1
|
Ding L, Zhang Q, Yu L, Jiang R, Yao C, Wang C, Li Q. Decay of Airborne Bacteria from Cattle Farm Under A-Band Ultraviolet Radiation. Animals (Basel) 2024; 14:3649. [PMID: 39765553 PMCID: PMC11672824 DOI: 10.3390/ani14243649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Inspired by the effects of solar or UV radiation on the decay of airborne bacteria during their transport, this study investigated the effect of UVA on the decay of airborne bacteria from cattle houses and analyzed the potential use of UVA to reduce indoor airborne bacteria under laboratory conditions. Airborne bacteria from the cattle source were generated and released into a small-scale test chamber (1.5 m3) with different strategies according to the different objectives in decay tests and simulated sterilization tests. Increasing with the UVA radiation gradients (0, 500, 1000, 1500 μW cm-2), the average decay rate of total curable airborne bacteria ranged from 2.7% to 61.6% in decay tests. Under the combination of different UVA radiation intensities (2000 μW cm-2 in maximum) and radiation durations (60 min in maximum), simulated sterilization tests were conducted to examine the potential use of UVA radiation for air sterilization in animal houses. With the dynamic inactive rate (DIR) ranging from 17.2% to 62.4%, we proved that UVA may be an alternative way to reduce the indoor airborne bacteria in cattle houses if applied properly. Similar effects would be achieved using either a high radiation intensity with a short radiation duration or a low radiation intensity with a long radiation duration.
Collapse
Affiliation(s)
- Luyu Ding
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Qing Zhang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Ligen Yu
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Ruixiang Jiang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chunxia Yao
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| | - Chaoyuan Wang
- Department of Agricultural Structure and Bioenvironmental Engineering, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; (Q.Z.); (C.W.)
| | - Qifeng Li
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; (L.D.); (L.Y.); (R.J.); (C.Y.)
- National Engineering Research Center for Information Technology in Agriculture (NERCITA), Beijing 100097, China
- National Innovation Center of Digital Technology in Animal Husbandry, Beijing 100097, China
| |
Collapse
|
2
|
Kwak N, Tsameret S, Gaire TN, Mendoza KM, Cortus EL, Cardona C, Noyes N, Li J. Influence of rainfall on size-resolved bioaerosols around a livestock farm. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176184. [PMID: 39276997 DOI: 10.1016/j.scitotenv.2024.176184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Bioaerosols, capable of transporting microorganisms, can impact human health and agriculture by spreading to nearby communities. Their transmissions are influenced by various factors, including weather conditions and human activities. However, the scarcity of detailed, taxon-specific data on bioaerosols' sizes limits our ability to assess risks associated with bioaerosols' generation and spread. This study examined the composition and size of bioaerosols at a livestock farm and a non-agricultural site, focusing on how bioaerosols evolve at different locations and meteorological conditions. The location had an impact on bioaerosol samples. We conducted 16S rRNA gene amplicon sequencing to identify bacteria genera in bioaerosols. We observed consistently higher concentrations of bioaerosols across all sizes at the livestock farm, and samples from the livestock farm exhibited greater bacterial diversity, where we identified Staphylococcus and Corynebacterium as the most abundant species. The effects of rainfall on bioaerosol diversity are complex, suggesting a dynamic interplay between bioaerosol removal and generation. After rainfall, the bioaerosol fraction of particles larger than 2.5 μm increased by nearly 400% compared to post-rain levels. Conversely, for bioaerosols below 1 μm size, the fraction decreased by 50%. Furthermore, the sequencing results showed that precipitation differentially responded to the abundance of various genera in the bioaerosols. Moreover, even for the same genus, the response to precipitation varied depending on the size of the bioaerosols. Our research reveals how size, location, and environmental conditions influence bioaerosol dynamics, enhancing our understanding of bioaerosol formation and transmission.
Collapse
Affiliation(s)
- Nohhyeon Kwak
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Shahar Tsameret
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA
| | - Tara N Gaire
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Erin L Cortus
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Ave., St. Paul, MN 55108, USA
| | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, 1971 Commonwealth Ave., St. Paul, MN 55108, USA
| | - Noelle Noyes
- Department of Veterinary Population Medicine, University of Minnesota, 1988 Fitch Ave., St. Paul, MN 55108, USA
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, 1251 Memorial Dr., Coral Gables, FL 33146, USA.
| |
Collapse
|
3
|
Tang L, Rhoads WJ, Eichelberg A, Hamilton KA, Julian TR. Applications of Quantitative Microbial Risk Assessment to Respiratory Pathogens and Implications for Uptake in Policy: A State-of-the-Science Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:56001. [PMID: 38728217 PMCID: PMC11086748 DOI: 10.1289/ehp12695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Respiratory tract infections are major contributors to the global disease burden. Quantitative microbial risk assessment (QMRA) holds potential as a rapidly deployable framework to understand respiratory pathogen transmission and inform policy on infection control. OBJECTIVES The goal of this paper was to evaluate, motivate, and inform further development of the use of QMRA as a rapid tool to understand the transmission of respiratory pathogens and improve the evidence base for infection control policies. METHODS We conducted a literature review to identify peer-reviewed studies of complete QMRA frameworks on aerosol inhalation or contact transmission of respiratory pathogens. From each of the identified studies, we extracted and summarized information on the applied exposure model approaches, dose-response models, and parameter values, including risk characterization. Finally, we reviewed linkages between model outcomes and policy. RESULTS We identified 93 studies conducted in 16 different countries with complete QMRA frameworks for diverse respiratory pathogens, including SARS-CoV-2, Legionella spp., Staphylococcus aureus, influenza, and Bacillus anthracis. Six distinct exposure models were identified across diverse and complex transmission pathways. In 57 studies, exposure model frameworks were informed by their ability to model the efficacy of potential interventions. Among interventions, masking, ventilation, social distancing, and other environmental source controls were commonly assessed. Pathogen concentration, aerosol concentration, and partitioning coefficient were influential exposure parameters as identified by sensitivity analysis. Most (84%, n = 78 ) studies presented policy-relevant content including a) determining disease burden to call for policy intervention, b) determining risk-based threshold values for regulations, c) informing intervention and control strategies, and d) making recommendations and suggestions for QMRA application in policy. CONCLUSIONS We identified needs to further the development of QMRA frameworks for respiratory pathogens that prioritize appropriate aerosol exposure modeling approaches, consider trade-offs between model validity and complexity, and incorporate research that strengthens confidence in QMRA results. https://doi.org/10.1289/EHP12695.
Collapse
Affiliation(s)
- Lizhan Tang
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - William J. Rhoads
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Antonia Eichelberg
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Kerry A. Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona, USA
- Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, Arizona, USA
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Tastassa AC, Sharaby Y, Lang-Yona N. Aeromicrobiology: A global review of the cycling and relationships of bioaerosols with the atmosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168478. [PMID: 37967625 DOI: 10.1016/j.scitotenv.2023.168478] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Airborne microorganisms and biological matter (bioaerosols) play a key role in global biogeochemical cycling, human and crop health trends, and climate patterns. Their presence in the atmosphere is controlled by three main stages: emission, transport, and deposition. Aerial survival rates of bioaerosols are increased through adaptations such as ultra-violet radiation and desiccation resistance or association with particulate matter. Current research into modern concerns such as climate change, global gene transfer, and pathogenicity often neglects to consider atmospheric involvement. This comprehensive review outlines the transpiring of bioaerosols across taxa in the atmosphere, with significant focus on their interactions with environmental elements including abiotic factors (e.g., atmospheric composition, water cycle, and pollution) and events (e.g., dust storms, hurricanes, and wildfires). The aim of this review is to increase understanding and shed light on needed research regarding the interplay between global atmospheric phenomena and the aeromicrobiome. The abundantly documented bacteria and fungi are discussed in context of their cycling and human health impacts. Gaps in knowledge regarding airborne viral community, the challenges and importance of studying their composition, concentrations and survival in the air are addressed, along with understudied plant pathogenic oomycetes, and archaea cycling. Key methodologies in sampling, collection, and processing are described to provide an up-to-date picture of ameliorations in the field. We propose optimization to microbiological methods, commonly used in soil and water analysis, that adjust them to the context of aerobiology, along with other directions towards novel and necessary advancements. This review offers new perspectives into aeromicrobiology and calls for advancements in global-scale bioremediation, insights into ecology, climate change impacts, and pathogenicity transmittance.
Collapse
Affiliation(s)
- Ariel C Tastassa
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Yehonatan Sharaby
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel
| | - Naama Lang-Yona
- Civil and Environmental Engineering, Technion - Israel Institute of Technology, 3200003 Haifa, Israel.
| |
Collapse
|
5
|
Luceri A, Francese R, Perero S, Lembo D, Ferraris M, Balagna C. Antibacterial and Antiviral Activities of Silver Nanocluster/Silica Composite Coatings Deposited onto Air Filters. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3955-3965. [PMID: 38195426 DOI: 10.1021/acsami.3c13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The indoor air quality should be better controlled and improved to avoid numerous health issues. Even if different devices are developed for air filtration, the proliferation of microorganisms under certain conditions must be controlled. For this purpose, a silver nanocluster/silica composite coating was deposited via a cosputtering technique onto fiber glass and polymeric based substrates. The aim of this work is focused on the evaluation of the antibacterial and antiviral effects of the developed coating. The preliminary results of the compositional and morphological tests showed an evenly distributed coating on filters surfaces. Several antibacterial tests were performed, confirming strong effect both in qualitative and quantitative methods, against S. epidermidis and E. coli. To understand if the coating can stop the proliferation of bacteria colonies spread on it, simulation of everyday usage of filters was performed, nebulizing bacteria solution with high colonies concentration and evaluating the inhibition of bacteria growth. Additionally, a deep understanding of the virucidal action and mechanism of Ag nanoclusters of the coating was performed. The effect of the coating both in aqueous medium and in dry methods was evaluated, in comparison with analysis on ions release. The virucidal performances are assessed against the human coronavirus OC43 strain (HCoV-OC43).
Collapse
Affiliation(s)
- Angelica Luceri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Rachele Francese
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Sergio Perero
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, Laboratory of Molecular Virology and Antiviral Research, University of Turin, Regione Gonzole 10, 10043 Orbassano (TO), Italy
| | - Monica Ferraris
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Cristina Balagna
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
6
|
Yu X, Han Y, Liu J, Cao Y, Wang Y, Wang Z, Lyu J, Zhou Z, Yan Y, Zhang Y. Distribution characteristics and potential risks of bioaerosols during scattered farming. iScience 2023; 26:108378. [PMID: 38025774 PMCID: PMC10679821 DOI: 10.1016/j.isci.2023.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
In most economically underdeveloped areas, scattered farming and human‒livestock cohabitation are common. However, production of bioaerosols and their potential harm in these areas have not been previously researched. In this study, bioaerosol characteristics were analyzed in scattered farming areas in rural Northwest China. The highest bacteria, fungi, and Enterobacteria concentrations were 125609 ± 467 CFU/m³, 25175 ± 10305 CFU/m³, and 4167 ± 592 CFU/m³, respectively. Most bioaerosols had particle sizes >3.3 μm. A total of 71 bacterial genera and 16 fungal genera of potential pathogens were identified, including zoonotic potential pathogenic genera. Moreover, our findings showed that the scattered farming pattern of human‒animal cohabitation can affect the indoor air environment in the surrounding area, leading to chronic respiratory diseases in the occupants. Therefore, relevant government departments and farmers should enhance their awareness of bioaerosol risks and consider measures that may be taken to reduce them.
Collapse
Affiliation(s)
- Xuezheng Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yunping Han
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jianguo Liu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yingnan Cao
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zixuan Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Jinxin Lyu
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ziyu Zhou
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Ying Yan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| | - Yuxiang Zhang
- Key Laboratory of Environmental Pollution Control and Remediation at Universities of Inner Mongolia Autonomous Region, College of Resources and Environmental engineering, Inner Mongolia University of Technology, Hohhot, Inner Mongolia 010051, PR China
| |
Collapse
|
7
|
Bauer BU, Knittler MR, Andrack J, Berens C, Campe A, Christiansen B, Fasemore AM, Fischer SF, Ganter M, Körner S, Makert GR, Matthiesen S, Mertens-Scholz K, Rinkel S, Runge M, Schulze-Luehrmann J, Ulbert S, Winter F, Frangoulidis D, Lührmann A. Interdisciplinary studies on Coxiella burnetii: From molecular to cellular, to host, to one health research. Int J Med Microbiol 2023; 313:151590. [PMID: 38056089 DOI: 10.1016/j.ijmm.2023.151590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/19/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The Q-GAPS (Q fever GermAn interdisciplinary Program for reSearch) consortium was launched in 2017 as a German consortium of more than 20 scientists with exceptional expertise, competence, and substantial knowledge in the field of the Q fever pathogen Coxiella (C.) burnetii. C. burnetii exemplifies as a zoonotic pathogen the challenges of zoonotic disease control and prophylaxis in human, animal, and environmental settings in a One Health approach. An interdisciplinary approach to studying the pathogen is essential to address unresolved questions about the epidemiology, immunology, pathogenesis, surveillance, and control of C. burnetii. In more than five years, Q-GAPS has provided new insights into pathogenicity and interaction with host defense mechanisms. The consortium has also investigated vaccine efficacy and application in animal reservoirs and identified expanded phenotypic and genotypic characteristics of C. burnetii and their epidemiological significance. In addition, conceptual principles for controlling, surveilling, and preventing zoonotic Q fever infections were developed and prepared for specific target groups. All findings have been continuously integrated into a Web-based, interactive, freely accessible knowledge and information platform (www.q-gaps.de), which also contains Q fever guidelines to support public health institutions in controlling and preventing Q fever. In this review, we will summarize our results and show an example of how an interdisciplinary consortium provides knowledge and better tools to control a zoonotic pathogen at the national level.
Collapse
Affiliation(s)
- Benjamin U Bauer
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael R Knittler
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Jennifer Andrack
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Christian Berens
- Friedrich-Loeffler-Institut, Institute of Molecular Pathogenesis, Jena, Germany
| | - Amely Campe
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Bahne Christiansen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Akinyemi M Fasemore
- Bundeswehr Institute of Microbiology, Munich, Germany; University of Würzburg, Würzburg, Germany; ZB MED - Information Centre for Life Science, Cologne, Germany
| | - Silke F Fischer
- Landesgesundheitsamt Baden-Württemberg, Ministerium für Soziales, Gesundheit und Integration, Stuttgart, Germany
| | - Martin Ganter
- Clinic for Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sophia Körner
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany; Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Gustavo R Makert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Svea Matthiesen
- Friedrich-Loeffler-Institut, Institute of Immunology, Greifswald - Insel Riems, Germany
| | - Katja Mertens-Scholz
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Sven Rinkel
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Food and Veterinary Institute Braunschweig/Hannover, Hannover, Germany
| | - Jan Schulze-Luehrmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | - Sebastian Ulbert
- Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Fenja Winter
- Department of Biometry, Epidemiology and Information Processing, (IBEI), WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dimitrios Frangoulidis
- Bundeswehr Institute of Microbiology, Munich, Germany; Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information, Munich, Germany
| | - Anja Lührmann
- Institut für Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| |
Collapse
|
8
|
Lim S, Perez AM, Kanankege KST. Modeling the Seasonal Variation of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2023; 15:1765. [PMID: 37632106 PMCID: PMC10459243 DOI: 10.3390/v15081765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Modeling the windborne transmission of aerosolized pathogens is challenging. We adapted an atmospheric dispersion model named the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to simulate the windborne dispersion of porcine reproductive and respiratory syndrome virus (PRRSv) between swine farms and incorporated the findings into an outbreak investigation. The risk was estimated semi-quantitatively based on the cumulative daily deposition of windborne particles and the distance to the closest emitting farm with an ongoing outbreak. Five years of data (2014:2018) were used to study the seasonal differences of the deposition thresholds of the airborne particles containing PRRSv and to evaluate the model in relation to risk prediction and barn air filtration. When the 14-day cumulative deposition was considered, in winter, above-threshold particle depositions would reach up to 30 km from emitting farms with 84% of them being within 10 km. Long-distance pathogen transmission was highest in winter and fall, lower in spring, and least in summer. The model successfully replicated the observed seasonality of PRRSv, where fall and winter posed a higher risk for outbreaks. Reaching the humidity and temperature thresholds tolerated by the virus in spring and summer reduced the survival and infectivity of aerosols beyond 10-20 km. Within the data limitations of voluntary participation, when wind was assumed to be the sole route of PRRSv transmission, the predictive performance of the model was fair with >0.64 AUC. Barn air filtration was associated with fewer outbreaks, particularly when exposed to high levels of viral particles. This study confirms the usefulness of the HYSPLIT model as a tool when determining seasonal effects and distances and informs the near real-time risk of windborne PRRSv transmission that can be useful in future outbreak investigations and for implementing timely control measures.
Collapse
Affiliation(s)
- Seunghyun Lim
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (S.L.); (A.M.P.)
- Bioinformatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (S.L.); (A.M.P.)
| | - Kaushi S. T. Kanankege
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA; (S.L.); (A.M.P.)
| |
Collapse
|
9
|
Métris KL, Métris J. Aircraft surveys for air eDNA: probing biodiversity in the sky. PeerJ 2023; 11:e15171. [PMID: 37077310 PMCID: PMC10108859 DOI: 10.7717/peerj.15171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/21/2023] Open
Abstract
Air is a medium for dispersal of environmental DNA (eDNA) carried in bioaerosols, yet the atmosphere is mostly unexplored as a source of genetic material encompassing all domains of life. In this study, we designed and deployed a robust, sterilizable hardware system for airborne nucleic acid capture featuring active filtration of a quantifiable, controllable volume of air and a high-integrity chamber to protect the sample from loss or contamination. We used our hardware system on an aircraft across multiple height transects over major aerosolization sources to collect air eDNA, coupled with high-throughput amplicon sequencing using multiple DNA metabarcoding markers targeting bacteria, plants, and vertebrates to test the hypothesis of large-scale genetic presence of these bioaerosols throughout the planetary boundary layer in the lower troposphere. Here, we demonstrate that the multi-taxa DNA assemblages inventoried up to 2,500 m using our airplane-mounted hardware system are reflective of major aerosolization sources in the survey area and show previously unreported airborne species detections (i.e., Allium sativum L). We also pioneer an aerial survey flight grid standardized for atmospheric sampling of genetic material and aeroallergens using a light aircraft and limited resources. Our results show that air eDNA from terrestrial bacteria, plants, and vertebrates is detectable up to high altitude using our airborne air sampler and demonstrate the usefulness of light aircraft in monitoring campaigns. However, our work also underscores the need for improved marker choices and reference databases for species in the air column, particularly eukaryotes. Taken together, our findings reveal strong connectivity or mixing of terrestrial-associated eDNA from ground level aerosolization sources and the atmosphere, and we recommend that parameters and indices considering lifting action, atmospheric instability, and potential for convection be incorporated in future surveys for air eDNA. Overall, this work establishes a foundation for light aircraft campaigns to comprehensively and economically inventory bioaerosol emissions and impacts at scale, enabling transformative future opportunities in airborne DNA technology.
Collapse
Affiliation(s)
- Kimberly L. Métris
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Airborne Science LLC, Clemson, SC, United States
| | | |
Collapse
|
10
|
Xu X, Wang C, Wang P, Chu Y, Guo J, Bo X, Lin A. Bioaerosol dispersion and environmental risk simulation: Method and a case study for a biopharmaceutical plant of Gansu province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160506. [PMID: 36442625 PMCID: PMC9691505 DOI: 10.1016/j.scitotenv.2022.160506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 06/04/2023]
Abstract
Pathogenic bacteria pose a great threat to global public health from environmental and public health perspectives, especially regarding the impact of the COVID-19 pandemic worldwide. As a result, the increased risk of pathogenic bioaerosol exposure imposes a considerable health burden and raises specific concerns about the layout and location of vaccine manufacturers. This study proposed a grid computing method based on the CALPUFF modelling system and population-based environmental risks to reduce bioaerosol-related potential risks. We previously used the CALPUFF model to quantify the diffusion level, the spatial distribution of emissions, and potential environmental risks of bioaerosol leakage in Gansu province's Zhongmu Lanzhou biopharmaceutical plant from July 24, 2019, to August 20, 2019. By combining it with publicly available test data, the credibility was confirmed. Based on our previous research, the CALPUFF model application combined with the environmental population-based environmental risks in two scenarios: the layout and site selection, was explored by using the leakage accident of Zhongmu Lanzhou biopharmaceutical plant of Gansu province as a case study. Our results showed that the site selection method of scenario 2 coupled with the buffer area was more reasonable than scenario 1, and the final layout site selection point of scenario 2 was grid 157 as the optimal layout point. The simulation results demonstrated agreement with the actual survey. Our findings could assist global bioaerosol manufacturers in developing appropriate layout and site selection strategies to reduce bioaerosol-related potential environmental risks.
Collapse
Affiliation(s)
- Xin Xu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chengxin Wang
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Peng Wang
- 3Clear Technology Co., Ltd, Beijing 100029, China
| | - Yinghao Chu
- School of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Jing Guo
- School of Economics and Management, Beihang University, Beijing 100191, China
| | - Xin Bo
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
11
|
Górecki I, Kołodziejczyk A, Harasymczuk M, Młynarczyk G, Szymanek-Majchrzak K. The Impact of Harsh Stratospheric Conditions on Survival and Antibiotic Resistance Profile of Non-Spore Forming Multidrug Resistant Human Pathogenic Bacteria Causing Hospital-Associated Infections. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2787. [PMID: 36833485 PMCID: PMC9956888 DOI: 10.3390/ijerph20042787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Bacteria are constantly being lifted to the stratosphere due to air movements caused by weather phenomena, volcanic eruptions, or human activity. In the upper parts of the atmosphere, they are exposed to extremely harsh and mutagenic conditions such as UV and space radiation or ozone. Most bacteria cannot withstand that stress, but for a fraction of them, it can act as a trigger for selective pressure and rapid evolution. We assessed the impact of stratospheric conditions on the survival and antibiotic resistance profile of common non-spore-forming human pathogenic bacteria, both sensitive and extremely dangerous multidrug-resistant variants, with plasmid-mediated mechanisms of resistance. Pseudomonas aeruginosa did not survive the exposure. In the case of strains that were recovered alive, the survival was extremely low: From 0.00001% of Klebsiella pneumoniae carrying the ndm-1 gene and methicillin-resistant Staphylococcus aureus mecA-positive with reduced susceptibility to vancomycin (MRSA/VISA), to a maximum of 0.001% of K. pneumoniae sensitive to all common antibiotics and S. aureus sensitive to vancomycin (MRSA/VSSA). We noticed a tendency towards increased antibiotic susceptibility after the stratospheric flight. Antimicrobial resistance is a current real, global, and increasing problem, and our results can inform current understandings of antibiotic resistance mechanisms and development in bacteria.
Collapse
Affiliation(s)
- Ignacy Górecki
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| | - Agata Kołodziejczyk
- Analog Astronaut Training Center, Morelowa Str. 1F/4, 30-222 Cracow, Poland
- Space Technology Centre, AGH University of Technology, Czarnowiejska Str. 36, 30-054 Cracow, Poland
| | - Matt Harasymczuk
- Analog Astronaut Training Center, Morelowa Str. 1F/4, 30-222 Cracow, Poland
| | - Grażyna Młynarczyk
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| | - Ksenia Szymanek-Majchrzak
- Department of Medical Microbiology, Medical University of Warsaw, Chalubinskiego, Str. 5, 02-004 Warsaw, Poland
| |
Collapse
|
12
|
Zhang Y, Liu B, Tong Z. Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2022; 72:1327-1340. [PMID: 36226866 DOI: 10.1080/10962247.2022.2101566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 06/16/2023]
Abstract
Bioaerosols play a momentous role in the transmission of human infectious diseases, so there has been increasing concern over their exposure in recent years. Bioaerosol monitor is crucial in environmental fields. Based on the universal existence of Adenosine triphosphate (ATP) in bioaerosols, ATP bioluminescence can be used as a powerful technique to detect bioaerosols without interference from non-bioaerosols. When ATP is released from bioaerosols, they can quantify microbial biomass by ATP bioluminescence. In this review, we provide the latest methodological improvements that enable more reliable quantification of bioaerosols in complex environmental samples, especially the use of ATP bioluminescence in this era of technological advancement via the following routes: lower sample content for the trace existence of bioaerosols in the atmosphere, higher sensitivity of ATP bioluminescence reaction system and shorter process times. We also highlight the new techniques in improving the efficiencies of these monitoring processes. The purpose of this paper is to make more people realize the great potential of the ATP bioluminescence system for monitoring airborne microorganisms. Additionally, the present work intends to increase people's awareness of developing novel technology combined with ATP bioluminescence reaction system to realize rapid, real-time, and sensitive sensing of bioaerosols.Implications: The ATP bioluminescence methodology can not only eliminate the interference of co-existing nonbiological (fluorescent or PM) but also significantly improve the efficiency of bioaerosol. Recent progresses, such as the application of ATP fluorescence technology in bioaerosol monitoring, indicating that the efficiency and sensitivity are possible to be further improved. Nevertheless, there is no reviews address these advances and deeply analyze the application of ATP fluorescence technology in this field. his contribution will attract wide attention from both academic and industrial communities of this field, as well as researchers engaging in environmental monitoring. Furthermore, the strategies and techniques of studying the ATP bioluminescence reviewed here is instructive for environment monitoring in various fields. Therefore, in view of significance and broad interest, we feel strongly that our critical review is very essential to the field of public health security, pharmaceutics, anti-bioterrorism, etc., and would like it to be published in Journal of the Air & Waste Management Association.
Collapse
Affiliation(s)
- Yueqi Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| | - Bing Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing, People's Republic of China
| |
Collapse
|
13
|
Bauer BU, Herms TL, Runge M, Ganter M. A Q fever outbreak on a dairy goat farm did not result in Coxiella burnetii shedding on neighboring sheep farms – An observational study. Small Rumin Res 2022. [DOI: 10.1016/j.smallrumres.2022.106778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Pasalari H, Akbari H, Ataei-Pirkooh A, Adibzadeh A, Akbari H. Assessment of rotavirus and norovirus emitted from water spray park: QMRA, diseases burden and sensitivity analysis. Heliyon 2022; 8:e10957. [PMID: 36254289 PMCID: PMC9568861 DOI: 10.1016/j.heliyon.2022.e10957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
A quantitative model on exposure to pathogenic viruses in air of recreational area and their corresponding health effects is necessary to provide mitigation actions in content of emergency response plans (ERP). Here, the health risk associated with exposure to two pathogenic viruses of concern: Rotavirus (RoV) and Norovirus (NoV) in air of water spray park were estimated using a quantitative microbial risk assessment (QMRA) model. To this end, real-time Reverse Transcriptase polymerase chain reaction (real-time RT-PCR) was employed to measure the concentration levels of RoV and NoV over a twelve-month period. The probability of infection, illness and diseases burden of gastrointestinal illness (GI) caused by RoV and NoV for both workers and visitors were estimated using QMRA and Monto-Carlo simulation technique. The annual mean concentration for RoV and NoV in sampling air of water spray park were 20and 1754, respectively. The %95 confidence interval (CI) calculated annual DALY indicator for RoV (Workers: 2.62 × 10-4-2.62 × 10-1, Visitors: 1.50 × 10-5-2.42 × 10-1) and NoV (Workers: 5.54 × 10-3-2.53 × 10-1; Visitors: 5.18 × 10-4-2.54 × 10-1) were significantly higher the recommended values by WHO and US EPA (10-6-10-4 DALY pppy). According to sensitivity analysis, exposure dose and disease burden per case (DBPC) were found as the most influencing factors on disease burden as a consequences of exposure to RoV and NoV, respectively. The comprehensive information on DALY and QMRA can aid authorities involved in risk assessment and recreational actions to adopt proper approach and mitigation actions to minimize the health risk.
Collapse
Affiliation(s)
- Hasan Pasalari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Hesam Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Angila Ataei-Pirkooh
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Adibzadeh
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Health Research Center, Lifestyle Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Abstract
Natural and human-made disasters can cause tremendous physical damage, societal change, and suffering. In addition to their effects on people, disasters have been shown to alter the microbial population in the area affected. Alterations for microbial populations can lead to new ecological interactions, with additional potentially adverse consequences for many species, including humans. Disaster-related stressors can be powerful forces for microbial selection. Studying microbial adaptation in disaster sites can reveal new biological processes, including mechanisms by which some microbes could become pathogenic and others could become beneficial (e.g., used for bioremediation). Here we survey examples of how disasters have affected microbiology and suggest that the topic of "disaster microbiology" is itself a new field of study. Given the accelerating pace of human-caused climate change and the increasing encroachment of the natural word by human activities, it is likely that this area of research will become increasingly relevant to the broader field of microbiology. Since disaster microbiology is a broad term open to interpretation, we propose criteria for what phenomena fall under its scope. The basic premise is that there must be a disaster that causes a change in the environment, which then causes an alteration to microbes (either a physical or biological adaptation), and that this adaptation must have additional ramifications.
Collapse
|
16
|
Kanankege KST, Graham K, Corzo CA, VanderWaal K, Perez AM, Durr PA. Adapting an Atmospheric Dispersion Model to Assess the Risk of Windborne Transmission of Porcine Reproductive and Respiratory Syndrome Virus between Swine Farms. Viruses 2022; 14:v14081658. [PMID: 36016281 PMCID: PMC9416339 DOI: 10.3390/v14081658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Modeling the windborne transmission of aerosolized pathogens is challenging. We adapted an atmospheric dispersion model (ADM) to simulate the windborne dispersion of porcine reproductive and respiratory syndrome virus (PRRSv) between swine farms. This work focuses on determining ADM applicable parameter values for PRRSv through a literature and expert opinion-based approach. The parameters included epidemiological features of PRRSv, characteristics of the aerosolized particles, and survival of aerosolized virus in relation to key meteorological features. A case study was undertaken to perform a sensitivity analysis on key parameters. Farms experiencing ongoing PRRSv outbreaks were assigned as particle emitting sources. The wind data from the North American Mesoscale Forecast System was used to simulate dispersion. The risk was estimated semi-quantitatively based on the median daily deposition of particles and the distance to the closest emitting farm. Among the parameters tested, the ADM was most sensitive to the number of particles emitted, followed by the model runtime, and the release height was the least sensitive. Farms within 25 km from an emitting farm were at the highest risk; with 53.66% being within 10 km. An ADM-based risk estimation of windborne transmission of PRRSv may inform optimum time intervals for air sampling, plan preventive measures, and aid in ruling out the windborne dispersion in outbreak investigations.
Collapse
Affiliation(s)
- Kaushi S. T. Kanankege
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
- Correspondence: ; Tel.: +1-(612)-625-7755; Fax: +1-(612)-625-6241
| | - Kerryne Graham
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC 3219, Australia; (K.G.); (P.A.D.)
| | - Cesar A. Corzo
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Andres M. Perez
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, MN 55108, USA; (C.A.C.); (K.V.); (A.M.P.)
| | - Peter A. Durr
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Centre for Disease Preparedness, Geelong, VIC 3219, Australia; (K.G.); (P.A.D.)
| |
Collapse
|
17
|
George PBL, Rossi F, St-Germain MW, Amato P, Badard T, Bergeron MG, Boissinot M, Charette SJ, Coleman BL, Corbeil J, Culley AI, Gaucher ML, Girard M, Godbout S, Kirychuk SP, Marette A, McGeer A, O’Shaughnessy PT, Parmley EJ, Simard S, Reid-Smith RJ, Topp E, Trudel L, Yao M, Brassard P, Delort AM, Larios AD, Létourneau V, Paquet VE, Pedneau MH, Pic É, Thompson B, Veillette M, Thaler M, Scapino I, Lebeuf M, Baghdadi M, Castillo Toro A, Cayouette AB, Dubois MJ, Durocher AF, Girard SB, Diaz AKC, Khalloufi A, Leclerc S, Lemieux J, Maldonado MP, Pilon G, Murphy CP, Notling CA, Ofori-Darko D, Provencher J, Richer-Fortin A, Turgeon N, Duchaine C. Antimicrobial Resistance in the Environment: Towards Elucidating the Roles of Bioaerosols in Transmission and Detection of Antibacterial Resistance Genes. Antibiotics (Basel) 2022; 11:974. [PMID: 35884228 PMCID: PMC9312183 DOI: 10.3390/antibiotics11070974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.
Collapse
Affiliation(s)
- Paul B. L. George
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Florent Rossi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Magali-Wen St-Germain
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Pierre Amato
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Thierry Badard
- Centre de Recherche en Données et Intelligence Géospatiales (CRDIG), Quebec City, QC G1V 0A6, Canada;
| | - Michel G. Bergeron
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Maurice Boissinot
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Steve J. Charette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Brenda L. Coleman
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
| | - Jacques Corbeil
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Alexander I. Culley
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Lou Gaucher
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | | | - Stéphane Godbout
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Shelley P. Kirychuk
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - André Marette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; (B.L.C.); (A.M.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patrick T. O’Shaughnessy
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52246, USA;
| | - E. Jane Parmley
- Canadian Wildlife Health Cooperative, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Serge Simard
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Richard J. Reid-Smith
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, ON N5V 4T3, Canada;
- Department of Biology, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Luc Trudel
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China;
| | - Patrick Brassard
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Anne-Marie Delort
- Institut de Chimie de Clermont-Ferrand, SIGMA Clermont, CNRS, Université Clermont-Auvergne, 63178 Clermont-Ferrand, France; (P.A.); (A.-M.D.)
| | - Araceli D. Larios
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Tecnológico Nacional de México/ITS de Perote, Perote 91270, Mexico
| | - Valérie Létourneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Valérie E. Paquet
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Marie-Hélène Pedneau
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Émilie Pic
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Brooke Thompson
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Marc Veillette
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mary Thaler
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Ilaria Scapino
- Département de Médecine Moléculaire, Université Laval, Quebec City, QC G1V 0A6, Canada; (P.B.L.G.); (J.C.); (I.S.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Maria Lebeuf
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Mahsa Baghdadi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Alejandra Castillo Toro
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Amélia Bélanger Cayouette
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Marie-Julie Dubois
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut sur la Nutrition et les Aliments Fonctionnels, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Alicia F. Durocher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Sarah B. Girard
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Andrea Katherín Carranza Diaz
- Institut de Recherche et de Développement en Agroenvironnement (IRDA), Quebec City, QC G1P 3W8, Canada; (S.G.); (A.D.L.); (A.K.C.D.)
- Département des Sols et de Génie Agroalimentaire, Université Laval, Quebec City, QC G1V 0A6, Canada;
| | - Asmaâ Khalloufi
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Research Chair in Meat Safety, Département de Pathologie et Microbiologie, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada;
| | - Samantha Leclerc
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Joanie Lemieux
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Centre de Recherche en Infectiologie, Centre de Recherche du CHU de Québec-Université Laval, Axe Maladies Infectieuses et Immunitaires, Quebec City, QC G1V 4G2, Canada; (M.G.B.); (M.B.); (É.P.)
| | - Manuel Pérez Maldonado
- Department of Population Medicine, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.J.R.-S.); (M.P.M.)
| | - Geneviève Pilon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Colleen P. Murphy
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Charly A. Notling
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0X8, Canada; (S.P.K.); (B.T.); (A.C.T.); (C.A.N.)
| | - Daniel Ofori-Darko
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1G 3W4, Canada; (C.P.M.); (D.O.-D.)
| | - Juliette Provencher
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Annabelle Richer-Fortin
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Nathalie Turgeon
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| | - Caroline Duchaine
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Université Laval, Quebec City, QC G1V 0A6, Canada; (F.R.); (M.-W.S.-G.); (S.J.C.); (A.I.C.); (L.T.); (V.E.P.); (M.T.); (M.B.); (A.B.C.); (A.F.D.); (S.B.G.); (A.K.); (S.L.); (J.L.); (J.P.); (A.R.-F.)
- Centre de Recherche de L’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, QC G1V 4G5, Canada; (A.M.); (S.S.); (V.L.); (M.-H.P.); (M.V.); (M.L.); (M.-J.D.); (G.P.); (N.T.)
| |
Collapse
|
18
|
Rocha-Melogno L, Crank KC, Ginn O, Bergin MH, Brown J, Gray GC, Hamilton KA, Bibby K, Deshusses MA. Quantitative microbial risk assessment of outdoor aerosolized pathogens in cities with poor sanitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154233. [PMID: 35245543 DOI: 10.1016/j.scitotenv.2022.154233] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/08/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
The aeromicrobiological transmission pathway of enteric pathogens in places with unsafe sanitation services is poorly understood. In an attempt to partly fill this knowledge gap, we assessed the potential public health impact of bioaerosols near open waste canals (OWCs) using Quantitative Microbial Risk Assessment (QMRA). We used data acquired in La Paz, Bolivia to characterize the risk of disease that aerosolized enteric pathogens may pose through food, fomites and inhalation (all followed by ingestion). Three reference pathogens were selected to conduct the assessment: enterotoxigenic Escherichia coli (ETEC), Shigella flexneri, and Campylobacter jejuni. Inhalation followed by ingestion had the highest median infection risk per event i.e. 3 × 10-5 (3 infections for every 100,000 exposures), compared to contaminated food e.g. 5 × 10-6 and fomites e.g. 2 × 10-7, all for C. jejuni infections. Our sensitivity analysis showed that bacterial fluxes from the air were the most influential factor on risk. Our results suggest that fecal bacterial aerosols from OWCs present non-negligible risks of infection in La Paz, with median annual infection risks by C. jejuni being 18 (food), and 100 (inhalation) times greater than the EPA's standard for drinking water (1 × 10-4). We included two of the QMRA models presented here in a novel web application we developed for user-specified application in different contexts.
Collapse
Affiliation(s)
- Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States; Duke Global Health Institute, Duke University, Durham, NC 27710, United States; ICF, 2635 Meridian Parkway Suite 200, Durham, NC 27713, United States
| | - Katherine C Crank
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, United States
| | - Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States; Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, United States; Global Health Research Center, Duke-Kunshan University, Kunshan, China; Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore; Division of Infectious Diseases, University of Texas Medical Branch (UTMB), Galveston, TX 77555, United States
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment, Arizona State University, 770 S College Ave, Tempe, AZ 85281, United States; The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, 1001 S McAllister Ave, Tempe, AZ 85281, United States
| | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, IN 46556, United States
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States; Duke Global Health Institute, Duke University, Durham, NC 27710, United States.
| |
Collapse
|
19
|
Asif Z, Chen Z, Stranges S, Zhao X, Sadiq R, Olea-Popelka F, Peng C, Haghighat F, Yu T. Dynamics of SARS-CoV-2 spreading under the influence of environmental factors and strategies to tackle the pandemic: A systematic review. SUSTAINABLE CITIES AND SOCIETY 2022; 81:103840. [PMID: 35317188 PMCID: PMC8925199 DOI: 10.1016/j.scs.2022.103840] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 05/05/2023]
Abstract
COVID-19 is deemed as the most critical world health calamity of the 21st century, leading to dramatic life loss. There is a pressing need to understand the multi-stage dynamics, including transmission routes of the virus and environmental conditions due to the possibility of multiple waves of COVID-19 in the future. In this paper, a systematic examination of the literature is conducted associating the virus-laden-aerosol and transmission of these microparticles into the multimedia environment, including built environments. Particularly, this paper provides a critical review of state-of-the-art modelling tools apt for COVID-19 spread and transmission pathways. GIS-based, risk-based, and artificial intelligence-based tools are discussed for their application in the surveillance and forecasting of COVID-19. Primary environmental factors that act as simulators for the spread of the virus include meteorological variation, low air quality, pollen abundance, and spatial-temporal variation. However, the influence of these environmental factors on COVID-19 spread is still equivocal because of other non-pharmaceutical factors. The limitations of different modelling methods suggest the need for a multidisciplinary approach, including the 'One-Health' concept. Extended One-Health-based decision tools would assist policymakers in making informed decisions such as social gatherings, indoor environment improvement, and COVID-19 risk mitigation by adapting the control measurements.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Saverio Stranges
- Department of Epidemiology and Biostatistics, Western University, Ontario, Canada
- Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Xin Zhao
- Department of Animal Science, McGill University, Montreal, Canada
| | - Rehan Sadiq
- School of Engineering (Okanagan Campus), University of British Columbia, Kelowna, BC, Canada
| | | | - Changhui Peng
- Department of Biological Sciences, University of Quebec in Montreal, Canada
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Canada
| | - Tong Yu
- Department of Civil and Environmental Engineering, University of Alberta, Canada
| |
Collapse
|
20
|
Development of a Novel Bioaerosol Chamber to Determine Survival Rates of Airborne Staphylococci. ATMOSPHERE 2022. [DOI: 10.3390/atmos13060869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Large amounts of microorganisms are emitted from animal houses into the environment via exhaust air. To assess the potential risks, the spread of microorganisms can be simulated with computer models. Such modeling usually does not take into account die-off rates, since there are hardly any reliable data so far on how long microorganisms can survive in outdoor air. Previous studies were conducted almost exclusively in closed chambers and usually only took into account the influence of individual environmental factors such as temperature or humidity. Therefore, a novel bioaerosol chamber was developed to quantify the survival rates of Staphylococci specific to livestock under outdoor air conditions. For evaluation, the survival rates of Staphylococcus xylosus were determined as a function of temperature, relative humidity, ozone concentration, and global radiation. Survival rates decreased with increasing temperature, decreasing relative humidity, increasing global radiation intensity, and increasing ozone concentration. At 12 min in the airborne state, die-off rates of more than 90% were observed, especially at high global radiation levels > 400 W/m2. The novel bioaerosol chamber enabled the investigation of the survival rates of airborne microorganisms over a certain period of time in a quasi-closed system and yet under real outdoor air conditions.
Collapse
|
21
|
Gao M, Zhang X, Yue Y, Qiu T, Wang J, Wang X. Air path of antimicrobial resistance related genes from layer farms: Emission inventory, atmospheric transport, and human exposure. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128417. [PMID: 35183825 DOI: 10.1016/j.jhazmat.2022.128417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/26/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Animal husbandry is a significant contributor to increased environmental antimicrobial resistance (AMR), but little is known regarding the dissemination of AMR from animal farms via airborne transmission. Here, we connected the air path of AMR related genes tailored to layer poultry farms from source of escape to end of sedimentation. The emission inventories of 8 AMR related genes from all 163-layer poultry farms around Beijing city were quantified. We developed the atmospheric transport model with a gene degradation module to estimate the spatiotemporal distribution of airborne AMR, and also assessed their corresponding regional exposure and sedimentation. Total emissions of 16 S rDNA and AMR related genes from layer houses ranged from 1015 to 1016 copies year-1. Those layer-sourced genes contributed 1-14.6% of antimicrobial resistant genes, 4.9% of Staphylococcus spp. and 2.2% of CintI1 to the corresponding annual genetic burden of Beijing's urban air. The average exposure of the Beijing residents to layer-sourced airborne 16 S rDNA was 1.39 × 104 copies year-1 person-1, approximately 87% of them would be deposited in the upper respiratory tract. The findings highlight that air medium represents an important dissemination pathway of animal-sourced genes to AMR burden in humans and environment.
Collapse
Affiliation(s)
- Min Gao
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaole Zhang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland
| | - Yang Yue
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland
| | - Tianlei Qiu
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jing Wang
- Institute of Environmental Engineering (IfU), ETH Zürich, Zürich, CH-8093, Switzerland; Laboratory for Advanced Analytical Technologies, Empa, Dübendorf, CH-8600, Switzerland.
| | - Xuming Wang
- Beijing Agro-Biotechnology Research Center, Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
22
|
Xu C, Kong L, Gao H, Cheng X, Wang X. A Review of Current Bacterial Resistance to Antibiotics in Food Animals. Front Microbiol 2022; 13:822689. [PMID: 35633728 PMCID: PMC9133924 DOI: 10.3389/fmicb.2022.822689] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
The overuse of antibiotics in food animals has led to the development of bacterial resistance and the widespread of resistant bacteria in the world. Antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in food animals are currently considered emerging contaminants, which are a serious threat to public health globally. The current situation of ARB and ARGs from food animal farms, manure, and the wastewater was firstly covered in this review. Potential risks to public health were also highlighted, as well as strategies (including novel technologies, alternatives, and administration) to fight against bacterial resistance. This review can provide an avenue for further research, development, and application of novel antibacterial agents to reduce the adverse effects of antibiotic resistance in food animal farms.
Collapse
Affiliation(s)
- Chunming Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, China
| | - Lingqiang Kong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Hanfang Gao
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing, China
| | - Xiumin Wang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing, China
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Effect of Climate Change on the Incidence and Geographical Distribution of Coccidioidomycosis. Fungal Biol 2022. [DOI: 10.1007/978-3-030-89664-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Kataki S, Patowary R, Chatterjee S, Vairale MG, Sharma S, Dwivedi SK, Kamboj DV. Bioaerosolization and pathogen transmission in wastewater treatment plants: Microbial composition, emission rate, factors affecting and control measures. CHEMOSPHERE 2022; 287:132180. [PMID: 34560498 DOI: 10.1016/j.chemosphere.2021.132180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 07/19/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
Environmental consequences during wastewater management are vital and getting increased attention to interrupt any possible disease transmission pathways. Evidence of bioaerosolization of pathogen from wastewater to atmosphere during wastewater treatment have been highlighted previously. Understanding aerosol-based transmission in wastewater treatment plant (WWTP) is important because of the hazard it presents to the workers involved or to the population around and appears to be very significant during pandemic occurrences. This work aims to evaluate the possibility of pathogenic content of wastewater getting aerosolized during treatment by synthesizing the evidence on the potential aerosol generating treatment phases of WWTP, bioaerosol microbial composition, emission load and the factors affecting the bioaerosol formation. We also present some potential control strategies to take up in WWTP which may be useful to avoid such occurrences. Implementation of Aeration based strategies (use of diffused, submerged aeration, reduction in aeration rate), Improved ventilation based strategies (effective ventilation with adequate supply of clean air, minimizing air recirculation, supplementation with infection control measures such as filtration, irradiation), Improved protection based strategy (periodic monitoring of disinfection efficiency, pathogenic load of wastewater, improved operation policy) and other strategies (provision of buffer zone, wind shielding, water spraying on aerosol, screened surface of treatment units) could be very much relevant and significant in case of disease outbreak through aerosol formation in wastewater environment. Recent progress in sensor-based data collection, analysis, cloud-based storage, and early warning techniques in WWTP may help to reduce the risk of infectious transmission, especially during a pandemic situation.
Collapse
Affiliation(s)
- Sampriti Kataki
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Rupam Patowary
- Foundation for Environmental and Economic Development Services, Manipur, India
| | - Soumya Chatterjee
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India.
| | - Mohan G Vairale
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sonika Sharma
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Sanjai K Dwivedi
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| | - Dev Vrat Kamboj
- Biodegradation Technology Division, Defence Research Laboratory, DRDO, Tezpur, Assam, India
| |
Collapse
|
25
|
Bai H, He LY, Wu DL, Gao FZ, Zhang M, Zou HY, Yao MS, Ying GG. Spread of airborne antibiotic resistance from animal farms to the environment: Dispersal pattern and exposure risk. ENVIRONMENT INTERNATIONAL 2022; 158:106927. [PMID: 34673316 DOI: 10.1016/j.envint.2021.106927] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 05/05/2023]
Abstract
Animal farms have been considered as the critical reservoir of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB). Spread of antibiotic resistance from animal farms to the surrounding environments via aerosols has become a growing concern. Here we investigated the dispersal pattern and exposure risk of airborne ARGs (especially in zoonotic pathogens) in the environment of chicken and dairy farms. Aerosol, dust and animal feces samples were collected from the livestock houses and surrounding environments (upwind and downwind areas) for assessing ARG profiles. Antibiotic resistance phenotype and genotype of airborne Staphylococcus spp. was especially analyzed to reveal the exposure risk of airborne ARGs. Results showed that airborne ARGs were detected from upwind (50 m/100 m) and downwind (50 m/100 m/150 m) air environment, wherein at least 30% of bacterial taxa dispersed from the animal houses. Moreover, atmospheric dispersion modeling showed that airborne ARGs can disperse from the animal houses to a distance of 10 km along the wind direction. Clinically important pathogens were identified in airborne culturable bacteria. Genus of Staphylococcus, Sphingomonas and Acinetobacter were potential bacterial host of airborne ARGs. Airborne Staphylococcus spp. were isolated from the environment of chicken farm (n = 148) and dairy farm (n = 87). It is notable that all isolates from chicken-related environment were multidrug-resistance (>3 clinical-relevant antibiotics), with more than 80% of them carrying methicillin resistance gene (mecA) and associated ARGs and MGEs. Presence of numerous ARGs and diverse pathogens in dust from animal houses and the downwind residential areas indicated the accumulation of animal feces origin ARGs in bioaerosols. Employees and local residents in the chick farming environment are exposed to chicken originated ARGs and multidrug resistant Staphylococcus spp. via inhalation. This study highlights the potential exposure risks of airborne ARGs and antibiotic resistant pathogens to human health.
Collapse
Affiliation(s)
- Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China; Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Mao-Sheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
26
|
Wang M, Kriticos DJ, Ota N, Brooks A, Paini D. A general trait-based modelling framework for revealing patterns of airborne fungal dispersal threats to agriculture and native flora. THE NEW PHYTOLOGIST 2021; 232:1506-1518. [PMID: 34338336 DOI: 10.1111/nph.17659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Fungal plant pathogens are of economic and ecological importance to global agriculture and natural ecosystems. Long-distance atmospheric dispersal of fungal spores (LAD) can pose threats to agricultural and native vegetation lands. An understanding of such patterns of fungal spore dispersal and invasion pathways can provide valuable insights into plant protection. Spore traits affect their dispersal abilities. We propose a general trait-based framework for modelling LAD to reveal dispersal patterns and pathways, and assess subsequent threats of arrival (TOA) quantitatively in the context of biosecurity. To illustrate the framework, we present a study of Australia and its surrounding land masses. The overall dispersal pattern covered almost the entire continent of Australia. Fungal spores in the size class of 10 and 20 µm (aerodynamic diameter) posed the greatest TOA. Our study shows the effects of morphological traits on these potential TOA, and how they varied between source regions, size classes, and seasons. Our framework revealed spore dispersal patterns and pathways. It also facilitates comparisons of spatio-temporal dispersal dynamics among fungal classes, gaining insights into atmospheric long-distance dispersal of fungi as a whole, and provides a basis for assessing fungal pest threats in potential source regions based on easily measured spore characteristics.
Collapse
Affiliation(s)
- Ming Wang
- Health & Biosecurity, CSIRO, Canberra, ACT, 2601, Australia
| | - Darren J Kriticos
- Health & Biosecurity, CSIRO, Canberra, ACT, 2601, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Noboru Ota
- Health & Biosecurity, CSIRO, Canberra, ACT, 2601, Australia
| | - Aaron Brooks
- Health & Biosecurity, CSIRO, Canberra, ACT, 2601, Australia
| | - Dean Paini
- Health & Biosecurity, CSIRO, Canberra, ACT, 2601, Australia
| |
Collapse
|
27
|
Use of meteorological data in biosecurity. Emerg Top Life Sci 2021; 4:497-511. [PMID: 32935835 PMCID: PMC7803344 DOI: 10.1042/etls20200078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/23/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022]
Abstract
Pests, pathogens and diseases cause some of the most widespread and damaging impacts worldwide — threatening lives and leading to severe disruption to economic, environmental and social systems. The overarching goal of biosecurity is to protect the health and security of plants and animals (including humans) and the wider environment from these threats. As nearly all living organisms and biological systems are sensitive to weather and climate, meteorological, ‘met’, data are used extensively in biosecurity. Typical applications include, (i) bioclimatic modelling to understand and predict organism distributions and responses, (ii) risk assessment to estimate the probability of events and horizon scan for future potential risks, and (iii) early warning systems to support outbreak management. Given the vast array of available met data types and sources, selecting which data is most effective for each of these applications can be challenging. Here we provide an overview of the different types of met data available and highlight their use in a wide range of biosecurity studies and applications. We argue that there are many synergies between meteorology and biosecurity, and these provide opportunities for more widespread integration and collaboration across the disciplines. To help communicate typical uses of meteorological data in biosecurity to a wide audience we have designed the ‘Meteorology for biosecurity’ infographic.
Collapse
|
28
|
Atmospheric dispersion and transmission of Legionella from wastewater treatment plants: A 6-year case-control study. Int J Hyg Environ Health 2021; 237:113811. [PMID: 34311418 DOI: 10.1016/j.ijheh.2021.113811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 07/13/2021] [Indexed: 01/25/2023]
Abstract
Legionnaires Disease incidence has risen in the Netherlands in recent years. For the majority of the cases, the source of infection is never identified. Two Dutch wastewater treatment plants (WWTPs) have previously been identified as source of outbreaks of Legionnaires Disease (LD) among local residents. The objective of this study is to examine if LD patients in the Netherlands are more exposed to aerosols originating from WWTPs than controls. METHODS An atmospheric dispersion model was used to generate nationwide exposure maps of aerosols from 776 WWTPs in the Netherlands. Municipal sewage treatment plants and industrial WWTPs were both included. Exposure of LD cases and controls at the residential address was compared, in a matched case-control design using a conditional logistic regression. Cases were notified LD cases with onset of disease in the period 2013-2018 in the Netherlands (n = 1604). RESULTS Aerosols dispersed over a large part of the Netherlands, but modelled concentrations are estimated to be elevated in close proximity to WWTPs. A statistically significant association was found between LD and the calculated annual average aerosol concentrations originating from WWTPs (odds-ratio: 1.32 (1.06-1.63)). This association remained significant when the two outbreak-related WWTPs were removed from the analysis (odds-ratio: 1.28 (1.03-1.58)). CONCLUSION LD cases were more exposed to aerosols from WWTPs than controls. This indicates that exposure to aerosols dispersed from WWTPs caused Legionnaires Disease in residents living near WWTPs in the period 2013-2018. In order to investigate which characteristics of WWTPs are associated with an increased LD risk, the WWTP database should be updated and more data is needed on the presence and survival of aerosolized Legionella bacteria to improve the Legionella dispersion modelling. Furthermore, it is recommended to further investigate how aerosol dispersion of WWTPs can effectively be reduced in order to reduce the potential health risk.
Collapse
|
29
|
Ji B, Zhao Y, Esteve-Núñez A, Liu R, Yang Y, Nzihou A, Tai Y, Wei T, Shen C, Yang Y, Ren B, Wang X, Wang Y. Where do we stand to oversee the coronaviruses in aqueous and aerosol environment? Characteristics of transmission and possible curb strategies. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 413:127522. [PMID: 33132743 PMCID: PMC7590645 DOI: 10.1016/j.cej.2020.127522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 05/08/2023]
Abstract
By 17 October 2020, the severe acute respiratory syndrome coronavirus (SARS-CoV-2) has caused confirmed infection of more than 39,000,000 people in 217 countries and territories globally and still continues to grow. As environmental professionals, understanding how SARS-CoV-2 can be transmitted via water and air environment is a concern. We have to be ready for focusing our attention to the prompt diagnosis and potential infection control procedures of the virus in integrated water and air system. This paper reviews the state-of-the-art information from available sources of published papers, newsletters and large number of scientific websites aimed to provide a comprehensive profile on the transmission characteristics of the coronaviruses in water, sludge, and air environment, especially the water and wastewater treatment systems. The review also focused on proposing the possible curb strategies to monitor and eventually cut off the coronaviruses under the authors' knowledge and understanding.
Collapse
Affiliation(s)
- Bin Ji
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yaqian Zhao
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | | | - Ranbin Liu
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Beijing Advanced Innovation Center of Future Urban Design, Beijing University of Civil Engineering & Architecture, Beijing 100044, PR China
| | - Yang Yang
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ange Nzihou
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
| | - Yiping Tai
- Institute of Hydrobiology, Jinan University, Guangzhou 510632, PR China
- Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Guangzhou, PR China
| | - Ting Wei
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi'an University of Technology, Xi'an 710048, PR China
- Chemical Engineering Department, University of Alcalá, Madrid, Spain
| | - Cheng Shen
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- School of Environment and Natural Resources, Zhejiang University Sci. & Technol./Zhejiang Prov, Key Lab. of Recycling & Ecotreatment Waste, Hangzhou 310023, Zhejiang, PR China
| | - Yan Yang
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Baimimng Ren
- Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Université de Toulouse, IMT Mines Albi, RAPSODEE CNRS, UMR-5302, Jarlard, Albi 81013 Cedex 09, France
- School of Water and Environment, Chang'an University, Xi'an 710061, PR China
| | - Xingxing Wang
- Xi'an Hospital of Traditional Chinese Medicine, Xi 'an 710021, PR China
| | - Ya'e Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China
| |
Collapse
|
30
|
Characteristics and health effects of potentially pathogenic bacterial aerosols from a municipal solid waste landfill site in Hamadan, Iran. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE AND ENGINEERING 2021; 19:1057-1067. [PMID: 34150294 DOI: 10.1007/s40201-021-00672-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/26/2021] [Indexed: 12/07/2022]
Abstract
The aim of this study was to evaluate the potential pathogenic bacterial aerosols produced from the municipal solid waste landfill site and its health risk assessment in the Hamadan city at west of Iran. In this study, air samples were collected every month during spring and summer at six locations including the active zone, leachate collection pond, infectious waste landfill, upwind, closure landfill, and downwind using the Andersen impactor. Spatial and seasonal variations of the potential pathogenic bacterial aerosols were detected. Also, Health risk associated were estimated based on the average daily dose rates (ADD) of exposure by inhalation. The mean concentration of potentially pathogenic bacterial aerosols were 468.7 ± 140 CFU m- 3 1108.5 ± 136.9 CFU m- 3 detected in the active zone in spring and summer, respectively. Also, there was a significant relationship between meteorological parameters and bacterial concentration (p < 0.05). The predominant potential pathogenic bacterial identified in the spring were Proteus mirabilis, Streptococcus sp., and Pseudomonas sp., while in summer were Pseudomonas sp., Staphylococcus aureus, and Escherichia coli. The hazard quotient (HQ) in both seasons were less of 1. Bacteria were spread throughout the landfill space, but their maximum density was observed around the active zone and leachate collection pond. This study highlights the importance of exposure to potential pathogenic bacterial aerosols in the summer and its adverse effects, especially in the MSW landfill site active zone. Finally, controlled exposure can reduce the health hazard caused by the potential pathogenic bacterial aerosols.
Collapse
|
31
|
Mori J, Uprety S, Mao Y, Koloutsou-Vakakis S, Nguyen TH, Smith RL. Quantification and Comparison of Risks Associated with Wastewater Use in Spray Irrigation. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2021; 41:745-760. [PMID: 33084120 DOI: 10.1111/risa.13607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
In the U.S., spray irrigation is the most common method used in agriculture and supplementing with animal wastewater has the potential to reduce water demands. However, this could expose individuals to respiratory pathogens such as Legionella pneumophila and nontuberculosis Mycobacteria (NTM). Disinfection with methods like anaerobic digestion is an option but can increase concentrations of cytotoxic ammonia (personal communication). Our study aimed to model the annual risks of infection from these bacterial pathogens and the air concentrations of ammonia and determine if anaerobically digesting this wastewater is a safe option. Air dispersion modeling, conducted in AERMOD, generated air concentrations of water during the irrigation season (May-September) for the years 2013-2018. These values fed into the quantitative microbial risk assessments for the bacteria and allowed calculation of ammonia air concentrations. The outputs of these models were compared to the safety thresholds of 10-4 infections/year and 0.5 mg/m3 , respectively, to determine their potential for negative health outcomes. It was determined that infection from NTM was not a concern for individuals near active spray irrigators, but that infection with L. pneumophila could be a concern, with a maximum predicted annual risk of infection of 3.5 × 10-3 infections/year and 25.2% of parameter combinations exceeding the established threshold. Ammonia posed a minor risk, with 1.5% of parameter combinations surpassing the risk threshold of 0.5 mg/m3 . These findings suggest that animal wastewater should be anaerobically digested prior to use in irrigation to remove harmful pathogens.
Collapse
Affiliation(s)
- Jameson Mori
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sital Uprety
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yuqing Mao
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sotiria Koloutsou-Vakakis
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Thanh H Nguyen
- Department of Civil & Environmental Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| | - Rebecca L Smith
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign
| |
Collapse
|
32
|
Zhang X, Ji Z, Yue Y, Liu H, Wang J. Infection Risk Assessment of COVID-19 through Aerosol Transmission: a Case Study of South China Seafood Market. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4123-4133. [PMID: 32543176 PMCID: PMC7323058 DOI: 10.1021/acs.est.0c02895] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 05/18/2023]
Abstract
The Corona Virus Disease 2019 (COVID-19) is rapidly spreading throughout the world. Aerosol is a potential transmission route. We conducted the quantitative microbial risk assessment (QMRA) to evaluate the aerosol transmission risk by using the South China Seafood Market as an example. The key processes were integrated, including viral shedding, dispersion, deposition in air, biologic decay, lung deposition, and the infection risk based on the dose-response model. The available hospital bed for COVID-19 treatment per capita (1.17 × 10-3) in Wuhan was adopted as a reference for manageable risk. The median risk of a customer to acquire SARS-CoV-2 infection via the aerosol route after 1 h of exposure in the market with one infected shopkeeper was about 2.23 × 10-5 (95% confidence interval: 1.90 × 10-6 to 2.34 × 10-4). The upper bound could increase and become close to the manageable risk with multiple infected shopkeepers. More detailed risk assessment should be conducted in poorly ventilated markets with multiple infected cases. The uncertainties were mainly due to the limited information on the dose-response relation and the viral shedding which need further studies. The risk rapidly decreased outside the market due to the dilution by ambient air and became below 10-6 at 5 m away from the exit.
Collapse
Affiliation(s)
- Xiaole Zhang
- Institute of Environmental Engineering
(IfU), ETH Zürich, Zürich,
CH-8093, Switzerland
- Laboratory for Advanced Analytical
Technologies, Empa, Dübendorf,
CH-8600, Switzerland
| | - Zheng Ji
- Institute of Environmental Engineering
(IfU), ETH Zürich, Zürich,
CH-8093, Switzerland
- School of Geography and Tourism,
Shaanxi Normal University,
Xi’an, Shaanxi 710119, China
- International Joint
Research Centre of Shaanxi Province for Pollutant Exposure and
Eco-Environmental Health, Xi’an, Shaanxi
710119, China
| | - Yang Yue
- Institute of Environmental Engineering
(IfU), ETH Zürich, Zürich,
CH-8093, Switzerland
- Laboratory for Advanced Analytical
Technologies, Empa, Dübendorf,
CH-8600, Switzerland
| | - Huan Liu
- Institute of Environmental Engineering
(IfU), ETH Zürich, Zürich,
CH-8093, Switzerland
- Department of Environmental
Engineering, Zhejiang University, Hangzhou,
310058, China
| | - Jing Wang
- Institute of Environmental Engineering
(IfU), ETH Zürich, Zürich,
CH-8093, Switzerland
- Laboratory for Advanced Analytical
Technologies, Empa, Dübendorf,
CH-8600, Switzerland
| |
Collapse
|
33
|
Kobziar LN, Thompson GR. Wildfire smoke, a potential infectious agent. SCIENCE (NEW YORK, N.Y.) 2021; 370:1408-1410. [PMID: 33335049 DOI: 10.1126/science.abe8116] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Leda N Kobziar
- Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, ID, USA.
| | - George R Thompson
- Department of Internal Medicine, Division of Infectious Diseases, and Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
34
|
Nair AT. Bioaerosols in the landfill environment: an overview of microbial diversity and potential health hazards. AEROBIOLOGIA 2021; 37:185-203. [PMID: 33558785 PMCID: PMC7860158 DOI: 10.1007/s10453-021-09693-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/19/2021] [Indexed: 05/05/2023]
Abstract
Landfilling is one of the indispensable parts of solid waste management in various countries. Solid waste disposed of in landfill sites provides nutrients for the proliferation of pathogenic microbes which are aerosolized into the atmosphere due to the local meteorology and various waste disposal activities. Bioaerosols released from landfill sites can create health issues for employees and adjoining public. The present study offers an overview of the microbial diversity reported in the air samples collected from various landfill sites worldwide. This paper also discusses other aspects, including effect of meteorological conditions on the bioaerosol concentrations, sampling techniques, bioaerosol exposure and potential health impacts. Analysis of literature concluded that landfill air is dominated by microbial dust or various pathogenic microbes like Enterobacteriaceae, Staphylococcus aureus, Clostridium perfringens, Acinetobacter calcoaceticus and Aspergillus fumigatus. The bioaerosols present in the landfill environment are of respirable sizes and can penetrate deep into lower respiratory systems and trigger respiratory symptoms and chronic pulmonary diseases. Most studies reported higher bioaerosol concentrations in spring and summer as higher temperature and relative humidity provide a favourable environment for survival and multiplication of microbes. Landfill workers involved in solid waste disposal activities are at the highest risk of exposure to these bioaerosols due to their proximity to solid waste and as they practise minimum personal safety and hygiene measures during working hours. Workers are recommended to use personal protective equipment and practise hygiene to reduce the impact of occupational exposure to bioaerosols.
Collapse
Affiliation(s)
- Abhilash T. Nair
- Department of Applied Sciences and Humanities, National Institute of Foundry and Forge Technology (NIFFT), Hatia, Ranchi, Jharkhand 834003 India
| |
Collapse
|
35
|
Gale P. Thermodynamic equilibrium dose-response models for MERS-CoV infection reveal a potential protective role of human lung mucus but not for SARS-CoV-2. MICROBIAL RISK ANALYSIS 2020; 16:100140. [PMID: 32984489 PMCID: PMC7501778 DOI: 10.1016/j.mran.2020.100140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 09/11/2020] [Indexed: 05/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) infect the human respiratory tract. A prototype thermodynamic equilibrium model is presented here for the probability of the virions getting through the mucus barrier and infecting epithelial cells based on the binding affinity (Kmucin) of the virions to mucin molecules in the mucus and parameters for binding and infection of the epithelial cell. Both MERS-CoV and SARS-CoV-2 bind strongly to their cellular receptors, DDP4 and ACE2, respectively, and infect very efficiently both bronchus and lung ex vivo cell cultures which are not protected by a mucus barrier. According to the model, mucin binding could reduce the infectivity for MERS-CoV compared to SARS-CoV-2 by at least 100-fold depending on the magnitude of Kmucin. Specifically Kmucin values up to 106 M-1 have little protective effect and thus the mucus barrier would not remove SARS-CoV-2 which does not bind to sialic acids (SA) and hence would have a very low Kmucin. Depending on the viability of individual virions, the ID50 for SARS-CoV-2 is estimated to be ~500 virions (viral RNA genomic copies) representing 1 to 2 pfu. In contrast MERS-CoV binds both SA and human mucin and a Kmucin of 5 × 109 M-1 as reported for lectins would mop up 99.83% of the virus according to the model with the ID50 for MERS-CoV estimated to be ~295,000 virions (viral RNA genomic copies) representing 819 pfu. This could in part explain why MERS-CoV is poorly transmitted from human to human compared to SARS-CoV-2. Some coronaviruses use an esterase to escape the mucin, although MERS-CoV does not. Instead, it is shown here that "clustering" of virions into single aerosol particles as recently reported for rotavirus in extracellular vesicles could provide a co-operative mechanism whereby MERS-CoV could theoretically overcome the mucin barrier locally and a small proportion of 10 μm diameter aerosol particles could contain ~70 virions based on reported maximum levels in saliva. Although recent evidence suggests SARS-CoV-2 initiates infection in the nasal epithelium, the thermodynamic equilibrium models presented here could complement published approaches for modelling the physical entry of pathogens to the lung based on the fate and transport of the pathogen particles (as for anthrax spores) to develop a dose-response model for aerosol exposure to respiratory viruses. This would enable the infectivity through aerosols to be defined based on molecular parameters as well as physical parameters. The role of the spike proteins of MERS-CoV and SARS-CoV-2 binding to SA and heparan sulphate, respectively, may be to aid non-specific attachment to the host cell. It is proposed that a high Kmucin is the cost for subsequent binding of MERS-CoV to SAs on the cell surface to partially overcome the unfavourable entropy of immobilisation as the virus adopts the correct orientation for spike protein interactions with its protein cellular receptor DPP4.
Collapse
Affiliation(s)
- Paul Gale
- Independent Scientist, 15 Weare Close, Portland, Dorset, DT5 1JP, UK
| |
Collapse
|
36
|
de Matos Nascimento A, de Paula VR, Dias EHO, da Costa Carneiro J, Otenio MH. Quantitative microbial risk assessment of occupational and public risks associated with bioaerosols generated during the application of dairy cattle wastewater as biofertilizer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140711. [PMID: 32763641 DOI: 10.1016/j.scitotenv.2020.140711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The reuse or recycling of wastewater provides environmental and economic benefits, representing a sustainable and circular alternative for the management of liquid waste. However, the application of effluents to agricultural crops via spraying creates a potentially dangerous situation for individuals exposed to airborne pathogens. This study used Quantitative Microbial Risk Assessment (QMRA) tools to quantitatively assess the microbial risks of occupational and public exposures to bioaerosols in fertigation scenarios by spraying untreated and treated dairy cattle wastewater. Analyses of Escherichia coli (EC) and spores of Clostridium perfringens (CpSP) in raw and treated effluents as well as pathogen / indicator ratios from the literature were used to estimate the concentrations of Escherichia coli O157:H7 (EC O157:H7) and Cryptospodirium spp. (Crypto) in the air, and the results were applied to an atmospheric microbiological dispersion model. From the concentrations of pathogens in the air, infectious risks for downwind receptors were calculated. The risks of infection by EC O157:H7 to workers at 10 m and 50 m away from the emission source ranged between 3.81 × 10 1 and 2.68 × 10 3 pppy (per person per year), whereas to residents at 100 m and 500 m ranged from 4.59 × 10 1 to 1.51 × 10 4 pppy. Peak values (95th percentile) of occupational and public risks associated with the exposure to Crypto were 3.41 × 10 3 and 6.84 × 10 4 pppy at 10 m and 50 m from the source, respectively, and were lower than 1.48 × 10 6 pppy regarding exposures to CpSP. Anaerobic digestion reduced risks by approximately one order of magnitude. The distance from the source was inversely proportional to the risk of exposure. It is recommended that wastewater is treated prior to its reuse and the adoption of application methods with low aerosolization potential. In addition, the need for workers to use personal protective equipment (PPE) is highlighted.
Collapse
Affiliation(s)
- Andressa de Matos Nascimento
- Post-Graduation Programme in Animal Biology Behaviour and Ecology (PGECOL), Institute of Biological Sciences, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Sao Pedro, Juiz de fora CEP 36.036-900, Brazil.
| | - Vanessa Romário de Paula
- Embrapa Dairy Cattle (Brazilian Agricultural Research Corporation - Embrapa), Rua Eugênio do Nascimento, 610, Dom Bosco, Juiz de Fora CEP 36.038-330, Brazil.
| | - Edgard Henrique Oliveira Dias
- Department of Sanitary and Environmental Engineering (ESA), Faculty of Engineering, Federal University of Juiz de Fora, Rua José Lourenço Kelmer, s/n, Sao Pedro, Juiz de fora CEP 36.036-900, Brazil.
| | - Jailton da Costa Carneiro
- Embrapa Dairy Cattle (Brazilian Agricultural Research Corporation - Embrapa), Rua Eugênio do Nascimento, 610, Dom Bosco, Juiz de Fora CEP 36.038-330, Brazil.
| | - Marcelo Henrique Otenio
- Embrapa Dairy Cattle (Brazilian Agricultural Research Corporation - Embrapa), Rua Eugênio do Nascimento, 610, Dom Bosco, Juiz de Fora CEP 36.038-330, Brazil.
| |
Collapse
|
37
|
Kitajima M, Ahmed W, Bibby K, Carducci A, Gerba CP, Hamilton KA, Haramoto E, Rose JB. SARS-CoV-2 in wastewater: State of the knowledge and research needs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139076. [PMID: 32758929 PMCID: PMC7191289 DOI: 10.1016/j.scitotenv.2020.139076] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 04/26/2020] [Accepted: 04/26/2020] [Indexed: 04/13/2023]
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a Public Health Emergency of International Concern, which was officially declared by the World Health Organization. SARS-CoV-2 is a member of the family Coronaviridae that consists of a group of enveloped viruses with single-stranded RNA genome, which cause diseases ranging from common colds to acute respiratory distress syndrome. Although the major transmission routes of SARS-CoV-2 are inhalation of aerosol/droplet and person-to-person contact, currently available evidence indicates that the viral RNA is present in wastewater, suggesting the need to better understand wastewater as potential sources of epidemiological data and human health risks. Here, we review the current knowledge related to the potential of wastewater surveillance to understand the epidemiology of COVID-19, methodologies for the detection and quantification of SARS-CoV-2 in wastewater, and information relevant for human health risk assessment of SARS-CoV-2. There has been growing evidence of gastrointestinal symptoms caused by SARS-CoV-2 infections and the presence of viral RNA not only in feces of infected individuals but also in wastewater. One of the major challenges in SARS-CoV-2 detection/quantification in wastewater samples is the lack of an optimized and standardized protocol. Currently available data are also limited for conducting a quantitative microbial risk assessment (QMRA) for SARS-CoV-2 exposure pathways. However, modeling-based approaches have a potential role to play in reducing the impact of the ongoing COVID-19 outbreak. Furthermore, QMRA parameters obtained from previous studies on relevant respiratory viruses help to inform risk assessments of SARS-CoV-2. Our understanding on the potential role of wastewater in SARS-CoV-2 transmission is largely limited by knowledge gaps in its occurrence, persistence, and removal in wastewater. There is an urgent need for further research to establish methodologies for wastewater surveillance and understand the implications of the presence of SARS-CoV-2 in wastewater.
Collapse
Affiliation(s)
- Masaaki Kitajima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North 13 West 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Kyle Bibby
- Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| | - Annalaura Carducci
- Department of Biology, University of Pisa, Via S. Zeno, 35-39, I-56123 Pisa, Italy
| | - Charles P Gerba
- Department of Environmental Science and Water & Energy Sustainable Technology (WEST) Center, The University of Arizona, 2959 W Calle Agua Nueva, Tucson, AZ 85745, USA
| | - Kerry A Hamilton
- School of Sustainable Engineering and the Built Environment and The Biodesign Institute Center for Environmental Health Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Joan B Rose
- Department of Fisheries and Wildlife, Michigan State University, 480 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
38
|
Rocha-Melogno L, Ginn O, Bailey ES, Soria F, Andrade M, Bergin MH, Brown J, Gray GC, Deshusses MA. Bioaerosol sampling optimization for community exposure assessment in cities with poor sanitation: A one health cross-sectional study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139495. [PMID: 32425257 PMCID: PMC7233250 DOI: 10.1016/j.scitotenv.2020.139495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Evidence of exposure to enteric pathogens through the air and associated risk of infection is scarce in the literature outside of animal- or human-waste handling settings. Cities with poor sanitation are important locations to investigate this aerial exposure pathway as their rapid growth will pose unprecedented challenges in waste management. To address this issue, simple surveillance methods are needed. Therefore, the objectives of this study were to optimize a community exposure bioaerosol surveillance strategy for urban outdoor locations with poor sanitation, and to determine which bioaerosols could contribute to exposure. Passive and active bioaerosol sampling methods were used to characterize the fate and transport of sanitation-related bioaerosols during the rainy and dry seasons in La Paz, Bolivia. Median coliform bacteria fluxes were 71 CFU/(m2 × h) during the rainy season and 64 CFU/(m2 × h) during the dry season, with 38% of the dry season samples testing positive for E. coli. Wind speed, relative humidity and UVB irradiance were identified as significant covariates to consider in bioaerosol transport models in La Paz. Active sampling yielded one positive sample (10%) for human adenovirus (HadV) and one sample (10%) for influenza A virus during the rainy season. HadV was detected at the site with the highest bacterial flux. Four samples (8%) were positive for influenza A virus in the dry season. These findings suggest that aerosols can contribute to community exposure to potentially pathogenic microorganisms in cities with poor sanitation. The use of passive sampling, despite its limitations, can provide quantitative data on microorganisms' viability within realistic timeframes of personal exposure.
Collapse
Affiliation(s)
- Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
| | - Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Emily S Bailey
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, United States
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana San Pablo, La Paz, Bolivia
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz, Bolivia
- Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, United States
| | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Gregory C Gray
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC 27710, United States
- Global Health Research Center, Duke-Kunshan University, Kunshan, China
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, United States
- Duke Global Health Institute, Duke University, Durham, NC 27710, United States
| |
Collapse
|
39
|
Amoah ID, Kumari S, Bux F. Coronaviruses in wastewater processes: Source, fate and potential risks. ENVIRONMENT INTERNATIONAL 2020; 143:105962. [PMID: 32711332 PMCID: PMC7346830 DOI: 10.1016/j.envint.2020.105962] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 05/18/2023]
Abstract
The last 17 years have seen three major outbreaks caused by coronaviruses, with the latest outbreak, COVID-19, declared a pandemic by the World Health Organization. The frequency of these outbreaks, their mortality and associated disruption to normal life calls for concerted efforts to understand their occurrence and fate in different environments. There is an increased interest in the occurrence of coronaviruses in wastewater from the perspective of wastewater-based epidemiology. However, there is no comprehensive review of the knowledge on coronavirus occurrence, fate and potential transmission in wastewater. This paper, provides a review of the literature on the occurrence of coronaviruses in wastewater treatment processes. We discuss the presence of viral RNA in feces as a result of diarrhoea caused by gastrointestinal infections. We also reviewed the literature on the presence, survival and potential removal of coronaviruses in common wastewater treatment processes. The detection of infectious viral particles in feces of patients raises questions on the potential risks of infection for people exposed to untreated sewage/wastewater. We, therefore, highlighted the potential risk of infection with coronaviruses for workers in wastewater treatment plants and the public that may be exposed through faulty plumbing or burst sewer networks. The mortalities and morbidities associated with the current COVID-19 pandemic warrants a much more focused research on the role of environments, such as wastewater and surface water, in disease transmission. The current wealth of knowledge on coronaviruses in wastewater based on the reviewed literature is scant and therefore calls for further studies.
Collapse
Affiliation(s)
- Isaac Dennis Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa.
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
40
|
Coccia M. Factors determining the diffusion of COVID-19 and suggested strategy to prevent future accelerated viral infectivity similar to COVID. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138474. [PMID: 32498152 PMCID: PMC7169901 DOI: 10.1016/j.scitotenv.2020.138474] [Citation(s) in RCA: 378] [Impact Index Per Article: 75.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 04/13/2023]
Abstract
This study has two goals. The first is to explain the geo-environmental determinants of the accelerated diffusion of COVID-19 that is generating a high level of deaths. The second is to suggest a strategy to cope with future epidemic threats similar to COVID-19 having an accelerated viral infectivity in society. Using data on sample of N = 55 Italian province capitals, and data of infected individuals at as of April 7th, 2020, results reveal that the accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution of cities measured with days exceeding the limits set for PM10 (particulate matter 10 μm or less in diameter) or ozone. In particular, hinterland cities with average high number of days exceeding the limits set for PM10 (and also having a low wind speed) have a very high number of infected people on 7th April 2020 (arithmetic mean is about 2200 infected individuals, with average polluted days greater than 80 days per year), whereas coastal cities also having days exceeding the limits set for PM10 or ozone but with high wind speed have about 944.70 average infected individuals, with about 60 average polluted days per year; moreover, cities having more than 100 days of air pollution (exceeding the limits set for PM10), they have a very high average number of infected people (about 3350 infected individuals, 7th April 2020), whereas cities having less than 100 days of air pollution per year, they have a lower average number of infected people (about 1014 individuals). The findings here also suggest that to minimize the impact of future epidemics similar to COVID-19, the max number of days per year that Italian provincial capitals or similar industrialized cities can exceed the limits set for PM10 or for ozone, considering their meteorological conditions, is about 48 days. Moreover, results here reveal that the explanatory variable of air pollution in cities seems to be a more important predictor in the initial phase of diffusion of viral infectivity (on 17th March 2020, b1 = 1.27, p < 0.001) than interpersonal contacts (b2 = 0.31, p < 0.05). In the second phase of maturity of the transmission dynamics of COVID-19, air pollution reduces intensity (on 7th April 2020 with b'1 = 0.81, p < 0.001) also because of the indirect effect of lockdown, whereas regression coefficient of transmission based on interpersonal contacts has a stable level (b'2 = 0.31, p < 0.01). This result reveals that accelerated transmission dynamics of COVID-19 is due to mainly to the mechanism of "air pollution-to-human transmission" (airborne viral infectivity) rather than "human-to-human transmission". Overall, then, transmission dynamics of viral infectivity, such as COVID-19, is due to systemic causes: general factors that are the same for all regions (e.g., biological characteristics of virus, incubation period, etc.) and specific factors which are different for each region and/or city (e.g., complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity) and health level of individuals (habits, immune system, age, sex, etc.). Lessons learned for COVID-19 in the case study here suggest that a proactive strategy to cope with future epidemics is also to apply especially an environmental and sustainable policy based on reduction of levels of air pollution mainly in hinterland and polluting cities- (having low wind speed, high percentage of moisture and number of fog days) -that seem to have an environment that foster a fast transmission dynamics of viral infectivity in society. Hence, in the presence of polluting industrialization in regions that can trigger the mechanism of air pollution-to-human transmission dynamics of viral infectivity, this study must conclude that a comprehensive strategy to prevent future epidemics similar to COVID-19 has to be also designed in environmental and socioeconomic terms, that is also based on sustainability science and environmental science, and not only in terms of biology, medicine, healthcare and health sector.
Collapse
Affiliation(s)
- Mario Coccia
- CNR - National Research Council of Italy, Research Institute on Sustainable Economic Growth, Collegio Carlo Alberto, Via Real Collegio, 30-10024 Moncalieri, Torino, Italy; Yale School of Medicine, 310 Cedar Street, Lauder Hall, New Haven, CT 06510, USA.
| |
Collapse
|
41
|
Baltrus DA. Bacterial dispersal and biogeography as underappreciated influences on phytobiomes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:37-46. [PMID: 32278259 DOI: 10.1016/j.pbi.2020.02.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
Bacterial strains are not distributed evenly throughout the environment. Here I explore how differential distribution and dispersal patterns of bacteria could affect interactions and coevolutionary dynamics with plants, and highlight ways that variation could be taken advantage of to develop robust and effective microbial consortia to inoculate crops. Questions about biogeographical patterns in viruses, fungi, and other eukaryotes are equally as prevalent and important for agriculture, and are in some cases more thoroughly explored. For simplicity as well as to bring attention to bacterial biogeography and dispersal in the context of plant interactions, I focus solely on bacterial patterns and questions for this article. The next few years will no doubt bring great advances in our understanding of dispersal capabilities and population dynamics for many plant-associated bacteria, and one of the next looming challenges will be learning to harvest this diversity in ways that can benefit agriculture.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson AZ, USA; School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson AZ, USA.
| |
Collapse
|
42
|
Wei M, Liu H, Chen J, Xu C, Li J, Xu P, Sun Z. Effects of aerosol pollution on PM 2.5-associated bacteria in typical inland and coastal cities of northern China during the winter heating season. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114188. [PMID: 32126435 DOI: 10.1016/j.envpol.2020.114188] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 05/14/2023]
Abstract
Frequent heavy aerosol pollution occurs during the winter heating season in northern China. Here, we characterized the airborne bacterial community structure and concentration, during typical pollution episodes that occurred during the winter heating season of 2017-2018 in Jinan and Weihai. During this heating season, five and four heavy pollution episodes were observed in Jinan and Weihai, respectively. Compared with December and January, pollution episodes in March were significantly affected by sand dust events. Higher Bacillales were identified in the March samples from Jinan, indicating that sand dust influences bacterial communities. During similar pollution episodes, air pollution in the coastal city of Weihai was lower than the inland city of Jinan. The predominant bacteria included Staphylococcus, Cyanobacteria, Lactobacillus, Deinococcus, Enbydrobacter, Ralstonia, Bacillus, Comamonas, and Sphingomonas. These predominant bacteria are mainly from Proteobacteria, Firmicutes, Cyanobacteria, Actinobacteria, and Bacteroidetes phyla. Bacterial concentration showed significant variation with increased airborne pollutants. The highest concentration appeared during moderate pollution (up to 106 cells/m3), whereas bacterial concentration decreased during heavy and severe pollution (105 cells/m3), which may be related to toxic effects of high pollutant concentrations during heavy or severe pollution. Community structure variation indicated that Cyanobacterial genera were dominant in clean or slight pollution. With increased PM2.5, Staphylococcus increased and became the most abundant bacteria in moderate pollution (up to 40%). During heavy or severe pollution, bacteria that are adaptable to harsh or extreme environments predominate, such as Deinococcus and Bacillus. In the assessment of health risks from air pollution, the bioaerosols risks must consider. Additionally, although most microbial genera are similar between the two cities, there are important differences associated with pollution level. During air pollution regulation in different regions with varied geographical and climatic conditions, bioaerosol pollution difference is an unignored factor.
Collapse
Affiliation(s)
- Min Wei
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China.
| | - Houfeng Liu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China; Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Caihong Xu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Fudan Tyndall Centre, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, China
| | - Jie Li
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Pengju Xu
- College of Geography and Environment, Shandong Normal University, Jinan, 250014, China
| | - Ziwen Sun
- Center for Environmental Technology and Policy Research, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
43
|
Coccia M. Two mechanisms for accelerated diffusion of COVID-19 outbreaks in regions with high intensity of population and polluting industrialization: the air pollution-to-human and human-to-human transmission dynamics (Preprint).. [DOI: 10.2196/preprints.19331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
BACKGROUND
Coronavirus disease 2019 (COVID-19) is viral infection that generates a severe acute respiratory syndrome with serious pneumonia that may result in progressive respiratory failure and death.
OBJECTIVE
This study has two goals. The first is to explain the main factors determining the diffusion of COVID-19 that is generating a high level of deaths. The second is to suggest a strategy to cope with future epidemic threats with of accelerated viral infectivity in society.
METHODS
Correlation and regression analyses on on data of N=55 Italian province capitals, and data of infected individuals at as of April 2020.
RESULTS
The main results are:
o The accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution.
o Hinterland cities have average days of exceeding the limits set for PM10 (particulate matter 10 micrometers or less in diameter) equal to 80 days, and an average number of infected more than 2,000 individuals as of April 1st, 2020, coastal cities have days of exceeding the limits set for PM10 equal to 60 days and have about 700 infected in average.
o Cities that average number of 125 days exceeding the limits set for PM10, last year, they have an average number of infected individual higher than 3,200 units, whereas cities having less than 100 days (average number of 48 days) exceeding the limits set for PM10, they have an average number of about 900 infected individuals.
o The results reveal that accelerated transmission dynamics of COVID-19 in specific environments is due to two mechanisms given by: air pollution-to-human transmission and human-to-human transmission; in particular, the mechanisms of air pollution-to-human transmission play a critical role rather than human-to-human transmission.
o The finding here suggests that to minimize future epidemic similar to COVID-19, the max number of days per year in which cities can exceed the limits set for PM10 or for ozone, considering their meteorological condition, is less than 50 days. After this critical threshold, the analytical output here suggests that environmental inconsistencies because of the combination between air pollution and meteorological conditions (with high moisture%, low wind speed and fog) trigger a take-off of viral infectivity (accelerated epidemic diffusion) with damages for health of population, economy and society.
CONCLUSIONS
Considering the complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity, lessons learned for COVID-19 have to be applied for a proactive socioeconomic strategy to cope with future epidemics, especially an environmental policy based on reduction of air pollution mainly in hinterland zones of countries, having low wind speed, high percentage of moisture and fog that create an environment that can damage immune system of people and foster a fast transmission of viral infectivity similar to the COVID-19.
CLINICALTRIAL
not applicable
Collapse
|
44
|
Coccia M. Two mechanisms for accelerated diffusion of COVID-19 outbreaks in regions with high intensity of population and polluting industrialization: the air pollution-to-human and human-to-human transmission dynamics.. [DOI: 10.1101/2020.04.06.20055657] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractWhat is COVID-19?Coronavirus disease 2019 (COVID-19) is viral infection that generates a severe acute respiratory syndrome with serious pneumonia that may result in progressive respiratory failure and death.What are the goals of this investigation?This study explains the geo-environmental determinants of the accelerated diffusion of COVID-19 in Italy that is generating a high level of deaths and suggests general lessons learned for a strategy to cope with future epidemics similar to COVID-19 to reduce viral infectivity and negative impacts in economic systems and society.What are the results of this study?The main results are:
The accelerate and vast diffusion of COVID-19 in North Italy has a high association with air pollution.Hinterland cities have average days of exceeding the limits set for PM10 (particulate matter 10 micrometers or less in diameter) equal to 80 days, and an average number of infected more than 2,000 individuals as of April 1st, 2020, coastal cities have days of exceeding the limits set for PM10 equal to 60 days and have about 700 infected in average.Cities that average number of 125 days exceeding the limits set for PM10, last year, they have an average number of infected individual higher than 3,200 units, whereas cities having less than 100 days (average number of 48 days) exceeding the limits set for PM10, they have an average number of about 900 infected individuals.The results reveal that accelerated transmission dynamics of COVID-19 in specific environments is due to two mechanisms given by: air pollution-to-human transmission and human-to-human transmission; in particular, the mechanisms of air pollution-to-human transmission play a critical role rather than human-to-human transmission.The finding here suggests that to minimize future epidemic similar to COVID-19, the max number of days per year in which cities can exceed the limits set for PM10 or for ozone, considering their meteorological condition, is less than 50 days. After this critical threshold, the analytical output here suggests that environmental inconsistencies because of the combination between air pollution and meteorological conditions (with high moisture%, low wind speed and fog) trigger a take-off of viral infectivity (accelerated epidemic diffusion) with damages for health of population, economy and society.What is a socioeconomic strategy to prevent future epidemics similar to COVID-19?Considering the complex interaction between air pollution, meteorological conditions and biological characteristics of viral infectivity, lessons learned for COVID-19 have to be applied for a proactive socioeconomic strategy to cope with future epidemics, especially an environmental policy based on reduction of air pollution mainly in hinterland zones of countries, having low wind speed, high percentage of moisture and fog that create an environment that can damage immune system of people and foster a fast transmission of viral infectivity similar to the COVID-19.This study must conclude that a strategy to prevent future epidemics similar to COVID 19 has also to be designed in environmental and sustainability science and not only in terms of biology.
Collapse
|
45
|
Nag R, Whyte P, Markey BK, O'Flaherty V, Bolton D, Fenton O, Richards KG, Cummins E. Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:136297. [PMID: 32050363 PMCID: PMC7126561 DOI: 10.1016/j.scitotenv.2019.136297] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 04/14/2023]
Abstract
Anaerobic digestion (AD) has been identified as one of the cleanest producers of green energy. AD typically uses organic materials as feedstock and, through a series of biological processes, produces methane. Farmyard manure and slurry (FYM&S) are important AD feedstock and are typically mixed with agricultural waste, grass and/or food wastes. The feedstock may contain many different pathogens which can survive the AD process and hence also possibly be present in the final digestate. In this study, a semi-quantitative screening tool was developed to rank pathogens of potential health concern emerging from AD digestate. A scoring system was used to categorise likely inactivation during AD, hazard pathways and finally, severity as determined from reported human mortality rates, number of global human-deaths and infections per 100,000 populations. Five different conditions including mesophilic and thermophilic AD and three different pasteurisation conditions were assessed in terms of specific pathogen inactivation. In addition, a number of scenarios were assessed to consider foodborne incidence data from Ireland and Europe and to investigate the impact of raw FYM&S application (without AD and pasteurisation). A sensitivity analysis revealed that the score for the mortality rate (S3) was the most sensitive parameter (rank coefficient 0.49) to influence the final score S; followed by thermal inactivation score (S1, 0.25) and potential contamination pathways (S2, 0.16). Across all the scenarios considered, the screening tool prioritised Cryptosporidium parvum, Salmonella spp., norovirus, Streptococcus pyogenes, enteropathogenic E. coli (EPEC), Mycobacterium spp., Salmonella typhi (followed by S. paratyphi), Clostridium spp., Listeria monocytogenes and Campylobacter coli as the highest-ranking pathogens of human health concern resulting from AD digestate in Ireland. This tool prioritises potentially harmful pathogens which can emerge from AD digestate and highlights where regulation and intervention may be required.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl G Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
46
|
Nag R, Auer A, Markey BK, Whyte P, Nolan S, O'Flaherty V, Russell L, Bolton D, Fenton O, Richards K, Cummins E. Anaerobic digestion of agricultural manure and biomass - Critical indicators of risk and knowledge gaps. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:460-479. [PMID: 31299578 DOI: 10.1016/j.scitotenv.2019.06.512] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) has been identified as a potential green technology to treat food and municipal waste, agricultural residues, including farmyard manure and slurry (FYM&S), to produce biogas. FYM&S and digestate can act as soil conditioners and provide valuable nutrients to plants; however, it may also contain harmful pathogens. This study looks at the critical indicators in determining the microbial inactivation potential of AD and the possible implications for human and environmental health of spreading the resulting digestate on agricultural land. In addition, available strategies for risk assessment in the context of EU and Irish legislation are assessed. Storage time and process parameters (including temperature, pH, organic loading rate, hydraulic retention time), feedstock recipe (carbon-nitrogen ratio) to the AD plant (both mesophilic and thermophilic) were all assessed to significantly influence pathogen inactivation. However, complete inactivation of all pathogens is unlikely. There are limited studies evaluating risks from FYM&S as a feedstock in AD and the spreading of resulting digestate. The lack of process standardisation and varying feedstocks between AD farms means risk must be evaluated on a case by case basis and calls for a more unified risk assessment methodology. In addition, there is a need for the enhancement of AD farm-based modelling techniques and datasets to help in advancing knowledge in this area.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Agathe Auer
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Bryan K Markey
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Paul Whyte
- University College Dublin School of Veterinary Medicine, Belfield, Dublin 4, Ireland.
| | - Stephen Nolan
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland
| | - Vincent O'Flaherty
- National University of Ireland Galway, School of Natural Sciences, Galway, Ireland.
| | - Lauren Russell
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Declan Bolton
- TEAGASC, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Owen Fenton
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Karl Richards
- TEAGASC, Environment Research Centre, Johnstown Castle, County Wexford, Ireland.
| | - Enda Cummins
- University College Dublin School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Gaviria-Figueroa A, Preisner EC, Hoque S, Feigley CE, Norman RS. Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:402-412. [PMID: 31181526 DOI: 10.1016/j.scitotenv.2019.05.454] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/27/2019] [Accepted: 05/30/2019] [Indexed: 05/22/2023]
Abstract
Wastewater treatment plants act as socio-ecological couplers through the concentration, treatment, and subsequent environmental release of sewage collected from surrounding communities and are often considered hotspots for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). While studies have identified the release of ARB/ARGs in treated liquid sewage, little is known about potential dispersal through wastewater bioaerosol emissions. The aim of this study was to better define the contribution of WWTP bioaerosols to potential environmental distribution of ARB/ARGs. Bioaerosols were collected immediately upwind and downwind from the aeration tanks of a municipal wastewater treatment plant and liquid sludge samples were obtained from the aeration tanks. From the bioaerosol and liquid samples, qPCR assays identified 44 ARGs that confer resistance to a wide range of antibiotics. Comparison of the ARG profiles across samples showed that the downwind bioaerosol profile was 68% similar to the profile found in liquid sludge samples. Community 16S rRNA gene sequencing also showed that downwind bioaerosols had similar taxonomic profiles as those generated from liquid sludge while the upwind profiles showed a distinct difference. Preliminary ARG dispersion modeling estimated an ARG emission rate of ~10,620 genes per hour from the liquid sludge and indicated that the bioaerosols have the potential to be carried kilometers away from the WWTP source based on wind speed. The overall results from this study suggest that bioaerosols generated during WWTP processes can aid in the emission and dispersal of bacteria and ARGs, resulting in a possible route of human exposure and deposition into surrounding environments.
Collapse
Affiliation(s)
- Andrés Gaviria-Figueroa
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, United States of America
| | - Eva C Preisner
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, United States of America
| | - Shamia Hoque
- Department of Civil and Environmental Engineering, University of South Carolina, 300 Main Street, Columbia, SC 29208, United States of America
| | - Charles E Feigley
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, United States of America
| | - R Sean Norman
- Department of Environmental Health Sciences, University of South Carolina, 921 Assembly Street, Columbia, SC 29208, United States of America.
| |
Collapse
|
48
|
Pereira APMF, Rodrigues LADC, Santos EAD, Cardoso TADO, Cohen SC. Gestão de eventos QBRN e a utilização do modelo Hysplit: uma revisão integrativa de literatura. SAÚDE EM DEBATE 2019. [DOI: 10.1590/0103-1104201912221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RESUMO O potencial risco de exposição das populações aos agentes Químicos, Biológicos, Radioativos e Nucleares (QBRN), seja por causas intencionais ou não, configura-se como questão de segurança nacional e demanda um constante aprimoramento do seu gerenciamento. Os modelos de dispersão atmosférica vêm ganhando destaque como ferramenta de apoio à gestão dos riscos aos agentes QBRN. O objetivo desta pesquisa foi identificar e avaliar estudos que utilizaram o modelo Hysplit no contexto de eventos QBRN. Para tanto, foi realizada uma revisão integrativa de literatura de artigos publicados entre 2014 e 2018, nas bases de dados PubMed, Scopus, Web of Science e Lilacs. A análise dos artigos selecionados permitiu verificar o potencial do uso do modelo Hysplit, enquanto modelo matemático, para compreender o transporte, a dispersão e a deposição de ameaças QBRN liberadas na atmosfera. Os dados produzidos pelas simulações geradas por esse código podem revelar quais áreas serão potencialmente impactadas em um determinado evento ou a região de origem de elementos dispersos no ar. Ademais, o Hysplit pode ser agregado como uma ferramenta de suporte às decisões perante as distintas fases da gestão de eventos QBRN.
Collapse
|
49
|
Zhao Y, Richardson B, Takle E, Chai L, Schmitt D, Xin H. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci Rep 2019; 9:11755. [PMID: 31409807 PMCID: PMC6692305 DOI: 10.1038/s41598-019-47788-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/19/2019] [Indexed: 01/08/2023] Open
Abstract
The unprecedented 2015 outbreaks of highly pathogenic avian influenza (HPAI) H5N2 in the U.S. devastated its poultry industry and resulted in over $3 billion economic impacts. Today HPAI continues eroding poultry operations and disrupting animal protein supply chains around the world. Anecdotal evidence in 2015 suggested that in some cases the AI virus was aerially introduced into poultry houses, as abnormal bird mortality started near air inlets of the infected houses. This study modeled air movement trajectories and virus concentrations that were used to assess the probability or risk of airborne transmission for the 77 HPAI cases in Iowa. The results show that majority of the positive cases in Iowa might have received airborne virus, carried by fine particulate matter, from infected farms within the state (i.e., intrastate) and infected farms from the neighboring states (i.e., interstate). The modeled airborne virus concentrations at the Iowa recipient sites never exceeded the minimal infective doses for poultry; however, the continuous exposure might have increased airborne infection risks. In the worst-case scenario (i.e., maximum virus shedding rate, highest emission rate, and longest half-life), 33 Iowa cases had > 10% (three cases > 50%) infection probability, indicating a medium to high risk of airborne transmission for these cases. Probability of airborne HPAI infection could be affected by farm type, flock size, and distance to previously infected farms; and more importantly, it can be markedly reduced by swift depopulation and inlet air filtration. The research results provide insights into the risk of airborne transmission of HPAI virus via fine dust particles and the importance of preventative and containment strategies such as air filtration and quick depopulation of infected flocks.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Agricultural and Biological Engineering, Mississippi State University, Mississippi State, MS, 39762, USA.
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Brad Richardson
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Eugene Takle
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Lilong Chai
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
- Department of Poultry Science, University of Georgia, Athens, GA, 30602, USA
| | - David Schmitt
- Iowa Department of Agriculture and Land Stewardship, Des Moines, IA, 50319, USA
| | - Hongwei Xin
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA.
- The University of Tennessee Institute of Agriculture, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
50
|
Variability and Geographical Origin of Five Years Airborne Fungal Spore Concentrations Measured at Saclay, France from 2014 to 2018. REMOTE SENSING 2019. [DOI: 10.3390/rs11141671] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Airborne fungal spores (AFS) represent the major fraction of primary biological aerosol particles (PBAPs), and they are studied worldwide largely due to their important role within the Earth system. They have an impact on climate and human health, and they contribute to the propagation of diseases. As their presence in the air depends largely on studied ecosystems, a spore trap was used to monitor their atmospheric concentrations from 2014 to December 2018 in Saclay, a suburban area in the megacity of Paris. The main objective of this work was: (1) to understand the atmospheric variability of AFS in relation to different variables such as meteorological factors, agricultural practice, and (2) to identify their geographical origin by using a source receptor model. During our period of observation, 30 taxa have been identified under a light microscope. In order of importance, Ascospores, Cladosporium, Basidiospores, Tilletiopsis, Alternaria were found to be the most abundant types respectively (50.8%, 33.6%, 7.6%, 1.8%, and 1.3%) accounting for 95% of the atmospheric concentrations. We observed a general decrease associated with a strong interannual variability. A bimodal seasonal cycle was identified with a first maximum in July and a second in October. The main parameters driving the atmospheric concentration are temperature and precipitation. The daily variability is strongly activated by successive periods of hot weather and rainfall, multiplying the concentration by a factor of 1000 in less than 12 hours. Results from the source receptor model ZeFir point out unambiguous different origins of AFS due to specific sources impacting the observation site. Our study also indicated that a hydrological stress has a direct effect on the daily concentrations. This last point should be taken into account for every stressed ecosystem studied in a global warming context. This is particularly important for Mediterranean areas where water is a key control of the growth and dispersion of fungal spores.
Collapse
|