1
|
Peng S, Wang F, Wei D, Wang C, Ma H, Du Y. Application of FTIR two-dimensional correlation spectroscopy (2D-COS) analysis in characterizing environmental behaviors of microplastics: A systematic review. J Environ Sci (China) 2025; 147:200-216. [PMID: 39003040 DOI: 10.1016/j.jes.2023.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/17/2023] [Accepted: 10/06/2023] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
Collapse
Affiliation(s)
- Shuang Peng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feipeng Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | | | - Haijun Ma
- North Minzu University, Yinchuan 750001, China
| | - Yuguo Du
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ouyang Q, Liu N, Fan Z, Li F, Ge F. The chelation mechanism of neonicotinoid insecticides influencing cadmium transport and accumulation in rice at different growth stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 941:173257. [PMID: 38761944 DOI: 10.1016/j.scitotenv.2024.173257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/30/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The combined exposure of heavy metals and organic contaminates can influence the transport and accumulation of heavy metals within the soil-rice system. However, the underlying mechanisms of this process remain largely unknown. Herein, this study investigated the influence of three neonicotinoid insecticides (NIs), including imidacloprid (IMI), clothianidin (CLO), and thiamethoxam (THI), on the Cd transport and accumulation in rice (Oryza sativa) at different growth stages. Particular focus lied on their complex interaction and key genes expression involved in Cd transport. Results showed that the interaction between Cd and NIs was the dominant factor affecting Cd transport and accumulation in rice exposed to NIs. All three NIs chelated with Cd with nitrogen (N) on the IMI and THI nitro groups, and the N on the CLO nitro guanidine group. Interestingly, this chelation behavior varied between the tillering stage and the filling/ripening stages, resulting in diverse patterns of Cd accumulation in rice tissues. During the tillering stage, all three NIs considerably inhibited Cd bioavailability and transport to the above-ground part, lowering Cd content in the stem and leaf. The inhibition was increased with stronger chelation ability in the order of IMI (-0.46 eV) > CLO (-0.41 eV) > THI (-0.11 eV), with IMI exhibiting the highest binding energy for Cd and reducing Cd transfers from root to stem by an impressive 94.49 % during the tillering stage. Conversely, during the filling/ripening stages, NIs facilitated Cd accumulation in rice roots, stems, leaves, and grains. This was mainly attributed to the generation of nitrate ions and the release of Cd2+ during the chelation between Cd and NIs under drainage condition. These findings provide theoretical basis for the treatment of combined contamination in field and deep insights into understanding the interaction of organic contaminants with heavy metals in rice culture process.
Collapse
Affiliation(s)
- Qiongfang Ouyang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Zhaoxia Fan
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China
| | - Fei Ge
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Science and Technology Innovative Research Team in University of Hunan Province of Environmental Behavior and Collaborative Treatment of New Pollutants, Xiangtan 411105, China; Hunan Provincial University Key Laboratory of Environmental and ecological health, Xiangtan 411105, China.
| |
Collapse
|
3
|
Han J, Najafi S, Byun Y, Geonzon L, Oh SH, Park J, Koo JM, Kim J, Chung T, Han IK, Chae S, Cho DW, Jang J, Jeong U, Fredrickson GH, Choi SH, Mayumi K, Lee E, Shea JE, Kim YS. Bridge-rich and loop-less hydrogel networks through suppressed micellization of multiblock polyelectrolytes. Nat Commun 2024; 15:6553. [PMID: 39095421 PMCID: PMC11297175 DOI: 10.1038/s41467-024-50902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Most triblock copolymer-based physical hydrogels form three-dimensional networks through micellar packing, and formation of polymer loops represents a topological defect that diminishes hydrogel elasticity. This effect can be mitigated by maximizing the fraction of elastically effective bridges in the hydrogel network. Herein, we report hydrogels constructed by complexing oppositely charged multiblock copolymers designed with a sequence pattern that maximizes the entropic and enthalpic penalty of micellization. These copolymers self-assemble into branched and bridge-rich network units (netmers), instead of forming sparsely interlinked micelles. We find that the storage modulus of the netmer-based hydrogel is 11.5 times higher than that of the micelle-based hydrogel. Complementary coarse grained molecular dynamics simulations reveal that in the netmer-based hydrogels, the numbers of charge-complexed nodes and mechanically reinforcing bridges increase substantially relative to micelle-based hydrogels.
Collapse
Affiliation(s)
- Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
| | - Youyoung Byun
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Lester Geonzon
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Seung-Hwan Oh
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Jiwon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Jun Mo Koo
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Jehan Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Taehun Chung
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Im Kyung Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Dong Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California, USA
- Department of Chemical Engineering, University of California, Santa Barbara, California, USA
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Koichi Mayumi
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Eunji Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA.
- Department of Physics, University of California, Santa Barbara, California, USA.
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
4
|
Park Y, Noda I, Jung YM. Novel Developments and Progress in Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241255393. [PMID: 38872353 DOI: 10.1177/00037028241255393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This first of the two-part series of the comprehensive survey review on the progress of the two-dimensional correlation spectroscopy (2D-COS) field during the period 2021-2022, covers books, reviews, tutorials, novel concepts and theories, and patent applications that appeared in the last two years, as well as some inappropriate use or citations of 2D-COS. The overall trend clearly shows that 2D-COS is continually growing and evolving with notable new developments. The technique is well recognized as a powerful analytical tool that provides deep insights into systems in many science fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
5
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
6
|
Zhang L, Li HW, Wu Y. Ag(I) Ion-Concentration-Dependent Dynamic Mechanism of Thiolactic-Acid-Capped Gold Nanoclusters Revealed by Fluorescence Spectra and Two-Dimensional Correlation Spectroscopy. APPLIED SPECTROSCOPY 2024:37028241241325. [PMID: 38556929 DOI: 10.1177/00037028241241325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Based on fluorescence spectroscopy, being combined with several spectral analysis techniques including principal component analysis (PCA), two-dimensional correlation spectroscopy (2D-COS), and moving window 2D-COS, the study disclosed the structural variations of gold nanoclusters capped by thiolactic acid (AuNCs@TLA) induced by Ag(I) ions. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were applied to monitor the morphology evolution of the surface and composition of the nanoclusters induced by Ag(I) ions. Several spectral components, centered at (790, 607) nm, (670, 590) nm, and (740, 670) nm were revealed by 2D-COS analysis, suggesting new luminescent species or groups were generated with the introduction of Ag(I) ions. A two-stage mechanism was revealed for the photoluminescence variations of AuNCs@TLA induced by Ag(I) ion. The first stage was characterized by the emission quench of 790 nm followed by the emerging emission of 607 nm, which was attributed to the anti-galvanic reaction; and the second stage featured by the noticeable growth of the emission's intensity around 670 nm as result of the AuNCs' size effect. The present study will attract more focuses on near-infrared (NIR)-emitted metal nanoclusters and promote their synthesis and utilities.
Collapse
Affiliation(s)
- Liping Zhang
- Foundation Department, Jilin Business and Technology College, Jiutai, Changchun, China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
7
|
Li W, Lu L, Du H. Deciphering DOM-metal binding using EEM-PARAFAC: Mechanisms, challenges, and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14388-14405. [PMID: 38289550 DOI: 10.1007/s11356-024-32072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
Dissolved organic matter (DOM) is a pivotal component of the biogeochemical cycles and can combine with metal ions through chelation or complexation. Understanding this process is crucial for tracing metal solubility, mobility, and bioavailability. Fluorescence excitation emission matrix (EEM) and parallel factor analysis (PARAFAC) has emerged as a popular tool in deciphering DOM-metal interactions. In this review, we primarily discuss the advantages of EEM-PARAFAC compared with other algorithms and its main limitations in studying DOM-metal binding, including restrictions in spectral considerations, mathematical assumptions, and experimental procedures, as well as how to overcome these constraints and shortcomings. We summarize the principles of EEM to uncover DOM-metal association, including why fluorescence gets quenched and some potential mechanisms that affect the accuracy of fluorescence quenching. Lastly, we review some significant and innovative research, including the application of 2D-COS in DOM-metal binding analysis, hoping to provide a fresh perspective for possible future hotspots of study. We argue the expansion of EEM applications to a broader range of areas related to natural organic matter. This extension would facilitate our exploration of the mobility and fate of metals in the environment.
Collapse
Affiliation(s)
- Weijun Li
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China
| | - Lei Lu
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China
| | - Huihui Du
- College of Environment and Ecology, Hunan Agricultural University, Changsha, 410127, China.
- Yuelu Mountain Laboratory, Hunan Agricultural University Area, Changsha, 410000, China.
| |
Collapse
|
8
|
Zhao F, Zhou Z. Coupling pretreatment of ultraviolet/ferrate (UV/Fe(vi)) for improving the ultrafiltration of natural surface water. RSC Adv 2024; 14:1360-1366. [PMID: 38174279 PMCID: PMC10763611 DOI: 10.1039/d3ra05582e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Ultrafiltration (UF) is a high-potential technology for purifying natural surface water; however, the problem of membrane fouling has limited its widespread application. Herein, ultraviolet (UV)-activated ferrate (Fe(vi)) was used to purify natural surface water and improve the performance of the UF membrane. The combination of UV and Fe(vi) could generate active species (Fe(v), Fe(iv), ˙OH and O2˙-) to degrade pollutants, while the in situ produced Fe(iii) had the effect of coagulation. With the above action, pollutants were removed, and the pollution load of natural surface water was reduced. After treatment with the UV/Fe(vi) system, dissolved organic carbon was reduced by 49.38%, while UV254 was reduced by 45.00%. The removal rate was further increased to 54.88% and 51.67% after UF treatment. In addition, the fluorescent organics were reduced by 44.22%, and the molecular weight of the organics became smaller. In the stage of UF, the terminal J/J0 was increased from 0.61 to 0.92, and the membrane fouling resistance was decreased by 85.94%. The analysis of the membrane fouling mechanism indicates that the role of cake filtration was weakened among all the mechanisms. Fourier transform infrared spectroscopy showed that less pollutants were accumulated on the membrane surface, and scanning electron microscopy revealed that the membrane pore blockage was relieved. In summary, the UV/Fe(vi) co-treatment process proposed in this study can significantly improve the purification efficiency of the UF systems in natural surface water treatment.
Collapse
Affiliation(s)
- Fuwang Zhao
- School of Energy and Environment, Zhong Yuan University of Technology Zhengzhou 450007 China
| | - Zhiwei Zhou
- College of Architecture & Civil Engineering, Faculty of Urban Construction, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
9
|
Karthikeyan S, Vazquez-Zapien GJ, Martinez-Cuazitl A, Delgado-Macuil RJ, Rivera-Alatorre DE, Garibay-Gonzalez F, Delgado-Gonzalez J, Valencia-Trujillo D, Guerrero-Ruiz M, Atriano-Colorado C, Lopez-Reyes A, Lopez-Mezquita DJ, Mata-Miranda MM. Two-trace two-dimensional correlation spectra (2T2D-COS) analysis using FTIR spectra to monitor the immune response by COVID-19. J Mol Med (Berl) 2024; 102:53-67. [PMID: 37947852 DOI: 10.1007/s00109-023-02390-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023]
Abstract
There is a growing trend in using saliva for SARS-CoV-2 detection with reasonable accuracy. We have studied the responses of IgA, IgG, and IgM in human saliva by directly comparing disease with control analyzing two-trace two-dimensional correlation spectra (2T2D-COS) employing Fourier transform infrared (FTIR) spectra. It explores the molecular-level variation between control and COVID-19 saliva samples. The advantage of 2T2D spectra is that it helps in discriminating remarkably subtle features between two simple pairs of spectra. It gives spectral information from highly overlapped bands associated with different systems. The clinical findings from 2T2D show the decrease of IgG and IgM salivary antibodies in the 50, 60, 65, and 75-years COVID-19 samples. Among the various COVID-19 populations studied the female 30-years group reveals defense mechanisms exhibited by IgM and IgA. Lipids and fatty acids decrease, resulting in lipid oxidation due to the SARS-CoV-2 in the samples studied. Study shows salivary thiocyanate plays defense against SARS-CoV-2 in the male population in 25 and 35 age groups. The receiver operation characteristics statistical method shows a sensitivity of 98% and a specificity of 94% for the samples studied. The measure of accuracy computed as F score and G score has a high value, supporting our study's validation. Thus, 2T2D-COS analysis can potentially monitor the progression of immunoglobulin's response function to COVID-19 with reasonable accuracy, which could help diagnose clinical trials. KEY MESSAGES: The molecular profile of salivary antibodies is well resolved and identified from 2T2D-COS FTIR spectra. The IgG antibody plays a significant role in the defense mechanism against SARS-CoV-2 in 25-40 years. 2T2D-COS reveals the absence of salivary thiocyanate in the 40-75 years COVID-19 population. The receiver operation characteristic (ROC) analysis validates our study with high sensitivity and specificity.
Collapse
Affiliation(s)
- Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai, Tamil Nadu, 600039, India.
| | - Gustavo J Vazquez-Zapien
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico.
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico.
| | - Adriana Martinez-Cuazitl
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, 07320, Mexico
| | - Raul J Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Daniel E Rivera-Alatorre
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico
| | - Francisco Garibay-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Josemaria Delgado-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Daniel Valencia-Trujillo
- Servicio de Microbiología Clínica, Instituto Nacional de Enfermedades Respiratorias, Mexico City, 14080, Mexico
| | - Melissa Guerrero-Ruiz
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Consuelo Atriano-Colorado
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico
| | - Alberto Lopez-Reyes
- Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, 14389, Mexico
| | | | - Monica M Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City, 11200, Mexico.
| |
Collapse
|
10
|
Wen Q, Liu N, Qu R, Ge F. High salinity promotes the photoaging of polystyrene microplastics with humic acid in seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165741. [PMID: 37487889 DOI: 10.1016/j.scitotenv.2023.165741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/06/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The photoaging of microplastics (MPs) accumulated in the sea can be influenced by humic acid (HA). However, the role of salinity cannot be ignored, as it may potentially disrupt the interaction between MPs and HA, thereby altering the photoaging of MPs. Herein, this study investigated how salinity influences the effect of humic acid (HA, derived from lignite) on the photoaging of polystyrene microplastics (PS MPs) in artificial and natural seawater. The results revealed that HA promoted the photoaging of PS MPs under both low (5 PSU) and high salinity (35 PSU) in light conditions (L), reflected in the formation of fragments, the production of oxygen-containing functional groups (OH, CO, and OCO), and the increase in hydrophilicity of PS MPs. Furthermore, high salinity promoted the photoaging of PS MPs with HA more significantly, as evidenced by the similar indicators and the order of oxygen/carbon atom ratio (O/C): L-HA-High (0.15) > L-HA-Low (0.10) > Unaged (0.02). Interestingly, due to the reduction of electrostatic repulsion, the adsorption of HA on photoaged PS MPs in natural and artificial high salinity seawater was 1.77 mg/g and 0.39 mg/g, respectively, which was significantly higher than those PS MPs photoaged in the low salinity seawater. Furthermore, the electron spin resonance (ESR) results confirmed that more hydroxyl radicals (OH) were generated after adsorbing HA under high salinity conditions, thus promoting the fragmentation and oxidation of PS MPs. Overall, our findings highlight the crucial role of salinity in influencing the photoaging of MPs with HA and help to assess the marine risk of MPs accurately.
Collapse
Affiliation(s)
- Qiong Wen
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Na Liu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ruohua Qu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan 411105, China.
| |
Collapse
|
11
|
Yang F, Hu Y, Qiu G, Li Q, Wang G. Complexation of copper algaecide and algal organic matter in algae-laden water: Insights into complex metal-organic interactions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122032. [PMID: 37321314 DOI: 10.1016/j.envpol.2023.122032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Copper-based algicides have been widely used to suppress algae blooms; however, the release of algal organic matter (AOM) on account of cell lysis may cause significant changes in the mitigation, transformation, and bioavailability of Cu(II). In the present work, the binding characteristics of Cu(II) with AOM were explored via combinative characterization methods, such as high-performance size exclusion chromatography, differential absorption spectra analysis, and joint applications of two-dimensional correlation spectroscopy (2D-COS), as well as heterospectral 2D-COS and moving window 2D-COS analyses of UV, synchronous fluorescence, and FTIR spectra. Carboxyl groups displayed a preferential interaction to Cu(II) binding, followed by polysaccharides. The spectral changes of C]O stretching occur after the change of chromophores in complexation with Cu(II). The AOM chromophores exhibit obvious conformations at Cu(II) concentrations higher than 120 μM, while AOM fluorophores and functional groups exhibit the greatest changes at Cu(II) concentrations lower than 20 μM. All these observations have verified the presence of binding heterogeneity and indicate that AOM could interact with Cu(II) through diverse functional moieties. Therefore, our study contributes to the better understanding of the fate of Cu(II)-AOM complexes in aquatic systems.
Collapse
Affiliation(s)
- Fei Yang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China; School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Yun Hu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Guoyu Qiu
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| | - Qimeng Li
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China.
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing, 210023, China
| |
Collapse
|
12
|
Liang W, Wei S, Lan L, Chen J, Zhou Y, Zhao J, Wang H, Gao R, Zeng F. Effect of microplastics on the binding properties of Pb(ii) onto dissolved organic matter: insights from fluorescence spectra and FTIR combined with two-dimensional correlation spectroscopy. RSC Adv 2023; 13:24201-24210. [PMID: 37583675 PMCID: PMC10423972 DOI: 10.1039/d3ra04189a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
Heavy metal cations are a typical type of inorganic pollutant that has persistent distribution characteristics in aquatic environments and are easily adsorbed on carriers, posing serious threats to ecological safety and human health. Some studies have shown that the coexistence of dissolved organic matter (DOM) and microplastics (MPs) promotes the adsorption of heavy metal cations, but the mechanism of promoting the adsorption process has not been thoroughly studied. In this study, the effect of polystyrene microplastics (PSMPs) on the binding properties of Pb2+ onto humic acid (HA) in aquatic environments was investigated by spectral analysis and two-dimensional correlation (2D-COS) analysis. When PSMPs co-existed with HA, the adsorption capacity of Pb2+ increased. On the one hand, Pb2+ is directly adsorbed on HA through the mechanism of complexation reaction, ion exchange and electrostatic interaction. On the other hand, Pb2+ is first adsorbed on PSMPs by electrostatic action and indirectly adsorbed on HA in the form of PSMPs-Pb2+ owing to the interaction between HA and PSMPs, which increases the adsorption amount of Pb2+ on HA. This study is significant for studying the migration and regression of heavy metal cation contaminants when PSMPs co-exist with DOM in an aqueous environment.
Collapse
Affiliation(s)
- Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Shuyin Wei
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jinfeng Chen
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Jiawei Zhao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Rui Gao
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510275 China +86-20-84114133
| |
Collapse
|
13
|
Schulze HG, Rangan S, Vardaki MZ, Blades MW, Turner RFB, Piret JM. Two-Dimensional Clustering of Spectral Changes for the Interpretation of Raman Hyperspectra. APPLIED SPECTROSCOPY 2023; 77:835-847. [PMID: 36238996 PMCID: PMC10466967 DOI: 10.1177/00037028221133851] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional correlation spectroscopy (2D-COS) is a technique that permits the examination of synchronous and asynchronous changes present in hyperspectral data. It produces two-dimensional correlation coefficient maps that represent the mutually correlated changes occurring at all Raman wavenumbers during an implemented perturbation. To focus our analysis on clusters of wavenumbers that tend to change together, we apply a k-means clustering to the wavenumber profiles in the perturbation domain decomposition of the two-dimensional correlation coefficient map. These profiles (or trends) reflect peak intensity changes as a function of the perturbation. We then plot the co-occurrences of cluster members two-dimensionally in a manner analogous to a two-dimensional correlation coefficient map. Because wavenumber profiles are clustered based on their similarity, two-dimensional cluster member spectra reveal which Raman peaks change in a similar manner, rather than how much they are correlated. Furthermore, clustering produces a discrete partitioning of the wavenumbers, thus a two-dimensional cluster member spectrum exhibits a discrete presentation of related Raman peaks as opposed to the more continuous representations in a two-dimensional correlation coefficient map. We demonstrate first the basic principles of the technique with the aid of synthetic data. We then apply it to Raman spectra obtained from a polystyrene perchlorate model system followed by Raman spectra from mammalian cells fixed with different percentages of methanol. Both data sets were designed to produce differential changes in sample components. In both cases, all the peaks pertaining to a given component should then change in a similar manner. We observed that component-based profile clustering did occur for polystyrene and perchlorate in the model system and lipids, nucleic acids, and proteins in the mammalian cell example. This confirmed that the method can translate to "real world" samples. We contrast these results with two-dimensional correlation spectroscopy results. To supplement interpretation, we present the cluster-segmented mean spectrum of the hyperspectral data. Overall, this technique is expected to be a valuable adjunct to two-dimensional correlation spectroscopy to further facilitate hyperspectral data interpretation and analysis.
Collapse
Affiliation(s)
| | - Shreyas Rangan
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Martha Z. Vardaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Michael W. Blades
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Robin F. B. Turner
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
- Department of Electrical and Computer Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - James M. Piret
- Michael Smith Laboratories, The University of British Columbia, Vancouver, BC, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
14
|
Hniopek J, Meurer J, Zechel S, Schmitt M, Hager MD, Popp J. Molecular in situ monitoring of the pH-triggered response in adaptive polymers by two-dimensional Raman micro-correlation-spectroscopy. Chem Sci 2023; 14:7248-7255. [PMID: 37416726 PMCID: PMC10321532 DOI: 10.1039/d3sc01455j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/02/2023] [Indexed: 07/08/2023] Open
Abstract
Stimuli-responsive polymers can switch specific physical properties in response to a change of the environmental conditions. This behavior offers unique advantages in applications where adaptive materials are needed. To tune the properties of stimuli-responsive polymers, a detailed understanding of the relationship between the applied stimulus and changes in molecular structure as well as the relationship between the latter and macroscopic properties is required, which until now has required laborious methods. Here, we present a straightforward way to investigate the progressing trigger, the change of the chemical composition of the polymer and the macroscopic properties simultaneously. Thereby, the response behavior of the reversible polymer is studied in situ with molecular sensitivity and spatial as well as temporal resolution utilizing Raman micro-spectroscopy. Combined with two-dimensional correlation analysis (2DCOS), this method reveals the stimuli-response on a molecular level and determines the sequence of changes and the diffusion rate inside the polymer. Due to the label-free and non-invasive approach, it is furthermore possible to combine this method with the investigation of macroscopic properties revealing the response of the polymer to the external stimulus on both the molecular and the macroscopic level.
Collapse
Affiliation(s)
- Julian Hniopek
- Department Spectroscopy & Imaging, Leibniz Institute of Photonic Technology Albert-Einstein-Str. 9 0775 Jena Germany
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena Albert-Einstein-Str. 6 07745 Jena Germany
| | - Josefine Meurer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Stefan Zechel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena Albert-Einstein-Str. 6 07745 Jena Germany
| | - Martin D Hager
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena Humboldtstr. 10 07743 Jena Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| | - Jürgen Popp
- Department Spectroscopy & Imaging, Leibniz Institute of Photonic Technology Albert-Einstein-Str. 9 0775 Jena Germany
- Institute of Physical Chemistry (IPC), Friedrich Schiller University Jena Helmholtzweg 4 07743 Jena Germany
- Abbe Center of Photonics, Friedrich Schiller University Jena Albert-Einstein-Str. 6 07745 Jena Germany
- Jena Center of Soft Matter (JCSM), Friedrich Schiller University Jena Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
15
|
Karthikeyan S, Mata-Miranda MM, Martinez-Cuazitl A, Delgado-Macuil RJ, Garibay-Gonzalez F, Sanchez-Monroy V, Lopez-Reyes A, Rojas-Lopez M, Rivera-Alatorre DE, Vazquez-Zapien GJ. Dynamic response antibodies SARS-CoV-2 human saliva studied using two-dimensional correlation (2DCOS) infrared spectral analysis coupled with receiver operation characteristics analysis. Biochim Biophys Acta Mol Basis Dis 2023:166799. [PMID: 37400001 DOI: 10.1016/j.bbadis.2023.166799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/12/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023]
Abstract
COVID-19 has affected the entire world due to the rapid spread of SARS-CoV-2, mainly through airborne particles from saliva, which, being easily obtained, help monitor the progression of the disease. Fourier transform infrared (FTIR) spectra combined with chemometric analysis could increase the diagnostic efficiency of the disease. However, two-dimensional correlation spectroscopy (2DCOS) is superior to conventional spectra as it helps to resolve the minute overlapped peaks. In this work, we aimed to use 2DCOS and receiver operating characteristic (ROC) analyses to compare the immune response in saliva associated with COVID-19, which could be important in biomedical diagnosis. FTIR spectra of human saliva samples from male (575) and female (366) patients ranging from 20 to 82 ± 2 years of age were used for the study. Age groups were segregated as G1 (25-40 ± 2 years), G2 (45-60 ± 2 years), and G3 (65-80 ± 2 years). The results of the 2DCOS analysis showed biomolecular changes in response to SARS-CoV-2. 2DCOS analyses of the male G1 + (1579,1644) and -(1531,1598) crossover peaks evidenced changes such as amide I > IgG. Female G1 crossover peaks -(1504,1645), (1504,1545) and -(1391,1645) resulted in amide I > IgG > IgM. The asynchronous spectra in 1300-900 cm-1 of the G2 male group showed that IgM is more important in diagnosing infections than IgA. Female G2 asynchronous spectra -(1027,1242) and + (1068,1176) showed that IgA > IgM is produced against SARS-CoV-2. The G3 male group evidenced antibody changes in IgG > IgM. The absence of IgM in the female G3 population diagnoses a specifically targeted immunoglobulin associated with sex. Moreover, ROC analysis showed sensitivity (85-89 % men; 81-88 % women) and specificity (90-93 % men; 78-92 % women) for the samples studied. The general classification performance (F1 score) of the studied samples is high for the male (88-91 %) and female (80-90 %) populations. This high PPV (positive predictive value) and NPV (negative predictive value) verify our segregation of COVID-19 positive and negative sample groups. Therefore, 2DCOS with ROC analysis using FTIR spectra have the potential for a non-invasive approach to monitoring COVID-19.
Collapse
Affiliation(s)
- Sivakumaran Karthikeyan
- Department of Physics, Dr. Ambedkar Government Arts College, Chennai 600039, Tamil Nadu, India.
| | - Monica Maribel Mata-Miranda
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico
| | - Adriana Martinez-Cuazitl
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico; Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico
| | - Raul Jacobo Delgado-Macuil
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Francisco Garibay-Gonzalez
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico
| | | | - Alberto Lopez-Reyes
- Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Secretaría de Salud, Mexico City, 14389, Mexico
| | - Marlon Rojas-Lopez
- Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Tlaxcala, 90700, Mexico
| | - Daniel Enrique Rivera-Alatorre
- Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico
| | - Gustavo Jesus Vazquez-Zapien
- Escuela Militar de Medicina, Centro Militar de Ciencias de la Salud, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico; Centro de Investigación y Desarrollo del Ejército y Fuerza Aérea Mexicanos, Secretaría de la Defensa Nacional, Mexico City, 11400, Mexico.
| |
Collapse
|
16
|
Impacts of water hardness on coagulation-UF-NF process using aluminum salts. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
De Géa Neves M, Noda I, Siesler HW. Investigation of bread staling by handheld NIR spectroscopy in tandem with 2D-COS and MCR-ALS analysis. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
18
|
Yang B, Ren P, Xing L, Sun C, Men Z. Hydrogen-Bond Dynamics and Water Structure in Aqueous Ethylene Glycol Solution via Two-Dimensional Raman Correlation Spectroscopy. J Phys Chem Lett 2023; 14:1641-1649. [PMID: 36752643 DOI: 10.1021/acs.jpclett.2c03695] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The hydrogen-bond (H-bond) dynamics and water structural transitions in aqueous ethylene glycol (EG) solution were investigated on the basis of concentration- and temperature-dependent two-dimensional Raman correlation spectroscopy (2D Raman-COS). At room temperature, EG-induced enhancement of the water structure when the EG/water molar ratio is less than 1:28 resulted from the hydrophobic effect around the methylene groups of EG. The decrease in the temperature caused an enhancement of the Raman peak at about 3200 cm-1, representing an increase in the orderliness of water molecules. Further analysis of the water-specific structures by 2D Raman-COS reveals that the strong H-bond structure preferentially responds to external perturbations and induces a weak H-bond structural transition in water. Finally, EG-induced water structural transitions were calculated by the density functional theory (DFT). Hopefully, 2D Raman-COS combined with DFT calculations would advance the study of solute-induced water structural transitions in water-organic chemistry.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Panpan Ren
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Lu Xing
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Chenglin Sun
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
- College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Zhiwei Men
- Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
- College of Physics, Jilin University, Changchun, Jilin 130012, People's Republic of China
| |
Collapse
|
19
|
Zhang X, Li T, He A, Yang L, Noda I, Ozaki Y, Xu Y. Comprehensive modified approaches to reducing the interference of moisture from an FTIR spectrum and the corresponding second derivative spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122004. [PMID: 36327803 DOI: 10.1016/j.saa.2022.122004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
We proposed a modified and improved approach to removing the interference of moisture from an IR spectrum and the corresponding second derivative spectrum. The temperature fluctuation in the air of the optical path and baseline-drift lead to the small but persistent presence of the interference of moisture. The problem has been successfully addressed by adopting a double-matching strategy. Additionally, two-dimensional correlationspectra (2D-COS) are generated using the second derivative or third derivative spectrum of the negative base 10 logarithms of the single-beam spectra, thereby removing the linear slope or quadratic portion of baseline-drift. Using the newly adopted approach, the residual interferences of moisture are attenuated. We applied the new approach to the IR spectra and the second derivative spectra of neat hexadecanol and biaxially oriented polypropylene (BOPP) film, and some promising preliminary results are obtained. In hexadecanol, two highly overlapping peaks at 1464 and 1463 cm-1 are revealed. In BOPP, the envelope at 1458 cm-1 is found to be composed of a number of sub-peaks.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianyi Li
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China
| | - Anqi He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China.
| | - Isao Noda
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States
| | - Yukihiro Ozaki
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669 - 1330, Japan
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
20
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121750. [PMID: 36030669 DOI: 10.1016/j.saa.2022.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
21
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
22
|
Jia P, Huang Y, Chen M, Qi X, Hou H. Comprehensive evaluation of spent mushroom substrate-chicken manure co-composting by garden waste improvement: physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8987-8997. [PMID: 35606581 DOI: 10.1007/s11356-022-20879-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
The performance of garden waste on spent mushroom substrate (SMS) and chicken manure (CM) co-composting efficiency and humification is unclear. Therefore, this study investigated the impact of garden waste addition on SMS-CM co-composting physicochemical properties, humification process, and the spectral characteristics of dissolved organic matter (DOM). The results showed that garden waste improved the physicochemical properties of SMS-CM co-compost, the thermophilic period was advanced 2 days, the seed germination index increased by 30.2%, and the total organic carbon and total nitrogen content increased by 8.80% and 15.0%, respectively. In addition, garden waste increased humic substances (HS) and humic acid (HA) contents by 10.62% and 34.52%, respectively; the HI, PHA and DP increased by 31.53%, 43.19% and 55.53%, respectively; and the SUVA254 and SUVA280 of DOM also increased by 6.39% and 4.39%, respectively. In particular, HA content and DOM humification increase rapidly in the first 10 days. The increase of HA accounted for 52% of the total increase during composting. Fourier-transform infrared and two-dimensional correlation analysis further confirmed that garden waste could facilitate the degradation of organic molecules, including amino acids, polysaccharides, carboxyl groups, phenols, and alcohol, and contributed to the preferential utilization of carboxyl groups and polysaccharides and thus enhanced humification.
Collapse
Affiliation(s)
- Penghui Jia
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China.
| | - Mengli Chen
- School of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Chongqing University, Chongqing, 400045, China
| | - Xiping Qi
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| | - Hongyang Hou
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, No.3, Rd.Tai Cheng, Shaanxi, 712100, Yangling, China
| |
Collapse
|
23
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part I. Yesterday and today. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121573. [PMID: 35870431 DOI: 10.1016/j.saa.2022.121573] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review, as the first of three parts, compiles past developments and early concepts of two-dimensional correlation spectroscopy (2D-COS) and subsequent evolution, as well as its early applications in various fields for the last 35 years. It covers past review articles, books, proceedings, and numerous research papers published on 2D-COS. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields confirms that it is well accepted as a powerful analytical technique to provide the in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
24
|
Zhang J, Bo S, Wang R, Fang J, Wang XG, Bai Y, Ma Z, Liang Y, Zhang M, Yu Q, Cai M, Zhou F, Liu W. Supramolecular Polymer Gel Lubricant with Excellent Mechanical Stability and Tribological Performances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45934-45944. [PMID: 36166403 DOI: 10.1021/acsami.2c14306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lubricants performing better in machinery systems would lead to the remarkable reduction of environmental pollution problems and the significant improvement of fuel economy. A new family of supramolecular polymer gel lubricants with urea groups has been successfully prepared via self-assembling noncovalent bonds. These newly designed supramolecular polymer gels were well characterized with field-emission scanning electron microscopy, proton nuclear magnetic resonance, attenuated total reflection-Fourier transform infrared spectroscopy, a rheometer, oscillating reciprocating friction, and a wear tester. Compared to low molecular weight supramolecular gels, the covalent and noncovalent bonds cooperated in the supramolecular polymer gel based on macromolecules. Hence, the mechanical properties and viscoelasticity of gel lubricants are greater than those of the low molecular weight supramolecular gels. Furthermore, owing to the longer chain length of polymer gelators, the thickness of the adsorbed film formed on the surface lubricated by macromolecules is thicker than that on the surface lubricated by low molecular weight supramolecular gels, which positively correlates with the lubricating property, making supramolecular polymer gels based on macromolecules better than low molecular weight supramolecular gels. Excitingly, the supramolecular polymer gels based on macromolecules exhibit more excellent thermal reversibility, creep recovery, and thixotropic properties, which not only achieve the lubricating property but also lead to the remarkable reduction of environmental pollution problems due to oil creeping.
Collapse
Affiliation(s)
- Jiaying Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Shangshang Bo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Rui Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Junhui Fang
- Hangzhou Hikvision Digital Technology Co., Ltd, Hangzhou 310051, China
| | - Xin-Gang Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yanyan Bai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhengfeng Ma
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Baiyin Zhongke Innovation Research Institute of Green Materials, Baiyin 730900 China
| | - Yijing Liang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Ming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qiangliang Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Meirong Cai
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
25
|
Noda I. Two-trace two-dimensional (2T2D) correlation applied to a number of spectra beyond a simple pair. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121258. [PMID: 35461063 DOI: 10.1016/j.saa.2022.121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The application of two-trace two-dimensional (2T2D) correlation analysis to a number of spectra consisting of more than a simple pair is explored, especially when such spectra are randomly collected without knowing the sampling order. Calculation and interpretation of 2T2D correlation spectra are briefly reviewed, and a systematic procedure to identify the set of characteristic bands, which are mutually asynchronous and least overlapped with each other, is described. 2T2D correlation is applied to individual spectra by selecting a representative reference spectrum, such as the average of the whole dataset. A slice of an asynchronous 2T2D spectrum at a characteristic band is devoid of the spectral contribution from the species represented by the band. Since 2T2D analysis may be applied to the whole set of spectra, and each 2T2D asynchronous spectrum yields a set of slices for different characteristic bands, it is possible to generate a series of 2T2D slices obtained at a given characteristic band. By applying the generalized 2D correlation or a successive 2T2D analysis to such slices, one can obtain excellent estimates of the pure component spectra of the mixture, which are comparable to the results from other curve resolution techniques.
Collapse
Affiliation(s)
- Isao Noda
- University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
26
|
Zhou B, Wang H, Hu S, Yan Q, Zhang P. Effects of montmorillonite (MMT) on the crystallization behavior of poly(L-lactic acid) (PLLA) by variable-temperature FTIR coupled with difference spectrometry, PCMW2D and 2DCOS analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 277:121289. [PMID: 35472702 DOI: 10.1016/j.saa.2022.121289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Effects of montmorillonite (MMT) on the crystallization behavior of poly(L-lactic acid) (PLLA) were investigated by variable-temperature FTIR spectroscopy. The variations of carbonyl band (1800-1720 cm-1) of different PLLA/MMT nanocomposites were focused due to its strong intensity and the involved abundant structure information. Difference spectrometry was used to evaluate the structural variations of PLLA after introducing MMT, and perturbation correlation moving window two-dimensional analysis (PCMW2D) split the temperature range into two sub-regions, i.e., 32-116 ℃ and 116-152 ℃, on the basis of the spectral variation. Two-dimensional correlation spectroscopy (2DCOS) was further applied to such sub-regions in order to find the change order between varied PLLA polymorphs. The results showed that less addition of MMT (≤3%) would lead to a well-exfoliated structure, which not only had no nucleation effect for PLLA, but also delayed the cold crystallization to a higher temperature compared with the one of pure PLLA. However, a higher addition of MMT (≥5%) would lead to an intercalated structure, which acted as a nucleating agent and thus advanced the cold crystallization to a lower temperature. Nevertheless, the introduction of MMT cannot affect the phase transition order between the amorphous, the intermediate, the α'- and the α'-PLLAs based on 2DCOS results.
Collapse
Affiliation(s)
- Bingyao Zhou
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Wang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shui Hu
- Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qi Yan
- Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China
| | - Pudun Zhang
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China; Analysis & Test Center, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Noda I. Estimating more than two pure component spectra from only two mixture spectra using two-dimensional correlation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121221. [PMID: 35397449 DOI: 10.1016/j.saa.2022.121221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
A procedure is described to estimate the pure component spectra of mixtures from only a pair of available spectra even when there are more than two component species present in the system. In contrast, traditional multivariate curve resolution (MCR) technique cannot be used for such a case. The method relies on the use of two-trace two-dimensional (2T2D) correlation spectroscopy. Asynchronous 2T2D spectrum is used to identify the characteristic bands most strongly associated with the individual mixture component species. Correlation coefficients derived from the synchronous 2T2D spectrum are used to obtain a set of correlative filtering functions to distribute the spectral intensity of the average spectrum among the estimates of the pure component spectra. Efficacy of the method was demonstrated using a pair of ATR IR spectra obtained for two solution mixtures containing three main ingredients with very similar compositions. Relatively congested and overlapped spectral region was used first for the demonstration, and reasonable resolution was accomplished yielding a set of the estimates of pure component spectra with most of the expected pertinent features included. The analysis was then extended to a broader spectral region containing well-isolated spectral signatures of individual components for positive validation. While traditional MCR technique seems to perform better with a large number of spectra, this technique can be effectively used in conjunction with MCR to improve its stability and performance, especially under some challenging conditions.
Collapse
Affiliation(s)
- Isao Noda
- University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
28
|
Velmurugan B, Devaraj Stephen L, Karthikeyan S, Binu Kumari S. Biomolecular changes in gills of Gambusia affinis studied using two dimensional correlation infrared spectroscopy coupled with chemometric analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Liu C, Zuo Z, Xu F, Wang Y. Authentication of Herbal Medicines Based on Modern Analytical Technology Combined with Chemometrics Approach: A Review. Crit Rev Anal Chem 2022; 53:1393-1418. [PMID: 34991387 DOI: 10.1080/10408347.2021.2023460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Since ancient times, herbal medicines (HMs) have been widely popular with consumers as a "natural" drug for health care and disease treatment. With the emergence of problems, such as increasing demand for HMs and shortage of resources, it often occurs the phenomenon of shoddy exceed and mixing the false with the genuine in the market. There is an urgent need to evaluate the quality of HMs to ensure their important role in health care and disease treatment, and to reduce the possibility of threat to human health. Modern analytical technology is can be analyzed for analyzing chemical components of HMs or their preparations. Reflecting complex chemical components' characteristic curves in the analysis sample, and the comprehensive effect of active ingredients of HMs. In this review, modern analytical technology (chromatography, spectroscopy, mass spectrometry), chemometrics methods (unsupervised, supervised) and their advantages, disadvantages, and applicability were introduced and summarized. In addition, the authentication application of modern analytical technology combined with chemometrics methods in four aspects, including origin, processing methods, cultivation methods, and adulteration of HMs have also been discussed and illustrated by a few typical studies. This article offers a general workflow of analytical methods that have been applied for HMs authentication and explains that the accuracy of authentication in favor of the quality assurance of HMs. It was provided reference value for the development and application of modern HMs.
Collapse
Affiliation(s)
- Chunlu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhitian Zuo
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Furong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Yuanzhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
30
|
Colaruotolo LA, Peters E, Corradini MG. Novel luminescent techniques in aid of food quality, product development, and food processing. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Kim M, Noda I, Park Y. Study on melting and crystallization of
PHBHx
thin films using
IR
and
2D
correlation spectroscopy. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Minkyoung Kim
- Department of Chemistry Kangwon National University Chuncheon Korea
| | - Isao Noda
- Department of Materials Science and Engineering University of Delaware Newark Delaware USA
| | - Yeonju Park
- Kangwon Radiation Convergence Research Support Center Kangwon National University Chuncheon Korea
| |
Collapse
|
32
|
Kavitha E, Devaraj Stephen L, Brishti FH, Karthikeyan S. Two-trace two-dimensional (2T2D) correlation infrared spectral analysis of Spirulina platensis and its commercial food products coupled with chemometric analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Two-dimensional correlation spectroscopy combined with deep learning method and HPLC method to identify the storage duration of porcini. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106670] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Nagpal S, Semon B, Ariunbold GO. Distinguishing Resonant from Non-Resonant Nonlinear Optical Processes Using Intensity-Intensity Correlation Analyses. APPLIED SPECTROSCOPY 2021; 75:1382-1390. [PMID: 34582290 DOI: 10.1177/00037028211045711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-color coherent anti-Stokes Raman scattering (CARS) represents non-degenerate four wave mixing that includes both non-resonant and resonant processes, the contributions of which depend upon how the molecular vibrational modes are being excited by the input laser pulses. The scattering signal due to resonant processes builds up progressively. An advanced analytical tool to reveal this deferred resonant signal buildup phenomenon is in need. In this work, we adapt a quantitative analytical tool by introducing one-dimensional and two-dimensional intensity-intensity correlation functions in terms of a new variable (probe pulse delay) and a new perturbation parameter (probe pulse linewidth). In particular, discrete diagonal directional sums are defined here as a tool to reduce both synchronous and asynchronous two-dimensional correlation spectroscopy (2D-COS) maps down to one-dimensional plots while maintaining the valuable analytical information. Detailed analyses using the all-Gaussian coherent Raman scattering closed-form solutions and the representative experimental data for resonant and non-resonant processes are presented and compared. The present work holds a promising potential for industrial application, e.g., by extractive industries to distinguish hydrocarbons (chemically resonant substance) from water (non-resonant contaminant) by utilizing the one- and two-dimensional correlation analyses.
Collapse
Affiliation(s)
- Supriya Nagpal
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, USA
| | - Bryan Semon
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, USA
| | - Gombojav O Ariunbold
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, USA
| |
Collapse
|
35
|
Kaczkowska E, Panuszko A, Bruździak P. Interactions in Ternary Aqueous Solutions of NMA and Osmolytes-PARAFAC Decomposition of FTIR Spectra Series. Int J Mol Sci 2021; 22:ijms222111684. [PMID: 34769114 PMCID: PMC8584171 DOI: 10.3390/ijms222111684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Intermolecular interactions in aqueous solutions are crucial for virtually all processes in living cells. ATR-FTIR spectroscopy is a technique that allows changes caused by many types of such interactions to be registered; however, binary solutions are sometimes difficult to solve in these terms, while ternary solutions are even more difficult. Here, we present a method of data pretreatment that facilitates the use of the Parallel Factor Analysis (PARAFAC) decomposition of ternary solution spectra into parts that are easier to analyze. Systems of the NMA–water–osmolyte-type were used to test the method and to elucidate information on the interactions between N-Methylacetamide (NMA, a simple peptide model) with stabilizing (trimethylamine N-oxide, glycine, glycine betaine) and destabilizing osmolytes (n-butylurea and tetramethylurea). Systems that contain stabilizers change their vibrational structure to a lesser extent than those with denaturants. Changes in the latter are strong and can be related to the formation of direct NMA–destabilizer interactions.
Collapse
|
36
|
Nagai Y, Katayama K. Multivariate curve resolution combined with estimation by cosine similarity mapping of analytical data. Analyst 2021; 146:5045-5054. [PMID: 34263889 DOI: 10.1039/d1an00362c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We developed a multivariate curve resolution (MCR) calculation combined with the mapping of cosine similarity (cos-s) for estimating multiple mixture spectra of chemicals. The cos-s map was obtained by calculating the similarities of the variation of the signal intensities at each scanning parameter, such as the wavelength. The cos-s map was utilized for the initial estimation of the spectra of pure chemicals and also for the restriction of the iterative least-squares calculation of the MCR. These calculations were performed without arbitrary parameters by introducing soft clustering to the cos-s map. The chemically meaningful initial estimation could prevent the convergence at an incorrect local minimum, which frequently happens for the wrong initial estimation of spectra far away from the real answer. Herein, we demonstrated the robustness of this calculation method by applying it for UV/Vis spectra and XRD patterns of multiple unknown chemical mixtures, whose shapes were totally different (broad overlapped peaks and multiple complicated peaks). Pure spectra/patterns were recovered as >84% consistency with the reference spectra, and <6% accuracy of the concentration ratios was demonstrated.
Collapse
Affiliation(s)
- Yuya Nagai
- Department of Applied Chemistry, Chuo University, Tokyo 112-8551, Japan.
| | | |
Collapse
|
37
|
Huang D, Xu Y, Lei F, Yu X, Ouyang Z, Chen Y, Jia H, Guo X. Degradation of polyethylene plastic in soil and effects on microbial community composition. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126173. [PMID: 34492948 DOI: 10.1016/j.jhazmat.2021.126173] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 05/20/2023]
Abstract
Plastics pollution in global soil systems is becoming a severely global issue and potential threat to terrestrial ecosystem serves and human health. Herein, in order to determine the degradability and ecological effects of polyethylene (PE) films, we measured the weight loss and characterization of PE films and analyzed variation in microbial community. The results of weight loss, SEM and FTIR spectra exhibited that PE films had unique degradation performance under different conditions. Simultaneously, we investigated the effects of PE films on the microbial community, and the microbiota colonizing on plastics. PE films may change the soil microbial community composition in soil, and hold the post of unique matrix for microbial colonization. These results indicate that the degradation of PE films and microbial community composition in soil can be affected by different conditions (soil layer, time and plants). By assessing the alteration of microbial community composition and PE films in soil, this work will contribute to enhance our understanding on the potential risks of plastics on soil ecosystems and provide a scientific basis for understanding the ecological effect of plastics on soil functions.
Collapse
Affiliation(s)
- Daofen Huang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yibo Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fadan Lei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaoqin Yu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuozhi Ouyang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yanhua Chen
- Institute of Plant Nutrition and Resources, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agro-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Chi X, Li X, Hou X, Guo S, Hu X. Facile Bioself-Assembled Crystals in Plants Promote Photosynthesis and Salt Stress Resistance. ACS NANO 2021; 15:5165-5177. [PMID: 33620211 DOI: 10.1021/acsnano.0c10351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Salty soil is a global problem that has adverse effects on plants. We demonstrate that bioself-assembled molybdenum-sulfur (Mo-S) crystals formed by the foliar application of MoCl5 and cysteine augment the photosynthesis of plants treated with 200 mM salt for 7 days by promoting Ca2+ signal transduction and free radical scavenging. Reductions in glutathione and phytochelatins were attributed to the biosynthesized Mo-S crystals. Plants embedded with the Mo-S crystals and exposed to salty soil exhibited carbon assimilation rates, photosynthesis rates (Fv/Fm), and electron transport rates (ETRs) that were increased by 40%, 63-173%, and 50-78%, respectively, compared with those of plants without Mo-S crystals. Increased compatible osmolyte levels and decreased levels of oxidative damage, stomatal conductance (0.63-0.42 mmol m2 s-1), and transpiration (22.9-15.3 mmol m2 s-1), free radical scavenging, and calcium-dependent protein kinase, and Ca2+ signaling pathway activation were evidenced by transcriptomics and metabolomics. The bioself-assembled crystals originating from ions provide a method for protecting plant development under adverse conditions.
Collapse
Affiliation(s)
- Xue Chi
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaokang Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuqing Guo
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
39
|
Lu H, Shinzawa H, Kazarian SG. Intermolecular Interactions in the Polymer Blends Under High-Pressure CO 2 Studied Using Two-Dimensional Correlation Analysis and Two-Dimensional Disrelation Mapping. APPLIED SPECTROSCOPY 2021; 75:250-258. [PMID: 33231478 PMCID: PMC7961738 DOI: 10.1177/0003702820978473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Exposing polymers to high-pressure and supercritical CO2 is a useful approach in polymer processing. Consequently, the mechanisms of polymer-polymer interaction under such conditions are worthy of further investigation. Two-dimensional correlation analysis and two-dimensional disrelation mapping were applied to datasets of polycaprolactone -poly(lactic acid) blend with or without high-pressure CO2 obtained using in situ attenuated total reflection Fourier transform spectroscopic imaging. The relatively weak dipole-dipole intermolecular interactions between polymer molecules were visualized through the disrelation maps for the first time. Because of the specially designed polymer interface, the interactions between the same type of polymer molecules and different types of polymer molecules were differentiated. Under exposure to high-pressure CO2, all three types of interactions: interaction between polycaprolactone molecules and poly(lactic acid) molecules, interaction between polycaprolactone molecules and interaction between poly(lactic acid) molecules become weaker than those in the polymer interface without high-pressure CO2. The resulting increase in the Flory interaction parameter is the main cause of phase separation in the PCL-PLA blend under high-pressure CO2. The findings from this study will be of benefit for polymer processing with high-pressure and supercritical CO2.
Collapse
Affiliation(s)
- Huiqiang Lu
- Department of Chemical Engineering, Imperial College London, SW7 3AZ, London, UK
| | - Hideyuki Shinzawa
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Sergei G. Kazarian
- Department of Chemical Engineering, Imperial College London, SW7 3AZ, London, UK
- Sergei G. Kazarian, Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
40
|
Bertoldo Menezes D, Reyer A, Benisek A, Dachs E, Pruner C, Musso M. Raman spectroscopic insights into the glass transition of poly(methyl methacrylate). Phys Chem Chem Phys 2021; 23:1649-1665. [PMID: 33411861 DOI: 10.1039/d0cp05627h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is a very versatile polymer which is used as a glass substitute or as an economical alternative to polycarbonate for many types of important applications, due to its particular physical properties. In this study we deal with the Raman spectroscopic characterization of the glass transition of PMMA, the value of the glass transition temperature being generally a decisive parameter for determining the application of polymers. The information obtained by two-dimensional correlation spectroscopy (2DCOS) analysis and perturbation-correlation moving-windows spectroscopy (PCMW2D) analysis of the temperature dependent depolarized Raman spectra enabled us to recognize that the glass transition of PMMA is ruled by intermolecular interactions which influence the vibrational modes of the molecular groups associated with ν(C[double bond, length as m-dash]O), δa(C-H) of α-CH3 and/or O-CH3, ν(C-O-C), ν(C-COO), and ν(C-C-O). This information was employed for the temperature dependent study of the Raman shift and of the full width at half maximum of the Raman peaks obtained through anisotropic and isotropic Raman spectra, of the depolarization ratio, of the Raman spectroscopic noncoincidence effect, and of the Raman peak intensities represented by Arrhenius-type plots, all results supporting the outcomes of this work. The comparison with results obtained by differential scanning calorimetry and with published results in molecular dynamics studies was also part of this work. As the main result, one can highlight the peak associated with the ν(C-O-C) stretching mode at around 812 cm-1 as the one which presents the better outcome for explaining the glass transition from the molecular point of view.
Collapse
Affiliation(s)
- D Bertoldo Menezes
- Federal Institute of Triângulo Mineiro, 1020, 38400-970, Uberlândia, Minas Gerais, Brazil. and Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| | - A Reyer
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| | - A Benisek
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| | - E Dachs
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| | - C Pruner
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| | - M Musso
- Department of Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Strasse 2a, 5020, Salzburg, Austria
| |
Collapse
|
41
|
Yue J, Huang H, Wang Y. A practical method superior to traditional spectral identification: Two-dimensional correlation spectroscopy combined with deep learning to identify Paris species. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105731] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|