs has been well studied and found to be important for the rapid induction of mRNA and regulation of the acute phase of inflammation, post-transcriptional regulation by RBPs is essential for resolving inflammation in the later phase, and their dysfunction may lead to severe autoimmune diseases such as rheumatoid arthritis or systemic lupus erythematosus. For post-transcriptional regulation, RBPs recognize and directly bind to cis-regulatory elements in 3' untranslated region of mRNAs such as AU-rich or constitutive decay elements and play various roles. In this review, we summarize the recent findings regarding the role of RBPs in the regulation of inflammation.
Collapse
Affiliation(s)
- Yutaro Uchida
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoki Chiba
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryota Kurimoto
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
CXCL4 is a driver of cytokine mRNA stability in monocyte-derived dendritic cells. Mol Immunol 2019; 114:524-534. [DOI: 10.1016/j.molimm.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 12/12/2022]
|
17
|
Sung SSJ, Fu SM. Interactions among glomerulus infiltrating macrophages and intrinsic cells via cytokines in chronic lupus glomerulonephritis. J Autoimmun 2019; 106:102331. [PMID: 31495649 DOI: 10.1016/j.jaut.2019.102331] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/23/2019] [Accepted: 08/25/2019] [Indexed: 10/26/2022]
Abstract
Inflammation plays a key role in the pathogenesis of lupus nephritis (LN) and inflammatory cytokines within the glomeruli are critical in this process. However, little information is available for the identities of the cell types that are primarily responsible for the production and function of the various cytokines. We have devised a novel method to visualize cytokine signals in the kidney by confocal microscopy and found that cytokine production within the glomerulus is cell type-specific and under translational control. In the lupus-prone NZM2328 mice with chronic glomerulonephritis, IL-6, IL-1β, and TNF-α in the glomerulus were produced predominantly by mesangial cells, podocytes, and glomerulus-infiltrating blood-derived macrophages, respectively. Microarray and RNASeq analyses showed that these cells expressed the receptors for these cytokines. Together the 3 cell types form a cytokine circuit in amplifying cytokine responses in LN. The intrinsic cells and infiltrating macrophages also produced other cytokines including M-CSF, SCF, and IL-34 that constituted within the enclosed glomerular space the soluble effector milieu which may mediate cellular damage and proliferation, and cytokine transcriptional and translation regulation. IL-10 and IL-1β were translationally regulated in the glomeruli in the intact kidney in a cell type-specific manner. The production of these 2 cytokines by infiltrating macrophages was undetectable in a visualization system for in situ protein accumulation despite high mRNA expression levels. However, these macrophages in isolated glomeruli which are released from Bowman's capsules produced large amounts of IL-10 and IL-1β. These data reveal the complexity of cytokine regulation, production, and function in the glomerulus and provide a model in which cytokine blocking may be beneficial in LN treatment.
Collapse
Affiliation(s)
- Sun-Sang J Sung
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| | - Shu Man Fu
- Center for Immunity, Inflammation, and Regenerative Medicine, Departments of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA; Division of Rheumatology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
| |
Collapse
|
18
|
Veloso Júnior PHDH, Simon KS, de Castro RJA, Coelho LC, Erazo FAH, de Souza ACB, das Neves RC, Lozano VF, Schwartz EF, Tavares AH, Mortari MR, Junqueira-Kipnis AP, Silva-Pereira I, Bocca AL. Peptides ToAP3 and ToAP4 decrease release of inflammatory cytokines through TLR-4 blocking. Biomed Pharmacother 2019; 118:109152. [PMID: 31376652 DOI: 10.1016/j.biopha.2019.109152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022] Open
Abstract
Antimicrobial peptides (AMPs) are small molecules with microbicidal and immunoregulatory activities. In this study we evaluated the anti-inflammatory and antimicrobial activities of peptides ToAP3 and ToAP4, AMPs from the venom of the Brazilian scorpion Tityus obscurus. To test the peptides' activity, murine bone marrow-derived macrophages (BMDMs) or dendritic cells (BMDCs) were stimulated with peptides plus LPS to analyze their ability to modulate cytokine release as well as phenotypic markers. For antimicrobial analysis, we evaluated the indirect activity against macrophage-internalized Cryptococcus neoformans and direct activity against Mycobacterium massiliense. Our data demonstrate that they were able to reduce TNF-α and IL-1β transcript levels and protein levels for BMDM and BMDC. Furthermore, the reduction of TNF-α secretion, before LPS- inflammatory stimuli, is associated with peptide interaction with TLR-4. ToAP4 increased MHC-II expression in BMDC, while ToAP3 decreased co-stimulatory molecules such as CD80 and CD86. Although these peptides were able to modulate the production of cytokines and molecules associated with antigen presentation, they did not increase the ability of clearance of C. neoformans by macrophages. In antimicrobial analysis, only ToAP3 showed potent action against bacteria. Altogether, these results demonstrate a promising target for the development of new immunomodulatory and anti-bacterial therapies.
Collapse
Affiliation(s)
| | - Karina Smidt Simon
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | - Luísa Coutinho Coelho
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | | | | | - Rogério Coutinho das Neves
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Viviane Furlan Lozano
- Public Health Central Laboratory, Secretary of Health of Distrito Federal, Brasilia, Brazil
| | - Elizabeth Ferroni Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Aldo Henrique Tavares
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia Renata Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Ana Paula Junqueira-Kipnis
- Department of Biosciences and Technologies, Institute of Tropical Diseases and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Ildinete Silva-Pereira
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Anamelia Lorenzetti Bocca
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília, Brazil.
| |
Collapse
|
19
|
Soni S, Anand P, Padwad YS. MAPKAPK2: the master regulator of RNA-binding proteins modulates transcript stability and tumor progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:121. [PMID: 30850014 PMCID: PMC6408796 DOI: 10.1186/s13046-019-1115-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/21/2019] [Indexed: 01/09/2023]
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) pathway has been implicated in a variety of pathological conditions including inflammation and metastasis. Post-transcriptional regulation of genes harboring adenine/uridine-rich elements (AREs) in their 3'-untranslated region (3'-UTR) is controlled by MAPK-activated protein kinase 2 (MAPKAPK2 or MK2), a downstream substrate of the p38MAPK. In response to diverse extracellular stimuli, MK2 influences crucial signaling events, regulates inflammatory cytokines, transcript stability and critical cellular processes. Expression of genes involved in these vital cellular cascades is controlled by subtle interactions in underlying molecular networks and post-transcriptional gene regulation that determines transcript fate in association with RNA-binding proteins (RBPs). Several RBPs associate with the 3'-UTRs of the target transcripts and regulate their expression via modulation of transcript stability. Although MK2 regulates important cellular phenomenon, yet its biological significance in tumor progression has not been well elucidated till date. In this review, we have highlighted in detail the importance of MK2 as the master regulator of RBPs and its role in the regulation of transcript stability, tumor progression, as well as the possibility of use of MK2 as a therapeutic target in tumor management.
Collapse
Affiliation(s)
- Sourabh Soni
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Prince Anand
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Laboratory, Food and Nutraceuticals Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, Himachal Pradesh, India. .,Academy of Scientific and Innovative Research, Chennai, Tamil Nadu, India.
| |
Collapse
|
20
|
Legrand N, Dixon DA, Sobolewski C. AU-rich element-binding proteins in colorectal cancer. World J Gastrointest Oncol 2019; 11:71-90. [PMID: 30788036 PMCID: PMC6379757 DOI: 10.4251/wjgo.v11.i2.71] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/11/2018] [Accepted: 01/01/2019] [Indexed: 02/05/2023] Open
Abstract
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called “Adenylate-Uridylate-rich elements binding proteins” (AUBPs) control mRNA stability or translation through their binding to AU-rich elements enriched in the 3’UTRs of inflammation- and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules (also known as P-body/SG). Alterations in the expression and activities of AUBPs and P-body/SG assembly have been observed to occur with colorectal cancer (CRC) progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis. Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation, along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy.
Collapse
Affiliation(s)
- Noémie Legrand
- Department of Microbiology, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| | - Dan A Dixon
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, and University of Kansas Cancer Center, Kansas City, KS 66045, United States
| | - Cyril Sobolewski
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva CH-1211, Switzerland
| |
Collapse
|
21
|
Bösl K, Giambelluca M, Haug M, Bugge M, Espevik T, Kandasamy RK, Bergstrøm B. Coactivation of TLR2 and TLR8 in Primary Human Monocytes Triggers a Distinct Inflammatory Signaling Response. Front Physiol 2018; 9:618. [PMID: 29896111 PMCID: PMC5986927 DOI: 10.3389/fphys.2018.00618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/07/2018] [Indexed: 01/04/2023] Open
Abstract
Innate immune signaling is essential to mount a fast and specific immune response to pathogens. Monocytes and macrophages are essential cells in the early response in their capacity as ubiquitous phagocytic cells. They phagocytose microorganisms or damaged cells and sense pathogen/damage-associated molecular patterns (PAMPs/DAMPs) through innate receptors such as Toll-like receptors (TLRs). We investigated a phenomenon where co-signaling from TLR2 and TLR8 in human primary monocytes provides a distinct immune activation profile compared to signaling from either TLR alone. We compare gene signatures induced by either stimulus alone or together and show that co-signaling results in downstream differences in regulation of signaling and gene transcription. We demonstrate that these differences result in altered cytokine profiles between single and multi-receptor signaling, and show how it can influence both T-cell and neutrophil responses. The end response is tailored to combat extracellular pathogens, possibly by modifying the regulation of IFNβ and IL12-family cytokines.
Collapse
Affiliation(s)
- Korbinian Bösl
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| | - Marit Bugge
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Richard K Kandasamy
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarte Bergstrøm
- Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Infection, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
22
|
Wu Y, He H, Ding Y, Liu S, Zhang D, Wang J, Jiang H, Zhang D, Sun L, Ye RD, Qian F. MK2 mediates macrophage activation and acute lung injury by regulating let-7e miRNA. Am J Physiol Lung Cell Mol Physiol 2018; 315:L371-L381. [PMID: 29770701 DOI: 10.1152/ajplung.00019.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
MAPK-activated protein kinase 2 (MK2) plays a critical role in the development of inflammation. However, the modulatory mechanisms in macrophage activation and acute lung injury (ALI) have not been completely defined. Here, we reported that MK2-deficient mice (MK2-/-) protected against sepsis-induced ALI. In response to lipopolysaccharide (LPS) challenge, MK2-/- mice and myeloid cell-specific MK2 conditional knockout mice (MK2Lyz2-KO) exhibited attenuated inflammatory response, especially producing fewer amounts of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and macrophage inflammatory protein 2 (MIP-2). LPS treatment in vitro resulted in reduced cytokine expression in MK2-/- bone marrow-derived macrophages (BMDMs). Furthermore, we found that LPS-induced microRNA lethal-7e ( let-7e) expression was significantly increased in MK2-/- macrophages. Transfection of let-7e antagomirs into MK2-/- BMDM rescued LPS-induced expression of TNF-α, IL-6, and MIP-2. In contrast, transfection of let-7e mimics into MK2+/+BMDM decreased cytokine expression. Meanwhile, LPS-induced phosphorylation of cAMP response element-binding (CREB) protein, a substrate of MK2, was downregulated in MK2-/- BMDMs. Lin28, an inhibitory molecule of let-7, was significantly reduced in MK2-/- macrophages. Our results suggested that MK2 boosts LPS-induced macrophage activation and ALI via increasing activation of CREB and consequently, the expression of Lin28 and downregulation of let-7e.
Collapse
Affiliation(s)
- Yaxian Wu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Huiqiong He
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Yunhe Ding
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Sirui Liu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Depeng Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Jun Wang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hongchao Jiang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Dan Zhang
- Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China
| | - Lei Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Richard D Ye
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Institute of Chinese Medical Sciences, University of Macau, Macau, People's Republic of China
| | - Feng Qian
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University , Shanghai , People's Republic of China.,Research Center for Cancer Precision Medicine, Department of Medical Oncology, Bengbu Medical College, Bengbu, Anhui , People's Republic of China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University , Xuzhou , People's Republic of China
| |
Collapse
|
23
|
Hosseini-Beheshti E, Choi W, Weiswald LB, Kharmate G, Ghaffari M, Roshan-Moniri M, Hassona MD, Chan L, Chin MY, Tai IT, Rennie PS, Fazli L, Tomlinson Guns ES. Exosomes confer pro-survival signals to alter the phenotype of prostate cells in their surrounding environment. Oncotarget 2018; 7:14639-58. [PMID: 26840259 PMCID: PMC4924741 DOI: 10.18632/oncotarget.7052] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/22/2015] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men. Current research on tumour-related extracellular vesicles (EVs) suggests that exosomes play a significant role in paracrine signaling pathways, thus potentially influencing cancer progression via multiple mechanisms. In fact, during the last decade numerous studies have revealed the role of EVs in the progression of various pathological conditions including cancer. Moreover, differences in the proteomic, lipidomic, and cholesterol content of exosomes derived from PCa cell lines versus benign prostate cell lines confirm that exosomes could be excellent biomarker candidates. As such, as part of an extensive proteomic analysis using LCMS we previously described a potential role of exosomes as biomarkers for PCa. Current evidence suggests that uptake of EV's into the local tumour microenvironment encouraging us to further examine the role of these vesicles in distinct mechanisms involved in the progression of PCa and castration resistant PCa. For the purpose of this study, we hypothesized that exosomes play a pivotal role in cell-cell communication in the local tumour microenvironment, conferring activation of numerous survival mechanisms during PCa progression and development of therapeutic resistance. Our in vitro results demonstrate that PCa derived exosomes significantly reduce apoptosis, increase cancer cell proliferation and induce cell migration in LNCaP and RWPE-1 cells. In conjunction with our in vitro findings, we have also demonstrated that exosomes increased tumor volume and serum PSA levels in vivo when xenograft bearing mice were administered DU145 cell derived exosomes intravenously. This research suggests that, regardless of androgen receptor phenotype, exosomes derived from PCa cells significantly enhance multiple mechanisms that contribute to PCa progression.
Collapse
Affiliation(s)
- Elham Hosseini-Beheshti
- Department of Experimental Medicine University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Wendy Choi
- The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Louis-Bastien Weiswald
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Geetanjali Kharmate
- The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Mazyar Ghaffari
- Department of Experimental Medicine University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Mani Roshan-Moniri
- Department of Experimental Medicine University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Mohamed D Hassona
- The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Leslie Chan
- The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Mei Yieng Chin
- The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Isabella T Tai
- Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Paul S Rennie
- Department of Urologic Sciences University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Ladan Fazli
- Department of Urologic Sciences University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| | - Emma S Tomlinson Guns
- Department of Urologic Sciences University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada.,The Vancouver Prostate Centre University of British Columbia, Vancouver, British Columbia, V6H 3Z6, Canada
| |
Collapse
|
24
|
Coelho MA, de Carné Trécesson S, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K, Snijders AP, Lai WS, Blackshear PJ, Downward J. Oncogenic RAS Signaling Promotes Tumor Immunoresistance by Stabilizing PD-L1 mRNA. Immunity 2017; 47:1083-1099.e6. [PMID: 29246442 PMCID: PMC5746170 DOI: 10.1016/j.immuni.2017.11.016] [Citation(s) in RCA: 428] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/06/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022]
Abstract
The immunosuppressive protein PD-L1 is upregulated in many cancers and contributes to evasion of the host immune system. The relative importance of the tumor microenvironment and cancer cell-intrinsic signaling in the regulation of PD-L1 expression remains unclear. We report that oncogenic RAS signaling can upregulate tumor cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability via modulation of the AU-rich element-binding protein tristetraprolin (TTP). TTP negatively regulates PD-L1 expression through AU-rich elements in the 3' UTR of PD-L1 mRNA. MEK signaling downstream of RAS leads to phosphorylation and inhibition of TTP by the kinase MK2. In human lung and colorectal tumors, RAS pathway activation is associated with elevated PD-L1 expression. In vivo, restoration of TTP expression enhances anti-tumor immunity dependent on degradation of PD-L1 mRNA. We demonstrate that RAS can drive cell-intrinsic PD-L1 expression, thus presenting therapeutic opportunities to reverse the innately immunoresistant phenotype of RAS mutant cancers.
Collapse
Affiliation(s)
- Matthew A Coelho
- Oncogene Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | | | - Sareena Rana
- Lung Cancer Group, Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Davide Zecchin
- Oncogene Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher Moore
- Oncogene Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Miriam Molina-Arcas
- Oncogene Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Philip East
- Computational Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bradley Spencer-Dene
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emma Nye
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karin Barnouin
- Protein Analysis and Proteomics Laboratories, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Protein Analysis and Proteomics Laboratories, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Wi S Lai
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA; Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, NC 27703, USA
| | - Julian Downward
- Oncogene Biology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Lung Cancer Group, Division of Molecular Pathology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
25
|
Prediction of intracellular exposure bridges the gap between target- and cell-based drug discovery. Proc Natl Acad Sci U S A 2017; 114:E6231-E6239. [PMID: 28701380 DOI: 10.1073/pnas.1701848114] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inadequate target exposure is a major cause of high attrition in drug discovery. Here, we show that a label-free method for quantifying the intracellular bioavailability (Fic) of drug molecules predicts drug access to intracellular targets and hence, pharmacological effect. We determined Fic in multiple cellular assays and cell types representing different targets from a number of therapeutic areas, including cancer, inflammation, and dementia. Both cytosolic targets and targets localized in subcellular compartments were investigated. Fic gives insights on membrane-permeable compounds in terms of cellular potency and intracellular target engagement, compared with biochemical potency measurements alone. Knowledge of the amount of drug that is locally available to bind intracellular targets provides a powerful tool for compound selection in early drug discovery.
Collapse
|
26
|
Xiao J, Chen Q, Tang D, Ou W, Wang J, Mo Z, Tang C, Peng L, Wang D. Activation of liver X receptors promotes inflammatory cytokine mRNA degradation by upregulation of tristetraprolin. Acta Biochim Biophys Sin (Shanghai) 2017; 49:277-283. [PMID: 28119310 DOI: 10.1093/abbs/gmw136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Indexed: 01/10/2023] Open
Abstract
Liver X receptors (LXRs) have anti-inflammatory properties. Whether LXRs play a role in post-transcriptional control of inflammatory cytokine expression is not clear. Here, we firstly identified that the synthetic LXR agonist T0901317 promoted IL-1β, IL-6 and TNFα mRNA degradation. Moreover, T0901317 destabilized TNFα mRNA through its 3'-untranslated region. In addition, T0901317 increased the expression of tristetraprolin (TTP), while antagonizing TTP with siRNA abrogated T0901317-mediated inflammatory cytokine mRNA decay. Interestingly, T0901317 repressed LPS-induced phosphorylation of ERK1/2 and p38 mitogen-activated protein kinase (MAPK) in THP-1 macrophages. The evidence presented here confirms that LXR activation with T0901317 inhibits the phosphorylation of ERK1/2 and p38 MAPK, likely resulting in the increased expression of TTP and the decay of LPS-induce inflammatory cytokine mRNAs.
Collapse
Affiliation(s)
- Ji Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Quan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Dan Tang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Weiwei Ou
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Jiazheng Wang
- Department of Anesthesiology, The Second Affiliated Hospital of University of South China, Hengyang 421001, China
| | - Zhongcheng Mo
- Department of Histology and Embryology, University of South China, Hengyang 421001, China
| | - Chaoke Tang
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang 421001, China
| | - Liangyu Peng
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang 421001, China
| | - Deming Wang
- Department of Anesthesiology, The First Affiliated Hospital of University of South China, Hengyang 421001, China
| |
Collapse
|
27
|
Zhao XK, Che P, Cheng ML, Zhang Q, Mu M, Li H, Luo Y, Liang YD, Luo XH, Gao CQ, Jackson PL, Wells JM, Zhou Y, Hu M, Cai G, Thannickal VJ, Steele C, Blalock JE, Han X, Chen CY, Ding Q. Tristetraprolin Down-Regulation Contributes to Persistent TNF-Alpha Expression Induced by Cigarette Smoke Extract through a Post-Transcriptional Mechanism. PLoS One 2016; 11:e0167451. [PMID: 27911957 PMCID: PMC5135108 DOI: 10.1371/journal.pone.0167451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Rationale Tumor necrosis factor-alpha (TNF-α) is a potent pro-inflammatory mediator and its expression is up-regulated in chronic obstructive pulmonary disease (COPD). Tristetraprolin (TTP) is implicated in regulation of TNF-α expression; however, whether TTP is involved in cigarette smoke-induced TNF-α expression has not been determined. Methods TTP expression was examined by western blot analysis in murine alveolar macrophages and alveolar epithelial cells challenged without or with cigarette smoke extract (CSE). TNF-α mRNA stability, and the decay of TNF-α mRNA, were determined by real-time quantitative RT-PCR. TNF-α protein levels were examined at the same time in these cells. To identify the molecular mechanism involved, a construct expressing the human beta-globin reporter mRNA containing the TNF-α 3’-untranslated region was generated to characterize the TTP targeted site within TNF-α mRNA. Results CSE induced TTP down-regulation in alveolar macrophages and alveolar epithelial cells. Reduced TTP expression resulted in significantly increased TNF-α mRNA stability. Importantly, increased TNF-α mRNA stability due to impaired TTP function resulted in significantly increased TNF-α levels in these cells. Forced TTP expression abrogated the increased TNF-α mRNA stability and expression induced by CSE. By using the globin reporter construct containing TNF-α mRNA 3’-untranslated region, the data indicate that TTP directly targets the adenine- and uridine-rich region (ARE) of TNF-α mRNA and negatively regulates TNF-α expression at the post-transcriptional level. Conclusion The data demonstrate that cigarette smoke exposure reduces TTP expression and impairs TTP function, resulting in significantly increased TNF-α mRNA stability and excessive TNF-α expression in alveolar macrophages and epithelial cells. The data suggest that TTP is a novel post-transcriptional regulator and limits excessive TNF-α expression and inflammatory response induced by cigarette smoke.
Collapse
Affiliation(s)
- Xue-Ke Zhao
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Pulin Che
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ming-Liang Cheng
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
- * E-mail: (MLC); (QD)
| | - Quan Zhang
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Mao Mu
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Hong Li
- Department of Infectious Diseases, The Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Luo
- Department of Oral Surgery, Shanghai Stomatology Hospital, Fudan University, Shanghai, China
| | - Yue-Dong Liang
- Department of Infectious Diseases, Public Health Center of Guiyang, Guiyang, Guizhou, China
| | - Xin-Hua Luo
- Department of Infectious Diseases, People's Hospital of Guizhou Province, Guiyang, Guizhou, China
| | - Chang-Qing Gao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Patricia L. Jackson
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Michael Wells
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Yong Zhou
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Meng Hu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Guoqiang Cai
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor J. Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Chad Steele
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - J. Edwin Blalock
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Xiaosi Han
- Neurology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ching-Yi Chen
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Qiang Ding
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (MLC); (QD)
| |
Collapse
|
28
|
Huang H, Zhu J, Li Y, Zhang L, Gu J, Xie Q, Jin H, Che X, Li J, Huang C, Chen LC, Lyu J, Gao J, Huang C. Upregulation of SQSTM1/p62 contributes to nickel-induced malignant transformation of human bronchial epithelial cells. Autophagy 2016; 12:1687-1703. [PMID: 27467530 PMCID: PMC5079680 DOI: 10.1080/15548627.2016.1196313] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic lung inflammation is accepted as being associated with the development of lung cancer caused by nickel exposure. Therefore, identifying the molecular mechanisms that lead to a nickel-induced sustained inflammatory microenvironment that causes transformation of human bronchial epithelial cells is of high significance. In the current studies, we identified SQSTM1/p62 as a novel nickel-upregulated protein that is important for nickel-induced inflammatory TNF expression, subsequently resulting in transformation of human bronchial epithelial cells. We found that nickel exposure induced SQSTM1 protein upregulation in human lung epithelial cells in vitro and in mouse lung tissues in vivo. The SQSTM1 upregulation was also observed in human lung squamous cell carcinoma. Further studies revealed that the knockdown of SQSTM1 expression dramatically inhibited transformation of human lung epithelial cells upon chronic nickel exposure, whereas ectopic expression of SQSTM1 promoted such transformation. Mechanistic studies showed that the SQSTM1 upregulation by nickel was the compromised result of upregulating SQSTM1 mRNA transcription and promoting SQSTM1 protein degradation. We demonstrated that nickel-initiated SQSTM1 protein degradation is mediated by macroautophagy/autophagy via an MTOR-ULK1-BECN1 axis, whereas RELA is important for SQSTM1 transcriptional upregulation following nickel exposure. Furthermore, SQSTM1 upregulation exhibited its promotion of nickel-induced cell transformation through exerting an impetus for nickel-induced inflammatory TNF mRNA stability. Consistently, the MTOR-ULK1-BECN1 autophagic cascade acted as an inhibitory effect on nickel-induced TNF expression and cell transformation. Collectively, our results demonstrate a novel SQSTM1 regulatory network that promotes a nickel-induced tumorigenic effect in human bronchial epithelial cells, which is negatively controlled by an autophagic cascade following nickel exposure.
Collapse
Affiliation(s)
- Haishan Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Junlan Zhu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Yang Li
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Liping Zhang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jiayan Gu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Qipeng Xie
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Honglei Jin
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Xun Che
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jingxia Li
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Chao Huang
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Lung-Chi Chen
- b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| | - Jianxin Lyu
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jimin Gao
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Chuanshu Huang
- a Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Life Sciences, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b Nelson Institute of Environmental Medicine, New York University School of Medicine , Tuxedo , NY , USA
| |
Collapse
|
29
|
Distinct NF-κB and MAPK Activation Thresholds Uncouple Steady-State Microbe Sensing from Anti-pathogen Inflammatory Responses. Cell Syst 2016; 2:378-90. [PMID: 27237739 DOI: 10.1016/j.cels.2016.04.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 03/29/2016] [Accepted: 04/22/2016] [Indexed: 12/30/2022]
Abstract
The innate immune system distinguishes low-level homeostatic microbial stimuli from those of invasive pathogens, yet we lack understanding of how qualitatively similar microbial products yield context-specific macrophage functional responses. Using quantitative approaches, we found that NF-κB and MAPK signaling was activated at different concentrations of a stimulatory TLR4 ligand in both mouse and human macrophages. Above a threshold of ligand, MAPK were activated in a switch-like manner, facilitating production of inflammatory mediators. At ligand concentrations below this threshold, NF-κB signaling occurred, promoting expression of a restricted set of genes and macrophage priming. Among TLR-induced genes, we observed an inverse correlation between MAPK dependence and ligand sensitivity, highlighting the role of this signaling dichotomy in partitioning innate responses downstream of a single receptor. Our study reveals an evolutionarily conserved innate immune response system in which danger discrimination is enforced by distinct thresholds for NF-κB and MAPK activation, which provide sequential barriers to inflammatory mediator production.
Collapse
|
30
|
Huang L, Yu Z, Zhang Z, Ma W, Song S, Huang G. Interaction with Pyruvate Kinase M2 Destabilizes Tristetraprolin by Proteasome Degradation and Regulates Cell Proliferation in Breast Cancer. Sci Rep 2016; 6:22449. [PMID: 26926077 PMCID: PMC4772106 DOI: 10.1038/srep22449] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/17/2016] [Indexed: 12/29/2022] Open
Abstract
Pyruvate kinase M2 (PKM2), which is predominantly expressed in most cancers, plays a key role in the Warburg effect. However, how PKM2 functions as a tumor supportive protein has not been fully elucidated. Here, we identified tristetraprolin (TTP), an AU-rich, element-binding protein that regulates mRNA stability, as a new binding partner of PKM2. Our data reveal that PKM2 suppresses TTP protein levels by promoting its phosphorylation, ubiquitination, and proteasome degradation, reducing its mRNA turnover ability and ultimately impairing cell viability in breast cancer cells. The p38/mitogen-activated protein kinase (MAPK) pathway might be involved in PKM2-mediated TTP degradation, while treatment with the p38 inhibitor or siRNA abolished PKM2-induced TTP protein degradation. These findings demonstrate that PKM2-TTP association is crucial for regulating breast cancer cell proliferation and is therefore a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Liangqian Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhenhai Yu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhenchao Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
| | - Wenjing Ma
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shaoli Song
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gang Huang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai 200025, China
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
31
|
Shah S, Mostafa MM, McWhae A, Traves SL, Newton R. Negative Feed-forward Control of Tumor Necrosis Factor (TNF) by Tristetraprolin (ZFP36) Is Limited by the Mitogen-activated Protein Kinase Phosphatase, Dual-specificity Phosphatase 1 (DUSP1): IMPLICATIONS FOR REGULATION BY GLUCOCORTICOIDS. J Biol Chem 2015; 291:110-25. [PMID: 26546680 DOI: 10.1074/jbc.m115.697599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Indexed: 12/20/2022] Open
Abstract
TNF is central to inflammation and may play a role in the pathogenesis of asthma. The 3'-untranslated region of the TNF transcript contains AU-rich elements (AREs) that are targeted by the RNA-binding protein, tristetraprolin (also known as zinc finger protein 36 (ZFP36)), which is itself up-regulated by inflammatory stimuli, to promote mRNA degradation. Using primary human bronchial epithelial and pulmonary epithelial A549 cells, we confirm that interleukin-1β (IL1B) induces expression of dual-specificity phosphatase 1 (DUSP1), ZFP36, and TNF. Whereas IL1B-induced DUSP1 is involved in feedback control of MAPK pathways, ZFP36 exerts negative (incoherent) feed-forward control of TNF mRNA and protein expression. DUSP1 silencing increased IL1B-induced ZFP36 expression at 2 h and profoundly repressed TNF mRNA at 6 h. This was partly due to increased TNF mRNA degradation, an effect that was reduced by ZFP36 silencing. This confirms a regulatory network, whereby DUSP1-dependent negative feedback control reduces feed-forward control by ZFP36. Conversely, whereas DUSP1 overexpression and inhibition of MAPKs prevented IL1B-induced expression of ZFP36, this was associated with increased TNF mRNA expression at 6 h, an effect that was predominantly due to elevated transcription. This points to MAPK-dependent feed-forward control of TNF involving ZFP36-dependent and -independent mechanisms. In terms of repression by dexamethasone, neither silencing of DUSP1, silencing of ZFP36, nor silencing of both together prevented the repression of IL1B-induced TNF expression, thereby demonstrating the need for further repressive mechanisms by anti-inflammatory glucocorticoids. In summary, these data illustrate why understanding the competing effects of feedback and feed-forward control is relevant to the development of novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Suharsh Shah
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Mahmoud M Mostafa
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Andrew McWhae
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Suzanne L Traves
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| | - Robert Newton
- From the Airways Inflammation Research Group, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4Z6, Canada
| |
Collapse
|
32
|
Härdle L, Bachmann M, Bollmann F, Pautz A, Schmid T, Eberhardt W, Kleinert H, Pfeilschifter J, Mühl H. Tristetraprolin regulation of interleukin-22 production. Sci Rep 2015; 5:15112. [PMID: 26486958 PMCID: PMC4613560 DOI: 10.1038/srep15112] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)-22 is a STAT3-activating cytokine displaying characteristic AU-rich elements (ARE) in the 3'-untranslated region (3'-UTR) of its mRNA. This architecture suggests gene regulation by modulation of mRNA stability. Since related cytokines undergo post-transcriptional regulation by ARE-binding tristetraprolin (TTP), the role of this destabilizing protein in IL-22 production was investigated. Herein, we demonstrate that TTP-deficient mice display augmented serum IL-22. Likewise, IL-22 mRNA was enhanced in TTP-deficient splenocytes and isolated primary T cells. A pivotal role for TTP is underscored by an extended IL-22 mRNA half-life detectable in TTP-deficient T cells. Luciferase-reporter assays performed in human Jurkat T cells proved the destabilizing potential of the human IL-22-3'-UTR. Furthermore, overexpression of TTP in HEK293 cells substantially decreased luciferase activity directed by the IL-22-3'-UTR. Transcript destabilization by TTP was nullified upon cellular activation by TPA/A23187, an effect dependent on MEK1/2 activity. Accordingly, IL-22 mRNA half-life as determined in TPA/A23187-stimulated Jurkat T cells decreased under the influence of the MEK1/2 inhibitor U0126. Altogether, data indicate that TTP directly controls IL-22 production, a process counteracted by MEK1/2. The TTP-dependent regulatory pathway described herein likely contributes to the role of IL-22 in inflammation and cancer and may evolve as novel target for pharmacological IL-22 modulation.
Collapse
Affiliation(s)
- Lorena Härdle
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Malte Bachmann
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tobias Schmid
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Wolfgang Eberhardt
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Josef Pfeilschifter
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| | - Heiko Mühl
- pharmazentrum frankfurt/ZAFES, University Hospital Goethe-University Frankfurt, Germany
| |
Collapse
|
33
|
Doles JD, Olwin BB. Muscle stem cells on the edge. Curr Opin Genet Dev 2015; 34:24-8. [DOI: 10.1016/j.gde.2015.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
|
34
|
Park KH, Yoon YD, Kang MR, Yun J, Oh SJ, Lee CW, Lee MY, Han SB, Kim Y, Kang JS. Hypothemycin inhibits tumor necrosis factor-α production by tristetraprolin-dependent down-regulation of mRNA stability in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2015; 29:863-868. [PMID: 26371861 DOI: 10.1016/j.intimp.2015.08.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 07/30/2015] [Accepted: 08/24/2015] [Indexed: 11/25/2022]
Abstract
Hypothemycin, a resorcylic acid lactone polyketide, has been shown to inhibit oncogenic ras-transformation and T cell activation. In the present study, we investigated the effect of hypothemycin on tumor necrosis factor-α (TNF-α) production in macrophages and the molecular mechanisms involved in this effect. Hypothemycin potently suppressed the TNF-α production without affecting nitric oxide production in lipopolysaccharide (LPS)-stimulated macrophages. However, hypothemycin had no effect on the activity of TNF-α-converting enzyme, a key enzyme for converting membrane-bound pro-TNF-α into soluble TNF-α. Further study demonstrated that the stability of TNF-α mRNA was decreased by hypothemycin treatment. In addition, hypothemycin suppressed LPS-induced phosphorylation of p38 MAPK and ERK. Moreover, knockdown of tristetraprolin (TTP), which is an important trans-acting regulator of TNF-α mRNA stability and downstream target of p38 MAPK and ERK, reversed hypothemycin-mediated inhibition of TNF-α mRNA expression. Collectively, our results suggest that hypothemycin suppresses TNF-α production by TTP-dependent destabilization of TNF-α mRNA and this is mediated, at least in part, by blocking the activation of p38 MAPK and ERK.
Collapse
Affiliation(s)
- Ki Hwan Park
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Yeo Dae Yoon
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Moo Rim Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Jieun Yun
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Soo Jin Oh
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Chang Woo Lee
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Myeong Youl Lee
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 361-783, Republic of Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, 361-783, Republic of Korea
| | - Jong Soon Kang
- Bioevaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Chungbuk, 363-883, Republic of Korea.
| |
Collapse
|
35
|
Zhu Z, Zhao Y, Li J, Tao L, Shi P, Wei Z, Sheng X, Shen D, Liu Z, Zhou L, Tian C, Fan F, Shen C, Zhu P, Wang A, Chen W, Zhao Q, Lu Y. Cryptotanshinone, a novel tumor angiogenesis inhibitor, destabilizes tumor necrosis factor‐α mRNA via decreasing nuclear–cytoplasmic translocation of RNA‐binding protein HuR. Mol Carcinog 2015; 55:1399-410. [DOI: 10.1002/mc.22383] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/19/2015] [Accepted: 08/03/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Zhijie Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Yang Zhao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Junbo Li
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Li Tao
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Peiliang Shi
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Zhonghong Wei
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Xiaobo Sheng
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Dandan Shen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Zhaoguo Liu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Liang Zhou
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Chao Tian
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Fangtian Fan
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Cunsi Shen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Pingting Zhu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
| | - Aiyun Wang
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| | - Wenxing Chen
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| | - Qingshun Zhao
- Model Animal Research Center of Nanjing UniversityNanjing210061China
| | - Yin Lu
- School of PharmacyNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia MedicaNanjing University of Chinese MedicineNanjing210023China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of TumorNanjing University of Chinese MedicineNanjing210023China
| |
Collapse
|
36
|
Griseri P, Pagès G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interferon Cytokine Res 2015; 34:242-54. [PMID: 24697202 DOI: 10.1089/jir.2013.0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Collapse
Affiliation(s)
- Paola Griseri
- 1 U.O.C Medical Genetics, Institute Giannina Gaslini , Genoa, Italy
| | | |
Collapse
|
37
|
Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 2015; 74:175-80. [PMID: 25835609 DOI: 10.1016/j.cyto.2015.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
The RNA exosome is a highly conserved exoribonuclease complex that is involved in RNA processing, quality control and turnover regulation. The exosome plays pleiotropic functions by recruiting different cofactors that regulate its target specificity. Recently, the exosome has been implicated in the regulation of immune processes including cytokine production and negative regulation of innate sensing of nucleic acids. Careful regulation of such mechanisms is critical to avoid a breakdown of self-tolerance and the pathogenesis of autoimmune disorders. This perspective briefly introduces the exosome, its its normal function in RNA biology and summarizes regulatory roles of the RNA exosome in immunity. Finally we discuss how dysregulation of exosome function can lead to autoimmune disease.
Collapse
|
38
|
Prabhala P, Ammit AJ. Tristetraprolin and its role in regulation of airway inflammation. Mol Pharmacol 2014; 87:629-38. [PMID: 25429052 DOI: 10.1124/mol.114.095984] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chronic inflammatory diseases, such as asthma and chronic obstructive pulmonary disease (COPD), are clinically and socioeconomically important diseases globally. Currently the mainstay of anti-inflammatory therapy in respiratory diseases is corticosteroids. Although corticosteroids have proven clinical efficacy in asthma, many asthmatic inflammatory conditions (e.g., infection, exacerbation, and severe asthma) are not responsive to corticosteroids. Moreover, despite an understanding that COPD progression is driven by inflammation, we currently do not have effective anti-inflammatory strategies to combat this disease. Hence, alternative anti-inflammatory strategies are required. p38 mitogen-activated protein kinase (MAPK) has emerged as an important signaling molecule driving airway inflammation, and pharmacological inhibitors against p38 MAPK may provide potential therapies for chronic respiratory disease. In this review, we discuss some of the recent in vitro and in vivo studies targeting p38 MAPK, but suggest that p38 MAPK inhibitors may prove less effective than originally considered because they may block anti-inflammatory molecules along with proinflammatory responses. We propose that an alternative strategy may be to target an anti-inflammatory molecule farther downstream of p38 MAPK, i.e., tristetraprolin (TTP). TTP is an mRNA-destabilizing, RNA-binding protein that enhances the decay of mRNAs, including those encoding proteins implicated in chronic respiratory diseases. We suggest that understanding the molecular mechanism of TTP expression and its temporal regulation will guide future development of novel anti-inflammatory pharmacotherapeutic approaches to combat respiratory disease.
Collapse
Affiliation(s)
- Pavan Prabhala
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| | - Alaina J Ammit
- Faculty of Pharmacy, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Caldwell AB, Cheng Z, Vargas JD, Birnbaum HA, Hoffmann A. Network dynamics determine the autocrine and paracrine signaling functions of TNF. Genes Dev 2014; 28:2120-33. [PMID: 25274725 PMCID: PMC4180974 DOI: 10.1101/gad.244749.114] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A hallmark of the inflammatory response to pathogen exposure is the production of tumor necrosis factor (TNF) that coordinates innate and adaptive immune responses by functioning in an autocrine or paracrine manner. Numerous molecular mechanisms contributing to TNF production have been identified, but how they function together in macrophages remains unclear. Here, we pursued an iterative systems biology approach to develop a quantitative understanding of the regulatory modules that control TNF mRNA synthesis and processing, mRNA half-life and translation, and protein processing and secretion. By linking the resulting model of TNF production to models of the TLR-, the TNFR-, and the NFκB signaling modules, we were able to study TNF's functions during the inflammatory response to diverse TLR agonists. Contrary to expectation, we predicted and then experimentally confirmed that in response to lipopolysaccaride, TNF does not have an autocrine function in amplifying the NFκB response, although it plays a potent paracrine role in neighboring cells. However, in response to CpG DNA, autocrine TNF extends the duration of NFκB activity and shapes CpG-induced gene expression programs. Our systems biology approach revealed that network dynamics of MyD88 and TRIF signaling and of cytokine production and response govern the stimulus-specific autocrine and paracrine functions of TNF.
Collapse
Affiliation(s)
- Andrew B Caldwell
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, and San Diego Center for Systems Biology, University of California at San Diego, La Jolla, California 92093, USA
| | - Zhang Cheng
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, and San Diego Center for Systems Biology, University of California at San Diego, La Jolla, California 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90025, USA
| | - Jesse D Vargas
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, and San Diego Center for Systems Biology, University of California at San Diego, La Jolla, California 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90025, USA
| | - Harry A Birnbaum
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, and San Diego Center for Systems Biology, University of California at San Diego, La Jolla, California 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90025, USA
| | - Alexander Hoffmann
- Signaling Systems Laboratory, Department of Chemistry and Biochemistry, and San Diego Center for Systems Biology, University of California at San Diego, La Jolla, California 92093, USA; Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90025, USA
| |
Collapse
|
40
|
Singh P, Zheng XL. Dual regulation of myocardin expression by tumor necrosis factor-α in vascular smooth muscle cells. PLoS One 2014; 9:e112120. [PMID: 25384061 PMCID: PMC4226488 DOI: 10.1371/journal.pone.0112120] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 10/12/2014] [Indexed: 12/31/2022] Open
Abstract
De-differentiation of vascular smooth muscle cells (VSMCs) plays a critical role in the development of atherosclerosis, a chronic inflammatory disease involving various cytokines such as tumor necrosis factor-α (TNFα). Myocardin is a co-factor of serum response factor (SRF) and is considered to be the master regulator of VSMC differentiation. It binds to SRF and regulates the expression of contractile proteins in VSMCs. Myocardin is also known to inhibit VSMC proliferation by inhibiting the NF-κB pathway, whereas TNFα is known to activate the NF-κB pathway in VSMCs. NF-κB activation has also been shown to inhibit myocardin expression and smooth muscle contractile marker genes. However, it is not definitively known whether TNFα regulates the expression and activity of myocardin in VSMCs. The current study aimed to investigate the role of TNFα in regulating myocardin and VSMC function. Our studies showed that TNFα down-regulated myocardin expression and activity in cultured VSMCs by activating the NF-κB pathway, resulting in decreased VSMC contractility and increased VSMC proliferation. Surprisingly, we also found that TNFα prevented myocardin mRNA degradation, and resulted in a further significant increase in myocardin expression and activity in differentiated VSMCs. Both the NF-κB and p44/42 MAPK pathways were involved in TNFα regulation of myocardin, which further increased the contractility of VSMCs. These differential effects of TNFα on myocardin seemingly depended on whether VSMCs were in a differentiated or de-differentiated state. Taken together, our results demonstrate that TNFα differentially regulates myocardin expression and activity, which may play a key role in regulating VSMC functions.
Collapse
Affiliation(s)
- Pavneet Singh
- Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xi-Long Zheng
- Smooth Muscle Research Group, Libin Cardiovascular Institute of Alberta, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
41
|
Mikula M, Majewska A, Ledwon JK, Dzwonek A, Ostrowski J. Obesity increases histone H3 lysine 9 and 18 acetylation at Tnfa and Ccl2 genes in mouse liver. Int J Mol Med 2014; 34:1647-54. [PMID: 25319795 DOI: 10.3892/ijmm.2014.1958] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Accepted: 09/15/2014] [Indexed: 11/06/2022] Open
Abstract
Obesity contributes to the development of non-alcoholic fatty liver disease (NAFLD), which is characterized by the upregulated expression of two key inflammatory mediators: tumor necrosis factor (Tnfa) and monocyte chemotactic protein 1 (Mcp1; also known as Ccl2). However, the chromatin make-up at these genes in the liver in obese individuals has not been explored. In this study, to identify obesity-mediated epigenetic changes at Tnfa and Ccl2, we used a murine model of obesity induced by a high-fat diet (HFD) and hyperphagic (ob/ob) mice. Chromatin immunoprecipitation (ChIP) assay was used to determine the abundance of permissive histone marks, namely histone H3 lysine 9 and 18 acetylation (H3K9/K18Ac), H3 lysine 4 trimethylation (H3K4me3) and H3 lysine 36 trimethylation (H3K36me3), in conjunction with polymerase 2 RNA (Pol2) and nuclear factor (Nf)-κB recruitment in the liver. Additionally, to correlate the liver tissue-derived ChIP measurements with a robust in vitro transcriptional response at the Tnfa and Ccl2 genes, we used lipopolysaccharide (LPS) treatment to induce an inflammatory response in Hepa1-6 cells, a cell line derived from murine hepatocytes. ChIP revealed increased H3K9/K18Ac at Tnfa and Ccl2 in the obese mice, although the differences were only statistically significant for Tnfa (p<0.05). Unexpectedly, the levels of H3K4me3 and H3K36me3 marks, as well as Pol2 and Nf-κB recruitment, did not correspond with the increased expression of these two genes in the obese mice. By contrast, the acute treatment of Hepa1-6 cells with LPS significantly increased the H3K9/K18Ac marks, as well as Pol2 and Nf-κB recruitment at both genes, while the levels of H3K4me3 and H3K36me3 marks remained unaltered. These results demonstrate that increased Tnfa and Ccl2 expression in fatty liver at the chromatin level corresponds to changes in the level of histone H3 acetylation.
Collapse
Affiliation(s)
- Michal Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Aneta Majewska
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Joanna Karolina Ledwon
- Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
| | - Artur Dzwonek
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw 02-781, Poland
| |
Collapse
|
42
|
Rapid proteasomal degradation of posttranscriptional regulators of the TIS11/tristetraprolin family is induced by an intrinsically unstructured region independently of ubiquitination. Mol Cell Biol 2014; 34:4315-28. [PMID: 25246635 DOI: 10.1128/mcb.00643-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The TIS11/tristetraprolin (TTP) CCCH tandem zinc finger proteins are major effectors in the destabilization of mRNAs bearing AU-rich elements (ARE) in their 3' untranslated regions. In this report, we demonstrate that the Drosophila melanogaster dTIS11 protein is short-lived due to its rapid ubiquitin-independent degradation by the proteasome. Our data indicate that this mechanism is tightly associated with the intrinsically unstructured, disordered N- and C-terminal domains of the protein. Furthermore, we show that TTP, the mammalian TIS11/TTP protein prototype, shares the same three-dimensional characteristics and is degraded by the same proteolytic pathway as dTIS11, thereby indicating that this mechanism has been conserved across evolution. Finally, we observed a phosphorylation-dependent inhibition of dTIS11 and TTP degradation by the proteasome in vitro, raising the possibility that such modifications directly affect proteasomal recognition for these proteins. As a group, RNA-binding proteins (RNA-BPs) have been described as enriched in intrinsically disordered regions, thus raising the possibility that the mechanism that we uncovered for TIS11/TTP turnover is widespread among other RNA-BPs.
Collapse
|
43
|
Vandendriessche B, Goethals A, Simats A, Van Hamme E, Brouckaert P, Cauwels A. MAPK-activated protein kinase 2-deficiency causes hyperacute tumor necrosis factor-induced inflammatory shock. BMC PHYSIOLOGY 2014; 14:5. [PMID: 25185746 PMCID: PMC4160542 DOI: 10.1186/s12899-014-0005-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/04/2014] [Indexed: 02/08/2023]
Abstract
Background MAPK-activated protein kinase 2 (MK2) plays a pivotal role in the cell response to (inflammatory) stress. Among others, MK2 is known to be involved in the regulation of cytokine mRNA metabolism and regulation of actin cytoskeleton dynamics. Previously, MK2-deficient mice were shown to be highly resistant to LPS/d-Galactosamine-induced hepatitis. Additionally, research in various disease models has indicated the kinase as an interesting inhibitory drug target for various acute or chronic inflammatory diseases. Results We show that in striking contrast to the known resistance of MK2-deficient mice to a challenge with LPS/D-Gal, a low dose of tumor necrosis factor (TNF) causes hyperacute mortality via an oxidative stress driven mechanism. We identified in vivo defects in the stress fiber response in endothelial cells, which could have resulted in reduced resistance of the endothelial barrier to deal with exposure to oxidative stress. In addition, MK2-deficient mice were found to be more sensitive to cecal ligation and puncture-induced sepsis. Conclusions The capacity of the endothelial barrier to deal with inflammatory and oxidative stress is imperative to allow a regulated immune response and maintain endothelial barrier integrity. Our results indicate that, considering the central role of TNF in pro-inflammatory signaling, therapeutic strategies examining pharmacological inhibition of MK2 should take potentially dangerous side effects at the level of endothelial barrier integrity into account.
Collapse
Affiliation(s)
| | | | | | | | | | - Anje Cauwels
- Inflammation Research Center, VIB, Ghent, 9052, Belgium.
| |
Collapse
|
44
|
Poulsen KL, Olivero-Verbel J, Beggs KM, Ganey PE, Roth RA. Trovafloxacin enhances lipopolysaccharide-stimulated production of tumor necrosis factor-α by macrophages: role of the DNA damage response. J Pharmacol Exp Ther 2014; 350:164-70. [PMID: 24817034 DOI: 10.1124/jpet.114.214189] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Trovafloxacin (TVX) is a drug that has caused idiosyncratic, drug-induced liver injury (IDILI) in humans. In a murine model of IDILI, otherwise nontoxic doses of TVX and the inflammagen lipopolysaccharide (LPS) interacted to produce pronounced hepatocellular injury. The liver injury depended on a TVX-induced, small but significant prolongation of tumor necrosis factor-α (TNF) appearance in the plasma. The enhancement of TNF expression by TVX was reproduced in vitro in RAW 264.7 murine macrophages (RAW cells) stimulated with LPS. The current study was designed to identify the molecular target of TVX responsible for this response in RAW cells. An in silico analysis suggested a favorable binding profile of TVX to eukaryotic topoisomerase II-α (TopIIα), and a cell-free assay revealed that TVX inhibited eukaryotic TopIIα activity. Topoisomerase inhibition is known to lead to DNA damage, and TVX increased the DNA damage marker phosphorylated histone 2A.X in RAW cells. Moreover, TVX induced activation of the DNA damage sensor kinases, ataxia telangiectasia mutated (ATM) and Rad3-related (ATR). The ATR inhibitor NU6027 [6-(cyclohexylmethoxy)-5-nitrosopyrimidine-2,4-diamine] prevented the TVX-mediated increases in LPS-induced TNF mRNA and protein release, whereas a selective ATM inhibitor [2-(4-morpholinyl)-6-(1-thianthrenyl)-4H-pyran-4-one (KU55933)] was without effect. TVX prolonged TNF mRNA stability, and this effect was largely attenuated by NU6027. These results suggest that TVX can inhibit eukaryotic topoisomerase, leading to activation of ATR and potentiation of TNF release by macrophages, at least in part through increased mRNA stability. This off-target effect might contribute to the ability of TVX to precipitate IDILI in humans.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Jesus Olivero-Verbel
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Kevin M Beggs
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Patricia E Ganey
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| | - Robert A Roth
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan (K.L.P., K.M.B., P.E.G., and R.A.R.); and Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, University of Cartagena, Cartagena, Colombia (J.O.-V.)
| |
Collapse
|
45
|
Brf1 posttranscriptionally regulates pluripotency and differentiation responses downstream of Erk MAP kinase. Proc Natl Acad Sci U S A 2014; 111:E1740-8. [PMID: 24733888 DOI: 10.1073/pnas.1320873111] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AU-rich element mRNA-binding proteins (AUBPs) are key regulators of development, but how they are controlled and what functional roles they play depends on cellular context. Here, we show that Brf1 (zfp36l1), an AUBP from the Zfp36 protein family, operates downstream of FGF/Erk MAP kinase signaling to regulate pluripotency and cell fate decision making in mouse embryonic stem cells (mESCs). FGF/Erk MAP kinase signaling up-regulates Brf1, which disrupts the expression of core pluripotency-associated genes and attenuates mESC self-renewal without inducing differentiation. These regulatory effects are mediated by rapid and direct destabilization of Brf1 targets, such as Nanog mRNA. Enhancing Brf1 expression does not compromise mESC pluripotency but does preferentially regulate mesendoderm commitment during differentiation, accelerating the expression of primitive streak markers. Together, these studies demonstrate that FGF signals use targeted mRNA degradation by Brf1 to enable rapid posttranscriptional control of gene expression in mESCs.
Collapse
|
46
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
47
|
Abstract
The binding of tumour necrosis factor α (TNFα) to cell surface receptors engages multiple signal transduction pathways, including three groups of mitogen-activated protein (MAP) kinases: extracellular-signal-regulated kinases (ERKs); the cJun NH2-terminal kinases (JNKs); and the p38 MAP kinases. These MAP kinase signalling pathways induce a secondary response by increasing the expression of several inflammatory cytokines (including TNFα) that contribute to the biological activity of TNFα. MAP kinases therefore function both upstream and down-stream of signalling by TNFα receptors. Here we review mechanisms that mediate these actions of MAP kinases during the response to TNFα.
Collapse
Affiliation(s)
- Guadalupe Sabio
- Department of Vascular Biology and Inflammation, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - Roger J Davis
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Poulsen KL, Albee RP, Ganey PE, Roth RA. Trovafloxacin potentiation of lipopolysaccharide-induced tumor necrosis factor release from RAW 264.7 cells requires extracellular signal-regulated kinase and c-Jun N-Terminal Kinase. J Pharmacol Exp Ther 2014; 349:185-91. [PMID: 24525298 DOI: 10.1124/jpet.113.211276] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trovafloxacin (TVX) is a fluoroquinolone antibiotic known to cause idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanism underlying this toxicity remains unknown. Previously, an animal model of IDILI in mice revealed that TVX synergizes with inflammatory stress from bacterial lipopolysaccharide (LPS) to produce a hepatotoxic interaction. The liver injury required prolongation of the appearance of tumor necrosis factor-α (TNF) in the plasma. The results presented here describe a model of TVX/LPS coexposure in RAW 264.7 cells acting as a surrogate for TNF-releasing cells in vivo. Pretreating cells with TVX for 2 hours before LPS addition led to increased TNF protein release into culture medium in a concentration- and time-dependent manner relative to cells treated with LPS or TVX alone. During the pretreatment period, TVX increased TNF mRNA, but this was less apparent when cells were exposed to TVX after LPS addition, suggesting that the pivotal signaling events that increase TNF expression occurred during the TVX pretreatment period. Indeed, TVX exposure increased activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase. Inhibition of either ERK or JNK decreased the TVX-mediated increase in TNF mRNA and LPS-induced TNF protein release, but p38 inhibition did not. These results demonstrated that the increased TNF appearance from TVX-LPS interaction in vivo can be reproduced in vitro and occurs in an ERK- and JNK-dependent manner.
Collapse
Affiliation(s)
- Kyle L Poulsen
- Department of Pharmacology & Toxicology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan
| | | | | | | |
Collapse
|
49
|
Eichelbaum K, Krijgsveld J. Rapid temporal dynamics of transcription, protein synthesis, and secretion during macrophage activation. Mol Cell Proteomics 2014; 13:792-810. [PMID: 24396086 DOI: 10.1074/mcp.m113.030916] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macrophages provide the first line of host defense with their capacity to react to an array of cytokines and bacterial components requiring tight regulation of protein expression and secretion to invoke a properly tuned innate immune response. To capture the dynamics of this system, we introduce a novel method combining pulsed stable isotope labeling with amino acids in cell culture (SILAC) with pulse labeling using the methionine analog azidohomoalanine that allows the enrichment of newly synthesized proteins via click-chemistry followed by their identification and quantification by mass spectrometry. We show that this permits the analysis of proteome changes on a rapid time scale, as evidenced by the detection of 4852 newly synthesized proteins after only a 20-min SILAC pulse. We have applied this methodology to study proteome response during macrophage activation in a time-course manner. We have combined this with full proteome, transcriptome, and secretome analyses, producing an integrative analysis of the first 3 h of lipopolysaccharide-induced macrophage activation. We observed the rapid induction of multiple processes well known to TLR4 signaling, as well as anti-inflammatory proteins and proteins not previously associated with immune response. By correlating transcriptional, translational, and secretory events, we derived novel mechanistic principles of processes specifically induced by lipopolysaccharides, including ectodomain shedding and proteolytic processing of transmembrane and extracellular proteins and protein secretion independent of transcription. In conclusion, we demonstrate that the combination of pulsed azidohomoalanine and pulsed SILAC permits the detailed characterization of proteomic events on a rapid time scale. We anticipate that this approach will be very useful in probing the immediate effects of cellular stimuli and will provide mechanistic insight into cellular perturbation in multiple biological systems. The data have been deposited in ProteomeXchange with the identifier PXD000600.
Collapse
Affiliation(s)
- Katrin Eichelbaum
- European Molecular Biology Laboratory, Genome Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
50
|
Gurgis FMS, Ziaziaris W, Munoz L. Mitogen-Activated Protein Kinase–Activated Protein Kinase 2 in Neuroinflammation, Heat Shock Protein 27 Phosphorylation, and Cell Cycle: Role and Targeting. Mol Pharmacol 2013; 85:345-56. [DOI: 10.1124/mol.113.090365] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|