1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Kološa K, Žegura B, Štampar M, Filipič M, Novak M. Adverse Toxic Effects of Tyrosine Kinase Inhibitors on Non-Target Zebrafish Liver (ZFL) Cells. Int J Mol Sci 2023; 24:ijms24043894. [PMID: 36835302 PMCID: PMC9965539 DOI: 10.3390/ijms24043894] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Over the past 20 years, numerous tyrosine kinase inhibitors (TKIs) have been introduced for targeted therapy of various types of malignancies. Due to frequent and increasing use, leading to eventual excretion with body fluids, their residues have been found in hospital and household wastewaters as well as surface water. However, the effects of TKI residues in the environment on aquatic organisms are poorly described. In the present study, we investigated the cytotoxic and genotoxic effects of five selected TKIs, namely erlotinib (ERL), dasatinib (DAS), nilotinib (NIL), regorafenib (REG), and sorafenib (SOR), using the in vitro zebrafish liver cell (ZFL) model. Cytotoxicity was determined using the MTS assay and propidium iodide (PI) live/dead staining by flow cytometry. DAS, SOR, and REG decreased ZFL cell viability dose- and time-dependently, with DAS being the most cytotoxic TKI studied. ERL and NIL did not affect viability at concentrations up to their maximum solubility; however, NIL was the only TKI that significantly decreased the proportion of PI negative cells as determined by the flow cytometry. Cell cycle progression analyses showed that DAS, ERL, REG, and SOR caused the cell cycle arrest of ZFL cells in the G0/G1 phase, with a concomitant decrease of cells in the S-phase fraction. No data could be obtained for NIL due to severe DNA fragmentation. The genotoxic activity of the investigated TKIs was evaluated using comet and cytokinesis block micronucleus (CBMN) assays. The dose-dependent induction of DNA single strand breaks was induced by NIL (≥2 μM), DAS (≥0.006 μM), and REG (≥0.8 μM), with DAS being the most potent. None of the TKIs studied induced micronuclei formation. These results suggest that normal non-target fish liver cells are sensitive to the TKIs studied in a concentration range similar to those previously reported for human cancer cell lines. Although the TKI concentrations that induced adverse effects in exposed ZFL cells are several orders of magnitude higher than those currently expected in the aquatic environment, the observed DNA damage and cell cycle effects suggest that residues of TKIs in the environment may pose a hazard to non-intentionally exposed organisms living in environments contaminated with TKIs.
Collapse
Affiliation(s)
- Katja Kološa
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
- Correspondence:
| | - Martina Štampar
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
- Jozef Stefan International Postgraduate School, 1000 Ljubljana, Slovenia
| | - Matjaž Novak
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Večna Pot 111, 1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
de Oliveira Galvão MF, Sadiktsis I, Marques Pedro T, Dreij K. Determination of whole mixture-based potency factors for cancer risk assessment of complex environmental mixtures by in vitro testing of standard reference materials. ENVIRONMENT INTERNATIONAL 2022; 166:107345. [PMID: 35717713 DOI: 10.1016/j.envint.2022.107345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/29/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Whole mixture-based testing using in vitro new approach methodologies (NAMs) has been suggested to facilitate the hazard and risk assessment of complex environmental mixtures. Previous studies have shown that phosphorylation of DNA damage signaling proteins checkpoint kinase 1 (pChk1) and histone 2AX (γH2AX) are sensitive markers that can be used for estimating carcinogenicity potencies in vitro. Here, and with the aim to better validate the applicability, in vitro-based Mixture Potency Factors (MPFs) of Standard Reference Materials (SRMs) from environmental polycyclic aromatic hydrocarbon (PAH)-containing mixtures were determined and compared to published mutagenicity and tumorigenicity data. Also, genotoxicity was assessed by a flow cytometry-based micronucleus (MN) assay which showed that only benzo[a]pyrene (B[a]P) and coal tar SRM (SRM1597a) caused dose-dependent increases of MN formation, while extracts of diesel particulate matter (SRM1650b), diesel particulate extract (SRM1975), and urban dust (SRM1649b) did not. However, a dose-dependent activation of DNA damage signaling was observed for all PAHs and SRMs. The results demonstrated that all SRMs were more potent than B[a]P, at B[a]P-equivalent concentrations, to induce pChk1 and γH2AX, and that western blot was more sensitive than the In-Cell Western assay in detecting their activation in response to these complex mixtures. Relative MPFs, based on dose-response modelling of pChk1 and γH2AX, ranged 113 - 5270 for the SRMs, indicating several orders of magnitude higher genotoxic potential than B[a]P. Moreover, these MPFs were in good agreement with potency values based on published data from Salmonella mutagenicity and in vivo carcinogenicity studies. In conclusion, these comparisons further validate the feasibility of applying in vitro NAMs, such as whole-mixture based MPFs, in cancer risk assessment of complex mixtures.
Collapse
Affiliation(s)
| | - Ioannis Sadiktsis
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Tiago Marques Pedro
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
4
|
Yigit S, Hallaj NS, Sugarman JL, Chong LC, Roman SE, Abu-Taleb LM, Goodman RE, Johnson PE, Behrens AM. Toxicological assessment and food allergy of silk fibroin derived from Bombyx mori cocoons. Food Chem Toxicol 2021; 151:112117. [DOI: 10.1016/j.fct.2021.112117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
|
5
|
Yang HJ, Wang D, Wen X, Weiner DM, Via LE. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol 2021; 11:613149. [PMID: 33796474 PMCID: PMC8008060 DOI: 10.3389/fcimb.2021.613149] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a global health problem despite almost universal efforts to provide patients with highly effective chemotherapy, in part, because many infected individuals are not diagnosed and treated, others do not complete treatment, and a small proportion harbor Mycobacterium tuberculosis (Mtb) strains that have become resistant to drugs in the standard regimen. Development and approval of new drugs for TB have accelerated in the last 10 years, but more drugs are needed due to both Mtb's development of resistance and the desire to shorten therapy to 4 months or less. The drug development process needs predictive animal models that recapitulate the complex pathology and bacterial burden distribution of human disease. The human host response to pulmonary infection with Mtb is granulomatous inflammation usually resulting in contained lesions and limited bacterial replication. In those who develop progressive or active disease, regions of necrosis and cavitation can develop leading to lasting lung damage and possible death. This review describes the major vertebrate animal models used in evaluating compound activity against Mtb and the disease presentation that develops. Each of the models, including the zebrafish, various mice, guinea pigs, rabbits, and non-human primates provides data on number of Mtb bacteria and pathology resolution. The models where individual lesions can be dissected from the tissue or sampled can also provide data on lesion-specific bacterial loads and lesion-specific drug concentrations. With the inclusion of medical imaging, a compound's effect on resolution of pathology within individual lesions and animals can also be determined over time. Incorporation of measurement of drug exposure and drug distribution within animals and their tissues is important for choosing the best compounds to push toward the clinic and to the development of better regimens. We review the practical aspects of each model and the advantages and limitations of each in order to promote choosing a rational combination of them for a compound's development.
Collapse
Affiliation(s)
- Hee-Jeong Yang
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Decheng Wang
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Xin Wen
- Medical College, China Three Gorges University, Yichang, China.,Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
| | - Danielle M Weiner
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States
| | - Laura E Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Disease (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States.,Tuberculosis Imaging Program, DIR, NIAID, NIH, Bethesda, MD, United States.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
6
|
Rithidech KN, Jangiam W, Tungjai M, Reungpatthanaphong P, Gordon C, Honikel L. Early- and late-occurring damage in bone marrow cells of male CBA/Ca mice exposed whole-body to 1 GeV/n 48Ti ions. Int J Radiat Biol 2021; 97:517-528. [PMID: 33591845 DOI: 10.1080/09553002.2021.1884312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/20/2020] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE To determine the early- and late-occurring damage in the bone marrow (BM) and peripheral blood cells of male CBA/Ca mice after exposure to 0, 0.1, 0.25, or 0.5 Gy of 1 GeV/n titanium (48Ti) ions (one type of space radiation). METHOD We used the mouse in vivo blood-erythrocyte micronucleus (MN) assay for evaluating the cytogenetic effects of various doses of 1 GeV/n 48Ti ions. The MN assay was coupled with the characterization of epigenetic alterations (the levels of global 5-methylcytosine and 5-hydroxymethylcytosine) in DNA samples isolated from BM cells. These analyses were performed in samples collected at an early time-point (1 week) and a late time-point (6 months) post-irradiation. RESULTS Our results showed that 48Ti ions induced genomic instability in exposed mice. Significant dose-dependent loss of global 5-hydroxymethylcytosine was found but there were no changes in global 5-methylcytosine levels. CONCLUSION Since persistent genomic instability and loss of global 5-hydroxymethylcytosine are linked to cancer, our findings suggest that exposure to 48Ti ions may pose health risks.
Collapse
Affiliation(s)
| | - Witawat Jangiam
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi, Thailand
| | - Montree Tungjai
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Paiboon Reungpatthanaphong
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
- Department of Applied Radiation and Isotopes, Faculty of Sciences, Kasetsart University, Bangkok, Thailand
| | - Chris Gordon
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| | - Louise Honikel
- Pathology Department, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
7
|
Shipkowski KA, Cora MC, Cesta MF, Robinson VG, Waidyanatha S, Witt KL, Vallant MK, Fallacara DM, Hejtmancik MR, Masten SA, Cooper SD, Fernando RA, Blystone CR. Comparison of sulfolane effects in Sprague Dawley rats, B6C3F1/N mice, and Hartley guinea pigs after 28 days of exposure via oral gavage. Toxicol Rep 2021; 8:581-591. [PMID: 33777704 PMCID: PMC7985713 DOI: 10.1016/j.toxrep.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 01/27/2023] Open
Abstract
Sulfolane is a solvent used in industrial refining with identified environmental exposure in drinking water. Due to potential large species differences, the National Toxicology Program (NTP) conducted 28-day toxicity studies in male and female Hsd:Sprague Dawley® SD® rats, B6C3F1/N mice, and Hartley guinea pigs. A wide dose range of 0, 1, 10, 30, 100, 300, and 800 mg/kg was administered via gavage. Histopathology, clinical pathology, and organ weights were evaluated after 28 days of exposure. In addition, plasma concentrations of sulfolane were evaluated 2 and 24 h after the last dose. Increased mortality was observed in the highest dose group of guinea pigs and mice while decreased body weight was observed in rats compared to controls. Histopathological lesions were observed in the kidney (male rat), stomach (male mice), esophagus (male and female guinea pigs), and nose (male guinea pigs). Plasma concentrations were generally higher in rats and guinea pigs compared to mice with evidence of saturated clearance at higher doses. Male rats appear to be the most sensitive with hyaline droplet accumulation occurring at all doses, although the human relevance of this finding is questionable.
Collapse
Affiliation(s)
- K A Shipkowski
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - M C Cora
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - M F Cesta
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - V G Robinson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - S Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - K L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - M K Vallant
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | | | - S A Masten
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - S D Cooper
- RTI International, Research Triangle Park, NC, USA
| | - R A Fernando
- RTI International, Research Triangle Park, NC, USA
| | - C R Blystone
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
8
|
Albertini RJ, Kaden DA. Mutagenicity monitoring in humans: Global versus specific origin of mutations. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108341. [PMID: 33339577 DOI: 10.1016/j.mrrev.2020.108341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/08/2020] [Accepted: 10/14/2020] [Indexed: 01/19/2023]
Abstract
An underappreciated aspect of human mutagenicity biomonitoring is tissue specificity reflected in different assays, especially those that measure events that can only occur in developing bone marrow (BM) cells. Reviewed here are 9 currently-employed human mutagenicity biomonitoring assays. Several assays measure chromosome-level events in circulating T-lymphocytes (T-cells), i.e., traditional analyses of aberrations, translocation studies involving chromosome painting and fluorescence in situ hybridization (FISH) and determinations of micronuclei (MN). Other T-cell assays measure gene mutations. i.e., hypoxanthine-guanine phosphoriboslytransferase (HPRT) and phosphoribosylinositol glycan class A (PIGA). In addition to the T-cell assays, also reviewed are those assays that measure events in peripheral blood cells that necessarily arose in BM cells, i.e., MN in reticulocytes; glycophorin A (GPA) gene mutations in red blood cells (RBCs), and PIGA gene mutations in RBC or granulocytes. This review considers only cell culture- or cytometry-based assays to describe endpoints measured, methods, optimal sampling times, and sample summaries of typical quantitative and qualitative results. However, to achieve its intended focus on the target cells where events occur, kinetics of the cells of peripheral blood that derive at some point from precursor cells are reviewed to identify body sites and tissues where the genotoxic events originate. Kinetics indicate that in normal adults, measured events in T-cells afford global assessments of in vivo mutagenicity but are not specific for BM effects. Therefore, an agent's capacity for inducing mutations in BM cells cannot be reliably inferred from T-cell assays as the magnitude of effect in BM, if any, is unknown. By contrast, chromosome or gene level mutations measured in RBCs/reticulocytes or granulocytes must originate in BM cells, i.e. in RBC or granulocyte precursors, thereby making them specific indicators for effects in BM. Assays of mutations arising directly in BM cells may quantitatively reflect the mutagenicity of potential leukemogenic agents.
Collapse
Affiliation(s)
- Richard J Albertini
- University of Vermont, 111 Colchester Avenue, Burlington, VT 05401, United States
| | - Debra A Kaden
- Ramboll US Consulting, Inc., 101 Federal Street, Suite 1900, Boston, MA 02110, United States.
| |
Collapse
|
9
|
Chen Y, Huo J, Liu Y, Zeng Z, Zhu X, Chen X, Wu R, Zhang L, Chen J. Development of a novel flow cytometry-based approach for reticulocytes micronucleus test in rat peripheral blood. J Appl Toxicol 2020; 41:595-606. [PMID: 33067908 DOI: 10.1002/jat.4068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
Abstract
The micronucleus test (MNT) is the most widely applied short-term assay to detect clastogens or spindle disruptors. The use of flow cytometry (FCM) has been reported for micronucleated erythrocytes scoring in peripheral blood. The aim of this study was to develop a novel and practical protocol for MNT in rat peripheral blood by FCM, with the method validation. CD71-fluorescein isothiocyanate and DRAQ5 were adopted for the fluorescent staining of proteins and DNA, respectively, to detect micronuclei. To validate the method, groups of male Sprague-Dawley rats (five per group) received two oral gavage doses at 0 and 24 h of six chemicals (four positive mutagens: ethyl methanesulphonate [EMS], cyclophosphamide [CP], colchicine [COL], and ethyl nitrosourea [ENU]; two nongenotoxic chemicals: sodium saccharin and eugenol). Blood samples were collected from the tail vein before and on the five continuous days after treatments; all of which were analyzed for micronuclei presence by both the manual (Giemsa staining) and FCM methods. The FCM-based method consistently demonstrated highly sensitive responses for micronucleus detection at all concentrations and all time points for EMS, CP, COL, and ENU. Sodium saccharin and eugenol could be identified as negative in this protocol. Results obtained with the FCM-based method correlated well with the micronucleus frequencies (r = 0.659-0.952), and the proportion of immature erythrocytes (r = 0.915-0.981) tested by Giemsa staining. The method reported here, with easy operation, low background, and requirement for a regular FCM, could be an efficient system for micronucleus scoring.
Collapse
Affiliation(s)
- Yiyi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jiao Huo
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Department of Nutrition and Food Safety, Chongqing Center for Disease Control and Prevention, Chongqing, China
| | - Yunjie Liu
- Graduate Department, West China School of Public Health, Sichuan University, Chengdu, China
| | - Zhu Zeng
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuejiao Zhu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Xuxi Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Rui Wu
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Lishi Zhang
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu, China.,Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Hölzel BN, Pfannkuche K, Allner B, Allner HT, Hescheler J, Derichsweiler D, Hollert H, Schiwy A, Brendt J, Schaffeld M, Froschauer A, Stahlschmidt-Allner P. Following the adverse outcome pathway from micronucleus to cancer using H2B-eGFP transgenic healthy stem cells. Arch Toxicol 2020; 94:3265-3280. [PMID: 32700163 PMCID: PMC7415759 DOI: 10.1007/s00204-020-02821-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/18/2020] [Indexed: 11/26/2022]
Abstract
In vitro assessment of genotoxicity as an early warning tool for carcinogenicity mainly relies on recording cytogenetic damages (micronuclei, nucleoplasmic bridges) in tumour-derived mammalian cell lines like V79 or CHO. The forecasting power of the corresponding standardised test is based on epidemiological evidence between micronuclei frequencies and cancer incidence. As an alternative to destructive staining of nuclear structures a fish stem cell line transgenic for a fusion protein of histone 2B (H2B) and enhanced green fluorescent protein (eGFP) was established. The cells are derived from koi carp brain (KCB) and distinguish from mammalian culturable cells by non-tumour-driven self-renewal. This technology enables the analysis of genotoxic- and malign downstream effects in situ in a combined approach. In proof-of concept-experiments, we used known carcinogens (4-Nitroquinoline 1-oxide, colchicine, diethylstilbestrol, ethyl methanesulfonate) and observed a significant increase in micronuclei (MNi) frequencies in a dose-dependent manner. The concentration ranges for MNi induction were comparable to human/mammalian cells (i.e. VH-16, CHL and HepG2). Cannabidiol caused the same specific cytogenetic damage pattern as observed in human cells, in particular nucleoplasmic bridges. Metabolic activation of aflatoxin B1 and cyclophosphamide could be demonstrated by pre-incubation of the test compounds using either conventional rat derived S9 mix as well as an in vitro generated biotechnological alternative product ewoS9R. The presented high throughput live H2B-eGFP imaging technology using non-transformed stem cells opens new perspectives in the field of in vitro toxicology. The technology offers experimental access to investigate the effects of carcinogens on cell cycle control, gene expression pattern and motility in the course of malign transformation. The new technology enables the definition of Adverse Outcome Pathways leading to malign cell transformation and contributes to the replacement of animal testing. Summary: Complementation of genotoxicity testing by addressing initiating events leading to malign transformation is suggested. A vertebrate cell model showing "healthy" stemness is recommended, in contrast to malign transformed cells used in toxicology/oncocology.
Collapse
Affiliation(s)
- Bastian Niklas Hölzel
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Kurt Pfannkuche
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Bernhard Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Hans Thomas Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| | - Jürgen Hescheler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Daniel Derichsweiler
- Medical Faculty, Center for Physiology and Pathophysiology, University of Cologne, Robert Koch Str. 39, 50923 Cologne, North Rhine-Westphalia Germany
| | - Henner Hollert
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Andreas Schiwy
- Evolutionary Ecology and Environmental Toxicology, Goethe University Frankfurt Biologicum, Max-von-Laue-Straße 13, 60323 Frankfurt am Main, Hesse Germany
- EWOMIS GmbH, Schießstraße 26c, 63486 Bruchköbel, Hesse Germany
| | - Julia Brendt
- Institute for Environmental Research (Bio V), RWTH Aachen University, Worringerweg 1, 52062 Aachen, North Rhine-Westphalia Germany
| | - Michael Schaffeld
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Johann-Joachim Becher-Weg 7, 55122 Mainz, Rhineland Palatinate Germany
| | - Alexander Froschauer
- Faculty of Biology, Applied Biology, Technische Universität Dresden, Zellescher Weg 20b, 01069 Dresden, Saxony Germany
| | - Petra Stahlschmidt-Allner
- GOBIO GmbH, Institute for Ecology of Waters and Applied Biology, Scheidertalstraße 69a, 65326 Aarbergen, Hesse Germany
| |
Collapse
|
11
|
Smith-Roe SL, Shockley KR, Bucher JR, Witt KL. Response to Letter to the Editor. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:294-295. [PMID: 31875426 DOI: 10.1002/em.22352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Stephanie L Smith-Roe
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Keith R Shockley
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - John R Bucher
- Associate Director's Office, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kristine L Witt
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
12
|
Smith‐Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GE, Shockley KR, Tice RR, Bucher JR, Witt KL. Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposure. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:276-290. [PMID: 31633839 PMCID: PMC7027901 DOI: 10.1002/em.22343] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/04/2019] [Accepted: 10/16/2019] [Indexed: 05/03/2023]
Abstract
The National Toxicology Program tested two common radiofrequency radiation (RFR) modulations emitted by cellular telephones in a 2-year rodent cancer bioassay that included interim assessments of additional animals for genotoxicity endpoints. Male and female Hsd:Sprague Dawley SD rats and B6C3F1/N mice were exposed from Gestation day 5 or Postnatal day 35, respectively, to code division multiple access (CDMA) or global system for mobile modulations over 18 hr/day, at 10-min intervals, in reverberation chambers at specific absorption rates of 1.5, 3, or 6 W/kg (rats, 900 MHz) or 2.5, 5, or 10 W/kg (mice, 1,900 MHz). After 19 (rats) or 14 (mice) weeks of exposure, animals were examined for evidence of RFR-associated genotoxicity using two different measures. Using the alkaline (pH > 13) comet assay, DNA damage was assessed in cells from three brain regions, liver cells, and peripheral blood leukocytes; using the micronucleus assay, chromosomal damage was assessed in immature and mature peripheral blood erythrocytes. Results of the comet assay showed significant increases in DNA damage in the frontal cortex of male mice (both modulations), leukocytes of female mice (CDMA only), and hippocampus of male rats (CDMA only). Increases in DNA damage judged to be equivocal were observed in several other tissues of rats and mice. No significant increases in micronucleated red blood cells were observed in rats or mice. In conclusion, these results suggest that exposure to RFR is associated with an increase in DNA damage. Environ. Mol. Mutagen. 61:276-290, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stephanie L. Smith‐Roe
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Michael E. Wyde
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Matthew D. Stout
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John W. Winters
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Kim G. Shepard
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Amanda S. Green
- Integrated Laboratory Systems, Inc.Research Triangle ParkNorth Carolina
| | - Grace E. Kissling
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Keith R. Shockley
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Raymond R. Tice
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - John R. Bucher
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| | - Kristine L. Witt
- Division of the National Toxicology ProgramNational Institute of Environmental Health SciencesResearch Triangle ParkNorth Carolina
| |
Collapse
|
13
|
Abramsson-Zetterberg L. Strongly heated carbohydrate-rich food is an overlooked problem in cancer risk evaluation. Food Chem Toxicol 2018; 121:151-155. [DOI: 10.1016/j.fct.2018.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 08/08/2018] [Accepted: 08/17/2018] [Indexed: 11/16/2022]
|
14
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Maronpot R, Recio L, Hayashi SM. Genotoxicity evaluation of the naturally-derived food colorant, gardenia blue, and its precursor, genipin. Food Chem Toxicol 2018; 118:695-708. [DOI: 10.1016/j.fct.2018.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 11/16/2022]
|
15
|
Dunnick JK, Pandiri AR, Merrick BA, Kissling GE, Cunny H, Mutlu E, Waidyanatha S, Sills R, Hong HL, Ton TV, Maynor T, Recio L, Phillips SL, Devito MJ, Brix A. Carcinogenic activity of pentabrominated diphenyl ether mixture (DE-71) in rats and mice. Toxicol Rep 2018; 5:615-624. [PMID: 29868454 PMCID: PMC5984199 DOI: 10.1016/j.toxrep.2018.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/19/2023] Open
Abstract
Pentabrominated diphenyl ether (PBDE) mixture was a multispecies carcinogen causing liver tumors in male and female rats and mice. Hras or Ctnnb1 mutations characterized the PBDE-induced liver tumors. PBDE-induced liver tumors increased with increasing PBDE exposure.
Pentabrominated diphenyl ether (PBDE) flame retardants have been phased out in Europe and in the United States, but these lipid soluble chemicals persist in the environment and are found human and animal tissues. PBDEs have limited genotoxic activity. However, in a 2-year cancer study of a PBDE mixture (DE-71) (0, 3, 15, or 50 mg/kg (rats); 0, 3, 30, or 100 mg/kg (mice)) there were treatment-related liver tumors in male and female Wistar Han rats [Crl:WI(Han) after in utero/postnatal/adult exposure, and in male and female B6C3F1 mice, after adult exposure. In addition, there was evidence for a treatment-related carcinogenic effect in the thyroid and pituitary gland tumor in male rats, and in the uterus (stromal polyps/stromal sarcomas) in female rats. The treatment-related liver tumors in female rats were unrelated to the AhR genotype status, and occurred in animals with wild, mutant, or heterozygous Ah receptor. The liver tumors in rats and mice had treatment-related Hras and Ctnnb mutations, respectively. The PBDE carcinogenic activity could be related to oxidative damage, disruption of hormone homeostasis, and molecular and epigenetic changes in target tissue. Further work is needed to compare the PBDE toxic effects in rodents and humans.
Collapse
Affiliation(s)
- J K Dunnick
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - A R Pandiri
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - B A Merrick
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - G E Kissling
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - H Cunny
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - E Mutlu
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - S Waidyanatha
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - R Sills
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - H L Hong
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - T V Ton
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - T Maynor
- Integrated Laboratory Systems, Research Triangle Park, NC 27709, USA
| | - L Recio
- Integrated Laboratory Systems, Research Triangle Park, NC 27709, USA
| | - S L Phillips
- Integrated Laboratory Systems, Research Triangle Park, NC 27709, USA
| | - M J Devito
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - A Brix
- EPL, Inc., Research Triangle Park, NC 27709, USA
| |
Collapse
|
16
|
Rencüzoğulları E, Aydın M. Genotoxic and mutagenic studies of teratogens in developing rat and mouse. Drug Chem Toxicol 2018; 42:409-429. [PMID: 29745766 DOI: 10.1080/01480545.2018.1465950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this review, genotoxic and mutagenic effects of teratogenic chemical agents in both rat and mouse have been reviewed. Of these chemicals, 97 are drugs and 33 are pesticides or belong to other groups. Large literature searches were conducted to determine the effects of chemicals on chromosome abnormalities, sister chromatid exchanges, and micronucleus formation in experimental animals such as rats and mice. In addition, studies that include unscheduled DNA synthesis, DNA adduct formations, and gene mutations, which help to determine the genotoxicity or mutagenicity of chemicals, have been reviewed. It has been estimated that 46.87% of teratogenic drugs and 48.48% of teratogenic pesticides are positive in all tests. So, all of the teratogens involved in this group have genotoxic and mutagenic effects. On the other hand, 36.45% of the drugs and 21.21% of the pesticides have been found to give negative results in at least one test, with the majority of the tests giving positive results. However, only 4.16% of the drugs and 18.18% of the pesticides were determined to give negative results in the majority of the tests. Among tests with major negative results, 12.50% of the teratogenic drugs and 12.12% of the teratogenic pesticides were negative in all conducted tests.
Collapse
Affiliation(s)
- Eyyüp Rencüzoğulları
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| | - Muhsin Aydın
- a Department of Biology, Faculty of Science and Letters , Adiyaman University , Adiyaman , Turkey
| |
Collapse
|
17
|
Avlasevich SL, Khanal S, Singh P, Torous DK, Bemis JC, Dertinger SD. Flow cytometric method for scoring rat liver micronuclei with simultaneous assessments of hepatocyte proliferation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:176-187. [PMID: 29356121 PMCID: PMC5854533 DOI: 10.1002/em.22168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/20/2017] [Indexed: 05/28/2023]
Abstract
The current report describes a newly devised method for automatically scoring the incidence of rat hepatocyte micronuclei (MNHEP) via flow cytometry, with concurrent assessments of hepatocyte proliferation-frequency of Ki-67-positive nuclei, and the proportion of polyploid nuclei. Proof-of-concept data are provided from experiments performed with 6-week old male Crl:CD(SD) rats exposed to diethylnitrosamine (DEN) or quinoline (QUIN) for 3 or 14 consecutive days. Non-perfused liver tissue was collected 4 days after cessation of treatment in the case of 3-day studies, or 1 day after last administration in the case of 14-day studies for processing and flow cytometric analysis. In addition to livers, blood samples were collected one day after final treatment for micronucleated reticulocyte (MN-RET) measurements. Dose-dependent increases in MNHEP, Ki-67-positive nuclei, and polyploidy were observed in 3- and 14-day DEN studies. Both treatment schedules resulted in elevated %MNHEP for QUIN-exposed rats, and while cell proliferation effects were subtle, appreciable increases to normalized liver weights were observed. Whereas DEN caused markedly higher %MNHEP when exposure was extended to two weeks, QUIN-induced MNHEP were slightly increased with protracted dosing. Parallel microscopy-based MNHEP frequencies were highly correlated with flow cytometry-based measurements (four study/aggregate R2 = 0.80). No increases in MN-RET were seen in any of the four studies. Collectively, these results suggest liver micronuclei are amenable to an automated scoring technique that provides objective analyses and higher information content relative to conventional microscopy. Additional work is needed to expand the number and types of chemicals tested, identify the most advantageous treatment schedules, and test the transferability of the method. Environ. Mol. Mutagen. 59:176-187, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | | | | | - Stephen D. Dertinger
- Corresponding Author: S.D.D., Litron Laboratories, 3500 Winton Place, Rochester, NY 14623; Tele: 585-442-0930; fax: 585-442-0934;
| |
Collapse
|
18
|
Hobbs CA, Koyanagi M, Swartz C, Davis J, Kasamoto S, Maronpot R, Recio L, Hayashi SM. Comprehensive evaluation of the flavonol anti-oxidants, alpha-glycosyl isoquercitrin and isoquercitrin, for genotoxic potential. Food Chem Toxicol 2018; 113:218-227. [PMID: 29317330 DOI: 10.1016/j.fct.2017.12.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/13/2017] [Accepted: 12/28/2017] [Indexed: 12/11/2022]
Abstract
Quercetin and its glycosides possess potential benefits to human health. Several flavonols are available to consumers as dietary supplements, promoted as anti-oxidants; however, incorporation of natural quercetin glycosides into food and beverage products has been limited by poor miscibility in water. Enzymatic conjugation of multiple glucose moieties to isoquercitrin to produce alpha-glycosyl isoquercitrin (AGIQ) enhances solubility and bioavailability. AGIQ is used in Japan as a food additive and has been granted generally recognized as safe (GRAS) status. However, although substantial genotoxicity data exist for quercetin, there is very little available data for AGIQ and isoquercitrin. To support expanded global marketing of food products containing AGIQ, comprehensive testing of genotoxic potential of AGIQ and isoquercitrin was conducted according to current regulatory test guidelines. Both chemicals tested positive in bacterial reverse mutation assays, and exposure to isoquercitrin resulted in chromosomal aberrations in CHO-WBL cells. All other in vitro mammalian micronucleus and chromosomal aberration assays, micronucleus and comet assays in male and female B6C3F1 mice and Sprague Dawley rats, and Muta™ Mouse mutation assays evaluating multiple potential target tissues, were negative for both chemicals. These results supplement existing toxicity data to further support the safe use of AGIQ in food and beverage products.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Sawako Kasamoto
- Public Interest Incorporated Foundation Biosafety Research Center (BSRC), 582-2, Shioshinden, Iwata-shi, Shizuoka 437-1213, Japan
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Shim-Mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
19
|
Akagi J, Yokoi M, Cho YM, Toyoda T, Ohmori H, Hanaoka F, Ogawa K. Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair (Amst) 2017; 61:76-85. [PMID: 29247828 DOI: 10.1016/j.dnarep.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.
Collapse
Affiliation(s)
- Junichi Akagi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo Prefecture 657-8501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture 305-8577, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
20
|
Şekeroğlu ZA, Aydın B, Şekeroğlu V. Argan oil reduces oxidative stress, genetic damage and emperipolesis in rats treated with acrylamide. Biomed Pharmacother 2017; 94:873-879. [DOI: 10.1016/j.biopha.2017.08.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 02/06/2023] Open
|
21
|
Merkel cell polyomavirus small T antigen induces genome instability by E3 ubiquitin ligase targeting. Oncogene 2017; 36:6784-6792. [PMID: 28846109 PMCID: PMC5720911 DOI: 10.1038/onc.2017.277] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 02/08/2023]
Abstract
The formation of a bipolar mitotic spindle is an essential process for the equal segregation of duplicated DNA into two daughter cells during mitosis. As a result of deregulated cellular signaling pathways, cancer cells often suffer a loss of genome integrity that might etiologically contribute to carcinogenesis. Merkel cell polyomavirus (MCV) small T (sT) oncoprotein induces centrosome overduplication, aneuploidy, chromosome breakage and the formation of micronuclei by targeting cellular ligases through a sT domain that also inhibits MCV large T oncoprotein turnover. These results provide important insight as to how centrosome number and chromosomal stability can be affected by the E3 ligase targeting capacity of viral oncoproteins such as MCV sT, which may contribute to Merkel cell carcinogenesis.
Collapse
|
22
|
Rana SVS, Verma Y, Singh GD. Assessment of genotoxicity amongst smokers, alcoholics, and tobacco chewers of North India using micronucleus assay and urinary 8-hydroxyl-2'-deoxyguanosine, as biomarkers. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:391. [PMID: 28702879 DOI: 10.1007/s10661-017-6103-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The main objective of the present study was to screen the genotoxicity caused by individual and combined habits of smoking, tobacco chewing, and alcohol consumption in human population of North India. Study recruited 67 male subjects aged 25 to 65 years. Buccal mucosal cells were subjected to micronucleus (MN) assay, and 8-hydroxyl-2-deoxyguanosine (8-OHdG) was estimated in their urine samples. Number and shape of the MN cells varied in the buccal epithelium of different groups. Maximum number of MN (0.47%) were found in tobacco chewers followed by smokers (0.45%) and alcoholics (0.44%) (P < 0.05). These results reciprocated the concentration of urinary 8-OHdG. Maximum value for 8-OHdG was also recorded in tobacco chewers (21.07 ± 5.51 mg/mg creatinine) followed by smokers (20.25 ± 3.96 mg/mg creatinine) and alcoholics (19.06 ± 3.41 mg/mg creatinine) (P < 0.05). Combined effects of these agents were found to be statistically different from individual effects. Carcinogenic compounds present in cigarette smoke, nitrosamines found in solid tobacco, and acetaldehyde, a metabolic product of alcohol, induce oxidative stress that manifests into genotoxicity. In conclusion, demographical differences occur in the genotoxicity caused by these three habits. MN assay and urinary 8-OHdG are simple, noninvasive, and reliable biomarkers of genotoxicity.
Collapse
Affiliation(s)
- S V S Rana
- Department of Zoology, Toxicology Laboratory, Ch. Charan Singh University, Meerut, UP, 250004, India.
| | - Yeshvandra Verma
- Department of Zoology, Toxicology Laboratory, Ch. Charan Singh University, Meerut, UP, 250004, India
| | - Gagan Deep Singh
- Department of Zoology, Toxicology Laboratory, Ch. Charan Singh University, Meerut, UP, 250004, India
| |
Collapse
|
23
|
Manservisi F, Marquillas CB, Buscaroli A, Huff J, Lauriola M, Mandrioli D, Manservigi M, Panzacchi S, Silbergeld EK, Belpoggi F. An Integrated Experimental Design for the Assessment of Multiple Toxicological End Points in Rat Bioassays. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:289-295. [PMID: 27448388 PMCID: PMC5332192 DOI: 10.1289/ehp419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/27/2016] [Accepted: 06/20/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND For nearly five decades long-term studies in rodents have been the accepted benchmark for assessing chronic long-term toxic effects, particularly carcinogenicity, of chemicals. The European Food Safety Authority (EFSA) and the World Health Organization (WHO) have pointed out that the current set of internationally utilized test methods capture only some of the potential adverse effects associated with exposures to these agents over the lifetime. OBJECTIVES In this paper, we propose the adaption of the carcinogenicity bioassay to integrate additional protocols for comprehensive long-term toxicity assessment that includes developmental exposures and long-term outcomes, capable of generating information on a broad spectrum of different end points. DISCUSSION An integrated study design based on a stepwise process is described that includes the priority end points of the Economic Co-operation and Development and the National Toxicology Program guidelines on carcinogenicity and chronic toxicity and developmental and reproductive toxicity. Integrating a comprehensive set of relevant toxicological end points in a single protocol represents an opportunity to optimize animal use in accordance with the 3Rs (replacement, reduction and refinement). This strategy has the potential to provide sufficient data on multiple windows of susceptibility of specific interest for risk assessments and public health decision-making by including prenatal, lactational, neonatal exposures and evaluating outcomes over the lifespan. CONCLUSION This integrated study design is efficient in that the same generational cohort of rats used for evaluating long-term outcomes can be monitored in satellite parallel experiments to measure biomarkers and other parameters related to system-specific responses including metabolic alterations and endocrine disturbances. Citation: Manservisi F, Babot Marquillas C, Buscaroli A, Huff J, Lauriola M, Mandrioli D, Manservigi M, Panzacchi S, Silbergeld EK, Belpoggi F. 2017. An integrated experimental design for the assessment of multiple toxicological end points in rat bioassays. Environ Health Perspect 125:289-295; http://dx.doi.org/10.1289/EHP419.
Collapse
Affiliation(s)
- Fabiana Manservisi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Clara Babot Marquillas
- Leonardo da Vinci Programme at the Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Annalisa Buscaroli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - James Huff
- National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Michelina Lauriola
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Marco Manservigi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Simona Panzacchi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Ellen K. Silbergeld
- Leonardo da Vinci Programme at the Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bentivoglio, Bologna, Italy
| |
Collapse
|
24
|
Le Bihanic F, Di Bucchianico S, Karlsson HL, Dreij K. In vivo
micronucleus screening in zebrafish by flow cytometry. Mutagenesis 2016; 31:643-653. [DOI: 10.1093/mutage/gew032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
25
|
Hobbs CA, Davis J, Shepard K, Chepelev N, Friedman M, Marroni D, Recio L. Differential genotoxicity of acrylamide in the micronucleus andPig-a gene mutation assays in F344 rats and B6C3F1 mice. Mutagenesis 2016; 31:617-626. [DOI: 10.1093/mutage/gew028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Ryan KR, Cesta MF, Herbert R, Brix A, Cora M, Witt K, Kissling G, Morgan DL. Comparative pulmonary toxicity of inhaled metalworking fluids in rats and mice. Toxicol Ind Health 2016; 33:385-405. [PMID: 27343050 DOI: 10.1177/0748233716653912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Metalworking fluids (MWFs) are complex formulations designed for effective lubricating, cooling, and cleaning tools and parts during machining operations. Adverse health effects such as respiratory symptoms, dermatitis, and cancer have been reported in workers exposed to MWFs. Several constituents of MWFs have been implicated in toxicity and have been removed from the formulations over the years. However, animal studies with newer MWFs demonstrate that they continue to pose a health risk. This investigation examines the hypothesis that unrecognized health hazards exist in currently marketed MWF formulations that are presumed to be safe based on hazard assessments of individual ingredients. In vivo 13-week inhalation studies were designed to characterize and compare the potential toxicity of four MWFs: Trim VX, Cimstar 3800, Trim SC210, and Syntilo 1023. Male and female Wistar Han rats or Fischer 344N/Tac rats and B6C3F1/N mice were exposed to MWFs via whole-body inhalation at concentrations of 0, 25, 50, 100, 200, or 400 mg/m3 for 13 weeks, after which, survival, body and organ weights, hematology and clinical chemistry, histopathology, and genotoxicity were assessed following exposure. Although high concentrations were used, survival was not affected and toxicity was primarily within the respiratory tract of male and female rats and mice. Minor variances in toxicity were attributed to differences among species as well as in the chemical components of each MWF. Pulmonary fibrosis was present only in rats and mice exposed to Trim VX. These data confirm that newer MWFs have the potential to cause respiratory toxicity in workers who are repeatedly exposed via inhalation.
Collapse
Affiliation(s)
- Kristen R Ryan
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Mark F Cesta
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Ronald Herbert
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amy Brix
- 2 Experimental Pathology Labs Inc., Morrisville, NC, USA
| | - Michelle Cora
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kristine Witt
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Grace Kissling
- 3 Biostatistics Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Daniel L Morgan
- 1 Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
27
|
Yasinskiy Y, Omelyanchuk LV, Zhuk OV, Kozeretska IA. Mutagenesis testing using the LacZ reporter activity of the reparation gene mus209 in Drosophila melanogaster. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716030105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Gaignaux A, Ashton G, Coppola D, De Souza Y, De Wilde A, Eliason J, Grizzle W, Guadagni F, Gunter E, Koppandi I, Shea K, Shi T, Stein JA, Sobel ME, Tybring G, Van den Eynden G, Betsou F. A Biospecimen Proficiency Testing Program for Biobank Accreditation: Four Years of Experience. Biopreserv Biobank 2016; 14:429-439. [PMID: 27195612 DOI: 10.1089/bio.2015.0108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Biobanks produce and distribute biospecimens, ensuring their fitness for purpose and accurately qualifying them before distribution. In their efforts toward professionalization, biobanks can nowadays seek certification or accreditation. One of the requirements of these standards is regular participation in Proficiency Testing (PT) programs. An international PT program has been developed and provided to biobanks and other laboratories that perform specific tests to qualify different types of biospecimens. This PT program includes biospecimen testing schemes, as well as biospecimen processing interlaboratory exercises. This PT program supports the development of biobank quality assurance by providing the possibility to assess biobank laboratory performance and useful insights into biobank laboratory method performance characteristics and thus fulfill the demands from accreditation authorities.
Collapse
Affiliation(s)
| | - Garry Ashton
- 2 Cancer Research UK Manchester Institute , Manchester, United Kingdom
| | | | - Yvonne De Souza
- 4 AIDS Specimen Bank, University of California , San Francisco, San Francisco, California
| | | | - James Eliason
- 6 Great Lakes Stem Cell Innovation Center , Detroit, Michigan
| | - William Grizzle
- 7 Tissue Collection and Banking Facility, University of Alabama , Birmingham, Birmingham, Alabama
| | - Fiorella Guadagni
- 8 BioBIM (Multidisciplinary Interinstitutional Biobank) IRCCS San Raffaele , Rome, Italy
| | | | - Iren Koppandi
- 10 Cellular Technology Limited , Shaker Heights, Ohio
| | | | - Tim Shi
- 12 GlobalMD Network Corporation , Catonsville, Maryland
| | - Julie A Stein
- 13 PPD Vaccines and Biologics Lab , Wayne, Pennsylvania
| | - Mark E Sobel
- 14 American Society for Investigative Pathology , Bethesda, Maryland
| | | | - Gert Van den Eynden
- 16 Molecular Immunology Unit, Institut Jules Bordet , Brussels, Belgium .,17 Pathobiology Group , EORTC, Brussels, Belgium
| | - Fay Betsou
- 1 Integrated Biobank of Luxembourg , Luxembourg, Luxembourg
| |
Collapse
|
29
|
Maronpot RR, Hobbs CA, Davis J, Swartz C, Boyle M, Koyanagi M, Hayashi SM. Genetic and rat toxicity studies of cyclodextrin glucanotransferase. Toxicol Rep 2016; 3:381-392. [PMID: 28959560 PMCID: PMC5615836 DOI: 10.1016/j.toxrep.2016.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 11/15/2022] Open
Abstract
Bacterial cyclodextrin glucanotransferase (CGTase) is used to produce a water soluble form of glycosylated isoquercitrin. Genotoxicity battery on CGTase and sodium sulfate negative for mutations and DNA damage. No evidence of systemic toxicity in 90-day rat toxicity study of CGTase.
Introduction Microbiologically derived cyclodextrin glucanotransferase (CGTase) is used commercially as a processing agent in manufacture of food, pharmaceuticals, and cosmetics. Its toxic potential was evaluated in anticipation of use in the production of alpha-glycosyl isoquercitrin, a water-soluble form of quercetin. Methods Following OECD guidelines, CGTase, produced by Bacillus pseudalcaliphilus DK-1139, was evaluated in a genotoxicity battery consisting of a bacterial reverse mutation assay, an in vitro micronucleus (MN) assay and MN and comet assays using B6C3F1 male and female mice. These same genotoxicity assays were also conducted for sodium sulfate, a contaminant of CGTase preparation. In a 90-day Sprague Dawley rat toxicity study, CGTase was administered by gavage in water at daily doses of 0, 250, 500, and 1000 mg/kg/day. Results CGTase did not induce mutations with or without metabolic activation in the bacterial reverse mutation assay. Formation of micronuclei was not induced in either in vitro or in vivo MN assays with or without metabolic activation. No induction of DNA damage was detected in male or female mouse liver, stomach, or duodenum in the comet assay. Sodium sulfate also tested negative in these same genotoxicity assays. In the 90-day repeated dose rat study there were no treatment-related adverse clinical or pathological findings. Conclusion The genotoxicity assays and repeated dose toxicity study support the safe use of CGTase in production of alpha-glycosyl isoquercitrin.
Collapse
Affiliation(s)
- Robert R. Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
- Corresponding author.
| | - Cheryl A. Hobbs
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Jeffrey Davis
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Carol Swartz
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Molly Boyle
- Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Mihoko Koyanagi
- Global Scientific & Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific & Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
30
|
Boudreau MD, Imam MS, Paredes AM, Bryant MS, Cunningham CK, Felton RP, Jones MY, Davis KJ, Olson GR. Differential Effects of Silver Nanoparticles and Silver Ions on Tissue Accumulation, Distribution, and Toxicity in the Sprague Dawley Rat Following Daily Oral Gavage Administration for 13 Weeks. Toxicol Sci 2016; 150:131-60. [PMID: 26732888 DOI: 10.1093/toxsci/kfv318] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There are concerns within the regulatory and research communities regarding the health impact associated with consumer exposure to silver nanoparticles (AgNPs). This study evaluated particulate and ionic forms of silver and particle size for differences in silver accumulation, distribution, morphology, and toxicity when administered daily by oral gavage to Sprague Dawley rats for 13 weeks. Test materials and dose formulations were characterized by transmission electron microscopy (TEM), dynamic light scattering, and inductively coupled mass spectrometry (ICP-MS). Seven-week-old rats (10 rats per sex per group) were randomly assigned to treatments: AgNP (10, 75, and 110 nm) at 9, 18, and 36 mg/kg body weight (bw); silver acetate (AgOAc) at 100, 200, and 400 mg/kg bw; and controls (2 mM sodium citrate (CIT) or water). At termination, complete necropsies were conducted, histopathology, hematology, serum chemistry, micronuclei, and reproductive system analyses were performed, and silver accumulations and distributions were determined. Rats exposed to AgNP did not show significant changes in body weights or intakes of feed and water relative to controls, and blood, reproductive system, and genetic tests were similar to controls. Differences in the distributional pattern and morphology of silver deposits were observed by TEM: AgNP appeared predominantly within cells, while AgOAc had an affinity for extracellular membranes. Significant dose-dependent and AgNP size-dependent accumulations were detected in tissues by ICP-MS. In addition, sex differences in silver accumulations were noted for a number of tissues and organs, with accumulations being significantly higher in female rats, especially in the kidney, liver, jejunum, and colon.
Collapse
Affiliation(s)
| | | | | | | | | | - Robert P Felton
- Bioinformatics and Biostatistics Division, National Center for Toxicological Research, Food and Drug Administration, Jefferson, Arkansas; and
| | | | - Kelly J Davis
- Toxicologic Pathology Associates, Jefferson Laboratories, Jefferson, Arkansas
| | - Greg R Olson
- Toxicologic Pathology Associates, Jefferson Laboratories, Jefferson, Arkansas
| |
Collapse
|
31
|
Kirkland D, Kasper P, Martus HJ, Müller L, van Benthem J, Madia F, Corvi R. Updated recommended lists of genotoxic and non-genotoxic chemicals for assessment of the performance of new or improved genotoxicity tests. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 795:7-30. [DOI: 10.1016/j.mrgentox.2015.10.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 01/09/2023]
|
32
|
Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Koyanagi M, Hayashi SM. Genotoxicity evaluation of the flavonoid, myricitrin, and its aglycone, myricetin. Food Chem Toxicol 2015; 83:283-92. [PMID: 26142838 DOI: 10.1016/j.fct.2015.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/04/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Myricitrin, a flavonoid extracted from the fruit, leaves, and bark of Chinese bayberry (Myrica rubra SIEBOLD), is currently used as a flavor modifier in snack foods, dairy products, and beverages in Japan. Myricitrin is converted to myricetin by intestinal microflora; myricetin also occurs ubiquitously in plants and is consumed in fruits, vegetables, and beverages. The genotoxic potential of myricitrin and myricetin was evaluated in anticipation of worldwide marketing of food products containing myricitrin. In a bacterial reverse mutation assay, myricetin tested positive for frameshift mutations under metabolic activation conditions whereas myricitrin tested negative for mutagenic potential. Both myricitrin and myricetin induced micronuclei formation in human TK6 lymphoblastoid cells under conditions lacking metabolic activation; however, the negative response observed in the presence of metabolic activation suggests that rat liver S9 homogenate may detoxify reactive metabolites of these chemicals in mammalian cells. In 3-day combined micronucleus/Comet assays using male and female B6C3F1 mice, no induction of micronuclei was observed in peripheral blood, or conclusive evidence of damage detected in the liver, glandular stomach, or duodenum following exposure to myricitrin or myricetin. Our studies did not reveal evidence of genotoxic potential of myricitrin in vivo, supporting its safe use in food and beverages.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA.
| | - Carol Swartz
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Robert Maronpot
- Maronpot Consulting LLC, 1612 Medfield Road, Raleigh, NC 27607, USA
| | - Jeffrey Davis
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Leslie Recio
- Toxicology Program, Integrated Laboratory Systems, Inc., PO Box 13501, Research Triangle Park, NC 27709, USA
| | - Mihoko Koyanagi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| | - Shim-mo Hayashi
- Global Scientific and Regulatory Affairs, San-Ei Gen F.F.I., Inc., 1-1-11 Sanwa-cho, Toyonaka, Osaka 561-8588, Japan
| |
Collapse
|
33
|
|
34
|
French JE, Gatti DM, Morgan DL, Kissling GE, Shockley KR, Knudsen GA, Shepard KG, Price HC, King D, Witt KL, Pedersen LC, Munger SC, Svenson KL, Churchill GA. Diversity Outbred Mice Identify Population-Based Exposure Thresholds and Genetic Factors that Influence Benzene-Induced Genotoxicity. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:237-45. [PMID: 25376053 PMCID: PMC4348743 DOI: 10.1289/ehp.1408202] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 10/31/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inhalation of benzene at levels below the current exposure limit values leads to hematotoxicity in occupationally exposed workers. OBJECTIVE We sought to evaluate Diversity Outbred (DO) mice as a tool for exposure threshold assessment and to identify genetic factors that influence benzene-induced genotoxicity. METHODS We exposed male DO mice to benzene (0, 1, 10, or 100 ppm; 75 mice/exposure group) via inhalation for 28 days (6 hr/day for 5 days/week). The study was repeated using two independent cohorts of 300 animals each. We measured micronuclei frequency in reticulocytes from peripheral blood and bone marrow and applied benchmark concentration modeling to estimate exposure thresholds. We genotyped the mice and performed linkage analysis. RESULTS We observed a dose-dependent increase in benzene-induced chromosomal damage and estimated a benchmark concentration limit of 0.205 ppm benzene using DO mice. This estimate is an order of magnitude below the value estimated using B6C3F1 mice. We identified a locus on Chr 10 (31.87 Mb) that contained a pair of overexpressed sulfotransferases that were inversely correlated with genotoxicity. CONCLUSIONS The genetically diverse DO mice provided a reproducible response to benzene exposure. The DO mice display interindividual variation in toxicity response and, as such, may more accurately reflect the range of response that is observed in human populations. Studies using DO mice can localize genetic associations with high precision. The identification of sulfotransferases as candidate genes suggests that DO mice may provide additional insight into benzene-induced genotoxicity.
Collapse
Affiliation(s)
- John E French
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Resources (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hansen MK, Sharma AK, Dybdahl M, Boberg J, Kulahci M. In vivo Comet assay – statistical analysis and power calculations of mice testicular cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 774:29-40. [DOI: 10.1016/j.mrgentox.2014.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 08/16/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
|
36
|
Inter-laboratory validation of the in-vivo flow cytometric micronucleus analysis method (MicroFlow®) in China. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 772:6-13. [PMID: 25308541 DOI: 10.1016/j.mrgentox.2014.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 03/19/2014] [Accepted: 04/30/2014] [Indexed: 12/23/2022]
Abstract
Although inter-laboratory validation efforts of the in-vivo micronucleus (MN) assay based on flow cytometry (FCM) have taken place in the EU and US, none have been organized in China. Therefore, an inter-laboratory study that included eight laboratories in China and one experienced reference laboratory in the US was coordinated to validate the in-vivo FCM MicroFlow(®) method to determine the frequency of micro-nucleated reticulocytes (MN-RETs) in rat blood. Assay reliability and reproducibility were evaluated with four known genotoxicants, and the results obtained with the FCM method were compared with the outcome of the traditional evaluation of bone-marrow micronuclei by use of microscopy. Each of the four chemicals was tested at three sites (two in China and the one US reference laboratory). After three consecutive daily exposures to a genotoxicant, blood and bone-marrow samples were obtained from rats 24h after the third dose. MN-RET frequencies were measured in 20,000 RET in blood by FCM, and micro-nucleated polychromatic erythrocyte (MN-PCE) frequencies were measured in 2,000 PCEs in bone marrow by microscopy. For both methods, each genotoxicant was shown to induce a statistically significant increase in the frequency of MN after treatment with at least one dose. Where more doses than one caused an increase, responses occurred in a dose-dependent manner. Spearman's correlation coefficient (rs) for FCM-based MN-RET vs microscopy-based MN-PCE measurements (eight experiments, 200 paired measurements) was 0.723, indicating a high degree of correspondence between methods and compartments. The rs value for replicate FCM MN-RET measurements performed at the eight collaborative laboratories was 0.940 (n=200), and between the eight FCM laboratories with the reference laboratory was 0.933 (n=200), suggesting that the automated method is very well transferable between laboratories. The FCM micronucleus analysis method is currently used in many countries worldwide, and these data support its use for evaluating the in-vivo genotoxic potential of test chemicals in China.
Collapse
|
37
|
Schisler MR, Sura R, Visconti NR, Sosinski LK, Murphy LA, LeBaron MJ, Boverhof DR. Concurrent evaluation of general, immune, and genetic toxicity endpoints as part of an integrated testing strategy. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2014; 55:530-541. [PMID: 24976023 DOI: 10.1002/em.21879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 05/27/2014] [Indexed: 06/03/2023]
Abstract
Integrated testing strategies involve the assessment of multiple endpoints within a single toxicity study and represent an important approach for reducing animal use and streamlining testing. The present study evaluated the ability to combine general, immune, and genetic toxicity endpoints into a single study. Specifically, this study evaluated the impact of sheep red blood cell (SRBC) immunization, as part of the T-cell dependent antibody response (TDAR) assay, on organ weights, micronuclei (MN) formation (bone marrow and peripheral blood), and the Comet assay response in the liver of female F344/DuCrl rats treated with cyclophosphamide (CP) a known immunosuppressive chemical and genotoxicant. For the TDAR assay, treatment with CP resulted in a dose-dependent decrease in the antibody response with a suppression of greater than 95% at the high dose. Injection with SRBC had no impact on evaluated organ weights, histopathology, hematology, and clinical chemistry parameters. Analysis of MN formation in bone marrow and peripheral blood revealed a dose-dependent increase in response to CP treatment. Injection with SRBC had no impact on the level of MN in control animals and did not alter the dose response of CP. There was a slight increase in liver DNA damage in response to CP as measured by the Comet assay; however, injection with SRBCs did not alter this endpoint. Overall these data provide strong support for the concurrent assessment of general, immune, and genetic toxicology endpoints within a single study as part of an integrated testing strategy approach.
Collapse
Affiliation(s)
- Melissa R Schisler
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan
| | | | | | | | | | | | | |
Collapse
|
38
|
Comparison of three-colour flow cytometry and slide-based microscopy for the scoring of micronucleated reticulocytes in rat bone-marrow and peripheral blood. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 758:12-7. [DOI: 10.1016/j.mrgentox.2013.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/11/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022]
|
39
|
Assessment of genotoxic potential of the insecticide Dichlorvos using cytogenetic assay. Interdiscip Toxicol 2013; 6:77-82. [PMID: 24179433 PMCID: PMC3798860 DOI: 10.2478/intox-2013-0014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 04/02/2013] [Accepted: 04/18/2013] [Indexed: 11/20/2022] Open
Abstract
The possible genotoxic activity of Dichlorvos (2,2-Dichlorovinyl-O,O-dimethyl phosphate/DDVP, CAS No. 62-73-7), an organophosphorus insecticide was investigated employing three cytogenetic end points, i.e. micronucleus (MN) assay, mitotic indices (MI) and chromosome abberation (CA) analysis in vivo. The assays were carried out in hematopoietic bone marrow cells of Mus musculus at concentrations of 10, 20 and 30% of LD50 for intraperitoneal (ip) administration, corresponding to 0.06, 0.08 and 0.13 mg/kg Bwt, respectively. The normal control group received single ip dose of distilled water (2 ml/100 g Bwt), while animals of the positive group were injected with cyclophosphamide, a model mutagen (40 mg/kg Bwt) under identical conditions. The animals were sacrificed 24, 48 and 72 hrs post treatment. Under the present experimental conditions, there was no evidence of significant increase of MN frequencies at any dose or sampling time in polychromatic (PCE) and normochromatic (NCE) erythrocytes. The PCE/NCE ratio was not notably affected; however, a slight depression in prolonged exposure (48, 72 hr) intervals and a slight increase at the 24 hr interval were observed. Cells with various structural chromosome aberrations were noted but no significant (p<0.05; Man-Whitney U-test) differences in the frequencies of CA or mitotic indices (p<0.05; χ(2) test) were observed between Dichlorvos treated groups and the normal control group at doses or time intervals used. The results of the present investigation reflects a negative in vivo genotoxic potential of Dichlorvos at sublethal doses in bone marrow cells. Further studies are underway to confirm the presence or absence of genotoxic activity since compounds negative in genotoxic evaluation are susceptible of being carcinogens triggering cancer by genotoxic or non-genotoxic mechanisms.
Collapse
|
40
|
Salazar AM, Mendlovic F, Cruz-Rivera M, Chávez-Talavera O, Sordo M, Avila G, Flisser A, Ostrosky-Wegman P. Genotoxicity induced by Taenia solium and its reduction by immunization with calreticulin in a hamster model of taeniosis. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:347-353. [PMID: 23704053 DOI: 10.1002/em.21782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 06/02/2023]
Abstract
Genotoxicity induced by neurocysticercosis has been demonstrated in vitro and in vivo in humans. The adult stage of Taenia solium lodges in the small intestine and is the main risk factor to acquire neurocysticercosis, nevertheless its carcinogenic potential has not been evaluated. In this study, we determined the genotoxic effect of T. solium infection in the hamster model of taeniosis. In addition, we assessed the effect of oral immunization with recombinant T. solium calreticulin (rTsCRT) plus cholera toxin as adjuvant on micronuclei induction, as this protein has been shown to induce 33-44% protection in the hamster model of taeniosis. Blood samples were collected from the orbital venous plexus of noninfected and infected hamsters at different days postinfection, as well as from orally immunized animals, to evaluate the frequency of micronucleated reticulocytes as a measure of genotoxicity induced by parasite exposure and rTsCRT vaccination. Our results indicate that infection with T. solium caused time-dependent DNA damage in vivo and that rTsCRT immunization reduced the genotoxic damage induced by the presence of the tapeworms.
Collapse
Affiliation(s)
- Ana María Salazar
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México UNAM, México, D.F., México
| | | | | | | | | | | | | | | |
Collapse
|
41
|
LeBaron MJ, Schisler MR, Torous DK, Dertinger SD, Gollapudi BB. Influence of counting methodology on erythrocyte ratios in the mouse micronucleus test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:222-228. [PMID: 23224994 DOI: 10.1002/em.21754] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 09/24/2012] [Accepted: 10/29/2012] [Indexed: 06/01/2023]
Abstract
The mammalian erythrocyte micronucleus test is widely used to investigate the potential interaction of a test substance with chromosomes or mitotic apparatus of replicating erythroblasts. In addition to the primary endpoint, micronucleated erythrocyte frequency, the proportion of immature erythrocytes is measured to assess the influence of treatment on erythropoiesis. The guideline recommendation for an acceptable limit of the immature erythrocyte fraction of not < 20% of the controls was based on traditional scoring methods that consider RNA content. Flow-based sample analysis (e.g., MicroFlow®) characterizes a subpopulation of RNA-containing reticulocytes (RETs) based on CD71 (transferrin receptor) expression. As CD71+ cells represent a younger cohort of RETs, we hypothesized that this subpopulation may be more responsive than the RNA+ fraction for acute exposures. This study evaluated RET population in the peripheral blood of two strains of mice treated by oral gavage with three clastogens (cyclophosphamide, N-ethyl-N-nitrosourea, and methyl methanesulfonate). Although CD71+ frequencies correlated with RNA-based counts, the relative treatment-related reductions were substantially greater. Accordingly, when using the flow cytometry-based CD71+ values for scoring RETs in an acute treatment design, it is suggested that a target value ≥ 5% CD71+ reticulocytes (i.e., 95% depression in reticulocytes proportion) be considered as acceptable for a valid assay.
Collapse
Affiliation(s)
- Matthew J LeBaron
- Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan 48674, USA.
| | | | | | | | | |
Collapse
|
42
|
Harada A, Matsuzaki K, Takeiri A, Tanaka K, Mishima M. Fluorescent dye-based simple staining for in vivo micronucleus test with flow cytometer. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:85-90. [DOI: 10.1016/j.mrgentox.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Revised: 11/21/2012] [Accepted: 12/03/2012] [Indexed: 11/29/2022]
|
43
|
Ahmad T, Shekh K, Khan S, Vikram A, Yadav L, Parekh C, Jena G. Pretreatment with valproic acid, a histone deacetylase inhibitor, enhances the sensitivity of the peripheral blood micronucleus assay in rodents. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 751:19-26. [DOI: 10.1016/j.mrgentox.2012.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 10/05/2012] [Accepted: 10/21/2012] [Indexed: 10/27/2022]
|
44
|
Lee CS, Yeo YSW, Sin TM. Bleaching response of Symbiodinium (zooxanthellae): determination by flow cytometry. Cytometry A 2012; 81:888-95. [PMID: 22865628 DOI: 10.1002/cyto.a.22111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 04/26/2012] [Accepted: 07/03/2012] [Indexed: 11/07/2022]
Abstract
Coral bleaching is of increasing concern to reef management and stakeholders. Thus far, quantification of coral bleaching tends to be heavily reliant on the enumeration of zooxanthellae, with less emphasis on assessment of photosynthetic or physiological condition, these being often assessed separately by techniques such as liquid chromatography. Traditional methods of enumeration using microscopy are time consuming, subjected to low precision and great observer error. In this study, we presented a method for the distinction of physoiological condition and rapid enumeration of zooxanthellae using flow cytometry (FCM). Microscopy verified that healthy looking/live versus damaged/dead zooxanthellae could be reliably and objectively distinguished and counted by FCM on the basis of red and green fluorescence and light scatter. Excellent correlations were also determined between FCM and microscopy estimates of cell concentrations of fresh zooxanthellae isolates from Pocillopora damicornis. The relative intensities of chlorophyll and β-carotene fluorescences were shown to be important in understanding the results of increased cell counts in freshly isolated zooxanthellae experimentally exposed to high temperatures (34, 36, and 38°C) over 24 h, with ambient temperature (29°C) used as controls. The ability to simultaneously identify and enumerate subpopulations of different physiological states in the same sample provides an enormous advantage in not just determining bleaching responses, but elucidating adaptive response and mechanisms for tolerance. Therefore, this approach might provide a rapid, convenient, and reproducible methodology for climate change studies and reef management programs.
Collapse
Affiliation(s)
- Co Sin Lee
- Tropical Marine Science Institute, National University of Singapore, Singapore 119227, Singapore.
| | | | | |
Collapse
|
45
|
Mekenyan O, Dimitrov S, Pavlov T, Dimitrova G, Todorov M, Petkov P, Kotov S. Simulation of chemical metabolism for fate and hazard assessment. V. Mammalian hazard assessment. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:553-606. [PMID: 22536822 DOI: 10.1080/1062936x.2012.679689] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Animals and humans are exposed to a wide array of xenobiotics and have developed complex enzymatic mechanisms to detoxify these chemicals. Detoxification pathways involve a number of biotransformations, such as oxidation, reduction, hydrolysis and conjugation reactions. The intermediate substances created during the detoxification process can be extremely toxic compared with the original toxins, hence metabolism should be accounted for when hazard effects of chemicals are assessed. Alternatively, metabolic transformations could detoxify chemicals that are toxic as parents. The aim of the present paper is to describe specificity of eukaryotic metabolism and its simulation and incorporation in models for predicting skin sensitization, mutagenicity, chromosomal aberration, micronuclei formation and estrogen receptor binding affinity implemented in the TIMES software platform. The current progress in model refinement, data used to parameterize models, logic of simulating metabolism, applicability domain and interpretation of predictions are discussed. Examples illustrating the model predictions are also provided.
Collapse
Affiliation(s)
- O Mekenyan
- Laboratory of Mathematical Chemistry, University "Prof. As. Zlatarov", Bourgas, Bulgaria.
| | | | | | | | | | | | | |
Collapse
|
46
|
Mercado-Feliciano M, Cora MC, Witt KL, Granville CA, Hejtmancik MR, Fomby L, Knostman KA, Ryan MJ, Newbold R, Smith C, Foster PM, Vallant MK, Stout MD. An ethanolic extract of black cohosh causes hematological changes but not estrogenic effects in female rodents. Toxicol Appl Pharmacol 2012; 263:138-47. [PMID: 22687605 DOI: 10.1016/j.taap.2012.05.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 05/30/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022]
Abstract
Black cohosh rhizome (Actaea racemosa) is used as a remedy for pain and gynecological ailments; modern preparations are commonly sold as ethanolic extracts available as dietary supplements. Black cohosh was nominated to the National Toxicology Program (NTP) for toxicity testing due to its widespread use and lack of safety data. Several commercially available black cohosh extracts (BCE) were characterized by the NTP, and one with chemical composition closest to formulations available to consumers was used for all studies. Female B6C3F1/N mice and Wistar Han rats were given 0, 15 (rats only), 62.5 (mice only), 125, 250, 500, or 1000 mg/kg/day BCE by gavage for 90 days starting at weaning. BCE induced dose-dependent hematological changes consistent with a non-regenerative macrocytic anemia and increased frequencies of peripheral micronucleated red blood cells (RBC) in both species. Effects were more severe in mice, which had decreased RBC counts in all treatment groups and increased micronucleated RBC at doses above 125 mg/kg. Dose-dependent thymus and liver toxicity was observed in rats but not mice. No biologically significant effects were observed in other organs. Puberty was delayed 2.9 days at the highest treatment dose in rats; a similar magnitude delay in mice occurred in the 125 and 250 mg/kg groups but not at the higher doses. An additional uterotrophic assay conducted in mice exposed for 3 days to 0.001, 0.01, 0.1, 1, 10, 100 and 500 mg/kg found no estrogenic or anti-estrogenic activity. These are the first studies to observe adverse effects of BCE in rodents.
Collapse
Affiliation(s)
- Minerva Mercado-Feliciano
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Swayne BG, Behan NA, Williams A, Stover PJ, Yauk CL, MacFarlane AJ. Supplemental dietary folic acid has no effect on chromosome damage in erythrocyte progenitor cells of mice. J Nutr 2012; 142:813-7. [PMID: 22437555 PMCID: PMC3735919 DOI: 10.3945/jn.112.157750] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 01/30/2012] [Accepted: 02/14/2012] [Indexed: 01/19/2023] Open
Abstract
Folate deficiency can cause chromosome damage, which could result from reduced de novo thymidylate synthesis or DNA hypomethylation. High folic acid intake has been hypothesized to inhibit folate-dependent one-carbon metabolism, which could also lead to DNA damage. A large proportion of the general population may have high folic acid intakes. In this study, 2 experiments were conducted to examine the effects of folate on chromosome damage. First, male mice were fed folic acid-deficient (D) (0 mg folic acid/kg diet), control (C) (2 mg/kg), or folic acid-supplemented (S) (6 mg folic acid/kg diet) diets from weaning to maturity. Second, female mice were fed the D, C, or S diet throughout pregnancy, lactation, and breeding for 3 generations; male mice from the F3 generation were fed the same diet as their mothers from weaning, producing D, C, and S F3 male mice. RBC micronucleus frequencies, a measure of chromosome damage or aneuploidy, were determined for both experimental groups. In mice fed diets from weaning to maturity, erythrocyte micronucleus frequency was 24% greater in D compared with C mice. F3 mice fed diet D had 260% and 174% greater reticulocyte and erythrocyte micronucleus frequencies compared with F3 C mice, respectively. The S diets did not affect micronucleus frequency, suggesting that excess folic acid at this level does not promote or protect against chromosome damage. The results suggest that chronic exposure to folic acid at the levels similar to those achieved through fortification is unlikely to be clastogenic or aneugenic.
Collapse
Affiliation(s)
- Breanne G. Swayne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Nathalie A. Behan
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada; and
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Amanda J. MacFarlane
- Nutrition Research Division, Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, Canada; and
| |
Collapse
|
48
|
Hobbs CA, Chhabra RS, Recio L, Streicker M, Witt KL. Genotoxicity of styrene-acrylonitrile trimer in brain, liver, and blood cells of weanling F344 rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:227-38. [PMID: 22351108 PMCID: PMC3520608 DOI: 10.1002/em.21680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/15/2011] [Accepted: 12/18/2011] [Indexed: 05/05/2023]
Abstract
Styrene-acrylonitrile Trimer (SAN Trimer), a by-product in production of acrylonitrile styrene plastics, was identified at a Superfund site in Dover Township, NJ, where childhood cancer incidence rates were elevated for a period of several years. SAN Trimer was therefore tested by the National Toxicology Program in a 2-year perinatal carcinogenicity study in F344/N rats and a bacterial mutagenicity assay; both studies gave negative results. To further characterize its genotoxicity, SAN Trimer was subsequently evaluated in a combined micronucleus (MN)/Comet assay in juvenile male and female F344 rats. SAN Trimer (37.5, 75, 150, or 300 mg/kg/day) was administered by gavage once daily for 4 days. Micronucleated reticulocyte (MN-RET) frequencies in blood were determined by flow cytometry, and DNA damage in blood, liver, and brain cells was assessed using the Comet assay. Highly significant dose-related increases (P < 0.0001) in MN-RET were measured in both male and female rats administered SAN Trimer. The RET population was reduced in high dose male rats, suggesting chemical-related bone marrow toxicity. Results of the Comet assay showed significant, dose-related increases in DNA damage in brain cells of male (P < 0.0074) and female (P < 0.0001) rats; increased levels of DNA damage were also measured in liver cells and leukocytes of treated rats. Chemical-related cytotoxicity was not indicated in any of the tissues examined for DNA damage. The results of this subacute MN/Comet assay indicate induction of significant genetic damage in multiple tissues of weanling F344 male and female rats after oral exposure to SAN Trimer.
Collapse
Affiliation(s)
- Cheryl A Hobbs
- Department of Genetic and Molecular Toxicology, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
49
|
Recio L, Kissling GE, Hobbs CA, Witt KL. Comparison of Comet assay dose-response for ethyl methanesulfonate using freshly prepared versus cryopreserved tissues. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:101-113. [PMID: 22069077 DOI: 10.1002/em.20694] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 05/31/2023]
Abstract
The National Toxicology Program (NTP) is using the Comet assay to evaluate genotoxic potential, and is investigating the integration of this assay into repeat-dose toxicity studies. To reduce sample-to-sample variability, address logistical concerns associated with evaluating multiple tissues from many animals, and accommodate sample collection at geographically distant testing facilities, tissue samples collected for Comet analysis by the NTP are routinely flash-frozen in liquid nitrogen and stored in a -80°C freezer until evaluation. To compare data obtained from frozen tissues to data from freshly isolated tissues, we conducted a dose-response study in male Sprague Dawley rats. Rats (5 per treatment group) were administered ethyl methanesulfonate (EMS; 0, 25, 50, 100, or 200 mg/kg) by gavage twice at an interval of 21 hr; blood, liver, stomach, and colon tissues were harvested 3 hr after the second treatment. Single-cell preparations from each of the four tissues were put into Hank's balanced salt solution with 10% fresh dimethyl sulfoxide. One aliquot of each tissue preparation was used for immediate analysis, while additional aliquots were flash-frozen in liquid nitrogen and stored in a -80°C freezer for 1 or 8 weeks. One set of 8-week frozen samples was shipped roundtrip via air courier from Research Triangle Park, NC to Rochester, NY prior to analysis. For all four tissues, results from frozen, nontransported samples showed a similar dose-response pattern for EMS-induced genotoxicity. We also demonstrated that for three tissues (blood, liver, stomach), air transport did not alter the sensitivity of the Comet assay for detecting DNA damage.
Collapse
Affiliation(s)
- Leslie Recio
- Genetic and Molecular Toxicology Division, ILS, Research Triangle Park, NC, USA.
| | | | | | | |
Collapse
|
50
|
Hobbs CA, Swartz C, Maronpot R, Davis J, Recio L, Hayashi SM. Evaluation of the genotoxicity of the food additive, gum ghatti. Food Chem Toxicol 2012; 50:854-60. [DOI: 10.1016/j.fct.2011.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 11/25/2022]
|