1
|
Swain S, Bej S, Bishoyi AK, Jali BR, Padhy RN. Biosynthesis and characterisations of silver nanoparticles with filamentous cyanobacterium Lyngbya sp. with in vitro antibacterial properties against MDR pathogenic bacteria. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9123-9133. [PMID: 38896273 DOI: 10.1007/s00210-024-03235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
This study describes phycocompounds of the non-N2-fixing filamentous cyanobacterium Lyngbya sp., which has potential bio-reducing and stabilizing heavy metal-accumulating properties for synthesizing silver nanoparticles (AgNPs), whose formation was confirmed by the colour change of the Lyngbya sp.-AgNP solution from pale green to deep brown. The reduction of 'Lyngbya sp.-AgNPs', called Lsp-AgNPs, was proved by UV-visible photo-spectrometry analysis with an obtained peak value at 426 nm. Lsp-AgNPs were characterised by analytical techniques, XRD, FESEM, DLS and FTIR. The XRD analysis with 5-70 theta was obtained at 2ϴ angles ranging from 38.79º with intensity, indicating the crystal structure of Lsp-AgNPs. The FESEM analysis indicated the area size at 20-50 µm; in the DLS analysis, the peak at 400 d nm indicated the size and distribution of Lsp-AgNPs. In FTIR analysis, the peaks were obtained at wavenumbers 3338, 1639, and 542 cm-1, which indicated the presence of N-H, -OH and C=O functional groups in Lsp-AgNPs. Those had in vitro antibacterial activities against Gram-negative Escherichia coli (MTCC 443) and Pseudomonas aeruginosa (MTCC 1688) and Gram-positive Staphylococcus aureus (MTCC 7443) bacterial strains with zone of inhibitions (ZOI) of 16, 12 and 14 mm, respectively, with comparing the antibiotic gentamycin as a positive control, as was monitored with agar-well diffusion method. Furthermore, the MIC value was 50 mg/ml, and MBC values of 65 mg/ml of Lsp-AgNPs were effective against those bacteria. Thus, Lsp-AgNPs had potential antibacterial activities against MDR pathogenic S. aureus, E. coli and P. aeruginosa. In conclusion, MDR pathogenic bacteria could be controlled as prodrugs in the future.
Collapse
Affiliation(s)
- Surendra Swain
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Shuvasree Bej
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Ajit Kumar Bishoyi
- Department of Clinical Hematology, Institute of Medical Sciences & Sum Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India
| | - Bigyan Ranjan Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha, 768018, India
| | - Rabindra Nath Padhy
- Central Research Laboratory, Institute of Medical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, 751003, India.
| |
Collapse
|
2
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2024:10.1007/s10534-024-00647-5. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
3
|
Nowruzi B, Beiranvand H, Aghdam FM, Barandak R. The effect of plasma activated water on antimicrobial activity of silver nanoparticles biosynthesized by cyanobacterium Alborzia kermanshahica. BMC Biotechnol 2024; 24:75. [PMID: 39375636 PMCID: PMC11460180 DOI: 10.1186/s12896-024-00905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Silver nanoparticles are extensively researched for their antimicrobial properties. Cold atmospheric plasma, containing reactive oxygen and nitrogen species, is increasingly used for disinfecting microbes, wound healing, and cancer treatment. Therefore, this study examined the effect of water activated by dielectric barrier discharge (DBD) plasma and gliding arc discharge plasma on the antimicrobial activity of silver nanoparticles from Alborzia kermanshahica. METHODS Silver nanoparticles were synthesized using the boiling method, as well as biomass from Alborzia kermanshahica extract grown in water activated by DBD and GA plasma. The physicochemical properties of the synthesized nanoparticles were evaluated using UV-vis spectroscopy, Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), zeta potential analysis, transmission electron microscopy (TEM), and gas chromatography-mass spectrometry (GC-MS) analysis. Additionally, the disk diffusion method was used to assess the antimicrobial efficacy of the manufactured nanoparticles against both Gram-positive and Gram-negative bacteria. RESULTS The spectroscopy results verified the presence of silver nanoparticles, indicating their biosynthesis. The highest amount of absorption (1.049) belonged to the nanoparticles synthesized by boiling under GA plasma conditions. Comparing the FTIR spectra of the plasma-treated samples with DBD and GA revealed that the DBD-treated samples had more intense peaks, indicating that the DBD method proved to be more effective in enhancing the functional groups on the silver nanoparticles. The DLS results revealed that the boiling method synthesized silver nanoparticles under DBD plasma treatment had a smaller particle size (149.89 nm) with a PDI of 0.251 compared to the GA method, and the DBD method produced nanoparticles with a higher zeta potential (27.7 mV) than the GA method, indicating greater stability of the biosynthesized nanoparticles. Moreover, the highest antimicrobial properties against E. coli (14.333 ± 0.47 mm) were found in the DBD-treated nanoparticles. TEM tests confirmed that spherical nanoparticles attacked the E. coli bacterial membrane, causing cell membrane destruction and cell death. The GC-MS results showed that compounds like 2-methylfuran, 3-methylbutanal, 2-methylbutanal, 3-hydroxy-2-butanone, benzaldehyde, 2-phenylethanol, and 3-octen-2-ol were much higher in the samples that were treated with DBD compared to the samples that were treated with GA plasma. CONCLUSION The research indicated that DBD plasma was more efficient than GA plasma in boosting the antimicrobial characteristics of nanoparticles. These results might be a cornerstone for future advancements in utilizing cold plasma to create nanoparticles with enhanced antimicrobial properties.
Collapse
Affiliation(s)
- Bahareh Nowruzi
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Hassan Beiranvand
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Malihi Aghdam
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Rojan Barandak
- Department of Biotechnology, Faculty of Converging Sciences and Technologies, Islamic Azad University, Science and Research Branch, Tehran, Iran
| |
Collapse
|
4
|
Wahed NM, Abomosallam M, Hendam BM, Shouman Z, Hashem NM, Sakr SA. Economic and Productive Comparison of Rutin and Rutin-Loaded Chitosan Alginate Nanoparticles Against Lead-Induced Oxidative Stress in Cobb and Arbor Broiler Breeds. Biol Trace Elem Res 2024; 202:4715-4734. [PMID: 38153670 PMCID: PMC11338976 DOI: 10.1007/s12011-023-04019-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Rutin, a natural bioflavonoid compound, is one of the best-known antioxidants. This study aimed to investigate the protective effect of rutin-loaded chitosan alginate nanoparticles (RCA NPs) against lead (Pb)-induced oxidative stress in two different broiler breeds. A total number of 240 chicks from Cobb (CB) and Arbor Acres (AR) breeds were randomly allocated into 4 groups/breed. The 1st group received standard basal diet (SD) and drinking water (DW) while the 2nd group received SD and Pb-incorporated DW (350 mg/L). The 3rd group treated with both rutin-supplemented SD (50 mg/kg feed), and DW contain Pb (350 mg/L). Finally, the 4th group administered RCA NPs-supplemented SD (50 mg/kg feed) and Pb-incorporated DW (350 mg/L). On the 40th day of experiment, broilers weighed, and blood samples collected for biochemical and hematological analysis then slaughtered. Economic efficiency, growth performance, and oxidative stress biomarkers were evaluated. Gene expression level of growth-associated genes as insulin-like growth factor-I (IGF-1) and histopathological changes were assessed in liver and intestinal tissue of both breeds. Our results revealed that Pb-treated birds exhibited the lowest average body weight gain (BWG) and economic efficiency measures in both breeds while RCA NPs-treated groups revealed enhanced growth and economic performance. Furthermore, diet supplementation with RCA NPs considerably enhanced the antioxidant enzymes activity and expression of growth-associated genes than groups treated with rutin alone specifically in AR breed. In conclusion, RCA NPs supplementation could be a promising nanoformulation in poultry production through enhancing the antioxidant capacity and bioavailability of rutin.
Collapse
Affiliation(s)
- Noha M Wahed
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Abomosallam
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Basma M Hendam
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Zeinab Shouman
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Nada Ma Hashem
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shimaa A Sakr
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Mohan B, Abishad P, Arya PR, Dias M, Vinod VK, Karthikeyan A, Juliet S, Kurkure NV, Barbuddhe SB, Rawool DB, Vergis J. Elucidating antibiofilm as well as photocatalytic disinfection potential of green synthesized nanosilver against multi-drug-resistant bacteria and its photodegradation ability of cationic dyes. Gut Pathog 2024; 16:51. [PMID: 39334435 PMCID: PMC11438043 DOI: 10.1186/s13099-024-00639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bioinspired nanomaterials have widely been employed as suitable alternatives for controlling biofilm and pathogens due to their distinctive physico-chemical properties. METHODOLOGY This study explored the antibiofilm as well as photocatalytic potential of silver (Ag) nanoparticles (NPs) synthesized using the cell-free supernatant of Lactobacillus acidophilus for the disinfection of multi-drug-resistant (MDR) strains of enteroaggregative E. coli (EAEC), Salmonella Typhimurium, S. Enteritidis and methicillin-resistant Staphylococcus aureus (MRSA) on exposure to LED light. In addition, the removal of toxic cationic dyes i.e., methylene blue (MB), rhodamine B (RhB) and crystal violet (CV) was explored on exposure to sunlight, LED and UV lights. RESULTS Initially, the synthesis of AgNPs was verified using UV- Vis spectroscopy, X-ray diffraction and transmission electron microscopy. The synthesized AgNPs exhibited MIC and MBC values of 7.80 and 15.625 µg/mL, respectively. The AgNPs exhibited significant inhibition (P < 0.001) in the biofilm-forming ability of all the tested MDR isolates. On exposure to LED light, the AgNPs could effectively eliminate all the tested MDR isolates in a dose-dependent manner. While performing photocatalytic assays, the degradation of RhB was observed to be quite slower than MB and CV irrespective of the tested light sources. Moreover, the sunlight as well as UV light exhibited better photodegradation capacity than LED light. Notwithstanding the light sources, RhB followed zero-order kinetics; however, MB and CV followed primarily second-order kinetics. CONCLUSION The green synthesized AgNPs were found to be an effective photocatalytic as well as antifouling candidate that could be applied in therapeutics and wastewater treatment.
Collapse
Affiliation(s)
- Bibin Mohan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Padikkamannil Abishad
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Pokkittath Radhakrishnan Arya
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Marita Dias
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Valil Kunjukunju Vinod
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Asha Karthikeyan
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India
| | | | | | | | - Jess Vergis
- Department of Veterinary Public Health, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, 673 576, India.
| |
Collapse
|
6
|
Swathi Pon Sakthi Sri V, Aron Santhosh Kumar Y, Savurirajan M, Jha DK, Vinithkumar NV, Dharani G. Anticancer efficacy of magnetite nanoparticles synthesized using aqueous extract of brown seaweed Rosenvingea intricata, South Andaman, India. Sci Rep 2024; 14:20255. [PMID: 39215065 PMCID: PMC11364866 DOI: 10.1038/s41598-024-67820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer is a global issue and hence various efforts are being made. Iron oxide is considered a significant biochemical agent in the biomedical arena for cancer treatment. Marine macroalgae-mediated iron oxides especially, magnetite (Fe3O4) nanoparticles (NPs) are a prospective alternative to diagnose and treat cancer owing to their fluorescent and magnetic properties. We intend to appraise the usability of the aqueous extract of Rosenvingea intricata (R. intricata) in Fe3O4 NPs synthesis and to study their cytotoxic effects against human hepatocarcinoma (Hep3B) and pancreatic (PANC1) cancer cells. In the present study, R. intricata were collected from the coastal region of South Andaman, India. Aqueous extracts of R. intricata were utilized to synthesize Fe3O4 NPs via the co-precipitation method. Phycosynthesized Fe3O4 NPs exhibited wide peak at 400-600 nm from ultraviolet-visible diffused reflectance spectroscopic analysis which validated the formation of NPs. Band edge emission peak at 660 nm in fluorescent spectra confirmed the quantum confinement in Fe3O4 NPs. Fourier transform infrared spectroscopy confirmed the role of R. intricata as a capping and reducing agent with functional groups such as O-H, C-H, C=O, N=O, C=C, C-O, C-N, and C-S arising from amino acids, polysaccharides, aliphatic hydrocarbons, esters, amides, lignins, alkanes, aliphatic amines, and sulfates. Physicochemical properties such as crystallite size (14.36 nm), hydrodynamic size (84.6 nm), irregular morphology, elemental composition, particle size (125 nm), crystallinity, and saturation magnetization (0.90007 emu/g) were obtained from x-ray diffractometer, dynamic light scattering, scanning electron microscopy, energy dispersive x-ray spectrometer, high-resolution transmission electron microscopy, selected area electron diffraction and vibrating sample magnetometer techniques, respectively. The cell viability showed dose-dependent cytotoxic effects and enhanced the apoptosis against Hep3B and PANC1 cancer cells. R. intricata extract capped Fe3O4 NPs could be the most appropriate and effective nanomaterial for cancer treatment and management.
Collapse
Affiliation(s)
- V Swathi Pon Sakthi Sri
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India.
| | - Y Aron Santhosh Kumar
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - M Savurirajan
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - Dilip Kumar Jha
- Atal Centre for Ocean Science and Technology for Islands (ACOSTI), National Institute of Ocean Technology (NIOT), Port Blair, India
| | - N V Vinithkumar
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| | - G Dharani
- Marine Biotechnology Division, Ministry of Earth Sciences, National Institute of Ocean Technology (NIOT), Goverment of India, Pallikaranai, Chennai, India
| |
Collapse
|
7
|
Mahboubi F, Mohammadnejad J, Khaleghi S. Bifunctional folic acid targeted biopolymer Ag@NMOF nanocomposite [{Zn2 (1,4-bdc) 2 (DABCO)} n] as a novel theranostic agent for molecular imaging of colon cancer by SERS. Heliyon 2024; 10:e29876. [PMID: 38681609 PMCID: PMC11046199 DOI: 10.1016/j.heliyon.2024.e29876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Without a doubt, cancer and its negative impact on human health have created many hurdles for people across the world since conventional approaches have not offered a reliable ability in the eradication of cancer. As a result, finding novel approaches, like using bimodal nanoparticles as a potential nanocarrier in molecular imaging and cancer therapy, is remarkably required these days. In the present study, ex-situ (Ge) and in-situ (Gi) green synthesized silver (Ag) nanoparticles entrapped in metal-organic framework nanocomposites (NMOF) coated with folic acid (FA) targeted chitosan (CS) was successfully developed as a novel bifunctional nanocarrier for detection and treatment of colon cancer cells. Then nanocarriers, such as NMOF-CS-FA, Ge-Ag@NMOF-CS-FA, Gi-Ag@NMOF-CS-FA, and C-Ag@NMOF-CS-FA, were characterized via FT-IR, DLS, SERS, TEM, and SEM and results have potentially confirmed the quality and quantity of synthesized nanocomposites. The hydrodynamic diameters of NMOF-CS, Ge-Ag@NMOF-CS, Gi-Ag@NMOF-CS, and C-Ag@NMOF-CS specimens were measured at around 99.7 ± 10 nm, 110 ± 10 nm, 118 ± 10 nm, 115 ± 10 nm, respectively. Also, the PDI values less than 0.2 confirm the reliable distribution of these nanocomposites. Afterward, the cell viability assay was conducted on HCT116 and HGF cell lines for evaluating biocompatibility and targeting efficiency of nanocomposites; FA functionalized nanocomposites have intensively indicated better performance in cancer cells targeting and their inhibition, and IC50 was attained for 10 ng/mL of Ge-Ag@NMOF-CS-FA while non-targeted nanocarriers did not have toxicity more than 20 % on HCT116 colon cancer cells. Moreover, according to the results, the cell viability of HGF normal cells was at least 85 % after being exposed to different concentrations of nanocomposites for 24 h. This indicates that the synthesized nanocomposites do not have significant toxic effects on normal cells. The results indicate that this novel nanocomposite has the potential to effectively deliver drugs to cancer cells.
Collapse
Affiliation(s)
- Fatemeh Mahboubi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Javad Mohammadnejad
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sepideh Khaleghi
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Arteaga-Castrejón AA, Agarwal V, Khandual S. Microalgae as a potential natural source for the green synthesis of nanoparticles. Chem Commun (Camb) 2024; 60:3874-3890. [PMID: 38529840 DOI: 10.1039/d3cc05767d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The increasing global population is driving the development of alternative sources of food and energy, as well as better or new alternatives for health and environmental care, which represent key challenges in the field of biotechnology. Microalgae represent a very important source material to produce several high-value-added bioproducts. Due to the rapid changes in the modern world, there is a need to build new materials for use, including those in the nanometer size, although these developments may be chronological but often do not occur at a time. In the last few years, a new frontier has opened up at the interface of biotechnology and nanotechnology. This new frontier could help microalgae-based nanomaterials to possess new functions and abilities. Processes for the green synthesis of nanomaterials are being investigated, and the availability of biological resources such as microalgae is continuously being examined. The present review provides a concise overview of the recent advances in the synthesis, characterization, and applications of nanoparticles formed using a wide range of microalgae-based biosynthesis processes. Highlighting their innovative and sustainable potential in current research, our study contributes towards the in-depth understanding and provides latest updates on the alternatives offered by microalgae in the synthesis of nanomaterials.
Collapse
Affiliation(s)
- Ariana A Arteaga-Castrejón
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| | - Vivechana Agarwal
- Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos, 62209, Mexico.
| | - Sanghamitra Khandual
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C, Unidad de Biotecnología Industrial, Camino al Arenero #1227, Col. El Bajío Arenal, 45019 Zapopan, Jalisco, Mexico.
| |
Collapse
|
9
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Farouk AE, Fahmy SR, Soliman AM, Ibrahim SA, Sadek SA. A nano-Liposomal formulation potentiates antioxidant, anti-inflammatory, and fibrinolytic activities of Allolobophora caliginosa coelomic fluid: formulation and characterization. BMC Biotechnol 2023; 23:28. [PMID: 37537554 PMCID: PMC10401763 DOI: 10.1186/s12896-023-00795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Coelomic fluid, a pharmacologically active compound in earthworms, exhibits a range of biological activities, including antioxidant, anti-inflammatory, and anticancer. However, the biological activities exerted by the coelomic fluid can be restrained by its low bioavailability and stability. Liposomes are progressively utilized as an entrapment system for natural bioactive compounds with poor bioavailability and stability, which could be appropriate for coelomic fluid. Thus, the present study was designed to fabricate, characterize, and evaluate the stability of liposomal formulation for Allolobophora caliginosa coelomic fluid (ACCF) as a natural antioxidant compound. METHODS The ACCF-liposomes were developed with a subsequent characterization of their physicochemical attributes. The physical stability, ACCF release behavior, and gastrointestinal stability were evaluated in vitro. The biological activities of ACCF and its liposomal formulation were also determined. RESULTS The liposomal formulation of ACCF had a steady characteristic absorption band at 201 nm and a transmittance of 99.20 ± 0.10%. Its average hydrodynamic particle size was 98 nm, with a PDI of 0.29 ± 0.04 and a negative zeta potential (-38.66 ± 0.33mV). TEM further confirmed the formation of vesicular, spherical nano-liposomes with unilamellar configuration. Additionally, a remarkable entrapment efficiency percent (77.58 ± 0.82%) with a permeability rate equal to 3.20 ± 0.31% and a high retention rate (54.16 ± 2.20%) for ACCF-liposomes were observed. The Fourier transform infrared spectroscopy (FTIR) result demonstrated that ACCF successfully entrapped inside liposomes. The ACCF-liposomes exhibited a slow and controlled ACCF release in vitro. Regarding stability studies, the liposomal formulation enhanced the stability of ACCF during storage and at different pH. Furthermore, ACCF-liposomes are highly stable in intestinal digestion conditions comparable to gastric digestion. The current study disclosed that liposomal formulation potentiates the biological activities of ACCF, especially antioxidant, anti-inflammatory, and thrombolytic activities. CONCLUSION These promising results offer a novel approach to increasing the bioaccessibility of ACCF, which may be crucial for the development of pharmaceuticals and nutraceutical-enriched functional foods.
Collapse
Affiliation(s)
- Asmaa E Farouk
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Sohair R Fahmy
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Amel M Soliman
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | | | - Shimaa A Sadek
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|
11
|
Chicea D, Nicolae-Maranciuc A, Doroshkevich AS, Chicea LM, Ozkendir OM. Comparative Synthesis of Silver Nanoparticles: Evaluation of Chemical Reduction Procedures, AFM and DLS Size Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5244. [PMID: 37569948 PMCID: PMC10419401 DOI: 10.3390/ma16155244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
The size of silver nanoparticles plays a crucial role in their ultimate application in the medical and industrial fields, as their efficacy is enhanced by decreasing dimensions. This study presents two chemical synthesis procedures for obtaining silver particles and compares the results to a commercially available Ag-based product. The first procedure involves laboratory-based chemical reduction using D-glucose (C6H12O6) and NaOH as reducing agents, while the second approach utilizes trisodium citrate dehydrate (C6H5Na3O7·2H2O, TSC). The Ag nanoparticle suspensions were examined using FT-IR and UV-VIS spectroscopy, which indicated the formation of Ag particles. The dimensional properties were investigated using Atomic Force Microscopy (AFM) and confirmed by Dynamic Light Scattering (DLS). The results showed particle size from microparticles to nanoparticles, with a particle size of approximately 60 nm observed for the laboratory-based TSC synthesis approach.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| | - Aleksandr S. Doroshkevich
- Donetsk Institute for Physics and Engineering Named after O.O. Galkin, NAS of Ukraine, 46, Prospect Nauky, 03028 Kyiv, Ukraine;
| | - Liana Maria Chicea
- Faculty of Medicine, Lucian Blaga University of Sibiu, 550169 Sibiu, Romania;
| | - Osman Murat Ozkendir
- Faculty of Engineering, Department of Natural and Mathematical Sciences, Tarsus University, Tarsus 33400, Turkey;
| |
Collapse
|
12
|
Zhang Z, Karimi-Maleh H. In situ synthesis of label-free electrochemical aptasensor-based sandwich-like AuNPs/PPy/Ti 3C 2T x for ultrasensitive detection of lead ions as hazardous pollutants in environmental fluids. CHEMOSPHERE 2023; 324:138302. [PMID: 36871797 DOI: 10.1016/j.chemosphere.2023.138302] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
The monitoring of hazardous pollutants in environmental fluids is one of main stretaegy in investigation of water and soil quality. Metal ions are one of main and dangerius materials in water sampels and one of the main causes of environmental problems. Therefore, many of environmental researchers focused on fabrication of highly sensitive sensor to ion hazardous pollutants environmental fluids. The encapsulation of 2D MXenes with other stable materials has proven to be an effective method for enhancing their stability and electrochemical properties. In this work, a sandwich-like nanocomposite structure, AuNPs/PPy/Ti3C2Tx, was designed and synthesized via a facile method of one-step layer-by-layer self-assembly. The morphology and structure of the prepared nanocomposites are characterized with various methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). Ti3C2Tx as a substrate played a significant role in the synthesis and alignment of PPy and AuNPs growth. The nanocomposites have maximized the benefits of the inorganic AuNPs and organic PPy materials, enhancing their stability and electrochemical performance. Meanwhile, AuNPs have given the nanocomposite the ability to form covalent bonds with biomaterials via the Au-S bond. Thus, a novel electrochemical aptasensor was developed based on AuNPs/PPy/Ti3C2Tx for the sensitive and selective detection of Pb2+. It demonstrated a wide linear range from 5 × 10-14 to 1 × 10-8 M with a low LOD of 1 × 10-14 M (S/N = 3). Additionally, the developed aptasensor exhibited excellent selectivity and stability and successfully used to sensing of Pb2+ in environmental fluids such as NongFu Spring and tap water.
Collapse
Affiliation(s)
- Zhouxiang Zhang
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, China.
| |
Collapse
|
13
|
Xia C, Jin X, Parandoust A, Sheibani R, Khorsandi Z, Montazeri N, Wu Y, Van Le Q. Chitosan-supported metal nanocatalysts for the reduction of nitroaromatics. Int J Biol Macromol 2023; 239:124135. [PMID: 36965557 DOI: 10.1016/j.ijbiomac.2023.124135] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/27/2023]
Abstract
The second most abundant natural polymer in the earth's crust is chitosan (CS). The unique physical, chemical, structural, and mechanical features of this natural polymer have led to its increased application in a variety of fields such as medicine, catalysis, removal of pollutants, etc. To eliminate various pollutants, it is preferable to employ natural compounds as their use aids the removal of contaminants from the environment. Consequently, employing CS to eliminate contaminants is a viable choice. For this aim, CS can be applied as a template and support for metal nanoparticles (MNPs) and prevent the accumulation of MNPs as well as a reducing and stabilizing agent for the fabrication of MNPs. Among the pollutants present in nature, nitro compounds are an important and wide category of biological pollutants. 4-Nitrophenol (4-NP) is one of the nitro pollutants. There are different ways for the removal of 4-NP, but the best and most effective method for this purpose is the application of a metallic catalyst and a reducing agent. In this review, we report the recent developments regarding CS-supported metallic (nano)catalysts for the reduction of nitroaromatics such as nitrophenols, nitroaniline compounds, nitrobenzene, etc. in the presence of reducing agents. The metals investigated in this study include Ag, Au, Ni, Cu, Ru, Pt, Pd, etc.
Collapse
Affiliation(s)
- Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Zahra Khorsandi
- Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran
| | - Narjes Montazeri
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Dağlıoğlu Y, Öztürk BY, Khatami M. Apoptotic, cytotoxic, antioxidant, and antibacterial activities of biosynthesized silver nanoparticles from nettle leaf. Microsc Res Tech 2023; 86:669-685. [PMID: 36883432 DOI: 10.1002/jemt.24306] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/23/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023]
Abstract
Here, we reported the biosynthesis of silver nanoparticles (AgNPs) using Urtica dioica (nettle) leaf extract as green reducing and capping agents and investigate their anticancer and antibacterial, activity. The Nettle-mediated biosynthesized AgNPs was characterized by UV-Vis a spectrophotometer. Their size, shape and elemental analysis were determined with the using of SEM and TEM. The crystal structure was determined by XRD and the biomolecules responsible for the reduction of Ag+ were determined using FTIR analysis. Nettle-mediated biosynthesis AgNPs indicated strong antibacterial activity against pathogenic microorganisms. Again, the antioxidant activity of AgNPs is quite high when compared to ascorbic acid. Anticancer effect of AgNPs, IC50 dose was determined by XTT analysis using MCF-7 cell line and the IC50 value was found to be 0.243 ± 0.014 μg/mL (% w/v).
Collapse
Affiliation(s)
- Yeşim Dağlıoğlu
- Molecular Biology and Genetics, Department, Ordu University, Ordu, Turkey
| | - Betül Yılmaz Öztürk
- Central Research Laboratory Application and Research Center, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Mehrdad Khatami
- Department of Environment of Kerman, The Environmental Researches Center, Kerman, Iran
| |
Collapse
|
15
|
Baran T, Karaoğlu K, Nasrollahzadeh M. Nano-sized and microporous palladium catalyst supported on modified chitosan/cigarette butt composite for treatment of environmental contaminants. ENVIRONMENTAL RESEARCH 2023; 220:115153. [PMID: 36574802 DOI: 10.1016/j.envres.2022.115153] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/10/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
This study reports a versatile process for the fabrication of a microporous heterogeneous palladium nanocatalyst on a novel spherical, biodegradable, and chemically/physically resistant catalyst support consisting of chitosan (CS) and cigarette waste-derived activated carbon (CAC). The physicochemical properties of the microporous Pd-CS-CAC nanocatalyst developed were successfully determined by FTIR, XRD, FE-SEM, TEM, BET, and EDS techniques. TEM studies showed that the average particle size of the synthesized Pd NPs was about 30 nm. The catalytic prowess of microporous Pd-CS-CAC was evaluated in the reduction/decolorization of various nitroarenes (2-nitroaniline (2-NA), 4-nitroaniline (4-NA), 4-nitrophenol (4-NP), and 4-nitro-o-phenylenediamine (4-NPD)) and organic dyes (methyl red (MR), methyl orange (MO), methylene blue (MB), congo red (CR), and rhodamine B (RhB)) in an aqueous medium in the presence of NaBH4 as the reducing agent at room temperature. The catalytic activities were studied by UV-Vis absorption spectroscopy of the supernatant at regular time intervals. The short reaction times, mild reaction conditions, high efficiency (100% conversion), easy separation, and excellent chemical stability of the catalyst due to its heterogeneity and reusability are the advantages of this method. The results of the tests showed that reduction/decolorization reactions were successfully carried out within 10-140 s due to the good catalytic ability of Pd-CS-CAC. Moreover, Pd-CS-CAC was reused for 5 consecutive times with no loss of the initial shape, size, and morphology, confirming that it was a sustainable and robust nanocatalyst.
Collapse
Affiliation(s)
- Talat Baran
- Department of Chemistry, Faculty of Science and Letters, Aksaray University, 68100, Aksaray, Turkey
| | - Kaan Karaoğlu
- Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, Qom, 37185-359, Iran; Max Bergmann Center of Biomaterials, Institute of Materials Science, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
16
|
Synthesis of a magnetic polystyrene-supported Cu(II)-containing heterocyclic complex as a magnetically separable and reusable catalyst for the preparation of N-sulfonyl-N-aryl tetrazoles. Sci Rep 2023; 13:3214. [PMID: 36828906 PMCID: PMC9958043 DOI: 10.1038/s41598-023-30198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
In this work, a cost-effective, environmentally friendly, and convenient method for synthesizing a novel heterogeneous catalyst via modification of polystyrene using tetrazole-copper magnetic complex [Ps@Tet-Cu(II)@Fe3O4] has been successfully developed. The synthesized complex was analyzed using TEM (transmission electron microscopy), HRTEM (high resolution-transmission electron microscopy), STEM (scanning transmission electron microscopy), FFT (Fast Fourier transform), XRD (X-ray diffraction), FT-IR (Fourier transform-infrared spectroscopy), TG/DTG (Thermogravimetry and differential thermogravimetry), ICP-OES (Inductively coupled plasma-optical emission spectrometry), Vibrating sample magnetometer (VSM), EDS (energy dispersive X-ray spectroscopy), and elemental mapping. N-Sulfonyl-N-aryl tetrazoles were synthesized in high yields from N-sulfonyl-N-aryl cyanamides and sodium azide using Ps@Tet-Cu(II)@Fe3O4 nanocatalyst. The Ps@Tet-Cu(II)@Fe3O4 complex can be recycled and reused easily multiple times using an external magnet without significant loss of catalytic activity.
Collapse
|
17
|
Deng Z, Wu Z, Alizadeh M, Zhang H, Chen Y, Karaman C. Electrochemical monitoring of 4-chlorophenol as a water pollutant via carbon paste electrode amplified with Fe 3O 4 incorporated cellulose nanofibers (CNF). ENVIRONMENTAL RESEARCH 2023; 219:114995. [PMID: 36529324 DOI: 10.1016/j.envres.2022.114995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A crucial problem that needs to be resolved is the sensitive and selective monitoring of chlorophenol compounds, especifically 4-chlorophenol (4-CP), one of the most frequently used organic industrial chemicals. In light of this, the goal of this study was to synthesize Fe3O4 incorporated cellulose nanofiber composite (Fe3O4/CNF) as an amplifier in the development of a modified carbon paste electrode (CPE) for 4-CP detection. Transmission electron microscopy (TEM) was used to evaluate the morphology of the synthesized nanocatalyst, while differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and linear sweep voltammetry (LSV) techniques were implemented to illuminate the electrochemical characteristics of the fabricated sensor. The ultimate electrochemical sensor (Fe3O4/CNF/CPE) was used as a potent electrochemical sensor for monitoring 4-CP in the concentration range of 1.0 nM-170 μM with a limit of detection value of 0.5 nM. As a result of optimization studies, 8.0 mg Fe3O4/CNF was found to be the ideal catalyst concentration, whereas pH = 6.0 was chosen as the ideal pH. The 4-CP's oxidation current was found to be over 1.67 times greater at ideal operating conditions than it was at the surface of bare CPE, and its oxidation potential decreased by about 120 mV. By using the standard addition procedure on samples of drinking water and wastewater, the suggested capability of Fe3O4/CNF/CPE to detect 4-CP was further investigated. The recovery range was found to be 98.52-103.66%. This study paves the way for the customization of advanced nanostructure for the application in electrochemical sensors resulting in beneficial environmental impact and enhancing human health.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Marzieh Alizadeh
- Oral and Dental Disease Research Center, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hongcai Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaobang Chen
- Sibang Environmental Protection Technology Co., Ltd., Yichun, 336000, China
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya, 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
18
|
Karimi F, Elhouda Tiri RN, Aygun A, Gulbagca F, Özdemir S, Gonca S, Gur T, Sen F. One-step synthesized biogenic nanoparticles using Linum usitatissimum: Application of sun-light photocatalytic, biological activity and electrochemical H 2O 2 sensor. ENVIRONMENTAL RESEARCH 2023; 218:114757. [PMID: 36511326 DOI: 10.1016/j.envres.2022.114757] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/29/2022] [Accepted: 11/05/2022] [Indexed: 06/17/2023]
Abstract
This study aimed to synthesize Ag NPs as a green catalyst for photocatalytic activity and to examine their biological activities. It was determined that they have high activity in catalytic and biological activities. The green synthesis which is an environmentally friendly and inexpensive method was used to synthesize Ag-NPs using Linum usitatissimum as a reducing agent. Transmission electron microscopy (TEM), infrared to Fourier transform infrared (FTIR) spectroscopy, UV-Visible (UV-Vis) spectroscopy, and X-ray diffraction (XRD) were used to characterize the Ag NPs. In UV-Vis examination, Ag-NPs had intense peaks in the 435 nm region. The antibacterial activity of Ag NPs was investigated, and Ag NPs showed a high lethal effect against S. aureus, E. coli, B. subtilis, and MRSA. In addition, Ag NPs were tested for anticancer activity against the HT-29 colon cancer cell line, MDA-MB-231 breast cancer cell line, healthy cell line L929-Murine Fibroblast cell Lines, and MIA PaCa-2 human pancreatic cancer cell line at various concentrations (1-160 μg/mL) and showed a high anticancerogenic properties against MDA-MB-231 cells. Ag NPs showed the ability of DNA cleavage activity. Also, the antioxidant activity of Ag NPs against DPPH was found to be 80% approximately. Furthermore, the photocatalytic activity of Ag NPs against methylene blue (MB) was determined to be 67.13% at the 180th min. In addition, it was observed that biogenic Ag NPs have high electrocatalytic activity for hydrogen peroxide (H2O2) detection. In the sensor based on Ag NPs, linearity from 1 μM to 5 μM was observed with a detection limit (LOD) of 1.323 μM for H2O2. According to these results, we conclude that the biogenic Ag NPs synthesized using Linum usitatissimum extract can be developed as an efficient biological agent as an antibacterial and anticancer also can be used as a photocatalyst for industrial wastewater treatment to prevent wastewater pollution.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Rima Nour Elhouda Tiri
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Aysenur Aygun
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Fulya Gulbagca
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye
| | - Sadin Özdemir
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Serpil Gonca
- Food Processing Programme, Technical Science Vocational School, Mersin University, 33343, Yenisehir, Mersin, Turkıye
| | - Tugba Gur
- Vocational School of Health Services, Van Yuzuncu Yil University, Van, Turkıye
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupinar University, Evliya Celebi Campus, 43100, Kutahya, Turkıye.
| |
Collapse
|
19
|
Khodeer DM, Nasr AM, Swidan SA, Shabayek S, Khinkar RM, Aldurdunji MM, Ramadan MA, Badr JM. Characterization, antibacterial, antioxidant, antidiabetic, and anti-inflammatory activities of green synthesized silver nanoparticles using Phragmanthera austroarabica A. G. Mill and J. A. Nyberg extract. Front Microbiol 2023; 13:1078061. [PMID: 36687608 PMCID: PMC9849905 DOI: 10.3389/fmicb.2022.1078061] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/07/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction Diabetes mellitus is a chronic metabolic disorder that exhibited great expansion all over the world. It is becoming an epidemic disease adding a major burden to the health care system, particularly in developing countries. Methods The plant under investigation in the current study Phragmanthera austroarabica A. G. Mill and J. A. Nyberg is traditionally used in Saudi Arabia for the treatment of diabetes mellitus. The methanolic extract (200 mg/kg) of the plant and pure gallic acid (40 mg/kg), a major metabolite of the plant, as well as their silver nanoparticle formulae (AgNPs) were evaluated for their antidiabetic activity. Results and Discussion The results showed a decrease in body fat, obesity, an improvement in lipid profiles, normalization of hyperglycemia, insulin resistance, and hyperinsulinemia, and an improvement in liver tissue structure and function. However, the results obtained from AgNPs for both extract and the pure gallic acid were better in most measured parameters. Additionally, the activity of both the crude extract of the plant and its AgNPs were evaluated against a number of gram-positive, gram-negative bacteria and fungi. Although the activity of the crude extract ranged from moderate to weak or even non-active, the AgNPs of the plant extract clearly enhanced the antimicrobial activity. AgNPs of the extract demonstrated remarkable activity, especially against the Gram-negative pathogens Proteus vulgaris (MIC 2.5 μg/ml) and Pseudomonas aeruginosa (MIC 5 μg/ml). Furthermore, a promising antimicrobial activity was shown against the Gram-positive pathogen Streptococcus mutants (MIC 1.25 μg/ml).
Collapse
Affiliation(s)
- Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,*Correspondence: Dina M. Khodeer, ✉
| | - Ali M. Nasr
- Department of Pharmaceutics, Faculty of Pharmacy, Port Said University, Port Said, Egypt,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Galala University, Suez, Egypt
| | - Shady A. Swidan
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt,The Centre for Drug Research and Development (CDRD), Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Roaa M. Khinkar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed M. Aldurdunji
- Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Maryam A. Ramadan
- Department of Pathology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt,Jihan M. Badr, ✉
| |
Collapse
|
20
|
Alhomaidi E, Faris P, Saja H, Jalil AT, Saleh MM, Khatami M. Soil-bacteria-mediated eco-friendly synthesis of ceramic nanostructure. RENDICONTI LINCEI. SCIENZE FISICHE E NATURALI 2022. [DOI: 10.1007/s12210-022-01117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
M. Alahdal H, Ayad Abdullrezzaq S, Ibrahim M. Amin H, F. Alanazi S, Turki Jalil A, Khatami M, Mahmood Saleh M. Trace elements-based Auroshell gold@hematite nanostructure: Green synthesis and their hyperthermia therapy. IET Nanobiotechnol 2022; 17:22-31. [PMID: 36420828 PMCID: PMC9932437 DOI: 10.1049/nbt2.12107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/25/2022] Open
Abstract
Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.
Collapse
Affiliation(s)
- Hadil M. Alahdal
- Department of BiologyCollege of SciencePrincess Nourah bint Abdulrahman UniversityRiyadhSaudi Arabia
| | | | - Hawraz Ibrahim M. Amin
- Department of ChemistryCollege of ScienceSalahaddin University‐ErbilErbilIraq,Department of Medical Biochemical AnalysisCihan University‐ErbilErbilIraq
| | - Sitah F. Alanazi
- Department of PhysicsCollege of ScienceImam Mohammad Ibn Saud Islamic UniversityRiyadhSaudi Arabia
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories TechniquesAl‐Mustaqbal University CollegeBabylon, HillaIraq
| | - Mehrdad Khatami
- Antibacterial Materials R&D CentreChina Metal New Materials (Huzhou) InstituteHuzhouZhejiangChina
| | - Marwan Mahmood Saleh
- Department of BiophysicsCollege of Applied SciencesUniversity of AnbarRamadiIraq,Medical Laboratory Technology DepartmentCollege of Medical TechnologyThe Islamic UniversityNajafIraq
| |
Collapse
|
22
|
Daneshnazar M, Jaleh B, Eslamipanah M, Varma RS. Optical and gas sensing properties of TiO2/RGO for methanol, ethanol and acetone vapors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Jasim SA, Amin HIM, Rajabizadeh A, Nobre MAL, Borhani F, Jalil AT, Saleh MM, Kadhim MM, Khatami M. Synthesis characterization of Zn-based MOF and their application in degradation of water contaminants. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2303-2335. [PMID: 36378182 PMCID: wst_2022_318 DOI: 10.2166/wst.2022.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Metal-organic frameworks (MOFs) are currently popular porous materials with research and application value in various fields such as medicine and engineering. Aiming at the application of MOFs in photocatalysis, this paper mainly reviews the main synthesis methods of ZnMOFs and the latest research progress of Zn MOF-based photocatalysts to degrade organic pollutants in water, such as organic dyes. This nanomaterial is being used to treat wastewater and has proven to be very efficient because of its exceptionally large surface area and porous nature. The results show that Zn-MOFs are capable of high degradation of the above pollutants and over 90% of degradation was observed in publications. In addition, the reusability percentage was examined and studies showed that the Zn-MOF nanostructure has very good stability and can continue to degrade a high percentage of pollutants after several cycles. This review focuses on Zn-MOFs and their composites. First, the methods of synthesis and characterization of these compounds are given. Finally, the application of these composites in the process of photocatalytic degradation of dye pollutants such as methylene blue, methyl orange, crystal violet, rhodamine B, etc. is explained.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Chemistry Department, Salahaddin University-Erbil, Erbil, Iraq; Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Ahmad Rajabizadeh
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Marcos Augusto Lima Nobre
- School of Technology and Sciences, São Paulo State University (Unesp), Presidente Prudente, SP 19060-900, Brazil
| | - Fariba Borhani
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran E-mail:
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq; Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Mustafa M Kadhim
- Department of Medical Laboratory Techniques, Dijlah University College, Baghdad 10021, Iraq; Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Comparative Cytotoxic Evaluation of Zygophyllum album Root and Aerial Parts of Different Extracts and Their Biosynthesized Silver Nanoparticles on Lung A549 and Prostate PC-3 Cancer Cell Lines. Pharmaceuticals (Basel) 2022; 15:ph15111334. [PMID: 36355507 PMCID: PMC9695243 DOI: 10.3390/ph15111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
The current work demonstrates a comparative study between aerial and root parts of Zygophyllum album L. The total phenolic (TPC) and flavonoid content (TFC), in addition to the antioxidant activity, of the crude extracts were investigated, where the aerial parts revealed a higher value overall. By means of UV–VIS and HPLC, rutin and caffeic acid were detected and then quantified as 5.91 and 0.97 mg/g of the plant extract, respectively. Moreover, the biosynthesis of AgNPs utilizing the crude extract of the arial parts and root of Z. album L. and the phenolic extracts was achieved in an attempt to enhance the cytotoxicity of the different plant extracts. The prepared AgNPs formulations were characterized by TEM and zeta potential measurements, which revealed that all of the formulated AgNPs were of a small particle diameter and were highly stable. The mean hydrodynamic particle size ranged from 67.11 to 80.04 nm, while the zeta potential ranged from 29.1 to 38.6 mV. Upon biosynthesis of the AgNPs using the extracts, the cytotoxicity of the tested samples was improved, so the polyphenolics AgNPs of the aerial parts exhibited a potent cytotoxicity against lung A549 and prostate PC-3 cancer cells with IC50 values of 6.1 and 4.36 µg/mL, respectively, compared with Doxorubicin (IC50 values of 6.19 and 5.13 µg/mL, respectively). Regarding the apoptotic activity, polyphenolics AgNPs of the aerial parts induced apoptotic cell death by 4.2-fold in PC-3 and 4.7-fold in A549 cells compared with the untreated control. The mechanism of apoptosis in both cancerous cells appeared to be via the upregulation proapoptotic genes; p53, Bax, caspase 3, 8, and 9, and the downregulation of antiapoptotic gene, Bcl-2. Hence, this formula may serve as a good source for anticancer agents against PC-3 and A549 cells.
Collapse
|
25
|
Ryu S, Nam SH, Baek JS. Green Synthesis of Silver Nanoparticles (AgNPs) of Angelica Gigas Fabricated by Hot-Melt Extrusion Technology for Enhanced Antifungal Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7231. [PMID: 36295297 PMCID: PMC9606926 DOI: 10.3390/ma15207231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Green synthesis for synthesizing silver nanoparticles (AgNPs) has been suggested as an environmentally friendly alternative to conventional physical/chemical methods. In this study, we report the green synthesis of AgNPs using a hot-melt extrusion-processed Angelica gigas Nakai (AGN) (HME-AGN) extract as a reducing agent to increase the water solubility of the active ingredient compared to the existing AGN. The mixture of the AGN extract and AgNO3 at about 420 nm could not confirm the formation of AgNPs. The synthesis of AgNPs was found to be most advantageous at 60 °C when the mixing ratio of the HME-AGN extract was 9:1 (AgNO3-extract, v/v) using 3 mM AgNO3. The physicochemical properties of the optimized AgNPs were characterized by UV-Vis spectrophotometer, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FT-IR), and X-ray diffractometer (XRD). DLS showed the particle size average of 102.3 ± 1.35 nm and polydispersity index (PDI) value of 0.314 ± 0.01. The particle surface charge was -35 ± 0.79 mV, confirming the stability of the particles. The particle shape was spherical, as shown through TEM analysis, and the presence of silver ions was confirmed through the EDS results. FT-IR data showed functional groups of biomolecules of the extract involved in the synthesis of AgNPs. The face-centered cubic (FCC) lattice of AgNPs was confirmed in the XRD pattern. The AgNPs had an effective antifungal activity against Candida albicans (C. albicans) that was better than that of the HME-AGN extract. In conclusion, this study suggests that the synthesis of AgNPs was improved by using the HME-AGN extract with increased water solubility through HME. In addition, it was suggested that the synthesized AgNPs can be used as an improved antifungal agent compared with the HME-AGN extract with antifungal activity.
Collapse
Affiliation(s)
- Suji Ryu
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
| | - Seoul-Hee Nam
- Department of Dental Hygiene, Kangwon National University, Samcheok 25949, Korea
| | - Jong-Suep Baek
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 24341, Korea
- Department of Herbal Medicine Resource, Kangwon National University, Samcheok 25949, Korea
| |
Collapse
|
26
|
Nitnavare R, Bhattacharya J, Thongmee S, Ghosh S. Photosynthetic microbes in nanobiotechnology: Applications and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 841:156457. [PMID: 35662597 DOI: 10.1016/j.scitotenv.2022.156457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.
Collapse
Affiliation(s)
- Rahul Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, United Kingdom; Department of Plant Sciences, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, Telangana, India; Department of Genetics, Osmania University, Hyderabad 500007, Telangana, India
| | - Sirikanjana Thongmee
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand.
| | - Sougata Ghosh
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Microbiology, School of Science, RK University, Rajkot 360020, Gujarat, India.
| |
Collapse
|
27
|
Mirzaiebadizi A, Ravan H, Dabiri S, Mohammadi P, Shahba A, Ziasistani M, Khatami M. An intelligent DNA nanorobot for detection of MiRNAs cancer biomarkers using molecular programming to fabricate a logic-responsive hybrid nanostructure. Bioprocess Biosyst Eng 2022; 45:1781-1797. [PMID: 36125526 DOI: 10.1007/s00449-022-02785-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022]
Abstract
Herein, we designed a DNA framework-based intelligent nanorobot using toehold-mediated strand displacement reaction-based molecular programming and logic gate operation for the selective and synchronous detection of miR21 and miR125b, which are known as significant cancer biomarkers. Moreover, to investigate the applicability of our design, DNA nanorobots were implemented as capping agents onto the pores of MSNs. These agents can develop a logic-responsive hybrid nanostructure capable of specific drug release in the presence of both targets. The prosperous synthesis steps were verified by FTIR, XRD, BET, UV-visible, FESEM-EDX mapping, and HRTEM analyses. Finally, the proper release of the drug in the presence of both target microRNAs was studied. This Hybrid DNA Nanostructure was designed with the possibility to respond to any target oligonucleotides with 22 nucleotides length.
Collapse
Affiliation(s)
- Amin Mirzaiebadizi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.,Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Hadi Ravan
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Shahriar Dabiri
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Pourya Mohammadi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arezoo Shahba
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Ziasistani
- Department of Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
28
|
Sidorowicz A, Margarita V, Fais G, Pantaleo A, Manca A, Concas A, Rappelli P, Fiori PL, Cao G. Characterization of nanomaterials synthesized from Spirulina platensis extract and their potential antifungal activity. PLoS One 2022; 17:e0274753. [PMID: 36112659 PMCID: PMC9481030 DOI: 10.1371/journal.pone.0274753] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Nowadays, fungal infections increase, and the demand of novel antifungal agents is constantly rising. In the present study, silver, titanium dioxide, cobalt (II) hydroxide and cobalt (II,III) oxide nanomaterials have been synthesized from Spirulina platensis extract. The synthesis mechanism has been studied using GCMS and FTIR thus confirming the involvement of secondary metabolites, mainly amines. The obtained products have been analysed using XRD, SEM, TGA and zeta potential techniques. The findings revealed average crystallite size of 15.22 nm with 9.72 nm for oval-shaped silver nanoparticles increasing to 26.01 nm and 24.86 nm after calcination and 4.81 nm for spherical-shaped titanium dioxide nanoparticles which decreased to 4.62 nm after calcination. Nanoflake shape has been observed for cobalt hydroxide nanomaterials and for cobalt (II, III) oxide with crystallite size of 3.52 nm and 13.28 nm, respectively. Silver nanoparticles showed the best thermal and water dispersion stability of all the prepared structures. Once subjected to three different Candida species (C. albicans, C. glabrata, and C. krusei) silver nanoparticles and cobalt (II) hydroxide nanomaterials showed strong antifungal activity at 50 μg/mL with minimum inhibitory concentration (MIC) values. After light exposition, MIC values for nanomaterials decreased (to 12.5 μg/mL) for C. krusei and increased (100 μg/mL) for C. albicans and C. glabrata.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | | | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessia Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Mediterranean Center for Disease Control, Sassari, Italy
- * E-mail: (PLF); (GC)
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Piazza d’Armi, Cagliari, Italy
- * E-mail: (PLF); (GC)
| |
Collapse
|
29
|
Khalaj M, Zarandi M. A Cu(ii) complex supported on Fe 3O 4@SiO 2 as a magnetic heterogeneous catalyst for the reduction of environmental pollutants. RSC Adv 2022; 12:26527-26541. [PMID: 36275142 PMCID: PMC9486508 DOI: 10.1039/d2ra04787j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Today, the presence of pollutants in the environment has become one of the serious problems and concerns of human beings. To eliminate these pollutants, researchers have made many efforts. One of the most important of these efforts is the reduction of such contaminants in the presence of effective catalysts. Two of the most important and widespread types of these pollutants are nitro compounds and organic dyes. In this paper, we report the synthesis of an efficient and reusable magnetic catalyst using Fe3O4@SiO2 core-shell nanoparticles (NPs), N-(4-bromophenyl)-N'-benzoylthiourea, and copper(ii). Specifically, the Cu(ii)-N-(4-bromophenyl)-N'-benzoylthiourea complex supported on Fe3O4-core magnetic NPs (CM)/SiO2-shell (SS) (CM@SS-BBTU-Cu(ii)) has been prepared. CM@SS-BBTU-Cu(ii) was characterized by FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), TEM (transmission electron microscopy), HRTEM (high resolution transmission electron microscopy), FFT (fast Fourier transform), VSM (vibrating sample magnetometry), TG-DTA (thermogravimetry-differential thermal analysis), STEM (scanning transmission electron microscopy), EDS (energy-dispersive X-ray spectroscopy), and elemental mapping. The synthesized CM@SS-BBTU-Cu(ii) was applied for the reduction of 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) in the presence of NaBH4 (sodium borohydride) at room temperature. CM@SS-BBTU-Cu(ii) can be recycled and reused 5 times. Our results displayed that the performance of the catalyst was not significantly reduced by recycling.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| | - Maryam Zarandi
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| |
Collapse
|
30
|
Landeros-Páramo L, Saavedra-Molina A, Gómez-Hurtado MA, Rosas G. The effect of AgNPS bio-functionalization on the cytotoxicity of the yeast Saccharomyces cerevisiae. 3 Biotech 2022; 12:196. [PMID: 35928500 PMCID: PMC9343563 DOI: 10.1007/s13205-022-03276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
This work used Sedum praealtum leaf extract to synthesize silver nanoparticles (AgNPs) in a single step. The cytotoxicity of AgNPs was studied with the yeast Saccharomyces cerevisiae W303-1. In addition, the antioxidant activity of the DPPH radical was studied both in the extract of S. praealtum and in the AgNPs. UV-Vis spectroscopy determined the presence of AgNPs by the location of the surface plasmon resonance (SPR) band at 434 nm. TEM and XRD analyzes show AgNPs with fcc structure and hemispherical morphology. Also, AgNPs range in size from 5 to 25 nm and have an average size of 14 nm. 1H NMR, FTIR, and UV-Vis spectroscopy techniques agreed that glycosidic compounds were the main phytochemical components responsible for the reduction and stabilization of AgNPs. In addition, AgNPs presented a maximum of 12% toxicity in yeast attributed to the generation of ROS. Consequently, there was low bioactivity because glycoside compounds cover the biosynthesized AgNPs from S. praealtum. These findings allow applications of AgNPs involving contact with mammals and higher organisms.
Collapse
Affiliation(s)
- L. Landeros-Páramo
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - A. Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - Mario A. Gómez-Hurtado
- Instituto de Investigaciones Químico Biológicas, UMSNH, edificio B-3., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| | - G. Rosas
- Instituto de Investigación en Metalurgia y Materiales, UMSNH, Edificio U., Ciudad Universitaria, C.P. 58030 Morelia, Michoacán México
| |
Collapse
|
31
|
Alhomaidi E, Jasim SA, Amin HIM, Lima Nobre MA, Khatami M, Jalil AT, Hussain Dilfy S. Biosynthesis of silver nanoparticles using Lawsonia inermis and their biomedical application. IET Nanobiotechnol 2022; 16:284-294. [PMID: 36039655 PMCID: PMC9469786 DOI: 10.1049/nbt2.12096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022] Open
Abstract
Developing biosynthesis of silver nanoparticles (Ag‐NPs) using plant extract is an environmentally friendly method to reduce the use of harmful chemical substances. The green synthesis of Ag‐NPs by Lawsonia inermis extract and its cellular toxicity and the antimicrobial effect was studied. The physical and chemical properties of synthesised Ag‐NPs were investigated using UV‐visible spectroscopy, infrared spectroscopy, X‐ray diffraction (XRD), scanning, and transmission electron microscopy. The average size of Ag‐NPs was 40 nm. The XRD result shows peaks at 2θ = 38.07°, 44.26°, 64.43°, and 77.35° are related to the FCC structure of Ag‐NPs. Cytotoxicity of synthesised nanoparticles was evaluated by MTT toxicity test on breast cancer MCF7 cell line. Observations showed that the effect of cytotoxicity of nanoparticles on the studied cell line depended on concentration and time. The obtained IC50 was considered for cells at a dose of 250 μg/ml. Growth and survival rates decreased exponentially with the dose. Antimicrobial properties of Ag‐NPs synthesised with extract were investigated against Escherichia coli, Salmonella typhimurium, Bacillus cereus, and Staphylococcus aureus to calculate the minimum inhibitory concentration and the minimum bactericidal concentration of (MBC). The results showed that the synthesised Ag‐NPs and the plant extract have antimicrobial properties. The lowest concentration of Ag‐NPs that can inhibit the growth of bacterial strains was 25 μg/ml.
Collapse
Affiliation(s)
- Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saade Abdalkareem Jasim
- Al-Maarif University College, Medical Laboratory Techniques Department, Al-Anbar-Ramadi, Iraq
| | - Hawraz Ibrahim M Amin
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Erbil, Iraq.,Department of Medical Biochemical Analysis, Cihan University-Erbil, Erbil, Iraq
| | - Marcos Augusto Lima Nobre
- São Paulo State University (Unesp), School of Technology and Sciences, Presidente Prudente, Sao Paulo, Brazil
| | - Mehrdad Khatami
- Antibacterial Materials R&D Centre, China Metal New Materials (Huzhou) Institute, Huzhou, Zhejiang, China
| | - Abduladheem Turki Jalil
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Saja Hussain Dilfy
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq.,Department of Biology, College of Education for Pure Science, Wasit University, Iraq
| |
Collapse
|
32
|
Mortezagholi B, Movahed E, Fathi A, Soleimani M, Forutan Mirhosseini A, Zeini N, Khatami M, Naderifar M, Abedi Kiasari B, Zareanshahraki M. Plant-mediated synthesis of silver-doped zinc oxide nanoparticles and evaluation of their antimicrobial activity against bacteria cause tooth decay. Microsc Res Tech 2022; 85:3553-3564. [PMID: 35983930 DOI: 10.1002/jemt.24207] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/12/2022] [Accepted: 07/07/2022] [Indexed: 12/22/2022]
Abstract
In this research, silver-doped zinc oxide (SdZnO) nanoparticles (NPs) were synthesized in an environmental-friendly manner. The synthesized NPs were identified by UV-vis spectroscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Finally, the antimicrobial activity of synthesized ZnO and SdZnO NPs was performed. It was observed that by doping silver, the size of ZnO NPs was changed. By adding silver to ZnO NPs, the antimicrobial effect of ZnO NPs was improved. Antibacterial test against gram-positive bacterium Streptococcus mutants showed that SdZnO NPs with a low density of silver had higher antibacterial activity than ZnO NPs; Therefore, SdZnO NPs can be used as a new antibacterial agent in medical applications.
Collapse
Affiliation(s)
- Bardia Mortezagholi
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Emad Movahed
- Dental Materials Research Center, Dental School, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Amirhossein Fathi
- Department of Prosthodontics, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Soleimani
- Department of Orthodontics, School of Dentistry, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Negar Zeini
- Department of Oral and Maxillofacial Radiology, School Dentistry Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehrdad Khatami
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Bahman Abedi Kiasari
- Virology Department, Faculty of Veterinary Medicine, The University of Tehran, Tehran, Iran
| | - Mehran Zareanshahraki
- School of Dentistry, Islamic Azad Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
33
|
Mabrouk M, Beherei HH, Tanaka Y, Tanaka M. Sol-gel silicate glass doped with silver for bone regeneration: Antibacterial activity, intermediate water, and cell death mode. BIOMATERIALS ADVANCES 2022; 138:212965. [PMID: 35913231 DOI: 10.1016/j.bioadv.2022.212965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/21/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
The hydration state of bioactive glass materials and its relationship with their biocompatibility have been receiving attention. In this research, silver-containing bioactive glasses (BGAgs) (Ag contents of 0.25, 0.5, and 1.0% in the glass system) were developed using the sol-gel method. Their physicochemical properties, size, morphology, and surface area were characterized by conducting X-rays diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) surface area analyses. The surface charges of the developed BGAgs were evaluated using the Nano Zetasizer. Moreover, the antibacterial activities and intermediate water (IW) contents of hydrated BGAgs were determined. Finally, BGAgs disks were tested against osteosarcoma (MG63) cell line to evaluate their death modes. The physicochemical characteristics of the BGAgs revealed no modifications after Ag doping. In comparison, relative changes were recorded in the particle size (20-33 to 16-29 nm), surface area (4.3 to 3.7 m2/g), and particle charge (-24 to -14.6 mV). Doping the current glass system with silver produced impressive amounts of IW, consistent with recorded proliferation rates of the cells when treated with BGAgs. The determined hydration states correlated with other findings in this research might be helpful in predicting and assessing the biological behaviors of BGAgs.
Collapse
Affiliation(s)
- Mostafa Mabrouk
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt.
| | - Hanan H Beherei
- Refractories, Ceramics and Building materials Department, National Research Centre, 33El Bohouth St. (former EL Tahrir St.), Dokki, P.O.12622, Giza, Egypt
| | - Yukiko Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744, Moto-oka, Nishi-ku, Fukuoka, Japan.
| |
Collapse
|
34
|
Cyanobacteria: miniature factories for green synthesis of metallic nanomaterials: a review. Biometals 2022; 35:653-674. [PMID: 35716270 DOI: 10.1007/s10534-022-00405-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/26/2022] [Indexed: 11/02/2022]
Abstract
Nanotechnology is one of the most promising and advanced disciplines of science that deals with synthesis, characterization and applications of different types of Nanomaterials (NMs) viz. nanospheres, nanoparticles, nanotubes, nanorods, nanowires, nanocomposites, nanoalloys, carbon dots and quantum dots. These nanosized materials exhibit different physicochemical characteristics and act as a whole unit during its transport. The unique characteristics and vast applications of NMs in diverse fields viz. electronics, agriculture, biology and medicine have created huge demand of different type of NMs. Conventionally physical and chemical methods were adopted to manufacture NMs which are expensive and end up with hazardous by-products. Therefore, green synthesis exploiting biological resources viz. algae, bacteria, fungi and plants emerged as a better and promising alternative due to its cost effective and ecofriendly approach and referred as nanobiotechnology. Among various living organisms, cyanobacteria have proved one of the most favourable bioresources for NMs biosynthesis due to their survival in diverse econiches including metal and metalloid contaminated sites and capability to withstand high levels of metals. Biosynthesis of metallic NMs is accomplished through bioreduction of respective metal salts by various capping agents viz. alkaloids, pigments, polysaccharides, steroids, enzymes and peptides present in the biological systems. Advancement in the field of Nanobiotechnology has produced large number of diverse NMs from cyanobacteria which have been used as antimicrobial agents against Gram positive and negative human pathogens, anticancer agents, luminescent nanoprobes for imaging of cells, antifungal agents against plant pathogens, nanocatalyst and semiconductor quantum dots in industries and in bioremediation in toxic pollutant dyes. In the present communication, we have reviewed cyanobacteria mediated biosynthesis of NMs and their applications in various fields.
Collapse
|
35
|
Al-Enazi NM, Alwakeel S, Alhomaidi E. Photocatalytic and biological activities of green synthesized SnO 2 nanoparticles using Chlorella vulgaris. J Appl Microbiol 2022; 133:3265-3275. [PMID: 35503005 DOI: 10.1111/jam.15607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022]
Abstract
AIMS To produce tin oxide (SnO2 ) nanoparticles (NP) with microalga for use in azo dye polluted wastewater treatment and to optimize the conditions to synthesize as small NPs as possible. METHODS AND RESULTS The green microalga Chlorella vulgaris mediated NPs were synthesized after an optimization process utilizing the statistical response surface methodology (RSM). The optimized synthesis conditions were 200 W microwave power, 0.5 mM SnCl2 concentration, and 200 °C calcination temperature. Methyl orange (MO) was studied for its photocatalytic degradation with UV. Antibacterial activity against four pathogenic bacteria was studied using the well diffusion method. Cytotoxicity was measured using the MMT assay with lung cancer cell line A549, and antioxidant activity using DPPH radical scavenging. Following the optimization of their production, the produced crystalline SnO2 NPs were on average 32.2 nm (by XRD) with a hydrodynamic size of 52.5 nm (by LDS). Photocatalytic degradation of MO under UV was nearly complete (94% removal) after 90 min and the particles could be reused for 5 cycles retaining 80% activity. The particles had antibacterial activity towards all five tested bacterial pathogens with the minimum inhibitory concentrations ranging from 22 to 36 μg/ml. The minimum bactericidal NP concentration varied between 83 and 136 μg/ml. Antioxidant activity was concentration dependent. A cytotoxicity was determined towards A549 cells with an LD50 of 188 μg/ml after 24 h of incubation, a concentration that is much higher than the active concentration for dye removal ranging from 22 to 36 μg/ml. CONCLUSIONS After optimization, SnO2 nanoparticles produced with C. vulgaris displayed high photocatalytic activity at concentrations below their antibacterial and cytotoxic activity. SIGNIFICANCE AND IMPACT OF THE STUDY The SnO2 nanoparticles produced with the help of microalgae are suitable for the removal of MO dye from wastewater. Further applications of this green technology can be expected.
Collapse
Affiliation(s)
- Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
36
|
Alsamhary K, Al-Enazi NM, Alhomaidi E, Alwakeel S. Spirulina platensis mediated biosynthesis of Cuo Nps and photocatalytic degradation of toxic azo dye Congo red and kinetic studies. ENVIRONMENTAL RESEARCH 2022; 207:112172. [PMID: 34606844 DOI: 10.1016/j.envres.2021.112172] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
The current research is designed to synthesis Copper oxide nanoparticles (CuO NPs) using Cyanobacterium in greener way. The NPs were synthesized using Spirulina platensis. The method is adopted for the less toxic, less cost and environment friendly method. The synthesized CuO NPs are capped and stabilized by the natural substance of S. platensis including flavonoids, phenolic and acid groups of the microorganism which was confirmed by the GC-MS analysis. Majorly, beta-ionone, p-cumic aldehyde, phytol compounds are identified by GC-MS and it may also involve in the preparation of NPs. Further, the characterization has been carried out using UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction, Scanning electron microscope (SEM), transmission electron microscope (TEM). All the analytical techniques are confirmed the formation of NPs. The formed NPs are showed significant peaks in XRD analysis which further compared with literature. Functional group analysis showed -OH group compounds in extract and it might involve in the formation of NPs. The photo catalytic activity of CuO NPs was showed significant photo degradation of Congo red (CR) dye. The consideration of intense peak, the size of CuO NPs was calculated and found to be 15.2 nm with spherical shape as resulted in morphological identification. The results are showed good photocatalytic activity, since the peak appeared at 230 and 495 nm corresponding to the benzene and azo group of Congo Red were gradually decreased with increase of time. The reaction was found to have nature of pseudo first order reaction. The rate constant was calculated and was found to be - k = 0.3459, which indicates the Congo red degradation was 0.3459 per minute. This study will be a base for budding researchers for their isolation of S. platensis active compounds and with the help of secondary metabolites (active compounds) CuO NPs were synthesized which further acted has degradation agent against Congo red.
Collapse
Affiliation(s)
- Khawla Alsamhary
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia.
| | - Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Eman Alhomaidi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Saad Alwakeel
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
| |
Collapse
|
37
|
Kumar M, Upadhyay LSB, Kerketta A, Vasanth D. Extracellular Synthesis of Silver Nanoparticles Using a Novel Bacterial Strain Kocuria rhizophila BR-1: Process Optimization and Evaluation of Antibacterial Activity. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00968-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Almansob A, Bahkali AH, Ameen F. Efficacy of Gold Nanoparticles against Drug-Resistant Nosocomial Fungal Pathogens and Their Extracellular Enzymes: Resistance Profiling towards Established Antifungal Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:814. [PMID: 35269303 PMCID: PMC8912448 DOI: 10.3390/nano12050814] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
Drug resistance of filamentous fungi to the commonly used antifungal agents is a major concern in medicine. Therefore, an effective approach to treat several opportunistic fungal infections is the need of the hour. Mentha piperita is used in home remedies to treat different disorders. Isolates of fungi were taken from hospitals in Riyadh, Saudi Arabia, and identified using molecular tools. Amphotericin B, Voriconazole, and Micafungin were applied to screen the resistance of these isolates using both disc and broth microdilution techniques. An aqueous extract of Mentha piperita was utilized to synthesize AuNPs and the nanoparticles were characterized using UV-Vis, FTIR, TEM, EDAX, and XRD. The AuNPs were tested for antifungal activity against the nosocomial fungal pathogens and the activity of extracellular enzymes of such pathogens were analyzed after treatment with AuNPs. We conclude that AuNPs synthesized using Mentha piperita do not possess especially effective antifungal properties against multi-drug resistant Aspergillus species. Five out of eighteen isolates were inhibited by AuNPs. When inhibition was observed, significant alterations in the activity profile of extracellular enzymes of the nosocomial fungi were observed.
Collapse
Affiliation(s)
| | | | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (A.H.B.)
| |
Collapse
|
39
|
Alavi M. Bacteria and fungi as major bio-sources to fabricate silver nanoparticles with antibacterial activities. Expert Rev Anti Infect Ther 2022; 20:897-906. [DOI: 10.1080/14787210.2022.2045194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Department of Biology, Razi University, Kermanshah, Iran
| |
Collapse
|
40
|
Green Synthesis of Chitosan-Coated Silver Nanoparticle, Characterization, Antimicrobial Activities, and Cytotoxicity Analysis in Cancerous and Normal Cell Lines. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Sadegh F, Tavakol H. Synthesis of Ag/CoFe2O4 magnetic aerogel for catalytic reduction of nitroaromatics. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Bhardwaj AK, Naraian R. Cyanobacteria as biochemical energy source for the synthesis of inorganic nanoparticles, mechanism and potential applications: a review. 3 Biotech 2021; 11:445. [PMID: 34631346 DOI: 10.1007/s13205-021-02992-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/10/2021] [Indexed: 01/19/2023] Open
Abstract
Green synthesis of nanoparticles (NPs) has gained great concern among researchers due to their unique properties, excellent applications and efficient route of synthesis. From the last decades, the number biologicals such as plants, fungus, bacteria, yeast, algae, and cyanobacteria and their products are using by various researchers for the synthesis of different NPs. However, the pillar of green chemistry keeps touching new heights to improve the performance. This review paper unveils almost recent cyanobacteria-assisted greener NP synthesis technique, characterization and application. The enormous potency of cyanobacteria in NP synthesis (silver, gold, copper, zinc, palladium, titanium, cadmium sulfide, and selenium) and significance of reducing enzymes were summarized. The extracellular and intracellular entity such as metabolites, enzyme, protein, pigments in cyanobacteria play a significant role in the conversion of metal ions to metal NPs with unique properties discussed briefly. The green synthesis of nanomaterials is valuable because of their cost-effective, nontoxic and eco-friendly prospects as well as the potential application metal NPs such as antibacterial, antifungal, anticancerous, catalytic, drug delivery, bioimaging, nanopesticide, nanofertilizer, sensing properties, etc. Therefore, in the present review, we have systematically discussed the mechanisms of synthesis and applications of cyanobacteria-assisted green synthesis of NPs.
Collapse
Affiliation(s)
- Abhishek Kumar Bhardwaj
- Department of Environmental Science, Amity School of Life Sciences, Amity University, Gwalior, 474001 Madhya Pradesh India
| | - Ram Naraian
- Department of Environmental Science, Faculty of Science, Veer Bahadur Singh Purvanchal University, Jaunpur, 221003 Uttar Pradesh India
| |
Collapse
|
43
|
Bioinspired synthesize of CuO nanoparticles using Cylindrospermum stagnale for antibacterial, anticancer and larvicidal applications. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01940-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Curr Pharm Biotechnol 2021; 22:823-847. [PMID: 33397235 DOI: 10.2174/1389201022666210104122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
Collapse
Affiliation(s)
- Paolo N Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499 (1650), San Martin, Argentina
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, S.K. Porwal College, Kamptee 441001, India
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| |
Collapse
|
45
|
Tin oxide nanoparticles (SnO2-NPs) synthesis using Galaxaura elongata and its anti-microbial and cytotoxicity study: a greenery approach. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01828-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
46
|
Sonbol H, Ameen F, AlYahya S, Almansob A, Alwakeel S. Padina boryana mediated green synthesis of crystalline palladium nanoparticles as potential nanodrug against multidrug resistant bacteria and cancer cells. Sci Rep 2021; 11:5444. [PMID: 33686169 PMCID: PMC7940407 DOI: 10.1038/s41598-021-84794-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Green synthesized nanoparticles (NPs) have emerged as a new and promising alternative to overcome the drug resistance problem. Peculiar nano-specific features of palladium NPs (Pd-NPs) offer invaluable possibilities for clinical treatment. Due to the development of multi-drug resistance (MDR) in pathogenic bacteria and the prevalence of cancers, use of algae-mediated Pd-NPs could be a prospective substitute. Therefore, Pd-NPs were synthesized by a one-step, cost-effective, and environmentally friendly green method using the extract from a brown alga, Padina boryana (PB-extract), and evaluated for their antibacterial, antibiofilm, and anticancer activities. Pd-NPs were physicochemically characterized for size, shape, morphology, surface area, charge, atomic composition, crystal structure, and capping of Pd-NPs by PB-extract biomolecules by various techniques. The data revealed crystalline Pd-NPs with an average diameter of 8.7 nm, crystal size/structure of 11.16 nm/face-centered cubic, lattice d-spacing of 0.226 nm, 28.31% as atomic percentage, surface area of 16.1 m2/g, hydrodynamic size of 48 nm, and zeta-potential of - 28.7 ± 1.6 mV. Fourier-transform infrared spectroscopy (FT-IR) analysis revealed the role of PB-extract in capping of Pd-NPs by various functional groups such as -OH, C=C, C-O, and C-N from phenols, aliphatic hydrocarbons, aromatic rings, and aliphatic amine. Out of 31, 23 compounds were found involved in biosynthesis by Gas chromatography-mass spectrometry (GC-MS) analysis. Isolated strains were identified as MDR Staphylococcus aureus, Escherichia fergusonii, Acinetobacter pittii, Pseudomonas aeruginosa, Aeromonas enteropelogenes, and Proteus mirabilis and Pd-NPs exhibited strong antibacterial/antibiofilm activities against them with minimum inhibitory concentration (MIC) in the range of 62.5-125 μg/mL. Moreover, cell viability assays showed concentration-dependent anti-proliferation of breast cancer MCF-7 cells. Pd-NPs also enhanced mRNA expression of apoptotic marker genes in the order: p53 (5.5-folds) > bax (3.5-folds) > caspase-3 (3-folds) > caspase-9 (2-folds) at 125 μg/mL. This study suggested the possible role of PB-extract capped Pd-NPs for successful clinical management of MDR pathogens and breast cancer cells.
Collapse
Affiliation(s)
- Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Sami AlYahya
- National Center for Biotechnology, King Abdulaziz City for Science & Technology, Riyadh, Saudi Arabia
| | - Abobakr Almansob
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suaad Alwakeel
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
47
|
AlNadhari S, Al-Enazi NM, Alshehrei F, Ameen F. A review on biogenic synthesis of metal nanoparticles using marine algae and its applications. ENVIRONMENTAL RESEARCH 2021; 194:110672. [PMID: 33373611 DOI: 10.1016/j.envres.2020.110672] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Marine algae have long been explored as food, feed, additives, drugs, and pesticides, yet now the framework is moving towards the algae mediated green synthesis of nanoparticles (NPs). This work is expanding step by step, like algae, are a rich origin of natural compounds. Recently, algae capped and stabilized NPs have picked up far and wide consideration as a less toxic, easy handling, cost effective, eco-friendly, usage in several science fields in nano size, safer to use, and greener method. The natural substance from algae acts as capping or reducing and stabilizing agent in the metal salts to metal, metal oxide, or bimetallic NPs conversion. The NPs using algae could either be intracellular or extracellular relying upon the area of NPs. Among the different scope of algae, reviews are explored in the previous report, still, different NPs using algae and their characterization, mechanism of activity is yet to be summarized. Because of the biocompatibility, good and remarkable physicochemical properties of NPs, the algal biosynthesized NPs have additionally been read for their biomedical applications, which include antibacterial, antioxidant, free radical scavenging, antifungal, anticancer, and biocompatibility properties. In this survey, the reasoning behind the algae mediated biosynthesis of various NPs from different algae origin have been explored. Besides, a piece of knowledge into the component of biosynthesis of NPs from marine algae and their biomedical applications has been summarized.
Collapse
Affiliation(s)
- Saleh AlNadhari
- Deanship Of Scientific Research, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nouf M Al-Enazi
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Fatimah Alshehrei
- Department of Biology, Jumum College University, Umm Al-Qura University, P.O Box 7388, Makkah, 21955, Saudi Arabia
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
48
|
Begum I, Ameen F, Soomro Z, Shamim S, AlNadhari S, Almansob A, Al-Sabri A, Arif A. Facile fabrication of malonic acid capped silver nanoparticles and their antibacterial activity. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2021; 33:101231. [DOI: 10.1016/j.jksus.2020.101231] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|