1
|
Cabral LL, Bottini RCR, Gonçalves AJ, Junior MM, Rizzo-Domingues RCP, Lenzi MK, Nagalli A, Passig FH, Dos Santos PM, de Carvalho KQ. Food dye adsorption in single and ternary systems by the novel passion fruit peel biochar adsorbent. Food Chem 2025; 464:141592. [PMID: 39406133 DOI: 10.1016/j.foodchem.2024.141592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
This study evaluated the passion fruit peel biochar (PFPB) as a novel adsorbent for synthetic food dyes indigotine blue (IB), tartrazine yellow (TY), and ponceau 4R (P4R) removal in single and ternary systems. A macroporous structure and a predominance of basic groups characterized PFPB. The pH study revealed better adsorption at pH 2.0. The response surface methodology optimization for adsorbent dosage and temperature predicted removal efficiencies of 100 % for IB, 79.8 % for TY, and 84.4 % for P4R. Elovich and Redlich-Peterson models better described kinetic and equilibrium, respectively, suggesting the contribution of chemical interactions. Thermodynamic data revealed endothermic, with an inordinate degree and spontaneous adsorption. In the ternary systems, antagonistic effects of interaction were noticed. The adsorption of synthetic effluents showed promising results with removal efficiencies of 99.6 % (IB), 60.2 % (TY), and 51.8 % (P4R). Therefore, we concluded that PFPB is a potential alternative low-cost synthetic food dye removal adsorbent.
Collapse
Affiliation(s)
- Lucas Lacerda Cabral
- Federal University of Technology - Paraná (UTFPR), Environmental Sciences and Technology Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Rúbia Camila Ronqui Bottini
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Alexandre José Gonçalves
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Milton Manzoni Junior
- Federal University of Technology - Paraná (UTFPR), Civil Engineering Graduate Program, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Roberta Carolina Pelissari Rizzo-Domingues
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Marcelo Kaminski Lenzi
- Federal University of Paraná (UFPR), Chemical Engineering Department, Centro Politécnico, Jardim das Américas, postal code 19011, 81531-980 Curitiba, Paraná, Brazil.
| | - André Nagalli
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Fernando Hermes Passig
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Poliana Macedo Dos Santos
- Federal University of Technology - Paraná (UTFPR), Chemistry and Biology Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| | - Karina Querne de Carvalho
- Federal University of Technology - Paraná (UTFPR), Civil Construction Academic Department, Deputado Heitor de Alencar Furtado St., 5000, Ecoville, 81280-340 Curitiba, Paraná, Brazil.
| |
Collapse
|
2
|
Raza S, Bończak B, Atamas N, Karpińska A, Ratajczyk T, Łoś M, Hołyst R, Paczesny J. The activity of indigo carmine against bacteriophages: an edible antiphage agent. Appl Microbiol Biotechnol 2025; 109:24. [PMID: 39862274 PMCID: PMC11762416 DOI: 10.1007/s00253-025-13414-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC50 values ranging from 0.105 to 0.006 mg/mL while showing no activity against the RNA phage MS2. Fluorescence correlation spectroscopy (FCS) revealed that IC selectively binds to dsDNA, demonstrated by a significant reduction in the diffusion coefficient, whereas no binding was observed with ssDNA or RNA. Mechanistically, IC permeates the phage capsid, leading to genome ejection and capsid deformation, as confirmed by TEM imaging. Under optimal conditions (50 °C, 220 rpm), IC achieved up to a 7-log reduction in phage titer, with kinetic theory supporting the enhanced collision frequency induced by agitation. Additionally, IC protected E. coli cultures from phage-induced lysis without affecting bacterial growth or protein production, as demonstrated by GFP expression assays. IC's effectiveness and environmental safety, combined with its FDA approval and cost-effectiveness, make it a promising antiphage agent for industrial applications. KEY POINTS: • Indigo carmine effectively inactivates a broad spectrum of bacteriophages, offering protection to bacteria in industrial cultures. • A novel application of indigo carmine as a food-grade, environmentally safe, and FDA-approved antiphage agent protecting bacterial cultures. • Antiphage activity arises from indigo carmine's interaction with DNA within the phage capsid without harming bacterial cells or compromising protein production in bacterial cultures.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Bartłomiej Bończak
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Nataliia Atamas
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
- Taras Shevchenko National University of Kyiv, Hlushkova Avenue 4, Kiev, 03127, Ukraine
| | - Aneta Karpińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Tomasz Ratajczyk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Marcin Łoś
- Department of Molecular Genetics of Bacteria, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland
- Phage Consultants, Partyzantów 10/18, 80-254, Gdańsk, Poland
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
| |
Collapse
|
3
|
Yoshinaga TT, Giovanella P, de Farias GS, Dos Santos JA, Pellizzer EP, Sette LD. Fungi from Antarctic marine sediment: characterization and assessment for textile dye decolorization and detoxification. Braz J Microbiol 2024; 55:3437-3448. [PMID: 39259479 PMCID: PMC11711567 DOI: 10.1007/s42770-024-01485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/25/2024] [Indexed: 09/13/2024] Open
Abstract
Cold-adapted microorganisms can produce enzymes with activity at low and mild temperatures, which can be applied to environmental biotechnology. This study aimed to characterize 20 Antarctic fungi to identify their genus (ITS rDNA marker) and growth temperatures and evaluate their ability to decolorize and detoxify the textile dye indigo carmine (IC). An individual screening was performed to assess the decolorization and detoxification of IC by the isolates, as well as in consortia with other fungi. The isolates were affiliated with seven ascomycete genera: Aspergillus (n = 4), Cosmospora (n = 2), Leuconeurospora (n = 2), Penicillium (n = 3), Pseudogymnoascus (n = 6), Thelebolus (n = 2), and Trichoderma (n = 1). The two isolates from the genus Leuconeurospora were characterized as psychrophilic, while the others were psychrotolerant. The Penicillium isolates were able to decolorize between 60 and 82% of IC. The isolates identified as Pseudogymnoascus showed the best detoxification capacity, with results varying from 49 to 74%. The consortium using only Antarctic ascomycetes (C1) showed 45% of decolorization, while the consortia with the addition of basidiomycetes (C1 + Peniophora and C1 + Pholiota) showed 40% and 50%, respectively. The consortia C1 with the addition of the basidiomycetes presented a lower toxicity after the treatments. In addition, a higher fungal biomass was produced in the presence of dye when compared with the experiment without the dye, which can be indicative of dye metabolization. The results highlight the potential of marine-derived Antarctic fungi in the process of textile dye degradation. The findings encourage further studies to elucidate the degradation and detoxification pathways of the dye IC by these fungal isolates.
Collapse
Affiliation(s)
- Thaís Tiemi Yoshinaga
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Patrícia Giovanella
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil
| | - Gabriele Santana de Farias
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Juliana Aparecida Dos Santos
- Universidade do Vale do Sapucaí (Univás), Av. Prefeito Tuany Toledo, 470 - Fatima, Pouso Alegre, 37550-000, MG, Brazil
| | - Elisa Pais Pellizzer
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil
| | - Lara Durães Sette
- Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Universidade Estadual Paulista (UNESP), 24A, 1515, Rio Claro, CEP 13506-900, SP, Brazil.
- Centro de Estudos Ambientais, Universidade Estadual Paulista (UNESP), Rio Claro, CEP 13506-900, SP, Brazil.
| |
Collapse
|
4
|
Ge S, Wei K, Peng W, Huang R, Akinlabi E, Xia H, Shahzad MW, Zhang X, Xu BB, Jiang J. A comprehensive review of covalent organic frameworks (COFs) and their derivatives in environmental pollution control. Chem Soc Rev 2024; 53:11259-11302. [PMID: 39479879 DOI: 10.1039/d4cs00521j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable attention due to their design possibilities as the molecular organic building blocks that can stack in an atomically precise spatial arrangement. Since the inception of COFs in 2005, there has been a continuous expansion in the product range of COFs and their derivatives. This expansion has led to the evolution of three-dimensional structures and various synthetic routes, propelling the field towards large-scale preparation of COFs and their derivatives. This review will offer a holistic analysis and comparison of the spatial structure and synthesis techniques of COFs and their derivatives. The conventional methods of COF synthesis (i.e., ultrasonic chemical, microwave, and solvothermal) are discussed alongside the synthesis strategies of new COFs and their derivatives. Furthermore, the applications of COFs and their derived materials are demonstrated in air, water, and soil pollution management such as gas capture, catalytic conversion, adsorption, and pollutant removal. Finally, this review highlights the current challenges and prospects for large-scale preparation and application of new COFs and the derived materials. In line with the United Nations Sustainable Development Goals (SDGs) and the needs of digital-enabled technologies (AI and machine learning), this review will encompass the future technical trends for COFs in environmental pollution control.
Collapse
Affiliation(s)
- Shengbo Ge
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Kexin Wei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Wanxi Peng
- School of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Runzhou Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Esther Akinlabi
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Hongyan Xia
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Muhammad Wakil Shahzad
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| | - Jianchun Jiang
- Key Lab of Biomass Energy and Material of Jiangsu Province, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| |
Collapse
|
5
|
Matsudo A, Oliveira LVF, Martins TS, Camilo FF. Eco-Friendly Photocatalytic Solutions: Synthesized TiO 2 Nanoparticles in Cellulose Membranes for Enhanced Degradation of Indigo Carmine Dye. ACS OMEGA 2024; 9:43395-43405. [PMID: 39494002 PMCID: PMC11525746 DOI: 10.1021/acsomega.4c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 10/09/2024] [Indexed: 11/05/2024]
Abstract
This study focuses on comparing the efficiency of commercially available TiO2 (P25) with synthesized TiO2 nanoparticles (TiO2NP) impregnated in nonmodified cellulose membranes, specifically targeting the degradation of Indigo Carmine (IC) dye. We developed a novel method to enhance the interaction between cellulose and TiO2, thereby improving efficiency and reusability. This involves dissolving microcrystalline cellulose in 1-butyl-3-methylimidazolium chloride (BMImCl) and dispersing the TiO2 samples within this solution. The resulting cellulose membrane embedded with TiO2 nanoparticles (TiO2NP) exhibited a higher adsorption capacity and greater photocatalytic efficiency against IC compared to that of P25. This improvement is attributed to the larger surface area and increased reactivity of the synthesized TiO2NPs. Furthermore, the CEL_TiO2NP membranes demonstrated excellent stability and reusability, maintaining their catalytic efficiency over multiple cycles. This study presents new opportunities for developing efficient, reusable photocatalytic materials for environmental remediation using eco-friendly cellulose.
Collapse
Affiliation(s)
- Arthur Matsudo
- Chemistry
Department, Institute of Environmental, Chemical and Pharmaceutical
Sciences, Federal University of São
Paulo, Diadema SP-09913-030, Brazil
| | - Larissa V. F. Oliveira
- Center
of
Natural Sciences and Humanities, Federal
University of ABC, Santo Andre SP-09210-580, Brazil
| | - Tereza S. Martins
- Chemistry
Department, Institute of Environmental, Chemical and Pharmaceutical
Sciences, Federal University of São
Paulo, Diadema SP-09913-030, Brazil
| | - Fernanda F. Camilo
- Chemistry
Department, Institute of Environmental, Chemical and Pharmaceutical
Sciences, Federal University of São
Paulo, Diadema SP-09913-030, Brazil
| |
Collapse
|
6
|
Xie S, Fang Z, Lian Z, Luo Z, Zhang X, Ma S. A Novel, Dual-Initiator, Continuous-Suspension Grafting Strategy for the Preparation of PP-g-AA-MAH Fibers to Remove of Indigo from Wastewater. Polymers (Basel) 2024; 16:2144. [PMID: 39125170 PMCID: PMC11314004 DOI: 10.3390/polym16152144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The indigo dye found in wastewater from printing and dyeing processes is potentially carcinogenic, teratogenic, and mutagenic, making it a serious threat to the health of animals, plants, and humans. Motivated by the growing need to remove indigo from wastewater, this study prepared novel fiber absorbents using melt-blow polypropylene (PP) melt as a matrix, as well as acrylic acid (AA) and maleic anhydride (MAH) as functional monomers. The modification conditions were studied to optimize the double-initiation, continuous-suspension grafting process, and then functional fibers were prepared by melt-blown spinning the modified PP. The results showed that the optimum modification conditions were as follows: a 3.5 wt% interfacial agent, 8 mg/L of dispersant, 80% monomer content, a 0.8 mass ratio of AA to MAH, a 1000 r/min stir speed, 3.5 wt% initiator DBPH grafting at 130 °C for 3 h, and 1 wt% initiator BPO grafting at 90 °C for 2 h. The highest grafting rate of the PP-g-AA-MAH was 31.2%, and the infrared spectrum and nuclear magnetic resonance spectroscopic analysis showed that AA and MAH were successfully grafted onto PP fiber. This modification strategy also made the fibers more hydrophilic. The adsorption capacity of the PP-g-AA-MAH fibers was highly dependent on pH, and the highest indigo adsorption capacity was 110.43 mg/g at pH 7. The fiber adsorption capacity for indigo increased rapidly before plateauing with increasing time or indigo concentration, and the experimental data were well described in a pseudo-second-order kinetic model and a Langmuir isothermal adsorption model. Most impressively, the modified fiber adsorption capacity for indigo remained as high as 91.22 mg/g after eight regeneration and reuse cycles. In summary, the PP-g-AA-MAH fibers, with excellent adsorption-desorption characteristics, could be readily regenerated and reused, and they are a promising material for the removal of indigo from wastewater.
Collapse
Affiliation(s)
- Sijia Xie
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Ziyang Fang
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Zhouyang Lian
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Zhengwei Luo
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Xueying Zhang
- School of Environmental Science and Engineering, Nanjing Tech Univeristy, Nanjing 211816, China
| | - Shengxiu Ma
- Karamay Zhiyuan Bochuang Environmental Protection Technology Co., Ltd., Karamay 834000, China
| |
Collapse
|
7
|
Salem AlSalem H, Alharbi SN, Al-Goul ST, Katamesh NS, Abdel-Lateef MA. A sustainable methodology employing the extract of red dragon fruit peel as a fluorescence probe for detection of indigo carmine (E132) in food samples: evaluation of the method's greenness, whiteness, and blueness. RSC Adv 2024; 14:24010-24018. [PMID: 39086526 PMCID: PMC11290330 DOI: 10.1039/d4ra02613f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Indigo carmine dye is one of the most widely used dyes in various fields. In this study, the ethanolic extract of red dragon fruit peel (Ex-RDFP) was employed as a green fluorescence probe for measuring the synthetic dye indigo carmine. At a fluorescence excitation of 290.5 nm, the Ex-RDFP exhibits a fluorescence emission band at 341.5 nm. Meanwhile, the indigo carmine dye possesses an absorption spectrum at a maximum peak of 290 nm. Consequently, the fluorescence intensity of the Ex-RDFP was reduced upon the addition of indigo carmine solution due to the inner filter effect mechanism. This quenching in the fluorescence intensity of Ex-RDFP was substantially associated with the indigo carmine concentration at a linear scale of 1.0-7.0 μg mL-1 (r 2 = 0.9993). Furthermore, the limit of detection and the limit of quantitation of the method were found to be 0.209 μg mL-1 and 0.635 μg mL-1, respectively. The optimal analytical conditions, such as solvent used for dilution, pH, reaction time, volume of the reagent, and temperature, were examined and carefully studied. In addition, the proposed method was successfully applied to detect indigo carmine dye in various natural syrup samples, including lemon syrup, apple syrup, cantaloupe syrup, pineapple syrup, and guava syrup, with acceptable recovery values. The method's beneficial sustainability footprint was found by using an extensive greenness analysis that incorporated the modified National Environmental Methods Index (NEMI), the complex Green Analytical Procedure Index (GAPI), and the Analytical Greenness Calculator (AGREE) prep algorithms. In addition, "whiteness" and "blueness" were also assessed with the newly released (Red Green Blue 12) RGB12 and Blue Applicability Grade Index (BAGI) computational methods, emphasizing the benefit of the proposed method in terms of analytical efficiency, sustainability, and economy. The suggested technique is the answer to the worldwide popularity of ecologically conscious solutions by providing a green-and-white substitute for traditional techniques and advancing towards creating more sustainable quality control procedures in the future.
Collapse
Affiliation(s)
- Huda Salem AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Sara Naif Alharbi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Soha Talal Al-Goul
- Department of Chemistry, College of Sciences & Arts, King Abdulaziz University Rabigh 21911 Saudi Arabia
| | - Noha S Katamesh
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University Cairo Egypt
| | - Mohamed A Abdel-Lateef
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Al-Azhar University Assiut Branch Assiut 71524 Egypt +201028136868
| |
Collapse
|
8
|
Teerasong S, Saenghirun T, Sunthornchainukul T, Thammaso S, Chompoosor A, Nanan S. Preparation of PVP-BiOBr Adsorbent for Efficient Indigo Carmine Dye Removal Using Flow-Circulation Systems. ACS OMEGA 2024; 9:29644-29650. [PMID: 39005777 PMCID: PMC11238199 DOI: 10.1021/acsomega.4c02973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
This work presents an adsorptive removal of indigo carmine (IC) dye using a polyvinylpyrrolidone capped bismuth oxybromide (PVP-BiOBr) adsorbent. PVP-BiOBr was synthesized via a simple precipitation method. The morphology and surface chemical structure of the adsorbent were characterized using XRD, SEM, FTIR, and BET analyses. The adsorption isotherm and kinetics were investigated to reveal the mechanism of dye removal. Prepared PVP-BiOBr has a crystallite size of 19.7 nm, with a mean particle size of ∼2 μm and a surface area of 5.14 m2 g-1. The optimum pH for this adsorptive process spanned the range of 4 to 9. Experimental data indicated applicability of the Langmuir isotherm model, and the study confirms a pseudo-second-order kinetics model. The maximum adsorption capacity for IC dye was 208.3 mg g-1. A flow-circulation system was developed for the treatment of IC dye contaminated water samples. PVP-BiOBr was packed inside a column and did not spill into the water sample after treatment. The removal efficiency was ≥90% after 25 min. The PVP-BiOBr adsorbent could be reused for three cycles. This work demonstrates that PVP-BiOBr is a promising candidate as an adsorbent for IC dye removal. Additionally, the flow-based system establishes an automated operation in continuous mode, which is viable for large scale applications.
Collapse
Affiliation(s)
- Saowapak Teerasong
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Laboratories), Bangkok 10520, Thailand
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thanakrit Saenghirun
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Thanawat Sunthornchainukul
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Supinya Thammaso
- Department of Chemistry and Applied Analytical Chemistry Research Unit, School of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Apiwat Chompoosor
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok 10240, Thailand
| | - Suwat Nanan
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
9
|
Perez AV, Gaitan-Oyola JA, Vargas-Delgadillo DP, Castillo JJ, Barbosa O, Fernandez-Lafuente R. Synthesis and Characterization of Cross-Linked Aggregates of Peroxidase from Megathyrsus maximus (Guinea Grass) and Their Application for Indigo Carmine Decolorization. Molecules 2024; 29:2696. [PMID: 38893568 PMCID: PMC11173754 DOI: 10.3390/molecules29112696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.
Collapse
Affiliation(s)
- Angie V. Perez
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Jorge A. Gaitan-Oyola
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Diana P. Vargas-Delgadillo
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - John J. Castillo
- Grupo de Investigación en Bioquímica y Microbiología, Escuela de Química, Universidad Industrial de Santander, Bucaramanga 680002, Colombia;
| | - Oveimar Barbosa
- Grupo de Investigación en Materiales Porosos con Aplicaciones Ambientales y Tecnológicas, Departamento de Química, Universidad del Tolima, Ibagué 730006299, Colombia; (A.V.P.); (J.A.G.-O.); (D.P.V.-D.)
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus Cantoblanco UAM-CSIC, C/Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
10
|
Kim CM, Jaffari ZH, Abbas A, Chowdhury MF, Cho KH. Machine learning analysis to interpret the effect of the photocatalytic reaction rate constant (k) of semiconductor-based photocatalysts on dye removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:132995. [PMID: 38039815 DOI: 10.1016/j.jhazmat.2023.132995] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023]
Abstract
Photocatalytic reactions with semiconductor-based photocatalysts have been investigated extensively for application to wastewater treatment, especially dye degradation, yet the interactions between different process parameters have rarely been reported due to their complicated reaction mechanisms. Hence, this study aims to discern the impact of each factor, and each interaction between multiple factors on reaction rate constant (k) using a decision tree model. The dyes selected as target pollutants were indigo and malachite green, and 5 different semiconductor-based photocatalysts with 17 different compositions were tested, which generated 34 input features and 1527 data points. The Boruta Shapley Additive exPlanations (SHAP) feature selection for the 34 inputs found that 11 inputs were significantly important. The decision tree model exhibited for 11 input features with an R2 value of 0.94. The SHAP feature importance analysis suggested that photocatalytic experimental conditions, with an importance of 59%, was the most important input category, followed by atomic composition (39%) and physicochemical properties (2%). Additionally, the effects on k of the synergy between the metal cocatalysts and important experimental conditions were confirmed by two feature SHAP dependence plots, regardless of importance order. This work provides insight into the single and multiple factors that affect reaction rate and mechanism.
Collapse
Affiliation(s)
- Chang-Min Kim
- Future and Fusion Lab of Architectural, Civil and Environmental Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Zeeshan Haider Jaffari
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ather Abbas
- Physical Science and Engineering Division, 4700 King Abdullah University of Science and Technology, Thuwal, Mecca Province, Saudi Arabia
| | - Mir Ferdous Chowdhury
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyung Hwa Cho
- School of Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Ristea ME, Zarnescu O. Effects of Indigo Carmine on Growth, Cell Division, and Morphology of Allium cepa L. Root Tip. TOXICS 2024; 12:194. [PMID: 38535927 PMCID: PMC10974144 DOI: 10.3390/toxics12030194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 11/12/2024]
Abstract
Indigo carmine has a variety of uses in foods, textiles, medicine, pharmaceuticals, and cosmetics. There are studies reporting the toxic potential of indigo carmine on human health and the environment. In this study, we investigated the cytogenotoxic effects of indigo carmine using apical root cells of Allium cepa. Allium cepa bulbs were subjected to four treatments with indigo carmine (0.0032, 0.0064, 0.0125, and 0.2 mg/mL) and to ultrapure water as a control. After 5 days, root growth, root length, mitotic index, mitotic inhibition, chromosomal anomalies, and cell morphology were analyzed. According to our results, a decrease in root length and mitotic index was observed at all concentrations of indigo carmine. Additionally, several types of chromosomal abnormalities were observed, such as disturbed metaphase, sticky chain metaphase, anaphase bridge, and laggard chromosomes. Moreover, histological observation indicated that indigo carmine induces alterations in various components of root tip tissue, such as deformation and alteration of the cell wall, progressive condensation of chromatin, shrinkage of the nuclei, and an increase in the number of irregularly shaped nuclei and nuclear fragments. Our results indicate that the tested concentrations of indigo carmine may have toxic effects and raise concerns about its intensive use in many fields.
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
12
|
Amiri Z, Halladj R, Shekarriz M, Rashidi A. Synthesis and application of recyclable magnetic cellulose nanocrystals for effective demulsification of water in crude oil emulsions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123042. [PMID: 38040188 DOI: 10.1016/j.envpol.2023.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/29/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The development of eco-friendly, efficient, and economical demulsifiers for the demulsification of water in crude oil emulsion is one of the important issues in the petroleum industry. Demulsifiers with suitable performance in several demulsification methods are good choices for effective and economical demulsification. In this study, recyclable magnetic cellulose nanocrystals have been synthesized from cotton by a simple method and used in the demulsification of water in crude oil emulsions. Chemical and magnetic demulsification by magnetic cellulose nanocrystals has been investigated. In addition, the effects of time, temperature, and demulsifier concentration on the demulsification efficiency have been evaluated. According to the results, this demulsifier can be used as an effective demulsifier for both chemical and magnetic demulsification and displayed a demulsification efficiency of 100 % at 50 °C without a magnet and 90 % at 20 °C with a magnet. The chemical demulsification efficiency of Fe3O4 nanoparticles was investigated and it showed lower DE compared to magnetic cellulose nanocrystals. The recyclability tests of the demulsifier indicated that magnetic cellulose nanocrystals can be used up to 4 times. Finally, the demulsification mechanism and interfacial tension measurements revealed that this demulsifier reduced the interfacial tension between water and crude oil and increased the water droplet sizes.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Marzieh Shekarriz
- Chemical, Polymeric, and Petrochemical Technology Research Division, Faculty of Research and Development in Downstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
13
|
Yan S, Xuan W, Cao C, Zhang J. A review of sustainable utilization and prospect of coal gasification slag. ENVIRONMENTAL RESEARCH 2023; 238:117186. [PMID: 37741569 DOI: 10.1016/j.envres.2023.117186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/02/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Currently, the storage of coal gasification slag (CGS) is continuously increasing, as the coal gasification technology develops, posing significant environmental hazards. Due to its volcanic ash characteristics and rich residual carbon, CGS has great potential for resource utilization, which has attracted the attentions of many scholars. This paper firstly introduces the compositions and properties of CGS. Then, it reviews the existing utilization methods of CGS, including Preparation of building materials, carbon-ash separation technology, ecological restoration, and cyclic blending. The advantages and disadvantages of various methods are compared. Subsequently, some high-value utilization methods of coal gasification slag are introduced, such as the preparation of high-performance activated carbon and zeolite, of which the feasibility and advantages are evaluated. Finally, some suggestions are put forward for future developing technologies. This paper aims to provide some references and inspiration for the utilization and environmental protection of CGS.
Collapse
Affiliation(s)
- Shiying Yan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing, 100083, China
| | - Weiwei Xuan
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing, 100083, China.
| | - Chunyan Cao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory of Energy Conservation and Emission Reduction for Metallurgical Industry, Beijing, 100083, China
| | - Jiansheng Zhang
- Department of Thermal Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
14
|
Sawut A, Wu T, Simayi R, Jiao X, Feng Y. Preparation and Photocatalytic Performance of Sodium Alginate/Polyacrylamide/Polypyrrole-TiO 2 Nanocomposite Hydrogels. Polymers (Basel) 2023; 15:4174. [PMID: 37896418 PMCID: PMC10610930 DOI: 10.3390/polym15204174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The application of photocatalysis technology in environmental pollution treatment has garnered increasing attention, and enhancing the photocatalytic efficiency and recyclability of photocatalysts represents a pivotal research focus for future endeavors. In this paper, polypyrrole titanium dioxide nanocomposite (PPy-TiO2) was prepared using in situ polymerization method and dispersed in sodium alginate/polyacrylamide (SA/PAM) hydrogel matrix to prepare SA/PAM/PPy-TiO2 nanocomposite hydrogels. The nanocomposite hydrogels were characterized by XPS, FT-IR, XRD, TGA, SEM, and TEM. The results showed that the composite materials were successfully prepared and PPy-TiO2 was uniformly dispersed in the hydrogel matrix. The incorporation of PPy in the SA/PAM/TiO2 composite hydrogel resulted in enhanced visible light absorption, reduced recombination efficiency of photoelectron-hole pairs in TiO2, and facilitated the photocatalytic degradation of methylene blue (MB) and methyl orange (MO) under sunlight irradiation. The photocatalytic efficiency of the composite hydrogel for MB was nearly 100%, whereas for MO, it reached 91.85% after exposure to sunlight for 120 min. In comparison with nano-TiO2 and PPy-TiO2, the SA/PAM/PPy-TiO2 nanocomposite hydrogel exhibited a higher degradation rate of MB and demonstrated ease in separation and recovery from the reaction solution. Furthermore, even after undergoing five cycles of recycling, there was no significant decrease observed in photodegradation efficiency.
Collapse
Affiliation(s)
| | | | - Rena Simayi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China; (T.W.); (X.J.); (Y.F.)
| | | | | |
Collapse
|
15
|
Wu Q, Luo H, Wang H, Liu Z, Zhang L, Li Y, Zou X, Wang X. Simultaneous hydrodynamic cavitation and nanosecond pulse discharge plasma enhanced by oxygen injection. ULTRASONICS SONOCHEMISTRY 2023; 99:106552. [PMID: 37556974 PMCID: PMC10433237 DOI: 10.1016/j.ultsonch.2023.106552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/30/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
A novel Hydrodynamic Cavitation-Assisted Oxygen Plasma (HCAOP) process, which employs a venturi tube and oxygen injection, has been developed for enhancing the production and utilization of hydroxyl radicals (·OH) in the degradation of organic pollutants. This study has systematically investigated the fluid characteristics and discharge properties of the gas-liquid two-phase body in the venturi tube. The hydraulic cavitation two-phase body discharge is initiated by the bridging of the cavitation cloud between the electrodes. The discharge mode transitions from diffuse to spark to corona as the oxygen flow rate increases. The spark discharge has the highest current and discharge energy. Excessive oxygen results in the change of the flow from bubbly to annular and a subsequent decrease in discharge energy. The effects of cavitation intensity, oxygen flow rate, and power polarity on discharge characteristics and ·OH production were evaluated using terephthalic acid as a fluorescent probe. It was found that injecting 3 standard liter per minute (SLPM) of oxygen increased the ·OH yield by 6 times with only 1.2 times increase in power, whereas<0.5 SLPM of oxygen did not improve the ·OH yield due to lower breakdown voltage. Negative polarity voltage increased the breakdown voltage and ·OH yield due to asymmetric density and pressure distribution in the throat tube. This polarity effect was explained by numerical simulation. Using indigo carmine (E132) as a model pollutant, the HCAOP process degraded 20 mg/L of dye in 5 L water within 2 min following a first-order reaction. The lowest electric energy per order (EEO) was 0.26 (kWh/m3/order). The HCAOP process is a highly efficient flow-type advanced oxidation process with potential industrial applications.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyun Luo
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Hao Wang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of Electrical Engineering, Chongqing University, Chongqing 400044, China
| | - Zhigang Liu
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Liyang Zhang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Yutai Li
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaobing Zou
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xinxin Wang
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Ristea ME, Zarnescu O. Indigo Carmine: Between Necessity and Concern. J Xenobiot 2023; 13:509-528. [PMID: 37754845 PMCID: PMC10532910 DOI: 10.3390/jox13030033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/08/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Dyes, such as indigo carmine, have become indispensable to modern life, being widely used in the food, textile, pharmaceutical, medicine, and cosmetic industry. Although indigo carmine is considered toxic and has many adverse effects, it is found in many foods, and the maximum permitted level is 500 mg/kg. Indigo carmine is one of the most used dyes in the textile industry, especially for dyeing denim, and it is also used in medicine due to its impressive applicability in diagnostic methods and surgical procedures, such as in gynecological and urological surgeries and microsurgery. It is reported that indigo carmine is toxic for humans and can cause various pathologies, such as hypertension, hypotension, skin irritations, or gastrointestinal disorders. In this review, we discuss the structure and properties of indigo carmine; its use in various industries and medicine; the adverse effects of its ingestion, injection, or skin contact; the effects on environmental pollution; and its toxicity testing. For this review, 147 studies were considered relevant. Most of the cited articles were those about environmental pollution with indigo carmine (51), uses of indigo carmine in medicine (45), and indigo carmine as a food additive (17).
Collapse
Affiliation(s)
| | - Otilia Zarnescu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, R-050095 Bucharest, Romania;
| |
Collapse
|
17
|
Reyes-Pérez JA, Roa-Morales G, De León-Condes CA, Balderas-Hernández P. Nanocomposites from spent coffee grounds and iron/zinc oxide: green synthesis, characterization, and application in textile wastewater treatment. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:1547-1563. [PMID: 37768754 PMCID: wst_2023_285 DOI: 10.2166/wst.2023.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
This study reports on a novel composite of bimetallic FeO/ZnO nanoparticles supported by spent coffee grounds (SCGs). The leaves of eucalyptus (Eucalyptus globulus Labill) and trumpet (Cuphea aequipetala Cav), with their high antioxidant content, serve as bio-reductant agents for the green synthesis of nanoparticles. It was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). Stable nanoparticles were produced with different diameters of 5-30 nm, and they were applied as catalysts in Fenton-like processes. Box-Behnken experimental design (BBD) was used to determine the optimal removal efficiency with three factors and was used in the degradation of textile dyes from wastewater. The nanocomposite displayed a high decolorization ratio (88%) of indigo carmine in the presence of H2O2 combined. This resulted in a reduction in chemical oxygen demand (COD) of 56% at 120 min of contact time at an initial pH of 3.0 and a 0.5 g/L of catalyst dose, a H2O2 concentration of 8.8 mM/L, an initial dye concentration of 100 mg/L, and a temperature of 25 °C.
Collapse
Affiliation(s)
- J A Reyes-Pérez
- Tecnológico Nacional de México/ TES de Tianguistenco, Km. 22, Carretera Tenango - La Marquesa Santiago Tilapa, Santiago Tianguistenco 52650, México E-mail:
| | - G Roa-Morales
- Universidad Autónoma del Estado de México, (UAEMex), Centro Conjunto de Investigación en Química Sustentable (CCIQS) UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Toluca, MEX 50200, México
| | - C A De León-Condes
- Tecnológico Nacional de México/ TES de Tianguistenco, Km. 22, Carretera Tenango - La Marquesa Santiago Tilapa, Santiago Tianguistenco 52650, México
| | - P Balderas-Hernández
- Universidad Autónoma del Estado de México, (UAEMex), Centro Conjunto de Investigación en Química Sustentable (CCIQS) UAEM-UNAM, Carretera Toluca-Atlacomulco, Km 14.5, Toluca, MEX 50200, México
| |
Collapse
|
18
|
Hordieieva IO, Kushch OV, Hordieieva TO, Sirobaba SI, Kompanets MO, Anishchenko VM, Shendrik AN. Eco-friendly TEMPO/laccase/O 2 biocatalytic system for degradation of Indigo Carmine: operative conditions and laccase inactivation. RSC Adv 2023; 13:20737-20747. [PMID: 37441050 PMCID: PMC10334265 DOI: 10.1039/d3ra03107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The biocatalytic system laccase/TEMPO/O2 has attracted the attention of researchers over the past two decades. A variety of applications for the system include organic synthesis, modification of cellulose, and oxidative degradation of environmental contaminants. A rigorous and predictable quantitative assessment of the change in enzymatic activity under the influence of a mediator is important for such a system. In this study, the operative conditions for carrying out a model reaction for the degradation of the synthetic dye Indigo Carmine in the presence of Trametes versicolor laccase/TEMPO were determined and the enzyme inactivation under the action of a mediator and substrate was studied. The long-term stability of Trametes versicolor laccase was assessed and the regression model of the response surface of laccase activity under the influence of TEMPO was created. It has been shown that laccase is inactivated in the presence of TEMPO, but the addition of the dye, CuSO4 or CuCl2 reduces this effect. The system under study can be used repeatedly for the Indigo Carmine decolorization, however, a gradual falling rate during the process is observed from cycle to cycle. This is due to two reasons - firstly, a decrease in the enzyme activity with each batch and secondly, the consumption of the mediator (22% within 5 days). Relatively high enzyme activity (>40%) is maintained after 73 cycles (1 portion of IC contained 25 μM) using 500 μM TEMPO and 0.12 U mL-1 laccase. The laccase/TEMPO system has shown its effectiveness in the treatment of artificial wastewater containing high concentrations of Indigo carmine (0.5 g L-1). In this case, the dye solution becomes 100% colorless within 5 hours in the presence of dye bath components and within 7.5 hours in a buffer solution.
Collapse
Affiliation(s)
- Iryna O Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University Vinnytsia 21021 Ukraine
- L. M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine Kyiv 02660 Ukraine
| | - Olga V Kushch
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University Vinnytsia 21021 Ukraine
- L. M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine Kyiv 02660 Ukraine
| | - Tetiana O Hordieieva
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University Vinnytsia 21021 Ukraine
| | - Serhii I Sirobaba
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University Vinnytsia 21021 Ukraine
- Enamine Ltd. 01103 Kyiv Ukraine
| | - Mykhailo O Kompanets
- L. M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine Kyiv 02660 Ukraine
| | - Victor M Anishchenko
- L. M. Litvinenko Institute of Physico-Organic Chemistry and Coal Chemistry, National Academy of Sciences of Ukraine Kyiv 02660 Ukraine
| | - Alexander N Shendrik
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University Vinnytsia 21021 Ukraine
| |
Collapse
|
19
|
Manikandan DB, Arumugam M, Sridhar A, Perumalsamy B, Ramasamy T. Sustainable fabrication of hybrid silver-copper nanocomposites (Ag-CuO NCs) using Ocimum americanum L. as an effective regime against antibacterial, anticancer, photocatalytic dye degradation and microalgae toxicity. ENVIRONMENTAL RESEARCH 2023; 228:115867. [PMID: 37044164 DOI: 10.1016/j.envres.2023.115867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/05/2023] [Accepted: 04/08/2023] [Indexed: 05/16/2023]
Abstract
In this study, a sustainable fabrication of hybrid silver-copper oxide nanocomposites (Ag-CuO NCs) was accomplished utilizing Ocimum americanum L. by one pot green chemistry method. The multifarious biological and environmental applications of the green fabricated Ag-CuO NCs were evaluated through their antibacterial, anticancer, dye degradation, and microalgae growth inhibition activities. The morphological features of the surface functionalized hybrid Ag-CuO NCs were confirmed by FE-SEM and HR-TEM techniques. The surface plasmon resonance λmax peak appeared at 441.56 nm. The average hydrodynamic size distribution of synthesized nanocomposite was 69.80 nm. Zeta potential analysis of Ag-CuO NCs confirmed its remarkable stability at -21.5 mV. XRD and XPS techniques validated the crystalline structure and electron binding affinity of NCs, respectively. The Ag-CuO NCs demonstrated excellent inhibitory activity against Vibrio cholerae (19.93 ± 0.29 mm) at 100 μg/mL. Anticancer efficacy of Ag-CuO NCs was investigated against the A549 lung cancer cell line, and Ag-CuO NCs exhibited outstanding antiproliferative activity with a low IC50 of 2.8 ± 0.05 μg/mL. Furthermore, staining and comet assays substantiated that the Ag-CuO NCs hindered the progression of the A549 cells and induced apoptosis as a result of cell cycle arrest at the G0/G1 phase. Concerning the environmental applications, the Ag-CuO NCs displayed efficient photocatalytic activity against eosin yellow degradation up to 80.94% under sunlight irradiation. Microalgae can be used as an early bio-indicator/prediction of environmental contaminants and toxic substances. The treatment of the Ag-CuO NCs on the growth of marine microalgae Tetraselmis suecica demonstrated the dose and time-dependent growth reduction and variations in the chlorophyll content. Therefore, the efficient multifunctional properties of hybrid Ag-CuO NCs could be exploited as a regime against infective diseases and cancer. Further, the findings of our investigation witness the remarkable scope and potency of Ag-CuO NCs for environmental applications.
Collapse
Affiliation(s)
- Dinesh Babu Manikandan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Manikandan Arumugam
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Balaji Perumalsamy
- National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India; National Centre for Alternatives to Animal Experiments (NCAAE), Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
20
|
El Messaoudi N, El Mouden A, Fernine Y, El Khomri M, Bouich A, Faska N, Ciğeroğlu Z, Américo-Pinheiro JHP, Jada A, Lacherai A. Green synthesis of Ag 2O nanoparticles using Punica granatum leaf extract for sulfamethoxazole antibiotic adsorption: characterization, experimental study, modeling, and DFT calculation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81352-81369. [PMID: 35729389 DOI: 10.1007/s11356-022-21554-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Silver oxide (Ag2O) nanoparticles (NPs) were generated by synthesizing green leaf extract of Punica granatum, and afterwards they were used as adsorbent to remove the antibiotic additive sulfamethoxazole (SMX) from aqueous solutions. Prior of their use as adsorbent, the Ag2O NPs were characterized by various methods such as X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET), scanning electron microscopy/energy-dispersive X-ray (SEM-EDX), and transmission electron microscopy (TEM). The Ag2O NPs were found to be spherically shaped and stabilized by the constituents of the extract. Further, at SMX antibiotic concentration of 100 mg L-1, the Ag2O NPs achieved almost complete removal of 98.93% within 90 min, and by using 0.8 g L-1 of adsorbent dose at pH=4 and temperature T=308 K. In addition, the experimental data were well fitted with the theoretical Langmuir model indicating homogeneous adsorbed layer of the SMX antibiotic on the Ag2O NPs surface. The maximum uptake capacity was 277.85 mg g-1. A good agreement was also found between the kinetic adsorption data and the theoretical pseudo-second-order model. Regarding the thermodynamic adsorption aspects, the data revealed an endothermic nature and confirmed the feasibility and the spontaneity of the adsorption reaction. Furthermore, the regeneration study has shown that the Ag2O NPs could be efficiently reused for up to five cycles. The geometric structures have been optimized and quantum chemical parameters were calculated for the SMX unprotonated (SMX+/-) and protonated (SMX+) using density functional theory (DFT) calculation. The DFT results indicated that the unprotonated SMX+/- reacts more favorably on the Ag2O surface, as compared to the protonated SMX+. The SMX binding mechanism was predominantly controlled by the electrostatic attraction, hydrogen bond, hydrophobic, and π-π interactions. The overall data suggest that the Ag2O NPs have promising potential for antibiotic removal from wastewater.
Collapse
Affiliation(s)
- Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Abdelaziz El Mouden
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Yasmine Fernine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Sidi Mohamed Ben Abdellah University, 30000, Fez, Morocco
| | - Mohammed El Khomri
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| | - Amal Bouich
- Department of Applied Physics, Institute of Design and Manufacturing (IDF), Polytechnic University of Valencia, 46000, Valencia, Spain
| | - Nadia Faska
- Laboratory of Process Engineering, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
- Faculty of applied sciences, Ibn Zohr University, 86153, Ait Melloul, Morocco
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | | | - Amane Jada
- Institute of Materials Science of Mulhouse (IS2M), High Alsace University, 68100, Mulhouse, France
| | - Abdellah Lacherai
- Laboratory of Applied Chemistry and Environment, Faculty of sciences, Ibn Zohr University, 80000, Agadir, Morocco
| |
Collapse
|
21
|
Guo J, Zhang Y, Wen H, Jia H, Wang J. A novel recycling way of blast furnace dust from steelworks: Electrocoagulation coupled micro-electrolysis system in indigo wastewater treatment. CHEMOSPHERE 2023; 327:138416. [PMID: 36996917 DOI: 10.1016/j.chemosphere.2023.138416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
In this study, a novel electrocoagulation electrode, based on blast furnace dust (BFD) from steelworks waste, was prepared for indigo wastewater treatment, and the performance was compared with different ratios of Fe-C composite electrodes. The BFD electrode exhibited great electrochemical performance and removal effect. The presence of Fe-C micro-electrolysis in the electrocoagulation system of the BFD electrode was demonstrated by FT-IR, Raman, ESR, and quenching experiments. Density Functional Theory (DFT) calculations further demonstrated that the iron-carbon ratio could influence the degree of O-O breaking and enhance ·OH generation. Finally, the BFD electrode's operating parameters were perfected, and the COD removal and decolorization could reach 75.7% and 95.8% within 60 min, respectively. Fe-C composite electrodes reduce energy consumption compared with the traditional Fe/Al electrode and have a lower production cost, which provides a potential way to recycle and reuse the resources of solid waste in steelworks, the concept of "waste controlled by waste" is realized.
Collapse
Affiliation(s)
- Jiaran Guo
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China
| | - Yang Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Haitao Wen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China
| | - Hui Jia
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China.
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Tiangong University, Cangzhou, 061000, China.
| |
Collapse
|
22
|
Alotaibi MT, Mogharbel RT, Alorabi AQ, Alamrani NA, Shahat A, El-Metwaly NM. Superior adsorption and removal of toxic industrial dyes using cubic Pm3n aluminosilica form an aqueous solution, Isotherm, Kinetic, thermodynamic and mechanism of interaction. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
23
|
Liang J, Yan Y, Chen L, Wu J, Li Y, Zhao Z, Li L. Synthesis of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge as a fast absorbent composite and its application in coral sand soil. Int J Biol Macromol 2023:124965. [PMID: 37236573 DOI: 10.1016/j.ijbiomac.2023.124965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
To improve the rapid absorption capacity of coral sand soil for rainfall, a composite of carboxymethyl cellulose-g-poly (acrylic acid-co-acrylamide)/polyvinyl alcohol sponge (CMC-g-P(AA-co-AM)/PVA) was designed and synthesized by coupling CMC-g-P(AA-co-AM) granules with a PVA sponge. The results showed that the rapid water absorption of CMC-g-P (AA-co-AM)/PVA in distilled water in 1 h was 26.45 g/g, twice that of CMC-g-P(AA-co-AM) and the PVA sponge, which is suitable for short-term rainfall. In addition, the cation had a slight influence on the water absorption capacity of CMC-g-P (AA-co-AM)/PVA, which were 29.5 and 18.9 g/g in 0.9 wt% NaCl and CaCl2 solutions, respectively, indicating the great adaptability of CMC-g-P (AA-co-AM)/PVA to high‑calcium coral sand. With the addition of 2 wt% CMC-g-P (AA-co-AM)/PVA, the water interception ratio of the coral sand increased from 13.8 % to 23.7 %, and 54.6 % of the total interception water remained after 15-day evaporation. Moreover, pot experiments demonstrated that 2 wt% CMC-g-P(AA-co-AM)/PVA in coral sand enhanced plant development under water scarcity, suggesting that CMC-g-P (AA-co-AM)/PVA is a promising soil amendment for coral sand soils.
Collapse
Affiliation(s)
- Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yulin Yan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Linhao Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jinxiang Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Li Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
24
|
Mohan C, Kumari N, Jeandet P, Kumari P, Negi A. Synthesis of Nano Pigments Using Clay Minerals and Organic Dyes and Their Application as Colorants in Polymer Matrix. MICROMACHINES 2023; 14:mi14051087. [PMID: 37241711 DOI: 10.3390/mi14051087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
A new generation of clay-based nano pigments has been introduced, providing the advantage of both inorganic pigments and organic dyes. These nano pigments have been synthesized through a stepwise procedure where, initially, an organic dye is adsorbed onto the surface of the adsorbent, and then dye adsorbed adsorbent is used as pigment for further applications. The objective of the current paper was to examine the interaction of non-biodegradable toxic dyes, Crystal Violet (CV) and Indigo Carmine (IC), with clay minerals (montmorillonite (Mt), vermiculite (Vt), and clay bentonite (Bent)) and their organically modified forms (OMt, OBent, and OVt) and to develop a novel methodology for the synthesis of the value-added products and clay-based nano pigments without creating second generation waste materials. In our observation, the uptake of CV was more intense onto pristine Mt, Bent, and Vt, and the uptake of IC was more onto OMt, OBent, and OVt. CV was found to be in the interlayer region of Mt and Bent, as supported by XRD data. Zeta potential values confirmed the presence of CV on their surface. In contrast, in the case of Vt and organically modified forms, the dye was found on the surface, confirmed by XRD and zeta potential values. In the case of indigo carmine, the dye was found only on the surface of pristine Mt, Bent, Vt, and organo Mt, Bent, Vt. During the interaction of CV and IC with clay and organoclays, intense violet and blue-colored solid residues were obtained (also known as clay-based nano pigments). The nano pigments were used as colorants in a poly (methyl-methacrylate) (PMMA) polymer matrix to form transparent polymer films.
Collapse
Affiliation(s)
- Chandra Mohan
- Department of Chemistry, School of Basic and Applied Sciences, K R Mangalam University, Gurugram 122103, India
| | - Neeraj Kumari
- Department of Chemistry, School of Basic and Applied Sciences, K R Mangalam University, Gurugram 122103, India
| | - Philippe Jeandet
- Unit RIBP, USC INRAe 1488, University of Reims, 51100 Reims, France
| | - Priyanka Kumari
- Department of Chemistry, Shivaji College, University of Delhi, Delhi 110027, India
| | - Arvind Negi
- Department of Bioproduct and Biosystems, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
25
|
Chowdhury MF, Kim CM, Jang A. High-efficient and rapid removal of anionic and cationic dyes using a facile synthesized sole adsorbent NiAlFe-layered triple hydroxide (LTH). CHEMOSPHERE 2023; 332:138878. [PMID: 37172625 DOI: 10.1016/j.chemosphere.2023.138878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
It would be extremely momentous to familiarize a low-cost sole adsorbent NiAlFe-layered triple hydroxides (LTHs) having a strong sorption affinity towards both anionic and cationic dyes. Using the urea hydrolysis hydrothermal method LTHs were fabricated and by altering the ratio of participant metal cations the adsorbent was optimized. BET analysis revealed that the optimized LTHs possess an elevated surface area (160.04 m2/g) while TEM and FESEM analysis portrayed the stacked sheets-like 2D morphology. LTHs were employed for the amputation of anionic congo red (CR) and cationic brilliant green (BG) dye. The adsorption study showed that within 20 and 60 min, respectively, maximum adsorption capacities were achieved at 57.47 mg/g and 192.30 mg/g for CR and BG dye. Adsorption isotherm, kinetics, and thermodynamics study revealed that both chemisorptions with physisorptions were the assertive factor for the dye encapsulation. This enhanced adsorption performance of the optimized LTH for the anionic dye is attributed to its inherent anions exchange properties and new bond formation with the adsorbent skeleton. Whereas for the cationic dye, it was because of the formation of strong hydrogen bonds, and electrostatic interaction. Morphological manipulation of LTHs, formulates the optimized adsorbent LTH111, provokes the adsorbent for this elevated adsorption performance. Overall, this study revealed that LTHs have a high potential for the effectual remediation of dyes from wastewater as a sole adsorbent at a low cost.
Collapse
Affiliation(s)
- Mir Ferdous Chowdhury
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Chang-Min Kim
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Am Jang
- Department of Global Smart City, Sungkyunkwan University (SKKU), 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
26
|
Bonnefille B, Karlsson O, Rian MB, Raqib R, Parvez F, Papazian S, Islam MS, Martin JW. Nontarget Analysis of Polluted Surface Waters in Bangladesh Using Open Science Workflows. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6808-6824. [PMID: 37083417 PMCID: PMC10157886 DOI: 10.1021/acs.est.2c08200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nontarget mass spectrometry has great potential to reveal patterns of water contamination globally through community science, but few studies are conducted in low-income countries, nor with open-source workflows, and few datasets are FAIR (Findable, Accessible, Interoperable, Reusable). Water was collected from urban and rural rivers around Dhaka, Bangladesh, and analyzed by liquid chromatography high-resolution mass spectrometry in four ionization modes (electrospray ionization ±, atmospheric pressure chemical ionization ±) with data-independent MS2 acquisition. The acquisition strategy was complementary: 19,427 and 7365 features were unique to ESI and APCI, respectively. The complexity of water pollution was revealed by >26,000 unique molecular features resolved by MS-DIAL, among which >20,000 correlated with urban sources in Dhaka. A major wastewater treatment plant was not a dominant pollution source, consistent with major contributions from uncontrolled urban drainage, a result that encourages development of further wastewater infrastructures. Matching of deconvoluted MS2 spectra to public libraries resulted in 62 confident annotations (i.e., Level 1-2a) and allowed semiquantification of 42 analytes including pharmaceuticals, pesticides, and personal care products. In silico structure prediction for the top 100 unknown molecular features associated with an urban source allowed 15 additional chemicals of anthropogenic origin to be annotated (i.e., Level 3). The authentic MS2 spectra were uploaded to MassBank Europe, mass spectral data were openly shared on the MassIVE repository, a tool (i.e., MASST) that could be used for community science environmental surveillance was demonstrated, and current limitations were discussed.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Oskar Karlsson
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - May Britt Rian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
| | - Rubhana Raqib
- Immunobiology, Nutrition and Toxicology Unit, Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, United States
| | - Stefano Papazian
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| | - M Sirajul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jonathan W Martin
- Department of Environmental Science, Exposure and Effects Unit, Science for Life Laboratory, Stockholm University, Stockholm 106 91, Sweden
- National Facility for Exposomics, Metabolomics Platform, Science for Life Laboratory, Stockholm University, Solna 171 65, Sweden
| |
Collapse
|
27
|
Yang X, Zhu W, Chen F, Song Y, Yu Y, Zhuang H. Modified biochar prepared from Retinervus luffae fructus for dyes adsorption and aerobic sludge granulation. CHEMOSPHERE 2023; 322:138088. [PMID: 36754295 DOI: 10.1016/j.chemosphere.2023.138088] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/23/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Retinervus luffae fructus biochar (RLFB) and ZnCl2 pretreated Retinervus luffae fructus biochar (ZRLFB) were prepared by pyrolysis. The as-prepared biochar was investigated for its applicability as a dye adsorber using sunset yellow (SY) and basic red 46 (BR46) dyes. Additionally, ZRLFB was used for the experimental cultivation of granular sludge. The results indicated that the adsorption effect of ZRLFB on the two dyes was higher than RLFB. The adsorption of RLFB to SY was related to the Langmuir and Freundlich models, whereas the adsorption of RLFB-BR46, ZRLFB-SY, and ZRLFB-BR46 was more in line with the Langmuir model. The adsorption process of dyes on two kinds of biochars can be described using pseudo-second-order mechanisms. The maximum adsorption capacity obtained was 1.9586 (RLFB-SY), 6.1286 (RLFB-BR46), 49.2611 (ZRLFB-SY), and 181.4882 mg g-1 (RLFB-BR46). The result of the SBR operation showed that ZRLFB can potentially be applied as the core of aerobic granular sludge.
Collapse
Affiliation(s)
- Xinyuan Yang
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Wenfang Zhu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China.
| | - Fangyuan Chen
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Yali Song
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China
| | - Ya Yu
- School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, 310000, China
| | - Haifeng Zhuang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, 310000, China; Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, Hangzhou, 310023, China
| |
Collapse
|
28
|
Bilal M, Zdarta J, Jesionowski T, Iqbal HMN. Manganese peroxidases as robust biocatalytic tool - An overview of sources, immobilization, and biotechnological applications. Int J Biol Macromol 2023; 234:123531. [PMID: 36754266 DOI: 10.1016/j.ijbiomac.2023.123531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
With robust catalytic features, manganese peroxidases (MnPs) from various sources, including fungi and bacteria, have gained much consideration in many biotechnological applications with particular emphasis on environmental remediation. MnP is a heme-containing enzyme that belongs to the oxidoreductases that can catalyze the degradation of various organic pollutants, such as chlorophenols, nitroaromatic compounds, industrial dyes, and polycyclic aromatic hydrocarbons. To spotlight the MnP as biocatalytic tool, an effort has been put forward to cover the four major compartments. For instance, following a brief introduction, first, various microbial sources of MnP are discussed with examples. Second, structural attributes and biocatalytic features of MnP are given with examples. Third, different MnP immobilization strategies, including adsorption, covalent linking, entrapment, and cross-linking, are discussed with a significant motive to strengthen the enzyme's stability against diverse deactivation agents by restricting the conformational mobility of molecules. Compared to free counterparts, immobilized MnP fractions perform well in hostile environments. Finally, various biotechnological applications, such as fuel ethanol production, de-lignification, textile industry, pulp and paper industry, degradation of phenolic and non-phenolic compounds, and pharmaceutical and pesticide degradation, are briefly discussed.
Collapse
Affiliation(s)
- Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico; Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Mexico.
| |
Collapse
|
29
|
Tang Y, Dong X, Wang M, Guo B. Dual emission N-doped carbon dots as a ratiometric fluorescent and colorimetric dual-signal probe for indigo carmine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 290:122310. [PMID: 36610210 DOI: 10.1016/j.saa.2022.122310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/20/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Novel dual-emission fluorescent nitrogen-doped carbon dots (N-CDs) were synthesized by a facile one-pot hydrothermal method using ascorbic acid and rhodamine B as precursors and melamine as nitrogen source. The obtained N-CDs exhibited dual-emitting peaks at 435 nm and 578 nm under the single excitation of 350 nm. The fluorescence at 578 nm was more effectively quenched by indigo carmine (IC) based on the internal filtration effect and aggregation-induced emission quenching. Meanwhile, the apparent color change of N-CDs from pink to blue-purple after adding various concentrations of IC could be clearly observed with the naked eye. Therefore, a ratiometric fluorescent and colorimetric dual-signal probe based on N-CDs was developed for IC detection with high selectivity and sensitivity. The addition of IC caused the ratiometric fluorescent value (F435/F578) to increase linearly within the range from 0 to100 µM with a detection limit (LOD) of 0.18 µM and the colorimetric signal presented a linear response in the range of 0-133 µM with a LOD of 57.4 nM. Furthermore, the IC in juice drink, candy, and water was successfully detected. Besides, the N-CDs were also designed as a ratiometric temperature probe, and the ratiometric fluorescence signal (F435/F578) was linearly and reversibly responsive to temperature in the range of 20-75 °C.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Minhui Wang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Beibei Guo
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
30
|
Castillo-Suárez LA, Sierra-Sánchez AG, Linares-Hernández I, Martínez-Miranda V, Teutli-Sequeira EA. A critical review of textile industry wastewater: green technologies for the removal of indigo dyes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY : IJEST 2023; 20:1-38. [PMID: 37360556 PMCID: PMC10041522 DOI: 10.1007/s13762-023-04810-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/22/2022] [Accepted: 01/27/2023] [Indexed: 06/28/2023]
Abstract
The denim textile industry represents an important productive sector. It generates wastewater with low biodegradability due to the presence of persistent pollutants, which can produce toxic and carcinogenic compounds; therefore, wastewater treatment reduces risks to aquatic life and public health. This paper presents a review of 172 papers regarding textile industry wastewater treatment for the removal of contaminants, especially indigo dyes used in the denim industry, in the context of green technologies. The physicochemical characteristics of textile wastewater, its environmental and health impacts, and the permissible limit regulations in different countries were reviewed. Biological, physicochemical and advanced oxidation processes for the removal of indigo dyes were reviewed. The goal of this study was to analyze the characteristics of green technologies; however, the research does not clearly demonstrate an effect on energy consumption savings, carbon footprint decreases, and/or waste generation. Advanced oxidation processes showed the highest color removal efficiency (95 and 97% in synthetic or real wastewater, respectively). Photocatalysis and Fenton reactions were the most efficient processes. None of the revised works presented results regarding upscaling for industrial application, and the results should be discussed in terms of the guidelines and maximum permissible limits established by international legislation. New technologies need to be developed and evaluated in a sustainable context with real wastewater.
Collapse
Affiliation(s)
- L. A. Castillo-Suárez
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México México
| | - A. G. Sierra-Sánchez
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - I. Linares-Hernández
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - V. Martínez-Miranda
- Cátedras COMECYT. Consejo Mexiquense de Ciencia y Tecnología COMECYT, Paseo Colón Núm.: 112-A, Col. Ciprés, C.P. 50120 Toluca, Estado de México México
| | - E. A. Teutli-Sequeira
- Instituto Interamericano de Tecnología y Ciencias del Agua (IITCA), Universidad Autónoma del Estado de México, Unidad San Cayetano, Km. 14.5, Carretera, Toluca-Atlacomulco, C.P. 50200 Toluca, Estado de México México
| |
Collapse
|
31
|
Song L, Liu C, Liang L, Ma Y, Wang X, Ma J, Li Z, Yang S. Fabrication of PbO2/PVDF/CC Composite and Employment for the Removal of Methyl Orange. Polymers (Basel) 2023; 15:polym15061462. [PMID: 36987240 PMCID: PMC10053905 DOI: 10.3390/polym15061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The in situ electrochemical oxidation process has received considerable attention for the removal of dye molecules and ammonium from textile dyeing and finishing wastewater. Nevertheless, the cost and durability of the catalytic anode have seriously limited industrial applications of this technique. In this work, the lab-based waste polyvinylidene fluoride membrane was employed to fabricate a novel lead dioxide/polyvinylidene fluoride/carbon cloth composite (PbO2/PVDF/CC) via integrated surface coating and electrodeposition processes. The influences of operating parameters (pH, Cl− concentration, current density, and initial concentration of pollutant) on the oxidation efficiency of PbO2/PVDF/CC were evaluated. Under optimal conditions, this composite achieves a 100% decolorization of methyl orange (MO), 99.48% removal of ammonium, and 94.46% conversion for ammonium-based nitrogen to N2, as well as an 82.55% removal of chemical oxygen demand (COD). At the coexistent condition of ammonium and MO, MO decolorization, ammonium, and COD removals still remain around 100%, 99.43%, and 77.33%, respectively. It can be assigned to the synergistic oxidation effect of hydroxyl radical and chloride species for MO and the chlorine oxidation action for ammonium. Based on the determination of various intermediates, MO is finally mineralized to CO2 and H2O, and ammonium is mainly converted to N2. The PbO2/PVDF/CC composite exhibits excellent stability and safety.
Collapse
Affiliation(s)
- Laizhou Song
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- Correspondence: ; Tel.: +86-335-8387741; Fax: +86-335-8061569
| | - Cuicui Liu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lifen Liang
- Department of Environmental Engineering, Hebei University of Environmental Engineering, Qinhuangdao 066102, China
| | - Yalong Ma
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Xiuli Wang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jizhong Ma
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zeya Li
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shuqin Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
32
|
Subaihi A, Shahat A. Synthesis and characterization of super high surface area silica-based nanoparticles for adsorption and removal of toxic pharmaceuticals from aqueous solution. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
33
|
Synthesis of Ruthenium-Promoted ZnO/SBA-15 Composites for Enhanced Photocatalytic Degradation of Methylene Blue Dye. Polymers (Basel) 2023; 15:polym15051210. [PMID: 36904451 PMCID: PMC10006964 DOI: 10.3390/polym15051210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Synthetic organic pigments like xanthene and azo dyes from the direct discharge of textile effluents are considered colossal global issues and attract the concern of scholars. Photocatalysis continues to be a very valuable pollution control method for industrial wastewater. Incorporations of metal oxide catalysts such as zinc oxide (ZnO) on mesoporous Santa Barbara Armophous-15 (SBA-15) support to improve catalyst thermo-mechanical stability have been comprehensively reported. However, charge separation efficiency and light absorption of ZnO/SBA-15 continue to be limiting its photocatalytic activity. Herein, we report a successful preparation of Ruthenium-induced ZnO/SBA-15 composite via conventional incipient wetness impregnation technique with the aim of boosting the photocatalytic activity of the incorporated ZnO. Physicochemical properties of the SBA-15 support, ZnO/SBA-15, and Ru-ZnO/SBA-15 composites were characterized by X-ray diffraction (XRD), N2 physisorption isotherms at 77 K, Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray (EDS), and transmission electron microscopy (TEM). The characterization outcomes exhibited that ZnO and ruthenium species have been successfully embedded into SBA-15 support, andtheSBA-15 support maintains its structured hexagonal mesoscopic ordering in both ZnO/SBA-15 and Ru-ZnO/SBA-15 composites. The photocatalytic activity of the composite was assessed through photo-assisted mineralization of aqueous MB solution, and the process was optimized for initial dye concentration and catalyst dosage. 50 mg catalyst exhibited significant degradation efficiency of 97.96% after 120 min, surpassing the efficiencies of 77% and 81% displayed by 10 and 30 mg of the as-synthesized catalyst. The photodegradation rate was found to decrease with an increase in the initial dye concentration. The superior photocatalytic activity of Ru-ZnO/SBA-15 over the binary ZnO/SBA-15 may be attributed to the slower recombination rate of photogenerated charges on the ZnO surface with the addition of ruthenium.
Collapse
|
34
|
Althumayri K, Guesmi A, El-Fattah WA, Houas A, Hamadi NB, Shahat A. Enhanced Adsorption and Evaluation of Tetracycline Removal in an Aquatic System by Modified Silica Nanotubes. ACS OMEGA 2023; 8:6762-6777. [PMID: 36844599 PMCID: PMC9948198 DOI: 10.1021/acsomega.2c07377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In the present study, a nanocomposite adsorbent based on mesoporous silica nanotubes (MSNTs) loaded with 3-aminopropyltriethoxysilane (3-APTES@MSNTs) was synthesized. The nanocomposite was employed as an effective adsorbent for the adsorption of tetracycline (TC) antibiotics from aqueous media. It has an 848.80 mg/g maximal TC adsorption capability. The structure and properties of 3-APTES@MSNT nanoadsorbent were detected by TEM, XRD, SEM, FTIR, and N2 adsorption-desorption isotherms. The later analysis suggested that the 3-APTES@MSNT nanoadsorbent has abundant surface functional groups, effective pore size distribution, a larger pore volume, and a relatively higher surface area. Furthermore, the influence of key adsorption parameters, including ambient temperature, ionic strength, initial TC concentration, contact time, initial pH, coexisting ions, and adsorbent dosage, had also been investigated. The 3-APTES@MSNT nanoadsorbent's ability to adsorb the TC molecules was found to be more compatible with Langmuir isothermal and pseudo-second-order kinetic models. Moreover, research on temperature profiles pointed to the process' endothermic character. In combination with the characterization findings, it was logically concluded that the 3-APTES@MSNT nanoadsorbent's primary adsorption processes involved interaction, electrostatic interaction, hydrogen bonding interaction, and the pore-fling effect. The synthesized 3-APTES@MSNT nanoadsorbent has an interestingly high recyclability of >84.6 percent up to the fifth cycle. The 3-APTES@MSNT nanoadsorbent, therefore, showed promise for TC removal and environmental cleanup.
Collapse
Affiliation(s)
- Khalid Althumayri
- Department
of Chemistry, College of Science, Taibah
University, Al-Madinah
Al-Munawarah 30002, Saudi
Arabia
| | - Ahlem Guesmi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Wesam Abd El-Fattah
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Port Said
University, Port Said 42511, Egypt
| | - Ammar Houas
- Research
Laboratory of Catalysis and Materials for Environment and Processes, University of Gabes, City Riadh Zerig, Gabes 6029, Tunisia
| | - Naoufel Ben Hamadi
- Chemistry
Department, College of Science, IMSIU (Imam
Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
- Faculty
of Science of Monastir, Laboratory of Heterocyclic Chemistry, Natural
Products and Reactivity (LR11ES39), University
of Monastir, Avenue of
Environment, Monastir 5019, Tunisia
| | - Ahmed Shahat
- Department
of Chemistry, Faculty of Science, Suez University, Suez 41522, Egypt
| |
Collapse
|
35
|
Ranga M, Sinha S. Mechanism and Techno‐Economic Analysis of the Electrochemical Process. CHEMBIOENG REVIEWS 2023. [DOI: 10.1002/cben.202200025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Monica Ranga
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| | - Shishir Sinha
- Indian Institute of Technology Roorkee Department of Chemical Engineering 247667 Roorkee, Uttarakhand India
| |
Collapse
|
36
|
Teoh TP, Ong SA, Ho LN, Wong YS, Lutpi NA, Oon YL, Tan SM, Ong YP, Yap KL. Insights into the decolorization of mono and diazo dyes in single and binary dyes containing wastewater and electricity generation in up-flow constructed wetland coupled microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17546-17563. [PMID: 36197611 DOI: 10.1007/s11356-022-23101-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The treatment of single and binary azo dyes, as well as the effect of the circuit connection, aeration, and plant on the performance of UFCW-MFC, were explored in this study. The decolorization efficiency of Remazol Yellow FG (RY) (single dye: 98.2 %; binary dye: 92.3 %) was higher than Reactive Black 5 (RB5) (single: 92.3 %; binary: 86.7 %), which could be due to monoazo dye (RY) requiring fewer electrons to break the azo bond compared to the diazo dye (RB5). In contrast, the higher decolorization rate of RB5 in binary dye indicated the removal rate was affected by the electron-withdrawing groups in the dye structure. The closed circuit enhanced about 2% of color and 4% of COD removal. Aeration improved the COD removal by 6%, which could be contributed by the mineralization of intermediates. The toxicity of azo dyes was reduced by 11-26% and the degradation pathways were proposed. The dye removal by the plants was increased with a higher contact time. RB5 was more favorable to be uptook by the plant as RB5 holds a higher partial positive charge. 127.39 (RY), 125.82 (RB5), and 58.66 mW/m3 (binary) of maximum power density were generated. The lower power production in treating the binary dye could be due to more electrons being utilized for the degradation of higher dye concentration. Overall, the UFCW-MFC operated in a closed circuit, aerated, and planted conditions achieved the optimum performance in treating binary azo dyes containing wastewater (dye: 87-92%; COD: 91%) compared to the other conditions (dye: 83-92%; COD: 78-87%).
Collapse
Affiliation(s)
- Tean-Peng Teoh
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia.
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia.
| | - Li-Ngee Ho
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yee-Shian Wong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yoong-Ling Oon
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
| | - Sing-Mei Tan
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis, 02600, Arau, Perlis, Malaysia
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Yong-Por Ong
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), 02600, Arau, Perlis, Malaysia
| |
Collapse
|
37
|
Poddar K, Sarkar D, Sarkar A. Construction of bacterial consortium for efficient degradation of mixed pharmaceutical dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25226-25238. [PMID: 35066834 DOI: 10.1007/s11356-021-18217-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Synthetic dyes are established colorants in the pharmaceutical industries for the coating and coloration of tablets, capsules, etc. to mark the specific formulation and dosage, improve the stability, and esthetic value. The pharmaceuticals manufacturing process releases large volumes of dye-containing wastewaters, contributing to eco-toxic concerns related to different health risks. In this study, biodegradation of amaranth, sunset yellow, tartrazine, indigo carmine, and quinoline yellow dyes was investigated in the mixed environment. Initially, 24 tolerant bacterial strains were isolated from pharmaceutical wastewater samples, among which 19 strains were found to be non-virulent. Five different consortia were constructed by considering the 19 strains among which C1 consisting of strains DY7, 10, 11, and 18 was found to be the most potential consortium with an overall efficiency of 96.65% dye degradation in the presence of glucose after 15 days. The strains DY7, 10, 11, and 18 were identified as members of the Klebsiella genus by 16S rRNA partial sequencing. The cell wall structure, carbohydrate utilization profile, and metabolic characterization were conducted on the selected strains of C1. Among the 25 different antibiotics, DY7 and DY11 exhibited the highest zone of growth inhibition in the presence of cefixime, and DY10 was restricted by chloramphenicol whereas DY18 was found sensitive to ceftazidime/tazobactam.
Collapse
Affiliation(s)
- Kasturi Poddar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Debapriya Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India
| | - Angana Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha, 769008, India.
| |
Collapse
|
38
|
Pan Z, Tao D, Ren M, Cheng L. A Combinational Optimization Method for Efficient Production of Indigo by the Recombinant Escherichia coli with Expression of Monooxygenase and Malate Dehydrogenase. Foods 2023; 12:foods12030502. [PMID: 36766031 PMCID: PMC9914922 DOI: 10.3390/foods12030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Indigo pigment is a widely used pigment, and the use of biosynthesis to ferment indigo has become a hot research topic. Based on previous research, the indigo could be biosynthesized via the styrene oxygenation pathway, which is regulated by intracellular redox-cofactor rebalancing. In this work, the malate dehydrogenase (mdh) gene was selected as an NADH regeneration element to improve the intracellular cofactor regeneration level, and it was co-expressed with the styrene monooxygenase (styAB) gene by pET-28a(+) vector in E. coli for enhancing indigo production. The PT7 and Pcat promoter was constructed to change the styAB gene and mdh gene from inducible expression to constitutive expression, since the expressing vector pET-28a(+) needs to be induced by IPTG. After different strategies of genetic manipulations, the styAB gene and mdh gene were successfully constitutively co-expressed by different promoters in E. coli, which obviously enhanced the monooxygenase activity and indigo production, as expected. The maximum yield of indigo in recombinant strains was up to 787.25 mg/L after 24 h of fermentation using 2.0 g/L tryptophan as substrate, which was nearly the highest indigo-producing ability using tryptophan as substrate in recent studies. In summary, this work provided a theoretical basis for the subsequent study of indigo biosynthesis and probably revealed a new insight into the construction of indigo biosynthesis cell factory for application.
Collapse
Affiliation(s)
| | | | | | - Lei Cheng
- Correspondence: ; Tel.: +86-10-68985252
| |
Collapse
|
39
|
Enhanced photocatalytic activity of FeVO4 nanoparticles biosynthesized using olive leaves extract for photodegradation of crystal violet (CV). REACTION KINETICS MECHANISMS AND CATALYSIS 2023. [DOI: 10.1007/s11144-022-02335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
40
|
Al-Hazmi GH, Refat MS, Alshammari KF, Kubra KT, Shahat A. Efficient toxic doxorubicin hydrochloride removal from aqueous solutions using facial alumina nanorods. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Abadi PGS, Irani M, Rad LR. Mechanisms of the removal of the metal ions, dyes, and drugs from wastewaters by the electrospun nanofiber membranes. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
42
|
Rodrigues AF, da Silva AF, da Silva FL, dos Santos KM, de Oliveira MP, Nobre MM, Catumba BD, Sales MB, Silva AR, Braz AKS, Cavalcante AL, Alexandre JY, Junior PG, Valério RB, de Castro Bizerra V, do Santos JC. A scientometric analysis of research progress and trends in the design of laccase biocatalysts for the decolorization of synthetic dyes. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
43
|
Alharbi A, Al-Ahmed ZA, El-Metwaly NM, Shahat A, El-Bindary M. A novel strategy for preparing metal-organic framework as a smart material for selective detection and efficient extraction of Pd(II) and Au(III) ions from E-wastes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S, Park YK, Hussain M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. CHEMOSPHERE 2022; 306:135566. [PMID: 35787877 DOI: 10.1016/j.chemosphere.2022.135566] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Polluted water resources, particularly those polluted with industrial effluents' dyes, are carcinogenic and hence pose a severe threat to sustainable and longstanding worldwide development. Meanwhile, adsorption is a promising process for polluted/wastewater treatment. In particular, activated carbon (AC) is popular among various wastewater treatment adsorbents, especially in the organic contaminants' remediation in wastewater. Hence, the AC's synthesis from degradable and non-degradable resources, the carbon activation involved in the AC synthesis, and the AC's modification to cutting-edge and effective materials have been modern-research targets in recent years. Likewise, the main research focuses worldwide have been the salient AC characteristics, such as its surface chemistry, porosity, and enhanced surface area. Notably, various modified-AC synthesis methods have been employed to enhance the AC's potential for improved contaminants-removal. Hence, we critically analyze the different modified ACs (with enhanced (surface) functional groups and textural properties) of their capacity to remove different-natured anionic dyes in wastewater. We also discuss the corresponding AC modification techniques, the factors affecting the AC properties, and the modifying agents' influence on the AC's morphological/adsorptive properties. Finally, the AC research of future interest has been proposed by identifying the current AC research gaps, especially related to the AC's application in wastewater treatment.
Collapse
Affiliation(s)
- Kshaf Azam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Nasir Shezad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
45
|
Almufarij RS, Abdulkhair BY, Salih M, Alhamdan NM. Sweep-Out of Tigecycline, Chlortetracycline, Oxytetracycline, and Doxycycline from Water by Carbon Nanoparticles Derived from Tissue Waste. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203617. [PMID: 36296807 PMCID: PMC9610714 DOI: 10.3390/nano12203617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 05/27/2023]
Abstract
Pharmaceutical pollution has pervaded many water resources all over the globe. The propagation of this health threat drew the researchers' concern in seeking an efficient solution. This study introduced toilet paper waste as a precursor for carbon nanoparticles (CRNPs). The TEM results showed a particle size range of 30.2 nm to 48.1 nm, the BET surface area was 283 m2 g-1, and the XRD pattern indicated cubical-graphite crystals. The synthesized CRNPs were tested for removing tigecycline (TGCN), chlortetracycline (CTCN), oxytetracycline (OTCN), and doxycycline (DXCN) via the batch process. The adsorption equilibrium time for TGCN, DXCN, CTCN, and OTCN was 60 min, and the concentration influence revealed an adsorption capacity of 172.5, 200.1, 202.4, and 200.0 mg g-1, respectively. The sorption of the four drugs followed the PSFO, and the LFDM models indicated their high sorption affinity to the CRNPs. The adsorption of the four drugs fitted the multilayer FIM that supported the high-affinity claim. The removals of the four drugs were exothermic and spontaneous physisorption. The fabricated CRNPs possessed an excellent remediation efficiency for contaminated SW and GW; therefore, CRNPs are suggested for water remediation as low-cost sorbent.
Collapse
Affiliation(s)
- Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Babiker Y. Abdulkhair
- Chemistry Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90905, Riyadh 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Sudan University of Science and Technology (SUST), Khartoum P.O. Box 13311, Sudan
| | - Mutaz Salih
- Department of Chemistry, College of Science and Humanities-Hurrymilla, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Nujud M. Alhamdan
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
46
|
A facile method for synthesis rGO/Ag nanocomposite and its uses for enhancing photocatalytic degradation of Congo red dye. SN APPLIED SCIENCES 2022. [DOI: 10.1007/s42452-022-05163-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
AbstractThe enhancing breakdown of dyes using facile, novel and eco-friendly photocatalyst without remaining any hazards secondary intermediates from the dye species regarded one of the most challenges to the healthy world. A novel facile method was used to synthesize reduced graphene oxide (rGO) with various doping ratios of silver nanoparticles (Ag NPs) and applied as photocatalyst to enhancing removal of Congo red (CR) dye using UV light irradiation from aqueous solution. Some characterization features such as UV-diffuse reflectance spectra, TEM, SEM, FTIR, X-ray diffraction, and EDX were measured to demonstrate the energy gap, morphology, size distribution, crystalline nature, phase structure, and elemental compositions of as-synthesized nanoparticles. The effect of some important factors such as pH of solution, initial CR concertation (Co), amount of rGO@Ag (g) and contact time (t) were studied to detect the optimum adsorption condition. The results indicated that, the maximum CR dye photodegradation is obtained at pH 7, 120 min, 50 mg/L initial CR concentration and 0.4 g/L photocatalyst dosage. The photodegradation data declared that, the higher the Ag doping ratio, the higher the degrading efficiency. Isotherm and kinetic studies showed that Langmuir and Freundlich models and the pseudo-second-order model are well fitting the adsorption process with maximum CR adsorption values ranging between 86.95 and 98.04 mg/L with corresponding R2 > 0.99.
Collapse
|
47
|
Zhang Q, Wang J, Zhang Y, Chen J. Natural kaolinite-based hierarchical porous microspheres as effective and highly recyclable adsorbent for removal of cationic dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72001-72016. [PMID: 35606589 DOI: 10.1007/s11356-022-20986-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The development of efficient, recyclable, and environment-friendly adsorbent for wastewater remediation is considered a challenge. In this study, a hierarchical porous kaolinite microsphere (HPKS) with three-dimensional (3D) structure was fabricated based on natural-layered kaolinite mineral via an environmentally friendly direct hydrothermal strategy. Characterization results revealed that HPKS microsphere with 3D hierarchical porous structure was constructed with numerous nanospheres which are assembled by ultrafine aluminosilicate flakes. HPKS exhibited negative charge feature ranging from strong acid to high alkaline solution. The influence of contact time, solution pH, initial dye concentration, adsorbent dosage, and foreign ions on methylene blue (MB) adsorption capability was systematically investigated. The synthesized HPKS with higher specific surface area (250.6 m2/g) shows an outstanding adsorption capacity towards MB (411.8 mg/g) and excellent selectivity for cationic MB dyes over anionic methyl orange and competitive metal ions. The adsorption kinetic experiment results fit very well with the pseudo-second-order model and reflect the fast adsorption rate of MB on HPKS. The sorption isotherm study reveals the chemisorption of electrostatic attraction between the cationic MB molecules and the negative charged surfaces of HPKS. More importantly, the MB removal efficiency is more than 99% in a broad range of solution pH value. The adsorption capacities of HPKS can be easily recovered by calcination at 600 °C to remove the adsorbed dyes and without obvious diminishment even after six successive cycles. Therefore, the HPKS is a cost-effective and environmentally friendly adsorbent which has is promising to use in practical applications.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, China
| | - Jiebin Wang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yude Zhang
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China.
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, China.
| | - Juntao Chen
- School of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, 454000, China
- Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Jiaozuo, 454000, China
| |
Collapse
|
48
|
Li M, Luo J, Lu J, Shang W, Mu J, Sun F, Dong Z, Li X. A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treatment. CHEMOSPHERE 2022; 304:135285. [PMID: 35714956 DOI: 10.1016/j.chemosphere.2022.135285] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
A novel Polyacrylonitrile (PAN) composite membrane involving ZIF-8 nanoparticles, named as ZIF-8/PAN membrane, was obtained via electrospinning to remove the Congo red (CR), Pb(II) and Cu(II) ions in industrial wastewaters, during which the adsorption mechanisms were examined in this study. The adsorption efficiency of the electrospun ZIF-8/PAN membrane was as high as 89%, 92% and 76% for CR, Pb(II) and Cu(II), respectively. Comparative analysis showed that ZIF-8 nanoparticles embedded in the ZIF-8/PAN membrane accounted for these enhanced adsorption capabilities. The adsorption behaviors of the ZIF-8 nanoparticles were investigated through experiments and theoretical analysis, and the results unraveled that the adsorption for CR by the ZIF-8 was mainly including electrostatic interaction, hydrogen bonding and π-π interaction, while those for Pb(II) and Cu(II) were mainly caused by ion-exchange and chemical adsorption. Parametric studies were conducted to optimize the conditions for removing CR, Pb(II), and Cu(II) by ZIF-8 nanoparticles, during which all of pollutants showed different reactions to the solution pH. This work not only develops a novel ZIF-8/PAN composite membrane for effective removals of pollutants, but also reveals the underlying mechanisms of pollutants adsorption in terms of molecular interactions, providing important understandings on fibrous materials design for efficient heavy metals and dyes removals in industrial wastewater treatment.
Collapse
Affiliation(s)
- Mu Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jingwen Luo
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jianjiang Lu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wentao Shang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Jiale Mu
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Feiyun Sun
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Zijun Dong
- School of Civil and Traffic Engineering, Shenzhen University, Shenzhen, 518055, China.
| | - Xiaoyan Li
- Shenzhen Environmental Science and New Energy Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
49
|
Ahamed AF, Kalaivasan N, Thangaraj R. Probing the Photocatalytic Degradation of Acid Orange 7 Dye with Chitosan Impregnated Hydroxyapatite/Manganese Dioxide Composite. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Influence of Doping-Ion-Type on the Characteristics of Al2O3-Based Nanocomposites and Their Capabilities of Removing Indigo Carmine from Water. INORGANICS 2022. [DOI: 10.3390/inorganics10090144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Globally, the continuous contamination of natural water resources is a severe issue, and looking for a solution for such a massive problem should be the researcher’s concern. Herein, Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were prepared via a simple and fast route, utilizing glucose as a capping material. All synthesis conditions were uniform to make the fabricated nanomaterials’ characteristics exclusively influenced by only the ion type. The SEM analysis showed that the particles of the synthesized Al2O3, Al2O3-CuO, Al2O3-NiO, and Al2O3-CoO were all less than 25 nm. The Al2O3-NiO showed the smallest particle size (11 to 14 nm) and the best BET surface area of 125.6 m2 g−1. All sorbents were tested for removing organic pollutants, as exemplified by indigo carmine (IGC) dye. The Al2O3-NiO possessed the highest adsorption capacity among the other sorbents for which it had been selected for further investigations. The IGC sorption reached equilibrium within 2.0 h, and the kinetic study revealed that the IGC removal by Al2O3-NiO nanocomposite fitted the FOM and the LFM. The sorbent showed an experimental adsorption capacity (qt) of 456.3 mg g−1 from a 200 mg L−1 IGC solution and followed the Langmuir model. The thermodynamic findings indicated an endothermic, spontaneous, and physisorption nature. The seawater and groundwater samples contaminated with 5.0 mg L−1 IGC concentrations were fully remediated using the Al2O3-NiO nanocomposite. The reuse study showed 93.3% average efficiency during four successive cycles. Consequently, prepared Al2O3-NiO nanocomposite is recommended for the treatment of contaminated water.
Collapse
|