1
|
Fu S, Gong X, Liang K, Ding K, Qiu L, Cen H, Du H. KLF3 impacts insulin sensitivity and glucose uptake in skeletal muscle. Am J Physiol Cell Physiol 2024; 327:C1219-C1235. [PMID: 39250818 DOI: 10.1152/ajpcell.00085.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/19/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Skeletal muscle is one of the predominant sites involved in glucose disposal, accounting for ∼80% of postprandial glucose uptake, and plays a critical role in maintaining glycemic homeostasis. Dysregulation of energy metabolism in skeletal muscle is involved in developing insulin resistance and type 2 diabetes (T2D). Transcriptomic responses of skeletal muscle to exercise found that the expression of Klf3 was increased in T2D Goto-Kakizaki (GK) rats and decreased after exercise with improved hyperglycemia and insulin resistance, implying that Klf3 might be associated with insulin sensitivity and glucose metabolism. We also found that knockdown of Klf3 promoted basal and insulin-stimulated glucose uptake in L6 myotubes, whereas overexpression of Klf3 resulted in the opposite. Through pairwise comparisons of L6 myotubes transcriptome, we identified 2,256 and 1,988 differentially expressed genes in Klf3 knockdown and overexpression groups, respectively. In insulin signaling, the expression of Slc2a4, Akt2, Insr, and Sorbs1 was significantly increased by Klf3 knockdown and decreased with Klf3 overexpression; Ptprf and Fasn were markedly downregulated in Klf3 reduced group and upregulated in Klf3 overexpressed group. Moreover, downregulation of Klf3 promoted the expression of glucose transporter 4 (GLUT4) and protein kinase B (AKT) proteins, as well as the translocation of GLUT4 to the cell membrane in the basal situation, and enhanced insulin sensitivity, characterized by increased insulin-stimulated GLUT4 translocation and AKT, TBC1 domain family member 1 (TBC1D1) and TBC1 domain family member 4 (TBC1D4) phosphorylation, whereas overexpression of Klf3 showed contrary results. These results suggest that Klf3 affects glucose uptake and insulin sensitivity via insulin signal transduction and intracellular metabolism, offering a novel potential treatment strategy for T2D.NEW & NOTEWORTHY The knockdown of Klf3 increased glucose uptake and improved insulin sensitivity in L6 myotubes, whereas its overexpression had the opposite effect. To explore the underlying mechanisms, we evaluated the transcriptional profiles of L6 myotubes after Klf3 knockdown and overexpression and revealed that metabolism and insulin-related pathways were significantly impacted. Klf3 also influenced the expression or modification of glucose transporter 4 (GLUT4), protein kinase B (AKT), TBC1 domain family member 1 (TBC1D1), and TBC1 domain family member 4 (TBC1D4) in the insulin signaling pathway, affecting insulin sensitivity and glucose uptake.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
- School of Life Sciences, Zhaoqing University, Zhaoqing, People's Republic of China
| | - Xiaocheng Gong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Keying Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Ke Ding
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Li Qiu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| | - Huice Cen
- School of Life Sciences, Zhaoqing University, Zhaoqing, People's Republic of China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Yu M, Xu M, Wang G, Feng J, Zhang M. Effects of Different Photoperiods on Peripheral 5-Hydroxytryptamine Metabolism, Breast Muscle Glucose Metabolism, and Myopathies in Broilers. Metabolites 2024; 14:567. [PMID: 39452948 PMCID: PMC11509524 DOI: 10.3390/metabo14100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
Background: There is a close relationship between breast muscle glucose metabolism, peripheral 5-hydroxytryptamine (5-HT), and myopathies in animals. Here, this study aimed to investigate the effects of different photoperiods on peripheral 5-HT metabolism, white striping (WS), and wooden breast (WB) in broilers. Methods: A total of 216 healthy 5-day-old (d) Arbor Acres (AA) male broilers were randomly assigned to 12L:12D, 18L:6D, and 24L:0D photoperiods for 4 weeks. Results: Compared with the 12L:12D photoperiod, we found the WB score in broilers was significantly increased in the 18L:6D and 24L:0D photoperiod at week 4 (p < 0.05). Muscle glycogen was significantly reduced (p < 0.05) and glycolysis was promoted in the breast muscles of broilers under the 18L:6D and 24L:0D photoperiods at week 2 and 4. Peripheral 5-HT concentrations, the mRNA expression of tryptophan hydroxylase 1 (TPH1) and serotonin transporter (SERT) in the cecal mucosa, and 5-hydroxytryptamine receptor 2A (5-HTR2A) mRNA expression in the breast muscle of broilers significantly up-regulated in the 18L:6D and 24L:0D photoperiod at week 2 and 4 (p < 0.05). Conclusions: Our findings revealed that extending the photoperiod improved the breast muscle growth rate, but up-regulated 5-HT synthesis and secretion to higher peripheral 5-HT, induced breast muscle glucose metabolism disorder, and increased WB incidence rates in broilers.
Collapse
Affiliation(s)
- Miao Yu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Mengjie Xu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Guangju Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
- Adaptation Physiology Group, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Jinghai Feng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| | - Minhong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian, Beijing 100193, China; (M.Y.); (M.X.); (G.W.); (J.F.)
| |
Collapse
|
3
|
Gaspar RC, Sakuma I, Nasiri A, Hubbard BT, LaMoia TE, Leitner BP, Tep S, Xi Y, Green EM, Ullman JC, Petersen KF, Shulman GI. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. Am J Physiol Endocrinol Metab 2024; 327:E524-E532. [PMID: 39171753 PMCID: PMC11482269 DOI: 10.1152/ajpendo.00175.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024]
Abstract
Pompe disease is a rare genetic disorder caused by a deficiency of the enzyme acid alpha-glucosidase (GAA). This enzyme is responsible for breaking down glycogen, leading to the abnormal accumulation of glycogen, which results in progressive muscle weakness and metabolic dysregulation. In this study, we investigated the hypothesis that the small molecule inhibition of glycogen synthase I (GYS1) may reduce muscle glycogen content and improve metabolic dysregulation in a mouse model of Pompe disease. To address this hypothesis, we studied four groups of male mice: a control group of wild-type (WT) B6129SF1/J mice fed either regular chow or a GYS1 inhibitor (MZ-101) diet (WT-GYS1), and Pompe model mice B6;129-Gaatm1Rabn/J fed either regular chow (GAA-KO) or MZ-101 diet (GAA-GYS1) for 7 days. Our findings revealed that GAA-KO mice exhibited abnormal glycogen accumulation in the gastrocnemius, heart, and diaphragm. In contrast, inhibiting GYS1 reduced glycogen levels in all tissues compared with GAA-KO mice. Furthermore, GAA-KO mice displayed reduced spontaneous activity during the dark cycle compared with WT mice, whereas GYS1 inhibition counteracted this effect. Compared with GAA-KO mice, GAA-GYS1 mice exhibited improved glucose tolerance and whole body insulin sensitivity. These improvements in insulin sensitivity could be attributed to increased AMP-activated protein kinase phosphorylation in the gastrocnemius of WT-GYS1 and GAA-GYS1 mice. Additionally, the GYS1 inhibitor led to a reduction in the phosphorylation of GSS641 and the LC3 autophagy marker. Together, our results suggest that targeting GYS1 could serve as a potential strategy for treating glycogen storage disorders and metabolic dysregulation.NEW & NOTEWORTHY We investigated the effects of small molecule inhibition of glycogen synthase I (GYS1) on glucose metabolism in a mouse model of Pompe disease. GYS1 inhibition reduces abnormal glycogen accumulation and molecular biomarkers associated with Pompe disease while also improving glucose intolerance. Our results collectively demonstrate that the GYS1 inhibitor represents a novel approach to substrate reduction therapy for Pompe disease.
Collapse
Affiliation(s)
- Rafael Calais Gaspar
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ikki Sakuma
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Ali Nasiri
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Brandon T Hubbard
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Traci E LaMoia
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Brooks P Leitner
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
| | - Samnang Tep
- Maze Therapeutics, South San Francisco, California,United States
| | - Yannan Xi
- Maze Therapeutics, South San Francisco, California,United States
| | - Eric M Green
- Maze Therapeutics, South San Francisco, California,United States
| | - Julie C Ullman
- Maze Therapeutics, South San Francisco, California,United States
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, United States
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States
| |
Collapse
|
4
|
Kim T, Hwang D, Kyun S, Jang I, Kim SW, Park HY, Hwang H, Lim K, Kim J. Exogenous Lactate Treatment Immediately after Exercise Promotes Glycogen Recovery in Type-II Muscle in Mice. Nutrients 2024; 16:2831. [PMID: 39275149 PMCID: PMC11397291 DOI: 10.3390/nu16172831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Recent studies suggest that lactate intake has a positive effect on glycogen recovery after exercise. However, it is important to verify the effect of lactate supplementation alone and the timing of glycogen recovery. Therefore, in this study, we aimed to examine the effect of lactate supplementation immediately after exercise on glycogen recovery in mice liver and skeletal muscle at 1, 3, and 5 h after exercise. Mice were randomly divided into the sedentary, exercise-only, lactate, and saline-treated groups. mRNA expression and activation of glycogen synthesis and lactate transport-related factors in the liver and skeletal muscle were assessed using real-time polymerase chain reaction. Skeletal muscle glycogen concentration showed an increasing trend in the lactate group compared with that in the control group at 3 and 5 h after post-supplementation. Additionally, exogenous lactate supplementation significantly increased the expression of core glycogen synthesis enzymes, lactate transporters, and pyruvate dehydrogenase E1 alpha 1 in the skeletal muscles. Conversely, glycogen synthesis, lactate transport, and glycogen oxidation to acetyl-CoA were not significantly affected in the liver by exogenous lactate supplementation. Overall, these results suggest that post-exercise lactate supplement enables glycogen synthesis and recovery in skeletal muscles.
Collapse
Affiliation(s)
- Taeho Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Deunsol Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sunghwan Kyun
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Inkwon Jang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Sung-Woo Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Hun-Young Park
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejung Hwang
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| | - Kiwon Lim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
- Department of Physical Education, Konkuk University, Seoul 05029, Republic of Korea
| | - Jisu Kim
- Laboratory of Exercise and Nutrition, Department of Sports Medicine and Science in Graduate School, Konkuk University, Seoul 05029, Republic of Korea
- Physical Activity and Performance Institute (PAPI), Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
5
|
Chen J, Ji X, Gao J, Huang J, Ren J. gys1 regulates maternal glycogen reserve essential for embryonic development in zebrafish. Heliyon 2024; 10:e31149. [PMID: 38803914 PMCID: PMC11128933 DOI: 10.1016/j.heliyon.2024.e31149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/29/2024] Open
Abstract
The reserve of glycogen is essential for embryonic development. In oviparous fish, egg is an isolated system after egg laying with all the required energy deposits by their mothers. However, the key regulated factor mediates the storage of maternal glycogen reserve which support for embryogenesis in the offspring is largely unknown. Glycogen synthase (GYS) is a central enzyme for glycogen synthesis. In our previous study, we generated a gys1 knockout zebrafish line, showed an embryonic developmental defect in F3 generation. In this study, firstly we determined that the gys1 was maternal origin by backcrossing the F2 mutant with wildtype lines. PAS staining and glycogen content measurement showed that glycogen reserve was reduced both in ovaries and embryos in the mutant group compared to wildtypes. Free glucose measurement analysis showed a 50 % of reduction in gys1 mutant embryos compared to wildtype embryos at 24 hpf; showed an approximal 50 % of reduction in gys1 mutant adults compared to wildtypes. Microinjection of 2-NBDG in embryos and comparison of fluorescent signal demonstrated that glucose uptake ability was decreased in the mutant embryos, indicating an impaired glucose metabolism. Untargeted metabolomics analysis then was employed and revealed that key modified metabolites enriched into vitamin B pathway, carbohydrate and unsaturated fatty acid pathways. These results demonstrated that gys1 played a role on glycogen metabolism, involved into the maternal glycogen reserve which essentially contribute to embryonic development.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Xiao Ji
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jing Gao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiao Huang
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jianfeng Ren
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
6
|
Huang J, Xiong X, Zhang W, Chen X, Wei Y, Li H, Xie J, Wei Q, Zhou Q. Integrating miRNA and full-length transcriptome profiling to elucidate the mechanism of muscle growth in Muscovy ducks reveals key roles for miR-301a-3p/ANKRD1. BMC Genomics 2024; 25:340. [PMID: 38575872 PMCID: PMC10993543 DOI: 10.1186/s12864-024-10138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
7
|
Ullman JC, Mellem KT, Xi Y, Ramanan V, Merritt H, Choy R, Gujral T, Young LE, Blake K, Tep S, Homburger JR, O’Regan A, Ganesh S, Wong P, Satterfield TF, Lin B, Situ E, Yu C, Espanol B, Sarwaikar R, Fastman N, Tzitzilonis C, Lee P, Reiton D, Morton V, Santiago P, Won W, Powers H, Cummings BB, Hoek M, Graham RR, Chandriani SJ, Bainer R, DePaoli-Roach AA, Roach PJ, Hurley TD, Sun RC, Gentry MS, Sinz C, Dick RA, Noonberg SB, Beattie DT, Morgans DJ, Green EM. Small-molecule inhibition of glycogen synthase 1 for the treatment of Pompe disease and other glycogen storage disorders. Sci Transl Med 2024; 16:eadf1691. [PMID: 38232139 PMCID: PMC10962247 DOI: 10.1126/scitranslmed.adf1691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.
Collapse
Affiliation(s)
- Julie C. Ullman
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Kevin T. Mellem
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Yannan Xi
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Vyas Ramanan
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Hanne Merritt
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Rebeca Choy
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Lyndsay E.A. Young
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY, 40506, USA
| | - Kerrigan Blake
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Cellarity, Somerville, Massachusetts, 02143, USA
| | - Samnang Tep
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Adam O’Regan
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Sandya Ganesh
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Perryn Wong
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Baiwei Lin
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Eva Situ
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Cecile Yu
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Bryan Espanol
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Richa Sarwaikar
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Nathan Fastman
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Patrick Lee
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Curie Bio, Boston, Massachusetts, 02115, USA
| | - Daniel Reiton
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Vivian Morton
- Maze Therapeutics; South San Francisco, California, 94080 USA
- Present address, Revolution Medicines, Redwood City, California, 94063, USA
| | - Pam Santiago
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Walter Won
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Hannah Powers
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | - Maarten Hoek
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | | | - Russell Bainer
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | - Anna A. DePaoli-Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter J. Roach
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Thomas D. Hurley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ramon C. Sun
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- USA Center for Advanced Spatial Biomolecule Research, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew S. Gentry
- Department of Biochemistry & Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
| | | | - Ryan A. Dick
- Maze Therapeutics; South San Francisco, California, 94080 USA
| | | | | | | | - Eric M. Green
- Maze Therapeutics; South San Francisco, California, 94080 USA
| |
Collapse
|
8
|
Yang S, Yang G, Wang X, Li L, Li Y, Xiang J, Kang L, Liang Z. MicroRNA-92b in the skeletal muscle regulates exercise capacity via modulation of glucose metabolism. J Cachexia Sarcopenia Muscle 2023; 14:2925-2938. [PMID: 37985354 PMCID: PMC10751421 DOI: 10.1002/jcsm.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Exercise mimetics is a proposed class of therapeutics that specifically mimics or enhances the therapeutic effects of exercise. Muscle glycogen and lactate extrusion are critical for physical performance. The mechanism by which glycogen and lactate metabolism are manipulated during exercise remains unclear. This study aimed to assess the effect of miR-92b on the upregulation of exercise training-induced physical performance. METHODS Adeno-associated virus (AAV)-mediated skeletal muscle miR-92b overexpression in C57BLKS/J mice, and global knockout of miR-92b mice were used to explore the function of miR-92b in glycogen and lactate metabolism in skeletal muscle. AAV-mediated UGP2 or MCT4 knockdown in WT or miR-92 knockout mice was used to confirm whether miR-92b regulates glycogen and lactate metabolism in skeletal muscle through UGP2 and MCT4. Body weight, muscle weight, grip strength, running time and distance to exhaustion, and muscle histology were assessed. The expression levels of muscle mass-related and function-related proteins were analysed by immunoblotting or immunostaining. RESULTS Global knockout of miR-92b resulted in normal body weight and insulin sensitivity, but higher glycogen content before exercise exhaustion (0.8538 ± 0.0417 vs. 1.043 ± 0.040, **P = 0.0087), lower lactate levels after exercise exhaustion (4.133 ± 0.2589 vs. 3.207 ± 0.2511, *P = 0.0279), and better exercise capacity (running distance to exhaustion, 3616 ± 86.71 vs. 4231 ± 90.29, ***P = 0.0006; running time to exhaustion, 186.8 ± 8.027 vs. 220.8 ± 3.156, **P = 0.0028), as compared with those observed in the control mice. Mice skeletal muscle overexpressing miR-92b (both miR-92b-3p and miR-92b-5p) displayed lower glycogen content before exercise exhaustion (0.6318 ± 0.0231 vs. 0.535 ± 0.0194, **P = 0.0094), and higher lactate accumulation after exercise exhaustion (4.5 ± 0.2394 vs. 5.467 ± 0.1892, *P = 0.01), and poorer exercise capacity (running distance to exhaustion, 4005 ± 81.65 vs. 3228 ± 149.8, ***P<0.0001; running time to exhaustion, 225.5 ± 7.689 vs. 163 ± 6.476, **P = 0.001). Mechanistic analysis revealed that miR-92b-3p targets UDP-glucose pyrophosphorylase 2 (UGP2) expression to inhibit glycogen synthesis, while miR-92b-5p represses lactate extrusion by directly target monocarboxylate transporter 4 (MCT4). Knockdown of UGP2 and MCT4 reversed the effects observed in the absence of miR-92b in vivo. CONCLUSIONS This study revealed regulatory pathways, including miR-92b-3p/UGP2/glycogen synthesis and miR-92b-5p/MCT4/lactate extrusion, which could be targeted to control exercise capacity.
Collapse
Affiliation(s)
- Shu Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- The First Affiliated HospitalSouthern University of Science and TechnologyShenzhenChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Guangyan Yang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Xinyu Wang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Lixing Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Yanchun Li
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Jiaqing Xiang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| | - Lin Kang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
- The Biobank of National Innovation Center for Advanced Medical DevicesShenzhen People's HospitalShenzhenChina
| | - Zhen Liang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical CollegeJinan UniversityGuangzhouChina
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for GeriatricsShenzhen People's HospitalShenzhenChina
| |
Collapse
|
9
|
Pi A, Villivalam SD, Kang S. The Molecular Mechanisms of Fuel Utilization during Exercise. BIOLOGY 2023; 12:1450. [PMID: 37998049 PMCID: PMC10669127 DOI: 10.3390/biology12111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Exercise is widely recognized for its positive impact on human health and well-being. The process of utilizing substrates in skeletal muscle during exercise is intricate and governed by complex mechanisms. Carbohydrates and lipids serve as the primary fuel sources for skeletal muscle during exercise. It is now understood that fuel selection during exercise is not solely determined by physical activity itself but is also influenced by the overall metabolic state of the body. The balance between lipid and carbohydrate utilization significantly affects exercise capacity, including endurance, fatigue, and overall performance. Therefore, comprehensively understanding the regulation of substrate utilization during exercise is of utmost importance. The aim of this review is to provide an extensive overview of the current knowledge regarding the pathways involved in the regulation of substrate utilization during exercise. By synthesizing existing research, we can gain a holistic perspective on the intricate relationship between exercise, metabolism, and fuel selection. This advanced understanding has the potential to drive advancements in the field of exercise science and contribute to the development of personalized exercise strategies for individuals looking to optimize their performance and overall health.
Collapse
Affiliation(s)
| | | | - Sona Kang
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
10
|
Guo H, Wu H, Li Z. The Pathogenesis of Diabetes. Int J Mol Sci 2023; 24:ijms24086978. [PMID: 37108143 PMCID: PMC10139109 DOI: 10.3390/ijms24086978] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/30/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Diabetes is the most common metabolic disorder, with an extremely serious effect on health systems worldwide. It has become a severe, chronic, non-communicable disease after cardio-cerebrovascular diseases. Currently, 90% of diabetic patients suffer from type 2 diabetes. Hyperglycemia is the main hallmark of diabetes. The function of pancreatic cells gradually declines before the onset of clinical hyperglycemia. Understanding the molecular processes involved in the development of diabetes can provide clinical care with much-needed updates. This review provides the current global state of diabetes, the mechanisms involved in glucose homeostasis and diabetic insulin resistance, and the long-chain non-coding RNA (lncRNA) associated with diabetes.
Collapse
Affiliation(s)
- Huiqin Guo
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Haili Wu
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
11
|
Glucoregulatory Properties of Fermented Soybean Products. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disease, characterized by persistent hyperglycemia, the prevalence of which is on the rise worldwide. Fermented soybean products (FSP) are rich in diverse functional ingredients which have been shown to exhibit therapeutic properties in alleviating hyperglycemia. This review summarizes the hypoglycemic actions of FSP from the perspective of different target-related molecular signaling mechanisms in vitro, in vivo and clinical trials. FSP can ameliorate glucose metabolism disorder by functioning as carbohydrate digestive enzyme inhibitors, facilitating glucose transporter 4 translocation, accelerating muscular glucose utilization, inhibiting hepatic gluconeogenesis, ameliorating pancreatic dysfunction, relieving adipose tissue inflammation, and improving gut microbiota disorder. Sufficiently recognizing and exploiting the hypoglycemic activity of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
|
12
|
Fan X, He Y, Wu G, Chen H, Cheng X, Zhan Y, An C, Chen T, Wang X. Sirt3 activates autophagy to prevent DOX-induced senescence by inactivating PI3K/AKT/mTOR pathway in A549 cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1869:119300. [PMID: 36521686 DOI: 10.1016/j.bbamcr.2022.119300] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 05/25/2023]
Abstract
Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates mitochondrial redox homeostasis and autophagy and is involved in physiological and pathological processes such as aging, cellular metabolism, and tumorigenesis. We here investigate how Sirt3 regulates doxorubicin (DOX)-induced senescence in lung cancer A549 cells. Sirt3 greatly reduced DOX-induced upregulation of senescence marker proteins p53, p16, p21 and SA-β-Gal activity as well as ROS levels. Notably, Sirt3 reversed DOX-induced autophagic flux blockage, as shown by increased p62 degradation and LC3II/LC3I ratio. Importantly, the autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) partially abolished the antioxidant stress and antiaging effects of Sirt3, while the autophagy activator rapamycin (Rap) potentiated these effects of Sirt3, demonstrating that autophagy mediates the anti-aging effects of Sirt3. Additionally, Sirt3 inhibited the DOX-induced activation of the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathway, which in turn activated autophagy. The PI3K inhibitor LY294002 promoted the antioxidant stress and antiaging effects of Sirt3, while the AKT activator SC-79 reversed these effects of Sirt3. Taken together, Sirt3 counteracts DOX-induced senescence by improving autophagic flux.
Collapse
Affiliation(s)
- Xuhong Fan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuting He
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Guihao Wu
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Hongce Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xuecheng Cheng
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongtong Zhan
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Chunchun An
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Tongsheng Chen
- MOE Key Laboratory of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoping Wang
- Department of Pain Management, the First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
13
|
Ye Z, Wang S, Huang X, Chen P, Deng L, Li S, Lin S, Wang Z, Liu B. Plasma Exosomal miRNAs Associated With Metabolism as Early Predictor of Gestational Diabetes Mellitus. Diabetes 2022; 71:2272-2283. [PMID: 35926094 PMCID: PMC9630082 DOI: 10.2337/db21-0909] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
To date, the miRNA expression profile of plasma exosomes in women whose pregnancy is complicated by gestational diabetes mellitus (GDM) has not been fully clarified. In this study, differentially expressed miRNAs in plasma exosomes were identified by high-throughput small-RNA sequencing in 12 pregnant women with GDM and 12 with normal glucose tolerance (NGT) and validated in 102 pregnant women with GDM and 101 with NGT. A total of 22 exosomal miRNAs were found, five of which were verified by real-time qPCR. Exosomal miR-423-5p was upregulated, whereas miR-122-5p, miR-148a-3p, miR-192-5p, and miR-99a-5p were downregulated in women whose pregnancy was complicated by GDM. IGF1R and GYS1 as target genes of miR-423-5p, and G6PC3 and FDFT1 as target genes of miR-122-5p were associated with insulin and AMPK signaling pathways and may participate in the regulation of metabolism in GDM. The five exosomal miRNAs had an area under the curve of 0.82 (95%CI, 0.73, ∼0.91) in early prediction of GDM. Our study demonstrates that dysregulated exosomal miRNAs in plasma from pregnant women with GDM might influence the insulin and AMPK signaling pathways and could contribute to the early prediction of GDM.
Collapse
Affiliation(s)
- Zhixin Ye
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Songzi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqing Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Langhui Deng
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shiqi Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Suiwen Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Corresponding author: Bin Liu,
| |
Collapse
|
14
|
Bai J, Zhang S, Cao J, Sun H, Mang Z, Shen WL, Li H. Hernandezine, a natural herbal alkaloid, ameliorates type 2 diabetes by activating AMPK in two mouse models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154366. [PMID: 35933900 DOI: 10.1016/j.phymed.2022.154366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/11/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AMP-activated protein kinase (AMPK) is an effective target for treating diabetes. However, successful drug development is delayed due to issues including toxicity. Plant-derived natural product AMPK activators have emerged as a new way to treat diabetes due to its potential low safety risks. Here, we studied the effect of hernandezine (HER), a natural product derived from Thalictrum, in activating AMPK and treating T2D in mouse models. METHOD We tested HER in various cells and tissues, including primary hepatocytes, skeletal myotubes cell lines, as well as major metabolic tissues from diabetic (db/db) and diet-induced obesity (DIO) model mice. The effect of HER on glucose uptake via AMPK in vitro and in vivo was confirmed utilizing cell transfection and adenovirus interference analysis. Tissue staining assessed the effect of HER on adipogenesis. Real-time quantitative polymerase chain reaction (real-time PCR) was applied to verify the effect of HER on transcription factors. Western blot analysis was used to determine the activation of phosphorylated AMPK and ACC pathways. RESULTS Biochemically, we found that HER prevented pAMPK from dephosphorylation to prolong its activity, disproving previous direct activation model and providing a new model to explain HER-mediated AMPK activation. HER could be orally delivered to animals and has a 3-fold long half-life in vivo as compared to metformin. Importantly, long-term oral HER treatment potently reduced body weight and blood glucose in both type 2 diabetes mullitus (T2DM) mouse models by increasing glucose disposal and reducing lipogenesis, and appeared not to induce cardiac hypertrophy. CONCLUSION Natural product HER indirectly activates AMPK by suppressing its dephosphorylation. Oral HER effectively alleviated hyperglycemia and reduced body weight in T2D mouse models, appeared to have a low risk of causing cardiac hypertrophy, and might be a potential therapeutic option for T2DM.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China; School of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China
| | - Shuai Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinjing Cao
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Sun
- School of Life and Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguo Mang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wei L Shen
- School of Life and Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
15
|
Ma S, Ono M, Mizugaki A, Kato H, Miyashita M, Suzuki K. Cystine/Glutamine Mixture Supplementation Attenuated Fatigue during Endurance Exercise in Healthy Young Men by Enhancing Fatty Acid Utilization. Sports (Basel) 2022; 10:sports10100147. [PMID: 36287760 PMCID: PMC9610368 DOI: 10.3390/sports10100147] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Exercise-induced fatigue is a multi-origin physical and mental phenomenon. Efforts to diminish the above predisposition may contribute to endurance, along with athletic well-being, while development of nutritional strategies to optimize condition and exercise performance are essential issues for athletes and trainers. Dietary amino acids are being discussed for their specific health-promoting properties beyond their role as building blocks of proteins. Glutamine, along with cysteine, are two kinds of amino acids that are reported extensively for their anti-oxidation, anti-inflammation, and immune-regulation properties, and are promising in sport applications. In the present study, we designed a randomized, placebo-controlled, crossover trial to examine effects of 7-day supplementation of cystine/glutamine mixture (Cys2/Gln) on self-reporting fatigue index (ratings of perceived exertion, RPE), energy metabolism, and inflammation. We also employed a C2C12 myotube model to examine the capacity of cystine for fatty acid utilization. Cys2/Gln supplementation alleviated fatigue by decreasing RPE and enhanced fatty acid oxidation during a 60 min endurance exercise in human trials, while cystine increased fatty acid utilization in C2C12 myotubes by enhancing mitochondrial respiration. In summary, Cys2/Gln supplementation exerts positive effects on ameliorating exercise-induced fatigue, mechanisms of which can be attributed to enhancement of fatty acid utilization.
Collapse
Affiliation(s)
- Sihui Ma
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
- Japan Society for the Promotion of Science, Chiyoda-ku 1020083, Tokyo, Japan
| | - Miho Ono
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Ami Mizugaki
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Hiroyuki Kato
- Institute of Food Sciences and Technologies, Ajinomoto Co., Inc., Kawasaki 2108680, Kanagawa, Japan
| | - Masashi Miyashita
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 3591141, Saitama, Japan
- Correspondence: ; Tel.: +81-04-2947-6898
| |
Collapse
|
16
|
Sun Z, Hong Q, Liu Y, He X, Di R, Wang X, Ren C, Zhang Z, Chu M. Characterization of circular RNA profiles of oviduct reveal the potential mechanism in prolificacy trait of goat in the estrus cycle. Front Physiol 2022; 13:990691. [PMID: 36187784 PMCID: PMC9521424 DOI: 10.3389/fphys.2022.990691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/24/2022] [Indexed: 12/29/2022] Open
Abstract
The mammalian oviduct is functionally highly diverse during the estrus cycle. It provides a suitable milieu for oocyte maturation, sperm capacitation, fertilization, early embryo development and transportation. While there have been many studies of molecular mechanisms on the kidding number of goats, a systematic analysis by which the underlying circular RNAs (circRNAs) changes in the oviduct related to prolificacy traits is lacking. Herein, we present a comprehensive circRNA atlas of the oviduct among high- and low-fecundity goats in the follicular phase (FH vs. FL), luteal phase (LH vs. LL), and estrus cycle (FH vs. LH; FL vs. LL) to unravel their potential regulatory mechanisms in improving kidding number. We generated RNA sequencing data, and identified 4,078 circRNAs from twenty sampled Yunshang black goats. Many of these circRNAs are exon-derived and differentially expressed between each comparison group. Subsequently, eight differentially expressed (DE) circRNAs were validated by RT‒qPCR, which was consistent with the RNA-seq data. GO and KEGG enrichment analyses suggested that numerous host genes of DE circRNAs were involved in the hormone secretion, gamete production, fertilization, and embryo development processes. The competing endogenous RNA (ceRNA) interaction network analysis revealed that 2,673 circRNA–miRNA–mRNA axes (including 15 DE circRNAs, 14 miRNAs, and 1,699 mRNAs) were formed, and several target genes derived from the ceRNA network were associated with oviduct functions and reproduction, including SMAD1, BMPR1B, IGF1, REV1, and BMP2K. Furthermore, miR-15a-5p, miR-181b-5p, miR-23b-5p, miR-204-3p, and miR-145-5p might play important roles in reproduction. Finally, a novel circRNA, circIQCG, was identified as potentially involved in embryo development. Overall, our study provides a resource of circRNAs to understand the oviductal function and its connection to prolificacy trait of goats in the differentiation estrus cycle.
Collapse
Affiliation(s)
- Zhipeng Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Zijun Zhang, ; Mingxing Chu,
| |
Collapse
|
17
|
Skeletal-Muscle-Specific Overexpression of Chrono Leads to Disruption of Glucose Metabolism and Exercise Capacity. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081233. [PMID: 36013411 PMCID: PMC9410257 DOI: 10.3390/life12081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022]
Abstract
Disruption of circadian rhythms is related to disorders of glucose metabolism, and the molecular clock also exists in skeletal muscle. The ChIP-derived repressor of network oscillator (Chrono) and brain and muscle ARNT-like 1 (Bmal1) are core circadian components. Chrono is considered to be the repressor of Bmal1, and the Chrono–Bmal1 pathway is important in regulating the circadian rhythm; it has been speculated that this pathway could be a new mechanism for regulating glucose metabolism. The purpose of this study was to investigate the effects of Chrono on glucose metabolism in skeletal muscle and exercise capacity by using mice with skeletal-muscle-specific overexpression of Chrono (Chrono TG) and wild-type (WT) mice as the animal models. The results of this cross-sectional study indicated that the Chrono TG mice had an impaired glucose tolerance, lower exercise capacity, and higher levels of nonfasted blood glucose and glycogen content in skeletal muscle compared to WT mice. In addition, the Chrono TG mice also showed a significant increase in the amount of Chrono bound to Bmal1 according to a co-IP analysis; a remarkable decrease in mRNA expression of Tbc1d1, Glut4, Hk2, Pfkm, Pdp1, Gbe1, and Phka1, as well as in activity of Hk and protein expression of Ldhb; but higher mRNA expression of Pdk4 and protein expression of Ldha compared with those of WT mice. These data suggested the skeletal-muscle-specific overexpression of Chrono led to a greater amount of Chrono bound to Bmal1, which then could affect the glucose transporter, glucose oxidation, and glycogen utilization in skeletal muscle, as well as exercise capacity.
Collapse
|
18
|
A century of exercise physiology: key concepts in regulation of glycogen metabolism in skeletal muscle. Eur J Appl Physiol 2022; 122:1751-1772. [PMID: 35355125 PMCID: PMC9287217 DOI: 10.1007/s00421-022-04935-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/15/2022] [Indexed: 01/20/2023]
Abstract
Glycogen is a branched, glucose polymer and the storage form of glucose in cells. Glycogen has traditionally been viewed as a key substrate for muscle ATP production during conditions of high energy demand and considered to be limiting for work capacity and force generation under defined conditions. Glycogenolysis is catalyzed by phosphorylase, while glycogenesis is catalyzed by glycogen synthase. For many years, it was believed that a primer was required for de novo glycogen synthesis and the protein considered responsible for this process was ultimately discovered and named glycogenin. However, the subsequent observation of glycogen storage in the absence of functional glycogenin raises questions about the true role of the protein. In resting muscle, phosphorylase is generally considered to be present in two forms: non-phosphorylated and inactive (phosphorylase b) and phosphorylated and constitutively active (phosphorylase a). Initially, it was believed that activation of phosphorylase during intense muscle contraction was primarily accounted for by phosphorylation of phosphorylase b (activated by increases in AMP) to a, and that glycogen synthesis during recovery from exercise occurred solely through mechanisms controlled by glucose transport and glycogen synthase. However, it now appears that these views require modifications. Moreover, the traditional roles of glycogen in muscle function have been extended in recent years and in some instances, the original concepts have undergone revision. Thus, despite the extensive amount of knowledge accrued during the past 100 years, several critical questions remain regarding the regulation of glycogen metabolism and its role in living muscle.
Collapse
|
19
|
Kim S, Kim K, Park J, Jun W. Curcuma longa L. Water Extract Enhances Endurance Exercise Capacity by Promoting Intramuscular Mitochondrial Biogenesis in Mice. J Med Food 2022; 25:138-145. [PMID: 35148192 DOI: 10.1089/jmf.2021.k.0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the effect of Curcuma longa L. extract on endurance exercise capacity (EEC). EEC is the ability to exercise continuously and recover quickly, even when tired. C. longa contains antioxidants that contribute beneficial effects on the body. We separated groups of nonexercise (CON), exercise control (Ex-CON), branched-chain amino acid (BCAA) intake, and C. longa water extract (CLW) intake (Ex-CLW). EEC increased on the 28th day of BCAA and CLW intake. Both treatment groups exhibited decreased lactate levels with increased levels of nonesterified fatty acids and muscular glycogen compared with the Ex-CON group. Also, the Ex-CLW group possessed higher intramuscular antioxidant enzyme activities (catalase, superoxide dismutase, and glutathione peroxidase) than the Ex-CON group. The expression of PGC-1α, NRF, and Tfam, which are factors related to mitochondrial biogenesis, increased in the Ex-CLW group. Results suggest that CLW intake elevated EEC by increasing intramuscular mitochondrial biogenesis through suppressing the accumulation of fatigue substances and increasing fat consumption, and antioxidant enzyme activity.
Collapse
Affiliation(s)
- Shintae Kim
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Kyungmi Kim
- Department of Biofood Analysis, Korea Bio Polytechnic, Ganggyung, Korea
| | - Jeongjin Park
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| | - Woojin Jun
- Division of Food and Nutrition, Chonnam National University, Gwangju, Korea.,Research Institute for Human Ecology, Chonnam National University, Gwangju, Korea
| |
Collapse
|
20
|
Liu Y, Chen Y, Wang Y, Jiang S, Lin W, Wu Y, Li Q, Guo Y, Liu W, Yuan Q. DNA demethylase ALKBH1 promotes adipogenic differentiation via regulation of HIF-1 signaling. J Biol Chem 2021; 298:101499. [PMID: 34922943 PMCID: PMC8760519 DOI: 10.1016/j.jbc.2021.101499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 02/05/2023] Open
Abstract
DNA 6-adenine methylation (6mA), as a novel adenine modification existing in eukaryotes, shows essential functions in embryogenesis and mitochondrial transcriptions. ALKBH1 is a demethylase of 6mA and plays critical roles in osteogenesis, tumorigenesis, and adaptation to stress. However, the integrated biological functions of ALKBH1 still require further exploration. Here, we demonstrate that knockdown of ALKBH1 inhibits adipogenic differentiation in both human mesenchymal stem cells (hMSCs) and 3T3-L1 preadipocytes, while overexpression of ALKBH1 leads to increased adipogenesis. Using a combination of RNA-seq and N6-mA-DNA-IP-seq analyses, we identify hypoxia-inducible factor-1 (HIF-1) signaling as a crucial downstream target of ALKBH1 activity. Depletion of ALKBH1 leads to hypermethylation of both HIF-1α and its downstream target GYS1. Simultaneous overexpression of HIF-1α and GYS1 restores the adipogenic commitment of ALKBH1-deficient cells. Taken together, our data indicate that ALKBH1 is indispensable for adipogenic differentiation, revealing a novel epigenetic mechanism that regulates adipogenesis.
Collapse
Affiliation(s)
- Yuting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yunshu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Qiwen Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Weiqing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, #14 Third Section, Renmin Road South, Chengdu 610041, China.
| |
Collapse
|
21
|
Matsunaga Y, Takahashi K, Takahashi Y, Hatta H. Effects of glucose ingestion at different frequencies on glycogen recovery in mice during the early hours post exercise. J Int Soc Sports Nutr 2021; 18:69. [PMID: 34743706 PMCID: PMC8574022 DOI: 10.1186/s12970-021-00467-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 10/25/2021] [Indexed: 11/24/2022] Open
Abstract
Background When a high-carbohydrate diet is ingested, whether as small frequent snacks or as large meals, there is no difference between the two with respect to post-exercise glycogen storage for a period of 24 h. However, the effect of carbohydrate intake frequency on glycogen recovery a few hours after exercise is not clear. Athletes need to recover glycogen quickly after physical exercise as they sometimes exercise multiple times a day. The aim of this study was to determine the effect of carbohydrate intake at different frequencies on glycogen recovery during the first few hours after exercise. Methods After 120 min of fasting, 6-week-old male ICR mice were subjected to treadmill running exercise (20 m/min for 60 min) to decrease the levels of muscle and liver glycogen. Mice were then given glucose as a bolus (1.2 mg/g of body weight [BW], immediately after exercise) or as a pulse (1.2 mg/g of BW, every 15 min × 4 times). Following this, the blood, tissue, and exhaled gas samples were collected. Results In the bolus group, blood glucose concentration was significantly lower and plasma insulin concentration was significantly higher than those in the pulse group (p < 0.05). The plantaris muscle glycogen concentration in the bolus group was 25.3% higher than that in the pulse group at 60 min after glucose ingestion (p < 0.05). Liver glycogen concentration in the pulse group was significantly higher than that in the bolus group at 120 min after glucose ingestion (p < 0.05). Conclusions The present study showed that ingesting a large amount of glucose immediately after exercise increased insulin secretion and enhanced muscle glycogen recovery, whereas frequent and small amounts of glucose intake was shown to enhance liver glycogen recovery.
Collapse
Affiliation(s)
- Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
22
|
Li Y, Meng Y, Liu Y, van Wijnen AJ, Eirin A, Lerman LO. Differentially Expressed Functional LncRNAs in Human Subjects With Metabolic Syndrome Reflect a Competing Endogenous RNA Network in Circulating Extracellular Vesicles. Front Mol Biosci 2021; 8:667056. [PMID: 34485379 PMCID: PMC8415968 DOI: 10.3389/fmolb.2021.667056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 07/13/2021] [Indexed: 01/08/2023] Open
Abstract
Metabolic syndrome (MetS), a collective cluster of disease risk factors that include dyslipidemia, obesity, inflammation, hypertension, and insulin resistance, affects numerous people worldwide. Accumulating studies have shown that long non-coding RNAs (lncRNAs) serve as competing endogenous RNAs (ceRNAs) to play essential roles in regulating gene expression in various diseases. To explore the role of lncRNAs as ceRNAs in MetS, we examined a MetS-associated network in circulating extracellular vesicles (EVs) collected from the systemic blood of MetS and control patients (n = 5 each). In total, 191 differentially expressed lncRNAs, 1,389 mRNAs, and 138 miRNAs were selected for further analysis. Biological processes and pathway functional enrichment analysis were performed based on the Database for Annotation, Visualization, and Integrated Discovery (DAVID). The lncRNA/mRNA/miRNA ceRNA network was constructed by Cytoscape v3.8 based on the DE-RNAs and included 13 lncRNAs, 8 miRNAs, and 64 mRNAs. MetS patients showed elevated body weight, glucose, blood pressure, insulin, liver injury, and inflammatory marker levels. We found that lncRNAs reflect a ceRNA network that may regulate central cellular processes and complications of MetS, including cancer. These findings suggest that MetS alters the interactions among the ceRNA network components in circulating EVs and that this cargo of circulating EVs may have potential translational ramifications for MetS.
Collapse
Affiliation(s)
- Yongxin Li
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Yu Meng
- Central Laboratory, The Fifth Affiliated Hospital of Jinan University, Heyuan, China.,Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuanhang Liu
- Health Sciences Research and Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States
| | - Andre J van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
23
|
López-Soldado I, Guinovart JJ, Duran J. Increased liver glycogen levels enhance exercise capacity in mice. J Biol Chem 2021; 297:100976. [PMID: 34284060 PMCID: PMC8350413 DOI: 10.1016/j.jbc.2021.100976] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/22/2022] Open
Abstract
Muscle glycogen depletion has been proposed as one of the main causes of fatigue during exercise. However, few studies have addressed the contribution of liver glycogen to exercise performance. Using a low-intensity running protocol, here, we analyzed exercise capacity in mice overexpressing protein targeting to glycogen (PTG) specifically in the liver (PTGOE mice), which show a high concentration of glycogen in this organ. PTGOE mice showed improved exercise capacity, as determined by the distance covered and time ran in an extenuating endurance exercise, compared with control mice. Moreover, fasting decreased exercise capacity in control mice but not in PTGOE mice. After exercise, liver glycogen stores were totally depleted in control mice, but PTGOE mice maintained significant glycogen levels even in fasting conditions. In addition, PTGOE mice displayed an increased hepatic energy state after exercise compared with control mice. Exercise caused a reduction in the blood glucose concentration in control mice that was less pronounced in PTGOE mice. No changes were found in the levels of blood lactate, plasma free fatty acids, or β-hydroxybutyrate. Plasma glucagon was elevated after exercise in control mice, but not in PTGOE mice. Exercise-induced changes in skeletal muscle were similar in both genotypes. These results identify hepatic glycogen as a key regulator of endurance capacity in mice, an effect that may be exerted through the maintenance of blood glucose levels.
Collapse
Affiliation(s)
- Iliana López-Soldado
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.
| | - Joan J Guinovart
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain; Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Barcelona, Spain
| | - Jordi Duran
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| |
Collapse
|
24
|
Melanson B, Lapointe T, Leri F. Impact of impaired glucose metabolism on responses to a psychophysical stressor: modulation by ketamine. Psychopharmacology (Berl) 2021; 238:1005-1015. [PMID: 33404733 DOI: 10.1007/s00213-020-05748-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE There is evidence that hypoglycemia, a metabolic stressor, can negatively impact mood and motivation, and can interact with other stressors to potentiate their effects on behavior and physiology. OBJECTIVES/METHODS The current study in male Sprague-Dawley rats explored the interaction between impaired glucose metabolism induced by 0, 200, or 300 mg/kg 2-deoxy-D-glucose (2-DG) and a psychophysical stressor induced by forced swimming stress (FSS; 6 sessions, 10 min/session). The endpoints of interest were blood glucose levels, progressive behavioral immobility, and saccharin preference (2-bottle choice test). Furthermore, it was investigated whether pre-treatment with 0, 10, or 20 mg/kg ketamine could modify the interaction between 2-DG and FSS on these endpoints. RESULTS It was found that 2-DG increased blood glucose levels equally in all experimental groups, accelerated the immobile response to FSS, and suppressed saccharin preference 1 week following termination of stress exposure. As well, pre-treatment with ketamine blocked the effects of combined 2-DG and FSS on immobility and saccharin preference without affecting blood glucose levels and produced an anti-immobility effect that was observed during a drug-free test swim 1 week following administration. CONCLUSIONS Overall, these findings demonstrate that impaired glucose metabolism can potentiate the effects of a psychophysical stressor, and that this interaction can be modulated pharmacologically by ketamine.
Collapse
Affiliation(s)
- Brett Melanson
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Thomas Lapointe
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
25
|
A maternal high-fat/low-fiber diet impairs glucose tolerance and induces the formation of glycolytic muscle fibers in neonatal offspring. Eur J Nutr 2021; 60:2709-2718. [PMID: 33386892 DOI: 10.1007/s00394-020-02461-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE In our previous study, the maternal high-fat/low-fiber (HF-LF) diet was suggested to induce metabolic disorders and placental dysfunction of the dam, but the effects of this diet on glucose metabolism of neonatal offspring remain largely unknown. Here, a neonatal pig model was used to evaluate the effects of maternal HF-LF diet during pregnancy on glucose tolerance, transition of skeletal muscle fiber types, and mitochondrial function in offspring. METHODS A total of 66 pregnant gilts (Guangdong Small-ear Spotted pig) at day 60 of gestation were randomly divided into two groups: control group (CON group; 2.86% crude fat, 9.37% crude fiber), and high-fat/low-fiber diet group (HF-LF group; 5.99% crude fat, 4.13% crude fiber). RESULTS The maternal HF-LF diet was shown to impair the glucose tolerance of neonatal offspring, downregulate the protein level of slow-twitch fiber myosin heavy chain I (MyHC I), and upregulate the protein levels of fast-twitch fiber myosin heavy chain IIb (MyHC IIb) and IIx (MyHC IIx) in soleus muscle. Additionally, compared with the CON group, the HF-LF offspring showed inhibition of insulin signaling pathway and decrease in mitochondrial function in liver and soleus muscle. CONCLUSION Maternal HF-LF diet during pregnancy impairs glucose tolerance, induces the formation of glycolytic muscle fibers, and decreases the hepatic and muscular mitochondrial function in neonatal piglets.
Collapse
|
26
|
Barber GC, Chong BF. SnapshotDx Quiz: October 2020. J Invest Dermatol 2020. [DOI: 10.1016/j.jid.2020.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhu X, Yao T, Wang R, Guo S, Wang X, Zhou Z, Zhang Y, Zhuo X, Wang R, Li JZ, Liu T, Kong X. IRF4 in Skeletal Muscle Regulates Exercise Capacity via PTG/Glycogen Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001502. [PMID: 33042761 PMCID: PMC7539189 DOI: 10.1002/advs.202001502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Exercise-induced fatigue and exhaustion are interesting areas for many researchers. Muscle glycogen is critical for physical performance. However, how glycogen metabolism is manipulated during exercise is not very clear. The aim here is to assess the impact of interferon regulatory factor 4 (IRF4) on skeletal muscle glycogen and subsequent regulation of exercise capacity. Skeletal muscle-specific IRF4 knockout mice show normal body weight and insulin sensitivity, but better exercise capacity and increased glycogen content with unaltered triglyceride levels compared to control mice on chow diet. In contrast, mice overexpression of IRF4 displays decreased exercise capacity and lower glycogen content. Mechanistically, IRF4 regulates glycogen-associated regulatory subunit protein targeting to glycogen (PTG) to manipulate glucose metabolism in skeletal muscle. Knockdown of PTG can reverse the effects imposed by the absence of IRF4 in vivo. These studies reveal a regulatory pathway including IRF4/PTG/glycogen synthesis on controlling exercise capacity.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Division of Pediatric EndocrinologyDepartment of PediatricsUCLA Children's Discovery and Innovation InstituteDavid Geffen School of Medicine at UCLALos AngelesCA90095USA
- Department of Endocrinology and MetabolismZhongshan HospitalFudan UniversityShanghai200032P. R. China
- Fudan Institute for Metabolic DiseaseFudan UniversityShanghai200032P. R. China
| | - Ting Yao
- Division of Pediatric EndocrinologyDepartment of PediatricsUCLA Children's Discovery and Innovation InstituteDavid Geffen School of Medicine at UCLALos AngelesCA90095USA
| | - Ru Wang
- School of KinesiologyKey Laboratory of Exercise and Health Sciences of Ministry of EducationShanghai University of SportShanghai200438P. R. China
| | - Shanshan Guo
- School of KinesiologyKey Laboratory of Exercise and Health Sciences of Ministry of EducationShanghai University of SportShanghai200438P. R. China
| | - Xin Wang
- Division of Pediatric EndocrinologyDepartment of PediatricsUCLA Children's Discovery and Innovation InstituteDavid Geffen School of Medicine at UCLALos AngelesCA90095USA
- Department of Internal MedicineHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping ST, Nangang DistrictHarbinHeilongjiang150081P. R. China
| | - Zhenqi Zhou
- Department of MedicineDivision of Endocrinology, Diabetes and HypertensionDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCA90095USA
| | - Yan Zhang
- School of Life SciencesFudan UniversityShanghai200032P. R. China
| | - Xiaozhen Zhuo
- Department of CardiologyThe First Affiliated HospitalXi'an Jiaotong UniversityXi'anShanxi710061P. R. China
| | - Ruitao Wang
- Department of Internal MedicineHarbin Medical University Cancer HospitalHarbin Medical UniversityNo. 150 Haping ST, Nangang DistrictHarbinHeilongjiang150081P. R. China
| | - John Zhong Li
- The Key Laboratory of Rare Metabolic DiseaseDepartment of Biochemistry and Molecular BiologyThe Key Laboratory of Human Functional Genomics of Jiangsu ProvinceNanjing Medical UniversityNanjingJiangsu211166P. R. China
| | - Tiemin Liu
- State Key Laboratory of Genetic EngineeringDepartment of Endocrinology and Metabolism and School of Life SciencesZhongshan HospitalFudan UniversityShanghai200032P. R. China
- Institute of Metabolism and Integrative Biologyand Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghai200032P. R. China
- Human Phenome InstituteFudan UniversityShanghai200032P. R. China
| | - Xingxing Kong
- Division of Pediatric EndocrinologyDepartment of PediatricsUCLA Children's Discovery and Innovation InstituteDavid Geffen School of Medicine at UCLALos AngelesCA90095USA
| |
Collapse
|
28
|
Autry JM, Karim CB, Cocco M, Carlson SF, Thomas DD, Valberg SJ. Purification of sarcoplasmic reticulum vesicles from horse gluteal muscle. Anal Biochem 2020; 610:113965. [PMID: 32956693 DOI: 10.1016/j.ab.2020.113965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
We have analyzed protein expression and enzyme activity of the sarcoplasmic reticulum Ca2+-transporting ATPase (SERCA) in horse gluteal muscle. Horses exhibit a high incidence of recurrent exertional rhabdomyolysis, with myosolic Ca2+ proposed, but yet to be established, as the underlying cause. To better assess Ca2+ regulatory mechanisms, we developed an improved protocol for isolating sarcoplasmic reticulum (SR) vesicles from horse skeletal muscle, based on mechanical homogenization and optimized parameters for differential centrifugation. Immunoblotting identified the peak subcellular fraction containing the SERCA1 protein (fast-twitch isoform). Gel analysis using the Stains-all dye demonstrated that calsequestrin (CASQ) and phospholipids are highly enriched in the SERCA-containing subcellular fraction isolated from horse gluteus. Immunoblotting also demonstrated that these horse SR vesicles show low content of glycogen phosphorylase (GP), which is likely an abundant contaminating protein of traditional horse SR preps. The maximal Ca2+-activated ATPase activity (Vmax) of SERCA in horse SR vesicles isolated using this protocol is 5‒25-fold greater than previously-reported SERCA activity in SR preps from horse skeletal muscle. We propose that this new protocol for isolating SR vesicles will be useful for determining enzymatic parameters of horse SERCA with high fidelity, plus assessing regulatory effect of SERCA peptide subunit(s) expressed in horse muscle.
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Christine B Karim
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mariana Cocco
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA
| | - Samuel F Carlson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stephanie J Valberg
- Department of Large Animal Clinical Sciences, McPhail Equine Performance Center, Michigan State University, East Lansing, MI, 48823, USA.
| |
Collapse
|
29
|
Do sex-related differences and time of intervals affect the skeletal muscle glycolytic response to high-intensity interval exercise? SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-020-00627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
30
|
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch 2020; 472:1273-1298. [PMID: 32591906 PMCID: PMC7462924 DOI: 10.1007/s00424-020-02417-x] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/13/2022]
Abstract
A family of facilitative glucose transporters (GLUTs) is involved in regulating tissue-specific glucose uptake and metabolism in the liver, skeletal muscle, and adipose tissue to ensure homeostatic control of blood glucose levels. Reduced glucose transport activity results in aberrant use of energy substrates and is associated with insulin resistance and type 2 diabetes. It is well established that GLUT2, the main regulator of hepatic hexose flux, and GLUT4, the workhorse in insulin- and contraction-stimulated glucose uptake in skeletal muscle, are critical contributors in the control of whole-body glycemia. However, the molecular mechanism how insulin controls glucose transport across membranes and its relation to impaired glycemic control in type 2 diabetes remains not sufficiently understood. An array of circulating metabolites and hormone-like molecules and potential supplementary glucose transporters play roles in fine-tuning glucose flux between the different organs in response to an altered energy demand.
Collapse
|
31
|
Takahashi Y, Matsunaga Y, Banjo M, Takahashi K, Sato Y, Seike K, Nakano S, Hatta H. Effects of Nutrient Intake Timing on Post-Exercise Glycogen Accumulation and its Related Signaling Pathways in Mouse Skeletal Muscle. Nutrients 2019; 11:nu11112555. [PMID: 31652791 PMCID: PMC6893707 DOI: 10.3390/nu11112555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 01/19/2023] Open
Abstract
We investigated the effects of nutrient intake timing on glycogen accumulation and its related signals in skeletal muscle after an exercise that did not induce large glycogen depletion. Male ICR mice ran on a treadmill at 25 m/min for 60 min under a fed condition. Mice were orally administered a solution containing 1.2 mg/g carbohydrate and 0.4 mg/g protein or water either immediately (early nutrient, EN) or 180 min (late nutrient, LN) after the exercise. Tissues were harvested at 30 min after the oral administration. No significant difference in blood glucose or plasma insulin concentrations was found between the EN and LN groups. The plantaris muscle glycogen concentration was significantly (p < 0.05) higher in the EN group—but not in the LN group—compared to the respective time-matched control group. Akt Ser473 phosphorylation was significantly higher in the EN group than in the time-matched control group (p < 0.01), while LN had no effect. Positive main effects of time were found for the phosphorylations in Akt substrate of 160 kDa (AS160) Thr642 (p < 0.05), 5′-AMP-activated protein kinase (AMPK) Thr172 (p < 0.01), and acetyl-CoA carboxylase Ser79 (p < 0.01); however, no effect of nutrient intake was found for these. We showed that delayed nutrient intake could not increase muscle glycogen after endurance exercise which did not induce large glycogen depletion. The results also suggest that post-exercise muscle glycogen accumulation after nutrient intake might be partly influenced by Akt activation. Meanwhile, increased AS160 and AMPK activation by post-exercise fasting might not lead to glycogen accumulation.
Collapse
Affiliation(s)
- Yumiko Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yutaka Matsunaga
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Mai Banjo
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Yosuke Sato
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Kohei Seike
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Suguru Nakano
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
32
|
Regulation of Skeletal Muscle Glucose Transport and Glucose Metabolism by Exercise Training. Nutrients 2019; 11:nu11102432. [PMID: 31614762 PMCID: PMC6835691 DOI: 10.3390/nu11102432] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
Aerobic exercise training and resistance exercise training are both well-known for their ability to improve human health; especially in individuals with type 2 diabetes. However, there are critical differences between these two main forms of exercise training and the adaptations that they induce in the body that may account for their beneficial effects. This article reviews the literature and highlights key gaps in our current understanding of the effects of aerobic and resistance exercise training on the regulation of systemic glucose homeostasis, skeletal muscle glucose transport and skeletal muscle glucose metabolism.
Collapse
|
33
|
Blackwood SJ, Hanya E, Katz A. Effect of postexercise temperature elevation on postexercise glycogen metabolism of isolated mouse soleus muscle. J Appl Physiol (1985) 2019; 126:1103-1109. [PMID: 30730817 DOI: 10.1152/japplphysiol.01121.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effects of temperature elevation after intense repeated contractions on glycogen and energy metabolism as well as contractile function of isolated mouse soleus muscle (slow twitch, oxidative) were investigated. Muscles were stimulated electrically to perform repeated tetanic contractions for 10 min at 25°C, which reduced tetanic force by ~85% and glycogen by 50%. After 120-min recovery at 25°C glycogen was fully restored (~125% of basal), whereas after recovery at 35°C glycogen decreased further (~25% of basal). Glycogen synthase fractional activity averaged 31.8 ± 3.1% (baseline = 33.8 ± 3.4%) after 120-min recovery at 25°C but was increased after recovery at 35°C (63.8 ± 4.8%; P < 0.001 vs. 25°C). Phosphorylase fractional and total activities were not affected by the higher temperature. However, recovery at 35°C resulted in a significantly higher content of the phosphorylase substrate inorganic phosphate (~20%; P < 0.01 vs. 25°C). Finally, fatigue development during a subsequent bout of repeated contractions at 25°C was similar after 120-min recovery at 25°C and 35°C. These data demonstrate that after intense contractions elevated temperature inhibits glycogen accumulation, likely by increasing the availability of the phosphorylase substrate inorganic phosphate, but has no effect on fatigue development. Thus after heat exposure phosphorylase plays a significant role in glycogen accumulation, and glycogen does not limit muscle performance in isolated mouse soleus muscle after recovery from elevated temperature. NEW & NOTEWORTHY Whether elevated temperature affects glycogen biogenesis and contractile performance of isolated slow-twitch muscle is not known. Here we show that after a bout of repeated contractions in isolated mouse soleus muscle at 25°C, increasing muscle temperature during recovery to 35°C blocked glycogen accumulation compared with recovery at 25°C. Surprisingly, during a subsequent bout of repeated contractions at 25°C, the rate of fatigue was not different between groups after recovery at the two temperatures.
Collapse
Affiliation(s)
- Sarah J Blackwood
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Ester Hanya
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| | - Abram Katz
- Department of Physical Therapy, School of Health Sciences, Ariel University, Ariel, Israel
| |
Collapse
|
34
|
Pederson BA. Structure and Regulation of Glycogen Synthase in the Brain. ADVANCES IN NEUROBIOLOGY 2019; 23:83-123. [PMID: 31667806 DOI: 10.1007/978-3-030-27480-1_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brain glycogen synthesis is a regulated, multi-step process that begins with glucose transport across the blood brain barrier and culminates with the actions of glycogen synthase and the glycogen branching enzyme to elongate glucose chains and introduce branch points in a growing glycogen molecule. This review focuses on the synthesis of glycogen in the brain, with an emphasis on glycogen synthase, but draws on salient studies in mammalian muscle and liver as well as baker's yeast, with the goal of providing a more comprehensive view of glycogen synthesis and highlighting potential areas for further study in the brain. In addition, deficiencies in the glycogen biosynthetic enzymes which lead to glycogen storage diseases in humans are discussed, highlighting effects on the brain and discussing findings in genetically modified animal models that recapitulate these diseases. Finally, implications of glycogen synthesis in neurodegenerative and other diseases that impact the brain are presented.
Collapse
|
35
|
Interactive Roles for AMPK and Glycogen from Cellular Energy Sensing to Exercise Metabolism. Int J Mol Sci 2018; 19:ijms19113344. [PMID: 30373152 PMCID: PMC6274970 DOI: 10.3390/ijms19113344] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022] Open
Abstract
The AMP-activated protein kinase (AMPK) is a heterotrimeric complex with central roles in cellular energy sensing and the regulation of metabolism and exercise adaptations. AMPK regulatory β subunits contain a conserved carbohydrate-binding module (CBM) that binds glycogen, the major tissue storage form of glucose. Research over the past two decades has revealed that the regulation of AMPK is impacted by glycogen availability, and glycogen storage dynamics are concurrently regulated by AMPK activity. This growing body of research has uncovered new evidence of physical and functional interactive roles for AMPK and glycogen ranging from cellular energy sensing to the regulation of whole-body metabolism and exercise-induced adaptations. In this review, we discuss recent advancements in the understanding of molecular, cellular, and physiological processes impacted by AMPK-glycogen interactions. In addition, we appraise how novel research technologies and experimental models will continue to expand the repertoire of biological processes known to be regulated by AMPK and glycogen. These multidisciplinary research advances will aid the discovery of novel pathways and regulatory mechanisms that are central to the AMPK signaling network, beneficial effects of exercise and maintenance of metabolic homeostasis in health and disease.
Collapse
|
36
|
Horman T, Fernandes MF, Zhou Y, Fuller B, Tigert M, Leri F. An exploration of the aversive properties of 2-deoxy-D-glucose in rats. Psychopharmacology (Berl) 2018; 235:3055-3063. [PMID: 30112578 DOI: 10.1007/s00213-018-4998-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/07/2018] [Indexed: 12/20/2022]
Abstract
Hypoglycemia can alter arousal and negatively impact mood. This study tests the hypothesis that acute drops in glucose metabolism cause an aversive state mediated by monoamine activity. In experiment 1, male Sprague-Dawley rats were either food deprived (FD) or pre-fed (PF) and tested on conditioned place avoidance (CPA; biased place conditioning design; 3 pairings drug/vehicle, each 30 min-long) induced by the glucose antimetabolite 2-deoxy-D-glucose (2-DG; 0, 300 or 500 mg/kg, SC). Locomotion and blood glucose were also assessed. Experiment 2 examined whether clonidine (noradrenergic α2 agonist, 0, 10 or 40 μg/kg, SC) or bupropion (monoamine reuptake blocker, 0, 10 or 30 mg/kg, SC) could alter CPA induced by 500 mg/kg 2-DG. In experiment 3, blood corticosterone (CORT) was measured in response to 500 mg/kg 2-DG, alone or in combination with 40 μg/kg clonidine or 30 mg/kg bupropion. Finally, experiment 4 controlled for possible place conditioning induced by 10 or 40 μg/kg clonidine, or 10 or 30 mg/kg bupropion injected without 2-DG. It was found that 2-DG increased blood glucose and produced a robust CPA. The feeding status of the animals modulated these effects, including CORT levels. Both clonidine and bupropion attenuated the effects of 2-DG on CPA and CORT, but only bupropion reversed suppression of locomotion. Taken together, these results in rats suggest that impaired glucose metabolism can negatively impact arousal and mood via effects on HPA and monoamine systems.
Collapse
Affiliation(s)
- Thomas Horman
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA
| | - Benjamin Fuller
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Melissa Tigert
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Francesco Leri
- Department of Psychology and Neuroscience, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
37
|
Jardí F, Laurent MR, Dubois V, Kim N, Khalil R, Decallonne B, Vanderschueren D, Claessens F. Androgen and estrogen actions on male physical activity: a story beyond muscle. J Endocrinol 2018; 238:R31-R52. [PMID: 29743340 DOI: 10.1530/joe-18-0125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/09/2018] [Indexed: 12/15/2022]
Abstract
Physical inactivity is a pandemic that contributes to several chronic diseases and poses a significant burden on health care systems worldwide. The search for effective strategies to combat sedentary behavior has led to an intensification of the research efforts to unravel the biological substrate controlling activity. A wide body of preclinical evidence makes a strong case for sex steroids regulating physical activity in both genders, albeit the mechanisms implicated remain unclear. The beneficial effects of androgens on muscle as well as on other peripheral functions might play a role in favoring adaptation to exercise. Alternatively or in addition, sex steroids could act on specific brain circuitries to boost physical activity. This review critically discusses the evidence supporting a role for androgens and estrogens stimulating male physical activity, with special emphasis on the possible role of peripheral and/or central mechanisms. Finally, the potential translation of these findings to humans is briefly discussed.
Collapse
Affiliation(s)
- Ferran Jardí
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Michaël R Laurent
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and GeriatricsDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Vanessa Dubois
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Nari Kim
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Rougin Khalil
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Dirk Vanderschueren
- Clinical and Experimental EndocrinologyDepartment of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - Frank Claessens
- Molecular Endocrinology LaboratoryDepartment of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Montori-Grau M, Pedreira-Casahuga R, Boyer-Díaz Z, Lassot I, García-Martínez C, Orozco A, Cebrià J, Osorio-Conles O, Chacón MR, Vendrell J, Vázquez-Carrera M, Desagher S, Jiménez-Chillarón JC, Gómez-Foix AM. GNIP1 E3 ubiquitin ligase is a novel player in regulating glycogen metabolism in skeletal muscle. Metabolism 2018; 83:177-187. [PMID: 29466708 DOI: 10.1016/j.metabol.2018.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/09/2018] [Accepted: 02/15/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Glycogenin-interacting protein 1 (GNIP1) is a tripartite motif (TRIM) protein with E3 ubiquitin ligase activity that interacts with glycogenin. These data suggest that GNIP1 could play a major role in the control of glycogen metabolism. However, direct evidence based on functional analysis remains to be obtained. OBJECTIVES The aim of this study was 1) to define the expression pattern of glycogenin-interacting protein/Tripartite motif containing protein 7 (GNIP/TRIM7) isoforms in humans, 2) to test their ubiquitin E3 ligase activity, and 3) to analyze the functional effects of GNIP1 on muscle glucose/glycogen metabolism both in human cultured cells and in vivo in mice. RESULTS We show that GNIP1 was the most abundant GNIP/TRIM7 isoform in human skeletal muscle, whereas in cardiac muscle only TRIM7 was expressed. GNIP1 and TRIM7 had autoubiquitination activity in vitro and were localized in the Golgi apparatus and cytosol respectively in LHCN-M2 myoblasts. GNIP1 overexpression increased glucose uptake in LHCN-M2 myotubes. Overexpression of GNIP1 in mouse muscle in vivo increased glycogen content, glycogen synthase (GS) activity and phospho-GSK-3α/β (Ser21/9) and phospho-Akt (Ser473) content, whereas decreased GS phosphorylation in Ser640. These modifications led to decreased blood glucose levels, lactate levels and body weight, without changing whole-body insulin or glucose tolerance in mouse. CONCLUSION GNIP1 is an ubiquitin ligase with a markedly glycogenic effect in skeletal muscle.
Collapse
Affiliation(s)
- Marta Montori-Grau
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain.
| | - Robert Pedreira-Casahuga
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Zoé Boyer-Díaz
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Iréna Lassot
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Celia García-Martínez
- Departament de Patologia i Terapèutica Experimental, UB, Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Orozco
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Judith Cebrià
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Oscar Osorio-Conles
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | - Matilde R Chacón
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Joan Vendrell
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Hospital Universitari de Tarragona Joan XXIII, Universitat Rovira i Virgili, IISPV, Tarragona, Spain
| | - Manuel Vázquez-Carrera
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain; Departament de Farmacologia, Toxicologia i Química Terapéutica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Spain
| | - Solange Desagher
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Josep Carles Jiménez-Chillarón
- Institut de Recerca Sant Joan de Déu (IRSJD), Esplugues de Llobregat, Barcelona, Spain; Endocrine Division, Esplugues de Llobregat, Barcelona, Spain
| | - Anna Ma Gómez-Foix
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Spain; Institut de Biomedicina de la Universitat de Barcelona (IBUB), Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III, Spain
| |
Collapse
|
39
|
|
40
|
Ferroportin Expression in Adipocytes Does Not Contribute to Iron Homeostasis or Metabolic Responses to a High Calorie Diet. Cell Mol Gastroenterol Hepatol 2018; 5:319-331. [PMID: 29552621 PMCID: PMC5852331 DOI: 10.1016/j.jcmgh.2018.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Iron has an increasingly recognized role in the regulation of adipose tissue function, including the expression of adipokines involved in the pathogenesis of nonalcoholic fatty liver disease. The cellular iron exporter, ferroportin, has been proposed as being a key determinant of adipocyte iron homeostasis. METHODS We studied an adipocyte-specific ferroportin (Fpn1) knockout mouse model, using an Adipoq-Cre recombinase driven Fpn1 deletion and fed mice according to the fast food diet model of nonalcoholic steatohepatitis. RESULTS We showed successful selective deletion of Fpn1 in adipocytes, but found that this did not lead to increased adipocyte iron stores as measured by atomic absorption spectroscopy or histologically quantified iron granules after staining with 3,3'-diaminobenzidine-enhanced Perls' stain. Mice with adipocyte-specific Fpn1 deletion did not show dysregulation of adiponectin, leptin, resistin, or retinol-binding protein-4 expression. Similarly, adipocyte-specific Fpn1 deletion did not affect insulin sensitivity during hyperinsulinemic-euglycemic clamp studies or lead to histologic evidence of increased liver injury. We have shown, however, that the fast food diet model of nonalcoholic steatohepatitis generates an increase in adipose tissue macrophage infiltration with crown-like structures, as seen in human beings, further validating the utility of this model. CONCLUSIONS Ferroportin may not be a key determinant of adipocyte iron homeostasis in this knockout model. Further studies are needed to determine the mechanisms of iron metabolism in adipocytes and adipose tissue.
Collapse
Key Words
- AAS, atomic absorption spectroscopy
- ANOVA, analysis of variance
- AUC, area under the curve
- Adipoq, adiponectin
- Adipose Tissue
- EFP, epididymal fat pad
- FKO, ferroportin knockout
- Ferroportin
- Ferroportin Flox, Fpn1fl/fl
- Fpn1, ferroportin
- HIC, hepatic iron concentration
- Hamp1, hepcidin
- Iron
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- Nonalcoholic Fatty Liver Disease
- PCR, polymerase chain reaction
- RBP-4, retinol binding protein-4
- Tfr1, transferrin receptor-1
- bp, base pair
- cDNA, complementary DNA
- mRNA, messenger RNA
Collapse
|
41
|
Kjøbsted R, Hingst JR, Fentz J, Foretz M, Sanz MN, Pehmøller C, Shum M, Marette A, Mounier R, Treebak JT, Wojtaszewski JFP, Viollet B, Lantier L. AMPK in skeletal muscle function and metabolism. FASEB J 2018; 32:1741-1777. [PMID: 29242278 PMCID: PMC5945561 DOI: 10.1096/fj.201700442r] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Skeletal muscle possesses a remarkable ability to adapt to various physiologic conditions. AMPK is a sensor of intracellular energy status that maintains energy stores by fine-tuning anabolic and catabolic pathways. AMPK’s role as an energy sensor is particularly critical in tissues displaying highly changeable energy turnover. Due to the drastic changes in energy demand that occur between the resting and exercising state, skeletal muscle is one such tissue. Here, we review the complex regulation of AMPK in skeletal muscle and its consequences on metabolism (e.g., substrate uptake, oxidation, and storage as well as mitochondrial function of skeletal muscle fibers). We focus on the role of AMPK in skeletal muscle during exercise and in exercise recovery. We also address adaptations to exercise training, including skeletal muscle plasticity, highlighting novel concepts and future perspectives that need to be investigated. Furthermore, we discuss the possible role of AMPK as a therapeutic target as well as different AMPK activators and their potential for future drug development.—Kjøbsted, R., Hingst, J. R., Fentz, J., Foretz, M., Sanz, M.-N., Pehmøller, C., Shum, M., Marette, A., Mounier, R., Treebak, J. T., Wojtaszewski, J. F. P., Viollet, B., Lantier, L. AMPK in skeletal muscle function and metabolism.
Collapse
Affiliation(s)
- Rasmus Kjøbsted
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Joachim Fentz
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marc Foretz
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria-Nieves Sanz
- Department of Cardiovascular Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland, and.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Christian Pehmøller
- Internal Medicine Research Unit, Pfizer Global Research and Development, Cambridge, Massachusetts, USA
| | - Michael Shum
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - André Marette
- Axe Cardiologie, Quebec Heart and Lung Research Institute, Laval University, Québec, Canada.,Institute for Nutrition and Functional Foods, Laval University, Québec, Canada
| | - Remi Mounier
- Institute NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM Unité 1217, CNRS UMR, Villeurbanne, France
| | - Jonas T Treebak
- Section of Integrative Physiology, Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Viollet
- INSERM, Unité 1016, Institut Cochin, Paris, France.,Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Louise Lantier
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA.,Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
42
|
Joannides CN, Mangiafico SP, Waters MF, Lamont BJ, Andrikopoulos S. Dapagliflozin improves insulin resistance and glucose intolerance in a novel transgenic rat model of chronic glucose overproduction and glucose toxicity. Diabetes Obes Metab 2017; 19:1135-1146. [PMID: 28244693 DOI: 10.1111/dom.12923] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 01/16/2023]
Abstract
AIM To determine whether the excretion of glucose improves insulin resistance, impaired insulin secretion or both. MATERIALS AND METHODS Appropriate methods were used to assess insulin sensitivity (euglycaemic-hyperinsulinaemic clamp) and insulin secretion (hyperglycaemic clamp) in insulin-resistant and hyperglycaemic phosphoenolpyruvate carboxykinase (PEPCK) transgenic rats after treatment with the sodium-glucose co-transporter-2 (SGLT2) inhibitor dapagliflozin. RESULTS In 14-week-old rats with hyperglycaemia, insulin resistance and glucose intolerance, 6 weeks of dapagliflozin treatment resulted in lower weight gain, plasma glucose and insulin levels, and improved glucose tolerance, associated with enhanced insulin sensitivity (rate of glucose disappearance: 51.6 ± 2.3 vs 110.6 ± 3.9 µmol/min/kg; P < .005) and glucose uptake in muscle (0.9 ± 0.1 vs 1.7 ± 0.3 µmol/min/100 g; P < .05) and fat (0.23 ± 0.04 vs 0.55 ± 0.10 µmol/min/100 g, P < .05). Additionally, adipose tissue GLUT4 protein levels were increased (0.78 ± 0.05 vs 1.20 ± 0.09 arbitrary units; P < .05), adipocyte count was higher (221.4 ± 17.7 vs 302.3 ± 21.7 per mm2 fat area; P < .05) and adipocyte size was reduced (4631.8 ± 351.5 vs 3397.6 ± 229.4 µm2 , P < .05). There was no improvement, however, in insulin secretion. To determine whether earlier intervention is necessary, 5-week-old PEPCK transgenic rats were treated with dapagliflozin for 9 weeks and insulin secretion assessed. Dapagliflozin resulted in improved plasma glucose and insulin levels, and lower weight gain but, again, insulin secretion was not improved. CONCLUSIONS In this transgenic model of low-grade chronic hyperglycaemia, SGLT2 inhibitor treatment resulted in reduced blood glucose and insulin levels and enhanced glucose tolerance, associated with improved muscle and fat insulin resistance but not improved insulin secretory function.
Collapse
Affiliation(s)
- Christos N Joannides
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Victoria, Australia
| | - Salvatore P Mangiafico
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Victoria, Australia
| | - Matthew F Waters
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Victoria, Australia
| | - Benjamin J Lamont
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Victoria, Australia
| | - Sofianos Andrikopoulos
- Department of Medicine, Austin Hospital, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
43
|
Miao LH, Lin Y, Pan WJ, Huang X, Ge XP, Ren MC, Zhou QL, Liu B. Identification of Differentially Expressed Micrornas Associate with Glucose Metabolism in Different Organs of Blunt Snout Bream (Megalobrama amblycephala). Int J Mol Sci 2017; 18:ijms18061161. [PMID: 28561770 PMCID: PMC5485985 DOI: 10.3390/ijms18061161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 05/25/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Blunt snout bream (Megalobrama amblycephala) is a widely favored herbivorous fish species and is a frequentlyused fish model for studying the metabolism physiology. This study aimed to provide a comprehensive illustration of the mechanisms of a high-starch diet (HSD) induced lipid metabolic disorder by identifying microRNAs (miRNAs) controlled pathways in glucose and lipid metabolism in fish using high-throughput sequencing technologies. Small RNA libraries derived from intestines, livers, and brains of HSD and normal-starch diet (NSD) treated M. amblycephala were sequenced and 79, 124 and 77 differentially expressed miRNAs (DEMs) in intestines, livers, and brains of HSD treated fish were identified, respectively. Bioinformatics analyses showed that these DEMs targeted hundreds of predicted genes were enriched into metabolic pathways and biosynthetic processes, including peroxisome proliferator-activated receptor (PPAR), glycolysis/gluconeogenesis, and insulin signaling pathway. These analyses confirmed that miRNAs play crucial roles in glucose and lipid metabolism related to high wheat starch treatment. These results provide information on further investigation of a DEM-related mechanism dysregulated by a high carbohydrate diet.
Collapse
Affiliation(s)
- Ling-Hong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Wen-Jing Pan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Xin Huang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
| | - Xian-Ping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Ming-Chun Ren
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Qun-Lan Zhou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
44
|
Sylow L, Kleinert M, Richter EA, Jensen TE. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control. Nat Rev Endocrinol 2017; 13:133-148. [PMID: 27739515 DOI: 10.1038/nrendo.2016.162] [Citation(s) in RCA: 265] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Skeletal muscle extracts glucose from the blood to maintain demand for carbohydrates as an energy source during exercise. Such uptake involves complex molecular signalling processes that are distinct from those activated by insulin. Exercise-stimulated glucose uptake is preserved in insulin-resistant muscle, emphasizing exercise as a therapeutic cornerstone among patients with metabolic diseases such as diabetes mellitus. Exercise increases uptake of glucose by up to 50-fold through the simultaneous stimulation of three key steps: delivery, transport across the muscle membrane and intracellular flux through metabolic processes (glycolysis and glucose oxidation). The available data suggest that no single signal transduction pathway can fully account for the regulation of any of these key steps, owing to redundancy in the signalling pathways that mediate glucose uptake to ensure maintenance of muscle energy supply during physical activity. Here, we review the molecular mechanisms that regulate the movement of glucose from the capillary bed into the muscle cell and discuss what is known about their integrated regulation during exercise. Novel developments within the field of mass spectrometry-based proteomics indicate that the known regulators of glucose uptake are only the tip of the iceberg. Consequently, many exciting discoveries clearly lie ahead.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|