1
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Axelrod CL, Langohr I, Dantas WS, Heintz EC, Vandanmagsar B, Yang S, Zunica ERM, Leigh Townsend R, Albaugh VL, Berthoud HR, Kirwan JP. Weight-independent effects of Roux-en-Y gastric bypass surgery on remission of nonalcoholic fatty liver disease in mice. Obesity (Silver Spring) 2023; 31:2960-2971. [PMID: 37731222 PMCID: PMC10895705 DOI: 10.1002/oby.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Obesity is a driver of non-alcoholic fatty liver disease (NAFLD), and interventions that decrease body weight, such as bariatric surgery and/or calorie restriction (CR), may serve as effective therapies. This study compared the effects of Roux-en-Y gastric bypass surgery (RYGB) and CR on hepatic function in mice with obesity and NAFLD. METHODS C57BL/6J mice were fed a high-fat diet to promote obesity. At 16 weeks of age, mice were randomized to sham surgery (sham), RYGB, or CR weight matched to RYGB (WM). Body weight/composition, food intake, and energy expenditure (EE) were measured throughout treatment. Liver histopathology was evaluated from H&E-stained sections. Hepatic enzymes and glycogen content were determined by ELISA. Transcriptional signatures were revealed via RNA sequencing. RESULTS RYGB reduced hepatic lipid content and adiposity while increasing EE and lean body mass relative to WM. Hepatic glycogen and bile acid content were increased after RYGB relative to sham and WM. RYGB activated enterohepatic signaling and genes regulating hepatic lipid homeostasis. CONCLUSIONS RYGB improved whole-body composition and hepatic lipid homeostasis to a greater extent than CR in mice. RYGB was associated with discrete remodeling of the hepatic transcriptome, suggesting that surgery may be mechanistically additive to CR.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wagner S. Dantas
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C. Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bolormaa Vandanmagsar
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth R. M. Zunica
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - R. Leigh Townsend
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Vance L. Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Metamor Institute, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Hans-Rudolf Berthoud
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
3
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
4
|
Makiuchi N, Takano S, Tada Y, Kasai K, Igarashi N, Kani K, Kato M, Goto K, Matsuura Y, Ichimura-Shimizu M, Furusawa Y, Tsuneyama K, Nagai Y. Dynamics of Liver Macrophage Subsets in a Novel Mouse Model of Non-Alcoholic Steatohepatitis Using C57BL/6 Mice. Biomedicines 2023; 11:2659. [PMID: 37893033 PMCID: PMC10604124 DOI: 10.3390/biomedicines11102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Macrophages are critical for the development of non-alcoholic steatohepatitis (NASH). Our previous findings in TSNO mouse livers showed that an iHFC (high-fat/cholesterol/cholate) diet induced liver fibrosis similar to human NASH and led to the accumulation of distinct subsets of macrophage: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+/Ly6C- cells were associated with the promotion of advanced liver fibrosis in NASH. On the other hand, CD11c-/Ly6C+ cells exhibited an anti-inflammatory effect and were involved in tissue remodeling processes. This study aimed to elucidate whether an iHFC diet with reduced cholic acid (iHFC#2 diet) induces NASH in C57BL/6 mice and examine the macrophage subsets accumulating in the liver. Histological and quantitative real-time PCR analyses revealed that the iHFC#2 diet promoted inflammation and fibrosis indicative of NASH in the livers of C57BL/6 mice. Cell numbers of Kupffer cells decreased and recruited macrophages were accumulated in the livers of iHFC#2 diet-fed C57BL/6 mice. Notably, the iHFC#2 diet resulted in the accumulation of three macrophage subsets in the livers of C57BL/6 mice: CD11c+/Ly6C-, CD11c-/Ly6C+, and CD11c+/Ly6C+ cells. However, CD11c+/Ly6C+ cells were not distinct populations in the iHFC-fed TSNO mice. Thus, differences in cholic acid content and mouse strain affect the macrophage subsets that accumulate in the liver.
Collapse
Affiliation(s)
- Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Miyuna Kato
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Kana Goto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Yudai Matsuura
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan; (M.I.-S.); (K.T.)
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan; (N.M.); (S.T.); (Y.T.); (K.K.); (N.I.); (K.K.); (M.K.); (K.G.); (Y.M.); (Y.F.)
| |
Collapse
|
5
|
Liang P, Zhou S, Yuan Z, Zhang L, Jiang Z, Yu Q. Obeticholic acid improved triptolide/lipopolysaccharide-induced hepatotoxicity by inhibiting caspase-11-GSDMD pyroptosis pathway. J Appl Toxicol 2023; 43:599-614. [PMID: 36328986 DOI: 10.1002/jat.4410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
This study was designed to investigate the potential role of farnesoid X receptor (FXR) in abnormal bile acid metabolism and pyroptosis during the pathogenesis of triptolide (TP)/lipopolysaccharide (LPS)-induced hepatotoxicity. Moreover, the protective effect of obeticholic acid (OCA) was explored under this condition. In vivo, female C57BL/6 mice were administrated with OCA (40 mg/kg bw, intragastrical injection) before (500 μg/kg bw, intragastrical injection)/LPS (0.1 mg/kg bw, intraperitoneal injection) administration. In vitro, AML12 cells were treated with TP (50 nM) and TNF-α (50 ng/ml) to induce hepatotoxicity; GW4064 (5 μM) and cholestyramine (CHO) (0.1 mg/ml and 0.05 mg/ml) were introduced to explain the role of FXR/total bile acid (TBA) in it. Serum TBA level was significantly elevated, which was induced by FXR suppression. And both GW4064 and CHO intervention presented remarkable protective effects against TP/TNF-α-induced NLRP3 upregulation and pyroptosis pathway activation. Pre-administration of FXR agonist OCA successfully attenuated TP/LPS-induced severe liver injury by reducing serum bile acids accumulation and inhibiting the activation of caspase-11-GSDMD (gasdermin D) pyroptosis pathway. We have drawn conclusions that TP aggravated liver hypersensitivity to LPS and inhibited FXR-SHP (small heterodimer partner) axis, which was served as endogenous signals to activate caspase-11-GSDMD-mediated pyroptosis contributing to liver injury. OCA alleviated TP/LPS-induced liver injury accompanied by inhibiting caspase-11-GSDMD-mediated pyroptosis pathway and decreased serum TBA level. The results indicated that FXR might be an attractive therapeutic target for TP/LPS-induced hepatotoxicity, providing an effective strategy for drug-induced liver injury.
Collapse
Affiliation(s)
- Peishi Liang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shaoyun Zhou
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Ziqiao Yuan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Luyong Zhang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, China
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Nanjing, China
| | - Qinwei Yu
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
GLP-1 Receptor Agonists in Non-Alcoholic Fatty Liver Disease: Current Evidence and Future Perspectives. Int J Mol Sci 2023; 24:ijms24021703. [PMID: 36675217 PMCID: PMC9865319 DOI: 10.3390/ijms24021703] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
To date, non-alcoholic fatty liver disease (NAFLD) is the most frequent liver disease, affecting up to 70% of patients with diabetes. Currently, there are no specific drugs available for its treatment. Beyond their anti-hyperglycemic effect and the surprising role of cardio- and nephroprotection, GLP-1 receptor agonists (GLP-1 RAs) have shown a significant impact on body weight and clinical, biochemical and histological markers of fatty liver and fibrosis in patients with NAFLD. Therefore, GLP-1 RAs could be a weapon for the treatment of both diabetes mellitus and NAFLD. The aim of this review is to summarize the evidence currently available on the role of GLP-1 RAs in the treatment of NAFLD and to hypothesize potential future scenarios.
Collapse
|
7
|
Yabut JM, Drucker DJ. Glucagon-like Peptide-1 Receptor-based Therapeutics for Metabolic Liver Disease. Endocr Rev 2023; 44:14-32. [PMID: 35907261 DOI: 10.1210/endrev/bnac018] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Indexed: 01/14/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) controls islet hormone secretion, gut motility, and body weight, supporting development of GLP-1 receptor agonists (GLP-1RA) for the treatment of type 2 diabetes (T2D) and obesity. GLP-1RA exhibit a favorable safety profile and reduce the incidence of major adverse cardiovascular events in people with T2D. Considerable preclinical data, supported by the results of clinical trials, link therapy with GLP-RA to reduction of hepatic inflammation, steatosis, and fibrosis. Mechanistically, the actions of GLP-1 on the liver are primarily indirect, as hepatocytes, Kupffer cells, and stellate cells do not express the canonical GLP-1R. GLP-1RA reduce appetite and body weight, decrease postprandial lipoprotein secretion, and attenuate systemic and tissue inflammation, actions that may contribute to attenuation of metabolic-associated fatty liver disease (MAFLD). Here we discuss evolving concepts of GLP-1 action that improve liver health and highlight evidence that links sustained GLP-1R activation in distinct cell types to control of hepatic glucose and lipid metabolism, and reduction of experimental and clinical nonalcoholic steatohepatitis (NASH). The therapeutic potential of GLP-1RA alone, or in combination with peptide agonists, or new small molecule therapeutics is discussed in the context of potential efficacy and safety. Ongoing trials in people with obesity will further clarify the safety of GLP-1RA, and pivotal studies underway in people with NASH will define whether GLP-1-based medicines represent effective and safe therapies for people with MAFLD.
Collapse
Affiliation(s)
- Julian M Yabut
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Zhuge A, Li S, Yuan Y, Han S, Xia J, Wang Q, Wang S, Lou P, Li B, Li L. Microbiota-induced lipid peroxidation impairs obeticholic acid-mediated antifibrotic effect towards nonalcoholic steatohepatitis in mice. Redox Biol 2022; 59:102582. [PMID: 36584600 PMCID: PMC9830314 DOI: 10.1016/j.redox.2022.102582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Obeticholic acid (OCA) has been examined to treat non-alcoholic steatohepatitis (NASH), but has unsatisfactory antifibrotic effect and deficient responsive rate in recent phase III clinical trial. Using a prolonged western diet-feeding murine NASH model, we show that OCA-shaped gut microbiota induces lipid peroxidation and impairs its anti-fibrotic effect. Mechanically, Bacteroides enriched by OCA deconjugates tauro-conjugated bile acids to generate excessive chenodeoxycholic acid (CDCA), resulting in liver ROS accumulation. We further elucidate that OCA reduces triglycerides containing polyunsaturated fatty acid (PUFA-TGs) levels, whereas elevates free PUFAs and phosphatidylethanolamines containing PUFA (PUFA-PEs), which are susceptible to be oxidized to lipid peroxides (notably arachidonic acid (ARA)-derived 12-HHTrE), inducing hepatocyte ferroptosis and activating hepatic stellate cells (HSCs). Inhibiting lipid peroxidation with pentoxifylline (PTX) rescues anti-fibrotic effect of OCA, suggesting combination of OCA and lipid peroxidation inhibitor could be a potential antifibrotic pharmacological approach in clinical NASH-fibrosis.
Collapse
Affiliation(s)
- Aoxiang Zhuge
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengjie Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengyi Han
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiafeng Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qiangqiang Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Pengcheng Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bo Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, 100730, China; Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250000, China.
| |
Collapse
|
9
|
Fu Y, Zhou Y, Shen L, Li X, Zhang H, Cui Y, Zhang K, Li W, Chen WD, Zhao S, Li Y, Ye W. Diagnostic and therapeutic strategies for non-alcoholic fatty liver disease. Front Pharmacol 2022; 13:973366. [PMID: 36408234 PMCID: PMC9666875 DOI: 10.3389/fphar.2022.973366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
The global incidence rate of non-alcoholic fatty liver disease (NAFLD) is approximately 25%. With the global increase in obesity and its associated metabolic syndromes, NAFLD has become an important cause of chronic liver disease in many countries. Despite recent advances in pathogenesis, diagnosis, and therapeutics, there are still challenges in its treatment. In this review, we briefly describe diagnostic methods, therapeutic targets, and drugs related to NAFLD. In particular, we focus on evaluating carbohydrate and lipid metabolism, lipotoxicity, cell death, inflammation, and fibrosis as potential therapeutic targets for NAFLD. We also summarized the clinical research progress in terms of drug development and combination therapy, thereby providing references for NAFLD drug development.
Collapse
Affiliation(s)
- Yajie Fu
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yanzhi Zhou
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Linhu Shen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Xuewen Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Haorui Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Yeqi Cui
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Ke Zhang
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
| | - Wei-dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Yunfu Li
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation, Hebi Key Laboratory of Liver Disease, School of Basic Medical Sciences, The People’s Hospital of Hebi, Henan University, Kaifeng, China
- *Correspondence: Shizhen Zhao, ; Yunfu Li, ; Wenling Ye,
| |
Collapse
|
10
|
Phung HH, Lee CH. Mouse models of nonalcoholic steatohepatitis and their application to new drug development. Arch Pharm Res 2022; 45:761-794. [DOI: 10.1007/s12272-022-01410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
|
11
|
Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:13251. [PMID: 36362037 PMCID: PMC9654696 DOI: 10.3390/ijms232113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C- cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c-/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.
Collapse
Affiliation(s)
- Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|
12
|
Glucagon-like peptide 1 and fibroblast growth factor-21 in non-alcoholic steatohepatitis: An experimental to clinical perspective. Pharmacol Res 2022; 184:106426. [PMID: 36075510 DOI: 10.1016/j.phrs.2022.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), which slowly progresses toward cirrhosis and finally leads to the development of hepatocellular carcinoma. Obesity, insulin resistance, type 2 diabetes mellitus and the metabolic syndrome are major risk factors contributing to NAFLD. Targeting these risk factors is a rational option for inhibiting NASH progression. In addition, NASH could be treated with therapies that target the metabolic abnormalities causing disease pathogenesis (such as de novo lipogenesis and insulin resistance) as well with medications targeting downstream processes such as cellular damage, apoptosis, inflammation, and fibrosis. Glucagon-like peptide (GLP-1), is an incretin hormone dysregulated in both experimental and clinical NASH, which triggers many signaling pathways including fibroblast growth factor (FGF) that augments NASH pathogenesis. Growing evidence indicates that GLP-1 in concert with FGF-21 plays crucial roles in the conservation of glucose and lipid homeostasis in metabolic disorders. In line, GLP-1 stimulation improves hepatic ballooning, steatosis, and fibrosis in NASH. A recent clinical trial on NASH patients showed that the upregulation of FGF-21 decreases liver fibrosis and hepatic steatosis, thus improving the pathogenesis of NASH. Hence, therapeutic targeting of the GLP-1/FGF axis could be therapeutically beneficial for the remission of NASH. This review outlines the significance of the GLP-1/FGF-21 axis in experimental and clinical NASH and highlights the activity of modulators targeting this axis as potential salutary agents for the treatment of NASH.
Collapse
|
13
|
Yang F, Luo X, Li J, Lei Y, Zeng F, Huang X, Lan Y, Liu R. Application of glucagon-like peptide-1 receptor antagonists in fibrotic diseases. Biomed Pharmacother 2022; 152:113236. [PMID: 35691154 DOI: 10.1016/j.biopha.2022.113236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
Fibrosis can occur in various organs, leading to structural destruction, dysfunction, and even organ failure. Hence, organ fibrosis is being actively researched worldwide. Glucagon-like peptide-1 (GLP-1), a naturally occurring hormone, binds to a G-protein-coupled receptor widely distributed in the pancreas, kidney, lung, heart, gastrointestinal tract, and other organs. Synthetic GLP-1 analogs can be used as GLP-1 receptor agonists (GLP-1RAs) for treating diabetes mellitus. In recent years, GLP-1RAs have also been found to exert anti-inflammatory, antioxidant, and cardiovascular protective effects. GLP-1RAs have also been shown to inhibit fibrosis of solid organs, such as the lung, heart, liver, and kidney. In this review, we discuss the advancements in research on the role of GLP-1RAs in the fibrosis of the heart, lung, liver, kidney, and other organs to obtain new clues for treating organ fibrosis.
Collapse
Affiliation(s)
- Fuxun Yang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoxiu Luo
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiajia Li
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Lei
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fan Zeng
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaobo Huang
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yunping Lan
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Rongan Liu
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
14
|
Lin C, Yu B, Liu X, Chen L, Zhang Z, Ye W, Zhong H, Bai W, Yang Y, Nie B. Obeticholic acid inhibits hepatic fatty acid uptake independent of FXR in mouse. Biomed Pharmacother 2022; 150:112984. [PMID: 35447541 DOI: 10.1016/j.biopha.2022.112984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022] Open
Abstract
OBJECTIVE Obeticholic acid (OCA), a farnesoid X receptor (FXR) agonist, is believed to alleviate nonalcoholic fatty liver disease (NAFLD) by decreasing hepatic lipogenesis in an FXR-dependent manner. Here, we revealed a novel mechanism by which OCA improves NAFLD by affecting hepatic long-chain fatty acids (LCFAs) uptake. METHODS Stably transfected HEK-293 cells expressing fatty acid transport protein 5 (FATP5) were established to examine fatty acid uptake; FXR-/-, human (h) FATP5, and FXR-/-/hFATP5 mouse models were incorporated to explore the effects of OCA on FATP5 ex vivo and in vivo. RESULTS OCA inhibited hFATP5 (IC50 =0.07 μM) more than murine (m) FATP5 (IC50 =1.04 μM) as measured by LCFAs uptake in FATP5 expressing HEK-293. OCA also inhibited LCFA uptake in primary hepatocytes from hFATP5 mice, FXR-/-/hFATP5 mice more than that from FXR-/- mice, ex vivo. Moreover, OCA inhibited LCFAs uptake by livers in hFATP5 mice and FXR-/-/hFATP5 mice, but not in FXR-/- mice, in vivo. Long-term administration of 0.04% OCA markedly reduced hepatic triglyceride (TG) accumulation in hFATP5 mice and FXR-/-/hFATP5 mice by 63% and 53%, respectively, but not in FXR-/- mice. CONCLUSIONS OCA ameliorated high-fat diet-induced NAFLD independent of FXR by inhibiting hepatic hFATP5-mediated LCFAs uptake. This suggests that the therapeutic effects of OCA on NAFLD in vivo are mediated by a novel, hFATP5 dependent mechanism.
Collapse
Affiliation(s)
- Chuangzhen Lin
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Bingqing Yu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Xuelian Liu
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Lixin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhaohui Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Weixiang Ye
- Department of Gastrointestinal Endoscopy of Dongpu Branch, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510660, China
| | - Hui Zhong
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wenke Bai
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Yuping Yang
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China
| | - Biao Nie
- Department of Gastroenterology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
15
|
Yu JH, Park SY, Lee DY, Kim NH, Seo JA. GLP-1 receptor agonists in diabetic kidney disease: current evidence and future directions. Kidney Res Clin Pract 2022; 41:136-149. [PMID: 35391537 PMCID: PMC8995488 DOI: 10.23876/j.krcp.22.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
With the emergence of various classes of blood glucose-lowering agents, choosing the appropriate drug for each patient is emphasized in diabetes management. Among incretin-based drugs, glucagon-like peptide 1 (GLP-1) receptor agonists are a promising therapeutic option for patients with diabetic kidney disease (DKD). Several cardiovascular outcome trials have demonstrated that GLP-1 receptor agonists have beneficial effects on cardiorenal outcomes beyond their blood glucose-lowering effects in patients with type 2 diabetes mellitus (T2DM). The renal protective effects of GLP-1 receptor agonists likely result from their direct actions on the kidney, in addition to their indirect actions that improve conventional risk factors for DKD, such as reducing blood glucose levels, blood pressure, and body weight. Inhibition of oxidative stress and inflammation and induction of natriuresis are major renoprotective mechanisms of GLP-1 analogues. Early evidence from the development of dual and triple combination agents suggests that GLP-1 receptor agonists will probably become popular treatment options for patients with T2DM.
Collapse
Affiliation(s)
- Ji Hee Yu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - So Young Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Da Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Nan Hee Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
| | - Ji A Seo
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Republic of Korea
- Correspondence: Ji A Seo, Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan 15355, Republic of Korea. E-mail:
| |
Collapse
|
16
|
Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases. Int J Mol Sci 2021; 23:ijms23010426. [PMID: 35008852 PMCID: PMC8745242 DOI: 10.3390/ijms23010426] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut-liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host's immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut-liver axis in ALD and NAFLD.
Collapse
|
17
|
Radhakrishnan S, Yeung SF, Ke JY, Antunes MM, Pellizzon MA. Considerations When Choosing High-Fat, High-Fructose, and High-Cholesterol Diets to Induce Experimental Nonalcoholic Fatty Liver Disease in Laboratory Animal Models. Curr Dev Nutr 2021; 5:nzab138. [PMID: 34993389 PMCID: PMC8718327 DOI: 10.1093/cdn/nzab138] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/29/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is intricately linked to metabolic disease (including obesity, glucose intolerance, and insulin resistance) and encompasses a spectrum of disorders including steatosis, nonalcoholic steatohepatitis (NASH), and fibrosis. Rodents consuming high-fat (HF; ∼40 kcal% fat including fats containing higher concentrations of saturated and trans fats), high-fructose (HFr), and high-cholesterol (HC) diets display many clinically relevant characteristics of NASH, along with other metabolic disorders. C57BL/6 mice are the most commonly used animal model because they can develop significant metabolic disorders including severe NASH with fibrosis after months of feeding, but other models also are susceptible. The significant number of diets that contain these different factors (i.e., HF, HFr, and HC), either alone or in combination, makes the choice of diet difficult. This methodology review describes the efficacy of these nutrient manipulations on the NAFLD phenotype in mice, rats, guinea pigs, hamsters, and nonhuman primates.
Collapse
Affiliation(s)
| | | | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | - Maísa M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | |
Collapse
|
18
|
Ströbel S, Kostadinova R, Fiaschetti-Egli K, Rupp J, Bieri M, Pawlowska A, Busler D, Hofstetter T, Sanchez K, Grepper S, Thoma E. A 3D primary human cell-based in vitro model of non-alcoholic steatohepatitis for efficacy testing of clinical drug candidates. Sci Rep 2021; 11:22765. [PMID: 34815444 PMCID: PMC8611054 DOI: 10.1038/s41598-021-01951-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive and severe liver disease, characterized by lipid accumulation, inflammation, and downstream fibrosis. Despite its increasing prevalence, there is no approved treatment yet available for patients. This has been at least partially due to the lack of predictive preclinical models for studying this complex disease. Here, we present a 3D in vitro microtissue model that uses spheroidal, scaffold free co-culture of primary human hepatocytes, Kupffer cells, liver endothelial cells and hepatic stellate cells. Upon exposure to defined and clinically relevant lipotoxic and inflammatory stimuli, these microtissues develop key pathophysiological features of NASH within 10 days, including an increase of intracellular triglyceride content and lipids, and release of pro-inflammatory cytokines. Furthermore, fibrosis was evident through release of procollagen type I, and increased deposition of extracellular collagen fibers. Whole transcriptome analysis revealed changes in the regulation of pathways associated with NASH, such as lipid metabolism, inflammation and collagen processing. Importantly, treatment with anti-NASH drug candidates (Selonsertib and Firsocostat) decreased the measured specific disease parameter, in accordance with clinical observations. These drug treatments also significantly changed the gene expression patterns of the microtissues, thus providing mechanisms of action and revealing therapeutic potential. In summary, this human NASH model represents a promising drug discovery tool for understanding the underlying complex mechanisms in NASH, evaluating efficacy of anti-NASH drug candidates and identifying new approaches for therapeutic interventions.
Collapse
Affiliation(s)
- Simon Ströbel
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH, Switzerland.
| | | | | | - Jana Rupp
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Manuela Bieri
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | - Donna Busler
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | | | | | - Sue Grepper
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| | - Eva Thoma
- InSphero AG, Wagistrasse 27A, 8952 Schlieren, CH Switzerland
| |
Collapse
|
19
|
Ichimura-Shimizu M, Omagari K, Yamashita M, Tsuneyama K. Development of a novel mouse model of diet-induced nonalcoholic steatohepatitis-related progressive bridging fibrosis. Biosci Biotechnol Biochem 2021; 85:941-947. [PMID: 33620426 DOI: 10.1093/bbb/zbaa107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/04/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) progresses to liver fibrosis and cirrhosis. Existing mouse models of NASH rarely develop diet-induced severe fibrosis. We aimed to establish a dietary model of NASH with rapid progression to fibrosis. Six-week-old male Tsumura-Suzuki obese diabetes (TSOD) mice (a model of spontaneous metabolic syndrome) and corresponding control Tsumura-Suzuki nonobese (TSNO) mice were fed a novel diet high in fat, cholesterol, and cholate (iHFC). Histologic steatohepatitis, including steatosis, inflammation, and fibrosis, were observed in both TSNO and TSOD iHFC diet-fed mice at 20 weeks of age. As compared with TSOD mice, TSNO mice developed much more severe fibrosis and reached stage 3 of bridging fibrosis within 14 weeks under the iHFC diet feeding. Perivenular/perisinusoidal pattern of fibrosis in TSNO mice resembled human NASH. Our model of NASH with advanced fibrosis by simple diet offers many advantages useful in studying the mechanism of liver fibrosis and preclinical drug testing.
Collapse
Affiliation(s)
- Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| | - Katsuhisa Omagari
- Division of Nutritional Science, Graduate School of Human Health Science, University of Nagasaki, Nagasaki, Japan
| | - Michiko Yamashita
- Department of Analytical Pathology, Tokushima University Graduate School, Tokushima, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
20
|
Zhu N, Huang S, Zhang Q, Zhao Z, Qu H, Ning M, Leng Y, Liu J. Metabolomic Study of High-Fat Diet-Induced Obese (DIO) and DIO Plus CCl 4-Induced NASH Mice and the Effect of Obeticholic Acid. Metabolites 2021; 11:metabo11060374. [PMID: 34200685 PMCID: PMC8230384 DOI: 10.3390/metabo11060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/17/2022] Open
Abstract
The pathophysiology of nonalcoholic fatty liver disease (NAFLD) is a complex process involving metabolic and inflammatory changes in livers and other organs, but the pathogenesis is still not well clarified. Two mouse models were established to study metabolic alteration of nonalcoholic fatty liver and nonalcoholic steatohepatitis, respectively. The concentrations of metabolites in serum, liver and intestine content were measured by the AbsoluteIDQ® p180 Kit (Biocrates Life Sciences, Innsbruck, Austria). Multivariate statistical methods, pathway analysis, enrichment analysis and correlation analysis were performed to analyze metabolomic data. The metabolic characteristics of liver, serum and intestine content could be distinctly distinguished from each group, indicating the occurrence of metabolic disturbance. Among them, metabolic alteration of liver and intestine content was more significant. Based on the metabolic data of liver, 19 differential metabolites were discovered between DIO and control, 12 between DIO-CCl4 and DIO, and 47 between DIO-CCl4 and normal. These metabolites were mainly associated with aminoacyl-tRNA biosynthesis, nitrogen metabolism, lipid metabolism, glyoxylate and dicarboxylate metabolism, and amino metabolism. Further study revealed that the intervention of obeticholic acid (OCA) could partly reverse the damage of CCl4. The correlation analysis of metabolite levels and clinical parameters showed that phosphatidylcholines were negatively associated with serum alanine aminotransferase, aspartate aminotransferase, NAFLD activity score, and fibrosis score, while lysophosphatidylcholines, sphingomyelins, amino acids, and acylcarnitines shared the reverse pattern. Our study investigated metabolic alteration among control, NAFLD model, and OCA treatment groups, providing preclinical information to understand the mechanism of NAFLD and amelioration of OCA.
Collapse
Affiliation(s)
- Nanlin Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.Z.); (Q.Z.)
| | - Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (S.H.); (Z.Z.); (H.Q.); (M.N.)
| | - Qingli Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.Z.); (Q.Z.)
| | - Zhuohui Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (S.H.); (Z.Z.); (H.Q.); (M.N.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Qu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (S.H.); (Z.Z.); (H.Q.); (M.N.)
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (S.H.); (Z.Z.); (H.Q.); (M.N.)
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (S.H.); (Z.Z.); (H.Q.); (M.N.)
- Correspondence: (Y.L.); (J.L.); Tel.: +86-21-50806059 (Y.L.); +86-21-58559563 (J.L.)
| | - Jia Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (N.Z.); (Q.Z.)
- Correspondence: (Y.L.); (J.L.); Tel.: +86-21-50806059 (Y.L.); +86-21-58559563 (J.L.)
| |
Collapse
|
21
|
Hupa-Breier KL, Dywicki J, Hartleben B, Wellhöner F, Heidrich B, Taubert R, Mederacke YSE, Lieber M, Iordanidis K, Manns MP, Wedemeyer H, Hardtke-Wolenski M, Jaeckel E. Dulaglutide Alone and in Combination with Empagliflozin Attenuate Inflammatory Pathways and Microbiome Dysbiosis in a Non-Diabetic Mouse Model of NASH. Biomedicines 2021; 9:biomedicines9040353. [PMID: 33808404 PMCID: PMC8066839 DOI: 10.3390/biomedicines9040353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dysregulation of glucose homeostasis plays a major role in the pathogenesis of non-alcoholic steatohepatitis (NASH) as it activates proinflammatory and profibrotic processes. Beneficial effects of antiglycemic treatments such as GLP-1 agonist or SGLT-2 inhibitor on NASH in patients with diabetes have already been investigated. However, their effect on NASH in a non-diabetic setting remains unclear. With this aim, we investigated the effect of long-acting GLP1-agonist dulaglutide and SGLT-2 inhibitor empagliflozin and their combination in a non-diabetic mouse model of NASH. C57BL/6 mice received a high-fat-high-fructose (HFHC) diet with a surplus of cholesterol for 16 weeks. After 12 weeks of diet, mice were treated with either dulaglutide, empagliflozin or their combination. Dulaglutide alone and in combination with empagliflozin led to significant weight loss, improved glucose homeostasis and diminished anti-inflammatory and anti-fibrotic pathways. Combination of dulaglutide and empagliflozin further decreased MoMFLy6CHigh and CD4+Foxp3+ T cells. No beneficial effects for treatment with empagliflozin alone could be shown. While no effect of dulaglutide or its combination with empaglifozin on hepatic steatosis was evident, these data demonstrate distinct anti-inflammatory effects of dulaglutide and their combination with empagliflozin in a non-diabetic background, which could have important implications for further treatment of NASH.
Collapse
Affiliation(s)
- Katharina Luise Hupa-Breier
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
- Correspondence: ; Tel.: +49-(0)-511-532-6992
| | - Janine Dywicki
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Björn Hartleben
- Department of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Freya Wellhöner
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Benjamin Heidrich
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Richard Taubert
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Young-Seon Elisabeth Mederacke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Maren Lieber
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Konstantinos Iordanidis
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Michael P. Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| | - Matthias Hardtke-Wolenski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
- Department of Gastroenterology and Hepatology, Essen University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Elmar Jaeckel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (J.D.); (F.W.); (B.H.); (R.T.); (Y.S.M.); (M.L.); (K.I.); (M.P.M.); (H.W.); (M.H.-W.); (E.J.)
| |
Collapse
|
22
|
Helmstädter M, Schmidt J, Kaiser A, Weizel L, Proschak E, Merk D. Differential Therapeutic Effects of FXR Activation, sEH Inhibition, and Dual FXR/sEH Modulation in NASH in Diet-Induced Obese Mice. ACS Pharmacol Transl Sci 2021; 4:966-979. [PMID: 33860214 DOI: 10.1021/acsptsci.1c00041] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an epidemic chronic liver disease and may progress over nonalcoholic steatohepatitis (NASH) to liver cirrhosis and hepatocellular carcinoma. The multiple metabolic, environmental, and genetic factors that are involved in NAFLD/NASH pathogenesis and progression suggest a need for multimechanistic interventions. We have developed and preliminarily characterized a concept of dual farnesoid X receptor (FXR) and soluble epoxide hydrolase (sEH) modulation as a promising polypharmacological strategy to counteract NASH. Here we report the profiling of FXR activation, sEH inhibition, and simultaneous FXR/sEH modulation as an interventional treatment in pre-established NASH in mice with diet-induced obesity (DIO). We found that full FXR activation was required to obtain antisteatosis effects but also worsened ballooning degeneration and fibrosis. In contrast, sEH inhibition and dual FXR/sEH modulation, despite a lack of antisteatosis activity, had anti-inflammatory effects and efficiently counteracted hepatic fibrosis. These results demonstrate great therapeutic potential of sEH inhibition to counteract hepatic fibrosis and validate the designed polypharmacology concept of dual FXR/sEH modulation as a potentially superior avenue for the effective treatment of the multifactorial condition NASH.
Collapse
Affiliation(s)
- Moritz Helmstädter
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jurema Schmidt
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Astrid Kaiser
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Lilia Weizel
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Ewgenij Proschak
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Goethe University Frankfurt, Institute of Pharmaceutical Chemistry, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| |
Collapse
|
23
|
Fang X, Du Z, Duan C, Zhan S, Wang T, Zhu M, Shi J, Meng J, Zhang X, Yang M, Zuo Y. Beinaglutide shows significantly beneficial effects in diabetes/obesity-induced nonalcoholic steatohepatitis in ob/ob mouse model. Life Sci 2021; 270:118966. [PMID: 33482185 DOI: 10.1016/j.lfs.2020.118966] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
AIMS Beinaglutide has been approved for glucose lowering in type 2 diabetes mellitus (T2DM) in China. In addition to glycemic control, significant weight loss is observed from real world data. This study is designed to investigate the pharmacological and pharmacokinetic profiles of beinaglutide in different models. METHODS The pharmacological efficacy of beinaglutide was evaluated in C57BL/6 and ob/ob mice after single administration. Pharmacokinetic profiles in mice were investigated after single or multiple administration. Sub-chronic pharmacological efficacy was investigated in ob/ob mice for two weeks treatment and diet-induced ob/ob mice model of nonalcoholic steatohepatitis (NASH) for four weeks treatment. KEY FINDINGS Beinaglutide could dose-dependently reduce the glucose levels and improve insulin secretion in glucose tolerance tests, inhibit food intake and gastric emptying after single administration. At higher doses, beinaglutide could inhibit food intake over 4 h, which results in weight loss in ob/ob mice after about two weeks treatment. No tachyphylaxis is observed for beinaglutide in food intake with repeated administration. In NASH model, beinaglutide could reduce liver weight and hepatic steatosis and improve insulin sensitivity. Signiant changes of gene levels were observed in fatty acid β-oxidation (Ppara, Acadl, Acox1), mitochondrial function (Mfn1, Mfn2), antioxidation (Sod2), Sirt1, and et al. SIGNIFICANCE: Our results characterize the pharmacological and pharmacokinetic profiles of beinaglutide in mice and supported that chronic use of beinaglutde could lead to weight loss and reduce hepatic steatosis, which suggest beinaglutide may be effective therapy for the treatment of obesity and NASH.
Collapse
Affiliation(s)
- Xiankang Fang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China.
| | - Zhiqiang Du
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Chunling Duan
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Shanshan Zhan
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Tian Wang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Mengyu Zhu
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Jiajie Shi
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Juan Meng
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Xianhua Zhang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Maiyun Yang
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| | - Yajun Zuo
- Innovation Center, Shanghai Benemae Pharmaceutical Corporation, 916 Ziping Road, Zhoupu, PuDong, Shanghai, China
| |
Collapse
|
24
|
Li J, Liu M, Li Y, Sun DD, Shu Z, Tan Q, Guo S, Xie R, Gao L, Ru H, Zang Y, Liu H, Li J, Zhou Y. Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis. J Med Chem 2020; 63:12748-12772. [PMID: 32991173 DOI: 10.1021/acs.jmedchem.0c01065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Farnesoid X receptor (FXR) plays a key role in bile acid homeostasis, inflammation, fibrosis, and metabolism of lipid and glucose and becomes a promising therapeutic target for nonalcoholic steatohepatitis (NASH) or other FXR-dependent diseases. The phase III trial results of obeticholic acid demonstrate that the FXR agonists emerge as a promising intervention in patients with NASH and fibrosis, but this bile acid-derived FXR agonist brings severe pruritus and an elevated risk of cardiovascular disease for patients. Herein, we reported our efforts in the discovery of a series of non-bile acid FXR agonists, and 36 compounds were designed and synthesized based on the structure-based drug design and structural optimization strategies. Particularly, compound 42 is a highly potent and selective FXR agonist, along with good pharmacokinetic profiles, high liver distribution, and preferable in vivo efficacy, indicating that it is a potential candidate for the treatment of NASH or other FXR-dependent diseases.
Collapse
Affiliation(s)
- Junyou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengqi Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yazhou Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Dan-Dan Sun
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhihao Shu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qian Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Rongrong Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hongbo Ru
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yi Zang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.,Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
25
|
Feng R, Ma LJ, Wang M, Liu C, Yang R, Su H, Yang Y, Wan JB. Oxidation of fish oil exacerbates alcoholic liver disease by enhancing intestinal dysbiosis in mice. Commun Biol 2020; 3:481. [PMID: 32879433 PMCID: PMC7468239 DOI: 10.1038/s42003-020-01213-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role of n-3 polyunsaturated fatty acids (PUFAs) in alcoholic liver disease (ALD) has been controversial. N-3 PUFA oxidation in animal feeding stuffs was rarely concerned, likely contributing to inconsistent outcomes. Here, we report the impacts of oxidized fish oil (OFO) on ALD in C57BL/6 mice. Alcohol exposure increased plasma aminotransferase levels and hepatic inflammation. These deleterious effects were ameliorated by unoxidized FO but exacerbated by OFO. Sequencing analysis showed the accentuated intestinal dysbiosis and the increased proportion of Proteobacteria in OFO-fed mice. Intestinal sterilization by antibiotics completely abolished OFO-aggravated liver injury. Additionally, alcohol exposure leads to the greater increase in plasma endotoxin and decrease in intestinal tight junction protein expressions in OFO-fed mice. Stabilization of intestinal barrier by obeticholic acid markedly blunted OFO-aggravated liver injury in alcohol-fed mice. These results demonstrate that OFO exacerbates alcoholic liver injury through enhancing intestinal dysbiosis, barrier dysfunction, and hepatic inflammation mediated by gut-derived endotoxin. Feng et al. show that oxidized fish oil exacerbates alcoholic liver injury in mice by enhancing intestinal dysbiosis, barrier dysfunction, and hepatic inflammation that is mediated by gut-derived endotoxin. This study suggests that n-3 polyunsaturated fatty acids enriched in fish oil should be kept from oxidation to exert their health benefits.
Collapse
Affiliation(s)
- Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Key Laboratory for Marine Drugs of Haikou, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, 570228, China
| | - Li-Juan Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Meng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Center for Drug Innovation and Discovery, College of Life Science, Hebei Normal University, Shijiazhuang, Hebei, China
| | - Conghui Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Rujie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Yan Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
26
|
Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal models for liver disease - A practical approach for translational research. J Hepatol 2020; 73:423-440. [PMID: 32330604 DOI: 10.1016/j.jhep.2020.04.011] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Animal models are crucial for improving our understanding of human pathogenesis, enabling researchers to identify therapeutic targets and test novel drugs. In the current review, we provide a comprehensive summary of the most widely used experimental models of chronic liver disease, starting from early stages of fatty liver disease (non-alcoholic and alcoholic) to steatohepatitis, advanced cirrhosis and end-stage primary liver cancer. We focus on aspects such as reproducibility and practicality, discussing the advantages and weaknesses of available models for researchers who are planning to perform animal studies in the near future. Additionally, we summarise current and prospective models based on human tissue bioengineering.
Collapse
Affiliation(s)
- Yulia A Nevzorova
- Department of Genetics, Physiology and Microbiology, Faculty of Biology, Complutense University, Madrid, Spain; 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoe Boyer-Diaz
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain
| | - Francisco Javier Cubero
- 12 de Octubre Health Research Institute (imas12), Madrid, Spain; Department of Immunology, Ophthalmology & ENT, Complutense University School of Medicine, Madrid, Spain.
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS Biomedical Research Institute, Barcelona, Spain; Barcelona Liver Bioservices, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Hansen HH, Ægidius HM, Oró D, Evers SS, Heebøll S, Eriksen PL, Thomsen KL, Bengtsson A, Veidal SS, Feigh M, Suppli MP, Knop FK, Grønbæk H, Miranda D, Trevaskis JL, Vrang N, Jelsing J, Rigbolt KTG. Human translatability of the GAN diet-induced obese mouse model of non-alcoholic steatohepatitis. BMC Gastroenterol 2020; 20:210. [PMID: 32631250 PMCID: PMC7336447 DOI: 10.1186/s12876-020-01356-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
Background Animal models of non-alcoholic steatohepatitis (NASH) are important tools in preclinical research and drug discovery. Gubra-Amylin NASH (GAN) diet-induced obese (DIO) mice represent a model of fibrosing NASH. The present study directly assessed the clinical translatability of the model by head-to-head comparison of liver biopsy histological and transcriptome changes in GAN DIO-NASH mouse and human NASH patients. Methods C57Bl/6 J mice were fed chow or the GAN diet rich in saturated fat (40%), fructose (22%) and cholesterol (2%) for ≥38 weeks. Metabolic parameters as well as plasma and liver biomarkers were assessed. Liver biopsy histology and transcriptome signatures were compared to samples from human lean individuals and patients diagnosed with NASH. Results Liver lesions in GAN DIO-NASH mice showed similar morphological characteristics compared to the NASH patient validation set, including macrosteatosis, lobular inflammation, hepatocyte ballooning degeneration and periportal/perisinusoidal fibrosis. Histomorphometric analysis indicated comparable increases in markers of hepatic lipid accumulation, inflammation and collagen deposition in GAN DIO-NASH mice and NASH patient samples. Liver biopsies from GAN DIO-NASH mice and NASH patients showed comparable dynamics in several gene expression pathways involved in NASH pathogenesis. Consistent with the clinical features of NASH, GAN DIO-NASH mice demonstrated key components of the metabolic syndrome, including obesity and impaired glucose tolerance. Conclusions The GAN DIO-NASH mouse model demonstrates good clinical translatability with respect to the histopathological, transcriptional and metabolic aspects of the human disease, highlighting the suitability of the GAN DIO-NASH mouse model for identifying therapeutic targets and characterizing novel drug therapies for NASH.
Collapse
Affiliation(s)
| | | | | | | | - Sara Heebøll
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Lykke Eriksen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Louise Thomsen
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Malte P Suppli
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henning Grønbæk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Radhakrishnan S, Ke JY, Pellizzon MA. Targeted Nutrient Modifications in Purified Diets Differentially Affect Nonalcoholic Fatty Liver Disease and Metabolic Disease Development in Rodent Models. Curr Dev Nutr 2020; 4:nzaa078. [PMID: 32494762 PMCID: PMC7250583 DOI: 10.1093/cdn/nzaa078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a complex spectrum of disorders ranging from simple benign steatosis to more aggressive forms of nonalcoholic steatohepatitis (NASH) and fibrosis. Although not every patient with NAFLD/NASH develops liver complications, if left untreated it may eventually lead to cirrhosis and hepatocellular carcinoma. Purified diets formulated with specific nutritional components can drive the entire spectrum of NAFLD in rodent models. Although they may not perfectly replicate the clinical and histological features of human NAFLD, they provide a model to gain further understanding of disease progression in humans. Owing to the growing demand of diets for NAFLD research, and for our further understanding of how manipulation of dietary components can alter disease development, we outlined several commonly used dietary approaches for rodent models, including mice, rats, and hamsters, time frames required for disease development and whether other metabolic diseases commonly associated with NAFLD in humans occur.
Collapse
Affiliation(s)
| | - Jia-Yu Ke
- Research Diets, Inc., New Brunswick, NJ, USA
| | | |
Collapse
|
29
|
Baandrup Kristiansen MN, Veidal SS, Christoffersen C, Feigh M, Vrang N, Roth JD, Erickson M, Adorini L, Jelsing J. Validity of biopsy-based drug effects in a diet-induced obese mouse model of biopsy-confirmed NASH. BMC Gastroenterol 2019; 19:228. [PMID: 31883514 PMCID: PMC6935483 DOI: 10.1186/s12876-019-1149-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Compounds in clinical development for nonalcoholic steatohepatitis (NASH) improve liver histopathology in diet-induced obese mouse models of biopsy-confirmed NASH. Since the biopsy section used for histopathological evaluation represents only < 1% of the whole mouse liver, we evaluated how well biopsy-based quantitative image analyses correlate to stereology-based whole-liver quantitative changes upon drug treatment. Methods Male leptin-deficient Lepob/Lepob mice were fed the Amylin liver NASH (AMLN) diet for 16 weeks before stratification into treatment groups using a biopsy-based evaluation of type I collagen αI (col1a1) levels. Mice were treated for 8 weeks with either vehicle (PO, QD), liraglutide (0.4 mg/kg, SC, QD), elafibranor (30 mg/kg, PO, QD) or INT-767 (10 mg/kg, PO, QD). Terminal quantitative histological assessment of liver lipid (hematoxylin-eosin staining), inflammation (galectin-3 immunohistochemistry (IHC); gal-3), and fibrosis (col1a1 IHC) was performed on terminal liver biopsies and compared with stereologically sampled serial sections spanning the medial, left and right lateral lobe of the liver. Results The distribution of liver lipid and fibrosis was markedly consistent across lobes, whereas inflammation showed some variability. While INT-767 and liraglutide significantly reduced total liver weight by 20 and 48%, respectively, elafibranor tended to exacerbate hepatomegaly in Lepob/Lepob-NASH mice. All three compounds markedly reduced biopsy-based relative liver lipid content. Elafibranor and INT-767 significantly reduced biopsy-based relative gal-3 levels (P < 0.001), whereas INT-767 and liraglutide tended to reduce relative col1a1 levels. When changes in liver weight was accounted for, both INT-767 and liraglutide significantly reduced biopsy-based total col1a1 content. Although minor differences in absolute and relative liver lipid, inflammation and fibrosis levels were observed across lobes, the interpretation of drug-induced effects were consistent with biopsy-based conclusions. Notably, the incorporation of changes in total liver mass revealed that liraglutide’s efficacy reached statistical significances for all analyzed parameters. Conclusions In conclusion, in-depth analyses of liver homogeneity demonstrated that drug-induced improvement in liver biopsy-assessed histopathology is representative for overall liver effects assessed using stereology. Importantly, these findings reveal how changes in whole-liver mass should be considered to provide a deeper understanding of apparent drug treatment efficacy in preclinical NASH studies.
Collapse
Affiliation(s)
- Maria Nicoline Baandrup Kristiansen
- Gubra Aps, Hoersholm, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Bispebjerg Hospital and Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | - Mary Erickson
- Intercept Pharmaceuticals, San Diego, California, USA
| | | | | |
Collapse
|
30
|
Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, Fritsche A, Gribble F, Grill HJ, Habener JF, Holst JJ, Langhans W, Meier JJ, Nauck MA, Perez-Tilve D, Pocai A, Reimann F, Sandoval DA, Schwartz TW, Seeley RJ, Stemmer K, Tang-Christensen M, Woods SC, DiMarchi RD, Tschöp MH. Glucagon-like peptide 1 (GLP-1). Mol Metab 2019; 30:72-130. [PMID: 31767182 PMCID: PMC6812410 DOI: 10.1016/j.molmet.2019.09.010] [Citation(s) in RCA: 1016] [Impact Index Per Article: 169.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/10/2019] [Accepted: 09/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The glucagon-like peptide-1 (GLP-1) is a multifaceted hormone with broad pharmacological potential. Among the numerous metabolic effects of GLP-1 are the glucose-dependent stimulation of insulin secretion, decrease of gastric emptying, inhibition of food intake, increase of natriuresis and diuresis, and modulation of rodent β-cell proliferation. GLP-1 also has cardio- and neuroprotective effects, decreases inflammation and apoptosis, and has implications for learning and memory, reward behavior, and palatability. Biochemically modified for enhanced potency and sustained action, GLP-1 receptor agonists are successfully in clinical use for the treatment of type-2 diabetes, and several GLP-1-based pharmacotherapies are in clinical evaluation for the treatment of obesity. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GLP-1 and its pharmacology and discuss its therapeutic implications on various diseases. MAJOR CONCLUSIONS Since its discovery, GLP-1 has emerged as a pleiotropic hormone with a myriad of metabolic functions that go well beyond its classical identification as an incretin hormone. The numerous beneficial effects of GLP-1 render this hormone an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, and neurodegenerative disorders.
Collapse
Affiliation(s)
- T D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, Tübingen, Germany.
| | - B Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - S R Bloom
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - D D'Alessio
- Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - D J Drucker
- The Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, M5G1X5, Canada
| | - P R Flatt
- SAAD Centre for Pharmacy & Diabetes, Ulster University, Coleraine, Northern Ireland, UK
| | - A Fritsche
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the University of Tübingen, Tübingen, Germany; Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal Medicine, University of Tübingen, Tübingen, Germany
| | - F Gribble
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - H J Grill
- Institute of Diabetes, Obesity and Metabolism, Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - J J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - W Langhans
- Physiology and Behavior Laboratory, ETH Zurich, Schwerzenbach, Switzerland
| | - J J Meier
- Diabetes Division, St Josef Hospital, Ruhr-University Bochum, Bochum, Germany
| | - M A Nauck
- Diabetes Center Bochum-Hattingen, St Josef Hospital (Ruhr-Universität Bochum), Bochum, Germany
| | - D Perez-Tilve
- Department of Internal Medicine, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | - A Pocai
- Cardiovascular & ImmunoMetabolism, Janssen Research & Development, Welsh and McKean Roads, Spring House, PA, 19477, USA
| | - F Reimann
- Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit, Wellcome Trust-Medical Research Council, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - D A Sandoval
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - T W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DL-2200, Copenhagen, Denmark; Department of Biomedical Sciences, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - R J Seeley
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - K Stemmer
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - M Tang-Christensen
- Obesity Research, Global Drug Discovery, Novo Nordisk A/S, Måløv, Denmark
| | - S C Woods
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - R D DiMarchi
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - M H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität München, Munich, Germany; Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| |
Collapse
|
31
|
Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, Penna G, Rescigno M. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis development. J Hepatol 2019; 71:1216-1228. [PMID: 31419514 PMCID: PMC6880766 DOI: 10.1016/j.jhep.2019.08.005] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Fatty liver disease, including non-alcoholic fatty liver (NAFLD) and steatohepatitis (NASH), has been associated with increased intestinal barrier permeability and translocation of bacteria or bacterial products into the blood circulation. In this study, we aimed to unravel the role of both intestinal barrier integrity and microbiota in NAFLD/NASH development. METHODS C57BL/6J mice were fed with high-fat diet (HFD) or methionine-choline-deficient diet for 1 week or longer to recapitulate aspects of NASH (steatosis, inflammation, insulin resistance). Genetic and pharmacological strategies were then used to modulate intestinal barrier integrity. RESULTS We show that disruption of the intestinal epithelial barrier and gut vascular barrier (GVB) are early events in NASH pathogenesis. Mice fed HFD for only 1 week undergo a diet-induced dysbiosis that drives GVB damage and bacterial translocation into the liver. Fecal microbiota transplantation from HFD-fed mice into specific pathogen-free recipients induces GVB damage and epididymal adipose tissue enlargement. GVB disruption depends on interference with the WNT/β-catenin signaling pathway, as shown by genetic intervention driving β-catenin activation only in endothelial cells, preventing GVB disruption and NASH development. The bile acid analogue and farnesoid X receptor agonist obeticholic acid (OCA) drives β-catenin activation in endothelial cells. Accordingly, pharmacologic intervention with OCA protects against GVB disruption, both as a preventive and therapeutic agent. Importantly, we found upregulation of the GVB leakage marker in the colon of patients with NASH. CONCLUSIONS We have identified a new player in NASH development, the GVB, whose damage leads to bacteria or bacterial product translocation into the blood circulation. Treatment aimed at restoring β-catenin activation in endothelial cells, such as administration of OCA, protects against GVB damage and NASH development. LAY SUMMARY The incidence of fatty liver disease is reaching epidemic levels in the USA, with more than 30% of adults having NAFLD (non-alcoholic fatty liver disease), which can progress to more severe non-alcoholic steatohepatitis (NASH). Herein, we show that disruption of the intestinal epithelial barrier and gut vascular barrier are early events in the development of NASH. We show that the drug obeticholic acid protects against barrier disruption and thereby prevents the development of NASH, providing further evidence for its use in the prevention or treatment of NASH.
Collapse
Affiliation(s)
- Juliette Mouries
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Paola Brescia
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Alessandra Silvestri
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy
| | - Ilaria Spadoni
- Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy
| | - Marcel Sorribas
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Erika Mileti
- European Institute of Oncology, Department of Experimental Oncology, 20139 Milan, MI, Italy
| | - Marianna Galbiati
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, MI, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center for Autoimmune Liver Diseases, Department of Medicine and Surgery, University of Milan-Bicocca, Milan, MI, Italy
| | | | - Giuseppe Penna
- Humanitas Clinical and Research Center – IRCCS –, via Manzoni 56, 20089 Rozzano, MI, Italy,Postbiotica srl, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy
| | - Maria Rescigno
- Humanitas Clinical and Research Center - IRCCS -, via Manzoni 56, 20089 Rozzano, MI, Italy; Humanitas University, Department of Biomedical Sciences, Via Rita Levi Montalcini, 20090 Pieve Emanuele, MI, Italy.
| |
Collapse
|
32
|
Obeticholic acid prevents carbon tetrachloride-induced liver fibrosis through interaction between farnesoid X receptor and Smad3. Int Immunopharmacol 2019; 77:105911. [DOI: 10.1016/j.intimp.2019.105911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/29/2022]
|
33
|
Boland ML, Oró D, Tølbøl KS, Thrane ST, Nielsen JC, Cohen TS, Tabor DE, Fernandes F, Tovchigrechko A, Veidal SS, Warrener P, Sellman BR, Jelsing J, Feigh M, Vrang N, Trevaskis JL, Hansen HH. Towards a standard diet-induced and biopsy-confirmed mouse model of non-alcoholic steatohepatitis: Impact of dietary fat source. World J Gastroenterol 2019; 25:4904-4920. [PMID: 31543682 PMCID: PMC6737317 DOI: 10.3748/wjg.v25.i33.4904] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/28/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The trans-fat containing AMLN (amylin liver non-alcoholic steatohepatitis, NASH) diet has been extensively validated in C57BL/6J mice with or without the Lepob/Lepob (ob/ob) mutation in the leptin gene for reliably inducing metabolic and liver histopathological changes recapitulating hallmarks of NASH. Due to a recent ban on trans-fats as food additive, there is a marked need for developing a new diet capable of promoting a compatible level of disease in ob/ob and C57BL/6J mice.
AIM To develop a biopsy-confirmed mouse model of NASH based on an obesogenic diet with trans-fat substituted by saturated fat.
METHODS Male ob/ob mice were fed AMLN diet or a modified AMLN diet with trans-fat (Primex shortening) substituted by equivalent amounts of palm oil [Gubra amylin NASH, (GAN) diet] for 8, 12 and 16 wk. C57BL/6J mice were fed the same diets for 28 wk. AMLN and GAN diets had similar caloric content (40% fat kcal), fructose (22%) and cholesterol (2%) level.
RESULTS The GAN diet was more obesogenic compared to the AMLN diet and impaired glucose tolerance. Biopsy-confirmed steatosis, lobular inflammation, hepatocyte ballooning, fibrotic liver lesions and hepatic transcriptome changes were similar in ob/ob mice fed the GAN or AMLN diet. C57BL/6J mice developed a mild to moderate fibrotic NASH phenotype when fed the same diets.
CONCLUSION Substitution of Primex with palm oil promotes a similar phenotype of biopsy-confirmed NASH in ob/ob and C57BL/6J mice, making GAN diet-induced obese mouse models suitable for characterizing novel NASH treatments.
Collapse
Affiliation(s)
- Michelle L Boland
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | - Denise Oró
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | | | | | | | - Taylor S Cohen
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - David E Tabor
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Fiona Fernandes
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Andrey Tovchigrechko
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | | - Paul Warrener
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | - Bret R Sellman
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | | | | - Niels Vrang
- Pharmacology, Gubra, Hørsholm DK-2970, Denmark
| | - James L Trevaskis
- Cardiovascular, Renal and Metabolic Diseases, MedImmune, Gaithersburg, MD 20878, United States
| | | |
Collapse
|
34
|
Roth JD, Veidal SS, Fensholdt LKD, Rigbolt KTG, Papazyan R, Nielsen JC, Feigh M, Vrang N, Young M, Jelsing J, Adorini L, Hansen HH. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep 2019; 9:9046. [PMID: 31227742 PMCID: PMC6588626 DOI: 10.1038/s41598-019-45178-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022] Open
Abstract
Obeticholic acid (OCA) and elafibranor (ELA) are selective and potent agonists for the farnesoid X receptor (FXR) and dual peroxisome proliferator-activated receptor α/δ (PPAR-α/δ), respectively. Both agents have demonstrated clinical efficacy in nonalcoholic steatohepatitis (NASH). The present study used OCA and ELA to compare the effects of mono- and combination therapies on metabolic and histological endpoints in Lepob/ob mice with established diet-induced and biopsy-confirmed NASH (ob/ob-NASH). ob/ob-NASH mice were fed the AMLN diet high in trans-fat, fructose and cholesterol for 15 weeks, whereafter they received vehicle, OCA (30 mg/kg, PO, QD), ELA (3, 10 mg/kg, PO, QD), or combinations (OCA + ELA) for eight weeks. Within-subject comparisons were performed on histomorphometric changes, including fractional area of liver fat, galectin-3 and Col1a1. OCA and ELA monotherapies improved all quantitative histopathological parameters and OCA + ELA combinations exerted additive effects on metabolic and histological endpoints. In agreement with their different molecular mechanisms of action, OCA and ELA monotherapies elicited distinct hepatic gene expression profiles and their combination led to profound transcriptome changes associated with further improvements in lipid handling and insulin signaling, suppression of immune responses and reduced extracellular matrix formation. In conclusion, these findings provide preclinical proof-of-concept for combined FXR and PPAR-α/δ agonist-based therapies in NASH.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mark Young
- Intercept Pharmaceuticals, San Diego, CA, USA
| | | | | | | |
Collapse
|
35
|
Hernandez ED, Zheng L, Kim Y, Fang B, Liu B, Valdez RA, Dietrich WF, Rucker PV, Chianelli D, Schmeits J, Bao D, Zoll J, Dubois C, Federe GC, Chen L, Joseph SB, Klickstein LB, Walker J, Molteni V, McNamara P, Meeusen S, Tully DC, Badman MK, Xu J, Laffitte B. Tropifexor-Mediated Abrogation of Steatohepatitis and Fibrosis Is Associated With the Antioxidative Gene Expression Profile in Rodents. Hepatol Commun 2019; 3:1085-1097. [PMID: 31388629 PMCID: PMC6672390 DOI: 10.1002/hep4.1368] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Farnesoid X receptor (FXR) agonism is emerging as an important potential therapeutic mechanism of action for multiple chronic liver diseases. The bile acid‐derived FXR agonist obeticholic acid (OCA) has shown promise in a phase 2 study in patients with nonalcoholic steatohepatitis (NASH). Here, we report efficacy of the novel nonbile acid FXR agonist tropifexor (LJN452) in two distinct preclinical models of NASH. The efficacy of tropifexor at <1 mg/kg doses was superior to that of OCA at 25 mg/kg in the liver in both NASH models. In a chemical and dietary model of NASH (Stelic animal model [STAM]), tropifexor reversed established fibrosis and reduced the nonalcoholic fatty liver disease activity score and hepatic triglycerides. In an insulin‐resistant obese NASH model (amylin liver NASH model [AMLN]), tropifexor markedly reduced steatohepatitis, fibrosis, and profibrogenic gene expression. Transcriptome analysis of livers from AMLN mice revealed 461 differentially expressed genes following tropifexor treatment that included a combination of signatures associated with reduction of oxidative stress, fibrogenesis, and inflammation. Conclusion: Based on preclinical validation in animal models, tropifexor is a promising investigational therapy that is currently under phase 2 development for NASH.
Collapse
Affiliation(s)
- Eloy D Hernandez
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lianxing Zheng
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Young Kim
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bin Fang
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bo Liu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Reginald A Valdez
- Novartis Institutes for BioMedical Research Cambridge MA.,Comparative Biology and Safety Sciences Amgen, Inc. Cambridge MA
| | | | - Paul V Rucker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - James Schmeits
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Dingjiu Bao
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Jocelyn Zoll
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Claire Dubois
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| | - Glenn C Federe
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Lihao Chen
- Novartis Institutes for BioMedical Research Cambridge MA
| | - Sean B Joseph
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,California Institute for Biomedical Research La Jolla CA
| | | | - John Walker
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | | | - Peter McNamara
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Shelly Meeusen
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - David C Tully
- Novartis Institutes for BioMedical Research Emeryville CA
| | | | - Jie Xu
- Genomics Institute of the Novartis Research Foundation La Jolla CA
| | - Bryan Laffitte
- Genomics Institute of the Novartis Research Foundation La Jolla CA.,Inception Sciences, Inc. San Diego CA
| |
Collapse
|
36
|
Disease Progression and Pharmacological Intervention in a Nutrient-Deficient Rat Model of Nonalcoholic Steatohepatitis. Dig Dis Sci 2019; 64:1238-1256. [PMID: 30511198 PMCID: PMC6548202 DOI: 10.1007/s10620-018-5395-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/22/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND There is a marked need for improved animal models of nonalcoholic steatohepatitis (NASH) to facilitate the development of more efficacious drug therapies for the disease. METHODS Here, we investigated the development of fibrotic NASH in male Wistar rats fed a choline-deficient L-amino acid-defined (CDAA) diet with or without cholesterol supplementation for subsequent assessment of drug treatment efficacy in NASH biopsy-confirmed rats. The metabolic profile and liver histopathology were evaluated after 4, 8, and 12 weeks of dieting. Subsequently, rats with biopsy-confirmed NASH were selected for pharmacological intervention with vehicle, elafibranor (30 mg/kg/day) or obeticholic acid (OCA, 30 mg/kg/day) for 5 weeks. RESULTS The CDAA diet led to marked hepatomegaly and fibrosis already after 4 weeks of feeding, with further progression of collagen deposition and fibrogenesis-associated gene expression during the 12-week feeding period. Cholesterol supplementation enhanced the stimulatory effect of CDAA on gene transcripts associated with fibrogenesis without significantly increasing collagen deposition. Pharmacological intervention with elafibranor, but not OCA, significantly reduced steatohepatitis scores, and fibrosis-associated gene expression, however, was unable to prevent progression in fibrosis scores. CONCLUSION CDAA-fed rats develop early-onset progressive NASH, which offers the opportunity to probe anti-NASH compounds with potential disease-modifying properties.
Collapse
|
37
|
Li Y, Lu LG. Therapeutic Roles of Bile Acid Signaling in Chronic Liver Diseases. J Clin Transl Hepatol 2018; 6:425-430. [PMID: 30637221 PMCID: PMC6328738 DOI: 10.14218/jcth.2018.00025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
Bile acids (BAs) are the major metabolic product of cholesterol, having detergent-like activities and being responsible for absorption of lipid and lipid-soluble vitamins. In addition, it has been increasingly recognized that BAs are important signaling molecules, regulating energy metabolism and immunity. Under physiological circumstances, synthesis and transport of BAs are precisely regulated to maintain bile acid homeostasis. Disruption of bile acid homeostasis results in pathological cholestasis and metabolic liver diseases. During the last decades, BAs have been gradually recognized as an important therapeutic target for novel treatment in chronic liver diseases. This review will provide an update on the current understanding of synthesis, transport and regulation of BAs, with a focus on the therapeutic roles of bile acid signaling in chronic liver diseases.
Collapse
Affiliation(s)
| | - Lun-Gen Lu
- *Correspondence to: Lun-Gen Lu, Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, 100 Haining Road, Shanghai 200080, China. Tel: +86-21-63240090, Fax: +86-21-63241377, E-mail:
| |
Collapse
|
38
|
Donkers JM, Roscam Abbing RLP, van de Graaf SFJ. Developments in bile salt based therapies: A critical overview. Biochem Pharmacol 2018; 161:1-13. [PMID: 30582898 DOI: 10.1016/j.bcp.2018.12.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
Bile acids, amphipathic molecules known for their facilitating role in fat absorption, are also recognized as signalling molecules acting via nuclear and membrane receptors. Of the bile acid-activated receptors, the Farnesoid X Receptor (FXR) and the G protein-coupled bile acid receptor-1 (Gpbar1 or TGR5) have been studied most extensively. Bile acid signaling is critical in the regulation of bile acid metabolism itself, but it also plays a significant role in glucose, lipid and energy metabolism. Activation of FXR and TGR5 leads to reduced hepatic bile salt load, improved insulin sensitivity and glucose regulation, increased energy expenditure, and anti-inflammatory effects. These beneficial effects render bile acid signaling an interesting therapeutic target for the treatment of diseases such as cholestasis, non-alcoholic fatty liver disease, and diabetes. Here, we summarize recent findings on bile acid signaling and discuss potential and current limitations of bile acid receptor agonist and modulators of bile acid transport as future therapeutics for a wide-spectrum of diseases.
Collapse
Affiliation(s)
- Joanne M Donkers
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Reinout L P Roscam Abbing
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands
| | - Stan F J van de Graaf
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology and Metabolism, Amsterdam, the Netherlands.
| |
Collapse
|
39
|
Differential Effects of a Glucagon-Like Peptide 1 Receptor Agonist in Non-Alcoholic Fatty Liver Disease and in Response to Hepatectomy. Sci Rep 2018; 8:16461. [PMID: 30405191 PMCID: PMC6220318 DOI: 10.1038/s41598-018-33949-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is associated with post-operative liver failure (PLF) and impaired liver regeneration. We investigated the effects of a glucagon-like peptide-1 (GLP-1) receptor agonist on NAFLD, PLF and liver regeneration in mice fed chow diet or methionine/choline-deficient diet (MCD) or high fat diet (HFD). Fc-GLP-1 decreased transaminases, reduced intrahepatic triglycerides (TG) and improved MCD-induced liver dysfuction. Macrophage/Kupffer cell-related markers were also reduced although Fc-GLP-1 increased expression of genes related to natural killer (NK), cytotoxic T lymphocytes and hepatic stellate cell (HSC) activation. After partial hepatectomy (PH), survival rates increased in mice receiving Fc-GLP-1 on chow or MCD diet. However, the benefit of Fc-GLP-1 on NASH-like features was attenuated 2 weeks post-PH and liver mass restoration was not improved. At this time-period, markers of NK cells and cytotoxic T lymphocytes were further elevated in Fc-GLP-1 treated mice. Increased HSC related gene expression in livers was observed together with decreased retinyl ester content and increased retinal and retinoic acid, reflecting HSC activation. Similar effects were found in mice fed HFD receiving Fc-GLP-1. Our results shed light on the differential effects of a long-acting GLP-1R agonist in improving NAFLD and PLF, but not enhancing liver regeneration in mice.
Collapse
|
40
|
Santiago P, Scheinberg AR, Levy C. Cholestatic liver diseases: new targets, new therapies. Therap Adv Gastroenterol 2018; 11:1756284818787400. [PMID: 30159035 PMCID: PMC6109852 DOI: 10.1177/1756284818787400] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023] Open
Abstract
Cholestatic liver diseases result from gradual destruction of bile ducts, accumulation of bile acids and self-perpetuation of the inflammatory process leading to damage to cholangiocytes and hepatocytes. If left untreated, cholestasis will lead to fibrosis, biliary cirrhosis, and ultimately end-stage liver disease. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the two most common chronic cholestatic liver diseases affecting adults, and their etiologies remain puzzling. While treatment with ursodeoxycholic acid (UDCA) has significantly improved outcomes and prolonged transplant-free survival for patients with PBC, treatment options for UDCA nonresponders remain limited. Furthermore, there is no available medical therapy for PSC. With recent advances in molecular biochemistry specifically related to bile acid regulation and understanding of immunologic pathways, novel pharmacologic treatments have emerged. In this review, we discuss the standard of care and emphasize the various emerging treatments for PBC and PSC.
Collapse
Affiliation(s)
- Priscila Santiago
- Department of Medicine, University of Miami/Jackson Memorial Hospital
| | | | | |
Collapse
|
41
|
Weiskirchen R, Weiskirchen S, Tacke F. Recent advances in understanding liver fibrosis: bridging basic science and individualized treatment concepts. F1000Res 2018; 7:F1000 Faculty Rev-921. [PMID: 30002817 PMCID: PMC6024236 DOI: 10.12688/f1000research.14841.1] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is characterized by the formation and deposition of excess fibrous connective tissue, leading to progressive architectural tissue remodeling. Irrespective of the underlying noxious trigger, tissue damage induces an inflammatory response involving the local vascular system and the immune system and a systemic mobilization of endocrine and neurological mediators, ultimately leading to the activation of matrix-producing cell populations. Genetic disorders, chronic viral infection, alcohol abuse, autoimmune attacks, metabolic disorders, cholestasis, alterations in bile acid composition or concentration, venous obstruction, and parasite infections are well-established factors that predispose one to hepatic fibrosis. In addition, excess fat and other lipotoxic mediators provoking endoplasmic reticulum stress, alteration of mitochondrial function, oxidative stress, and modifications in the microbiota are associated with non-alcoholic fatty liver disease and, subsequently, the initiation and progression of hepatic fibrosis. Multidisciplinary panels of experts have developed practice guidelines, including recommendations of preferred therapeutic approaches to a specific cause of hepatic disease, stage of fibrosis, or occurring co-morbidities associated with ongoing loss of hepatic function. Here, we summarize the factors leading to liver fibrosis and the current concepts in anti-fibrotic therapies.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstraße 30, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Pauwelsstraße 30, Germany
| | - Frank Tacke
- Department of Medicine III, RWTH University Hospital Aachen, D-52074 Aachen, Pauwelsstraße 30, Germany
| |
Collapse
|
42
|
Tølbøl KS, Kristiansen MNB, Hansen HH, Veidal SS, Rigbolt KTG, Gillum MP, Jelsing J, Vrang N, Feigh M. Metabolic and hepatic effects of liraglutide, obeticholic acid and elafibranor in diet-induced obese mouse models of biopsy-confirmed nonalcoholic steatohepatitis. World J Gastroenterol 2018; 24:179-194. [PMID: 29375204 PMCID: PMC5768937 DOI: 10.3748/wjg.v24.i2.179] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the pharmacodynamics of compounds in clinical development for nonalcoholic steatohepatitis (NASH) in obese mouse models of biopsy-confirmed NASH.
METHODS Male wild-type C57BL/6J mice (DIO-NASH) and Lepob/ob (ob/ob-NASH) mice were fed a diet high in trans-fat (40%), fructose (20%) and cholesterol (2%) for 30 and 21 wk, respectively. Prior to treatment, all mice underwent liver biopsy for confirmation and stratification of liver steatosis and fibrosis, using the nonalcoholic fatty liver disease activity score (NAS) and fibrosis staging system. The mice were kept on the diet and received vehicle, liraglutide (0.2 mg/kg, SC, BID), obeticholic acid (OCA, 30 mg/kg PO, QD), or elafibranor (30 mg/kg PO, QD) for eight weeks. Within-subject comparisons were performed on changes in steatosis, inflammation, ballooning degeneration, and fibrosis scores. In addition, compound effects were evaluated by quantitative liver histology, including percent fractional area of liver fat, galectin-3, and collagen 1a1.
RESULTS Liraglutide and elafibranor, but not OCA, reduced body weight in both models. Liraglutide improved steatosis scores in DIO-NASH mice only. Elafibranor and OCA reduced histopathological scores of hepatic steatosis and inflammation in both models, but only elafibranor reduced fibrosis severity. Liraglutide and OCA reduced total liver fat, collagen 1a1, and galectin-3 content, driven by significant reductions in liver weight. The individual drug effects on NASH histological endpoints were supported by global gene expression (RNA sequencing) and liver lipid biochemistry.
CONCLUSION DIO-NASH and ob/ob-NASH mouse models show distinct treatment effects of liraglutide, OCA, and elafibranor, being in general agreement with corresponding findings in clinical trials for NASH. The present data therefore further supports the clinical translatability and utility of DIO-NASH and ob/ob-NASH mouse models of NASH for probing the therapeutic efficacy of compounds in preclinical drug development for NASH.
Collapse
Affiliation(s)
- Kirstine S Tølbøl
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
- Section for Metabolic Imaging and Liver Metabolism, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Maria NB Kristiansen
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | | | | | - Matthew P Gillum
- Section for Metabolic Imaging and Liver Metabolism, The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | | - Niels Vrang
- Gubra Aps, Hørsholm DK-2970, Denmark
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen DK-2200, Denmark
| | | |
Collapse
|
43
|
Roth JD, Feigh M, Veidal SS, Fensholdt LKD, Rigbolt KT, Hansen HH, Chen LC, Petitjean M, Friley W, Vrang N, Jelsing J, Young M. INT-767 improves histopathological features in a diet-induced ob/ob mouse model of biopsy-confirmed non-alcoholic steatohepatitis. World J Gastroenterol 2018; 24:195-210. [PMID: 29375205 PMCID: PMC5768938 DOI: 10.3748/wjg.v24.i2.195] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To characterize the efficacy of the dual FXR/TGR5 receptor agonist INT-767 upon histological endpoints in a rodent model of diet-induced and biopsy-confirmed non-alcoholic steatohepatitis (NASH).
METHODS The effects of INT-767 on histological features of NASH were assessed in two studies using Lepob/ob (ob/ob) NASH mice fed the AMLN diet (high fat with trans-fat, cholesterol and fructose). In a proof-of-concept study, Lepob/ob (ob/ob) NASH mice were first dosed with INT-767 (3 or 10 mg/kg for 8 wk). A second ob/ob NASH study compared INT-767 (3 and 10 mg/kg) to obeticholic acid (OCA) (10 or 30 mg/kg; 16 wk). Primary histological endpoints included qualitative and quantitative assessments of NASH. Other metabolic and plasma endpoints were also assessed. A comparative assessment of INT-767 and OCA effects on drug distribution and hepatic gene expression was performed in C57Bl/6 mice on standard chow. C57Bl/6 mice were orally dosed with INT-767 or OCA (1-30 mg/kg) for 2 wk, and expression levels of candidate genes were assessed by RNA sequencing and tissue drug levels were measured by liquid chromatography tandem-mass spectrometry.
RESULTS INT-767 dose-dependently (3 and 10 mg/kg, PO, QD, 8 wk) improved qualitative morphometric scores on steatohepatitis severity, inflammatory infiltrates and fibrosis stage. Quantitative morphometric analyses revealed that INT-767 reduced parenchymal collagen area, collagen fiber density, inflammation (assessed by Galectin-3 immunohistochemistry) and hepatocyte lipid droplet area following INT-767 treatment. In a comparative study (16 wk), the FXR agonists OCA (10 and 30 mg/kg) and INT-767 (3 and 10 mg/kg) both improved NASH histopathology, with INT-767 exerting greater therapeutic potency and efficacy than OCA. Mechanistic studies suggest that both drugs accumulate similarly within the liver and ileum, however, the effects of INT-767 may be driven by enhanced hepatic, but not ileal, FXR function.
CONCLUSION These findings confirm the potential utility of FXR and dual FXR/TGR5 activation as disease intervention strategies in NASH.
Collapse
MESH Headings
- Animals
- Bile Acids and Salts/metabolism
- Bile Acids and Salts/pharmacology
- Chromatography, High Pressure Liquid
- Diet, High-Fat
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Gene Expression Regulation
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis/etiology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/pathology
- Liver Cirrhosis/prevention & control
- Mice, Inbred C57BL
- Mice, Obese
- Microscopy, Fluorescence, Multiphoton
- Non-alcoholic Fatty Liver Disease/etiology
- Non-alcoholic Fatty Liver Disease/metabolism
- Non-alcoholic Fatty Liver Disease/pathology
- Non-alcoholic Fatty Liver Disease/prevention & control
- Obesity/drug therapy
- Obesity/etiology
- Obesity/metabolism
- Obesity/pathology
- Proof of Concept Study
- Receptors, Cytoplasmic and Nuclear/agonists
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction/drug effects
- Tandem Mass Spectrometry
- Time Factors
Collapse
Affiliation(s)
- Jonathan D Roth
- Intercept Pharmaceuticals, Intercept Pharmaceuticals, San Diego, CA 92121, United States
| | | | | | | | | | | | - Li C Chen
- PharmaNest, Genesis Imaging Services, Princeton, NJ 08540, United States
| | - Mathieu Petitjean
- PharmaNest, Genesis Imaging Services, Princeton, NJ 08540, United States
| | - Weslyn Friley
- Qualyst Transporter Solutions, Durham, NC 27713, United States
| | | | | | - Mark Young
- Intercept Pharmaceuticals, Intercept Pharmaceuticals, San Diego, CA 92121, United States
| |
Collapse
|
44
|
Ghadieh HE, Muturi HT, Najjar SM. Exenatide Prevents Diet-induced Hepatocellular Injury in A CEACAM1-Dependent Mechanism. JOURNAL OF DIABETES AND TREATMENT 2017; 2017:10.29011/2574.7568.000033. [PMID: 29431170 PMCID: PMC5806705 DOI: 10.29011/2574.7568.000033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule 1 (CEACAM1) promotes insulin sensitivity by inducing insulin clearance and reducing de novo lipogenesis in the liver. Consistently, Cc1-/- mice with null deletion of Ceacam1 gene exhibit hyperinsulinemia and insulin resistance, in addition to steatohepatitis. They also exhibit early pericellular fibrosis. Redelivering Ceacam1 to the liver reverses the altered metabolism and histopathology of Cc1-/- mice. Exenatide, a long-acting glucagon-like peptide-1 receptor agonist, induces Ceacam1 transcription and consequently, reverses impaired insulin clearance and insulin resistance caused by high-fat intake. Additionally, it reverses fat accumulation in the liver. The current studies show that exenatide also restored the activities of alanine transaminase and aspartate aminotransferase, and reversed the inflammatory and oxidative stress response to high-fat diet in wild-type, but not in Cc1-/- mice. Exenatide also prevented diet-induced activation of the TGFβ/Smad2/Smad3 pro-fibrogenic pathways, and normalized the mRNA levels of pro-fibrogenic genes in wild-type, but not in Cc1-/- mice. Together, the data demonstrate that exenatide prevented diet-induced pro-fibrogenesis and hepatocellular injury in a CEACAM1-dependent mechanism.
Collapse
Affiliation(s)
- Hilda E. Ghadieh
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T. Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research (CeDER), College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| |
Collapse
|