1
|
Luxenburg O, Vaknin S, Wilf-Miron R, Saban M. Evaluating the Accuracy and Impact of the ESR-iGuide Decision Support Tool in Optimizing CT Imaging Referral Appropriateness. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025; 38:357-367. [PMID: 39028357 PMCID: PMC11811312 DOI: 10.1007/s10278-024-01197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Radiology referral quality impacts patient care, yet factors influencing quality are poorly understood. This study assessed the quality of computed tomography (CT) referrals, identified associated characteristics, and evaluated the ESR-iGuide clinical decision support tool's ability to optimize referrals. A retrospective review analyzed 300 consecutive CT referrals from an acute care hospital. Referral quality was evaluated on a 5-point scale by three expert reviewers (inter-rater reliability κ = 0.763-0.97). The ESR-iGuide tool provided appropriateness scores and estimated radiation exposure levels for the actual referred exams and recommended exams. Scores were compared between actual and recommended exams. Associations between ESR-iGuide scores and referral characteristics, including the specialty of the ordering physician (surgical vs. non-surgical), were explored. Of the referrals, 67.1% were rated as appropriate. The most common exams were head and abdomen/pelvis CTs. The ESR-iGuide deemed 70% of the actual referrals "usually appropriate" and found that the recommended exams had lower estimated radiation exposure compared to the actual exams. Logistic regression analysis showed that non-surgical physicians were more likely to order inappropriate exams compared to surgical physicians. Over one-third of the referrals showed suboptimal quality in the unstructured system. The ESR-iGuide clinical decision support tool identified opportunities to optimize appropriateness and reduce radiation exposure. Implementation of such a tool warrants consideration to improve communication and maximize patient care quality.
Collapse
Affiliation(s)
- Osnat Luxenburg
- Medical Technology, Health Information and Research Directorate, Ministry of Health, Jerusalem, Israel
| | - Sharona Vaknin
- The Gertner Institute for Health Policy and Epidemiology, Ramat-Gan, Israel
| | - Rachel Wilf-Miron
- Department of Health Promotion, School of Public Health, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mor Saban
- School of Health Professions, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv-Yafo, Israel.
| |
Collapse
|
2
|
Hardie RC, Trout AT, Dillman JR, Narayanan BN, Tanimoto AA. Performance of Lung Nodule Computer-Aided Detection Systems on Standard-Dose and Low-Dose Pediatric CT Scans: An Intraindividual Comparison. AJR Am J Roentgenol 2025; 224:e2431972. [PMID: 39382534 DOI: 10.2214/ajr.24.31972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND. When lung nodule computer-aided detection (CAD) systems are applied for pediatric CT, performance may be degraded on low-dose scans due to increased image noise. OBJECTIVE. The purpose of this study was to conduct an intraindividual comparison of the performance for lung nodule detection of two CAD systems trained using adult data between low-dose and standard-dose pediatric chest CT scans. METHODS. This retrospective study included 73 patients (32 female participants, 41 male participants; mean age, 14.7 years; age range, 4-20 years) who underwent both clinical standard-dose and investigational low-dose chest CT examinations during the same encounter from November 30, 2018, to August 31, 2020, as part of an earlier prospective study. Fellowship-trained pediatric radiologists annotated lung nodules to serve as the reference standard. Both CT scans were processed using two publicly available lung nodule CAD systems previously trained using adult data: FlyerScan (github.com/rhardie1/FlyerScanCT) and Medical Open Network for Artificial Intelligence (MONAI; github.com/Project-MONAI/model-zoo/releases). The sensitivities of the two CAD systems for nodules measuring 3-30 mm (n = 247) were calculated when operating at a fixed frequency of two false-positives per scan. RESULTS. FlyerScan exhibited detection sensitivities of 76.9% (190/247; 95% CI, 73.3-80.8%) on standard-dose scans and 66.8% (165/247; 95% CI, 62.6-71.5%) on low-dose scans. MONAI exhibited detection sensitivities of 67.6% (167/247; 95% CI, 61.5-72.1%) on standard-dose scans and 62.3% (154/247; 95% CI, 56.1-66.5%) on low-dose scans. The number of detected nodules for standard-dose versus low-dose scans for 3-mm nodules was 33 versus 24 (FlyerScan) and 16 versus 13 (MONAI), 4-mm nodules was 46 versus 42 (FlyerScan) and 39 versus 30 (MONAI), 5-mm nodules was 38 versus 33 (FlyerScan) and 32 versus 31 (MONAI), and 6-mm nodules was 27 versus 20 (FlyerScan) and 24 versus 24 (MONAI). For nodules measuring 7 mm or larger, detection did not show a consistent pattern between standard-dose and low-dose scans for either system. CONCLUSION. Two lung nodule CAD systems showed decreased sensitivity on low-dose versus standard-dose pediatric CT scans obtained in the same patients. The reduced detection at low dose was overall more pronounced for nodules measuring less than 5 mm. CLINICAL IMPACT. Caution is needed when using low-dose CT protocols in combination with CAD systems to help detect small lung nodules in pediatric patients.
Collapse
Affiliation(s)
- Russell C Hardie
- Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469
| | - Andrew T Trout
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Jonathan R Dillman
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Barath N Narayanan
- Sensor and Software Systems, University of Dayton Research Institute, Dayton, OH
| | - Aki A Tanimoto
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
3
|
Sosin DV, Baranovskii DS, Nechaev DN, Sosina MA, Shaposhnikov AV, Trusov GA, Titova AG, Krasnikov BF, Lomov AN, Makarov VV, Yudin VS, Keskinov AA, Yudin SM, Klabukov ID. Population Studies and Molecular Mechanisms of Human Radioadaptive Capabilities: Is It Time to Rethink Radiation Safety Standards? Int J Mol Sci 2024; 25:13543. [PMID: 39769306 PMCID: PMC11676322 DOI: 10.3390/ijms252413543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
The evolution of man on Earth took place under conditions of constant exposure to background ionizing radiation (IR). From this point of view, it would be reasonable to hypothesize the existence of adaptive mechanisms that enable the human organism to safely interact with IR at levels approximating long-term natural background levels. In some situations, the successful operation of molecular mechanisms of protection against IR is observed at values significantly exceeding the natural background level, for example, in cancer cells. In 15-25% of cancer patients, cancer cells develop a phenotype that is resistant to high doses of IR. While further investigations are warranted, the current evidence suggests a strong probability of observing positive health effects, including an increased lifespan, a reduced cancer risk, and a decreased incidence of congenital pathologies, precisely at low doses of ionizing radiation. This review offers arguments primarily based on a phenomenological approach and critically reconsidering existing methodologies for assessing the biological risks of IR to human health. Currently, in the most economically developed countries, there are radiation safety rules that interpret low-dose radiation as a clearly negative environmental factor. Nowadays, this approach may pose significant challenges to the advancement of radiomedicine and introduce complexities in the regulation of IR sources. The review also examines molecular mechanisms that may play a key role in the formation of the positive effects of low-dose IR on human radioadaptive capabilities.
Collapse
Affiliation(s)
- Dmitry Vitalievich Sosin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Denis S. Baranovskii
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| | - Denis Nikolaevich Nechaev
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Mariya Aleksandrovna Sosina
- Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow Health Care Department, 127051 Moscow, Russia;
| | - Alexander Vladimirovich Shaposhnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Georgy Aleksandrovich Trusov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anastasia Germanovna Titova
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Boris Fedorovich Krasnikov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Alexey Nikolaevich Lomov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Valentin Vladimirovich Makarov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Vladimir Sergeevich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Anton Arturovich Keskinov
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Sergey Mihailovich Yudin
- Federal State Budgetary Institution “Centre for Strategic Planning and Management of Biomedical Health Risks” of the Federal Medical Biological Agency, 119121 Moscow, Russia (A.V.S.); (G.A.T.); (A.G.T.); (B.F.K.)
| | - Ilya Dmitrievich Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 249036 Obninsk, Russia;
| |
Collapse
|
4
|
Kobayashi N, Nakaura T, Yoshida N, Nagayama Y, Kidoh M, Uetani H, Sakabe D, Kawamata Y, Funama Y, Tsutsumi T, Hirai T. Impact of deep learning reconstruction on radiation dose reduction and cancer risk in CT examinations: a real-world clinical analysis. Eur Radiol 2024:10.1007/s00330-024-11212-6. [PMID: 39613960 DOI: 10.1007/s00330-024-11212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 12/01/2024]
Abstract
PURPOSE The purpose of this study is to estimate the extent to which the implementation of deep learning reconstruction (DLR) may reduce the risk of radiation-induced cancer from CT examinations, utilizing real-world clinical data. METHODS We retrospectively analyzed scan data of adult patients who underwent body CT during two periods relative to DLR implementation at our facility: a 12-month pre-DLR phase (n = 5553) using hybrid iterative reconstruction and a 12-month post-DLR phase (n = 5494) with routine CT reconstruction transitioning to DLR. To ensure comparability between two groups, we employed propensity score matching 1:1 based on age, sex, and body mass index. Dose data were collected to estimate organ-specific equivalent doses and total effective doses. We assessed the average dose reduction post-DLR implementation and estimated the Lifetime Attributable Risk (LAR) for cancer per CT exam pre- and post-DLR implementation. The number of radiation-induced cancers before and after the implementation of DLR was also estimated. RESULTS After propensity score matching, 5247 cases from each group were included in the final analysis. Post-DLR, the total effective body CT dose significantly decreased to 15.5 ± 10.3 mSv from 28.1 ± 14.0 mSv pre-DLR (p < 0.001), a 45% reduction. This dose reduction significantly lowered the radiation-induced cancer risk, especially among younger women, with the estimated annual cancer incidence from 0.247% pre-DLR to 0.130% post-DLR. CONCLUSION The implementation of DLR has the possibility to reduce radiation dose by 45% and the risk of radiation-induced cancer from 0.247 to 0.130% as compared with the iterative reconstruction. KEY POINTS Question Can implementing deep learning reconstruction (DLR) in routine CT scans significantly reduce radiation dose and the risk of radiation-induced cancer compared to hybrid iterative reconstruction? Findings DLR reduced the total effective body CT dose by 45% (from 28.1 ± 14.0 mSv to 15.5 ± 10.3 mSv) and decreased estimated cancer incidence from 0.247 to 0.130%. Clinical relevance Adopting DLR in clinical practice substantially lowers radiation exposure and cancer risk from CT exams, enhancing patient safety, especially for younger women, and underscores the importance of advanced imaging techniques.
Collapse
Affiliation(s)
- Naoki Kobayashi
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan.
| | - Naofumi Yoshida
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Hiroyuki Uetani
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Daisuke Sakabe
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yuki Kawamata
- Department of Central Radiology, Kumamoto University Hospital, Kumamoto, Japan
| | - Yoshinori Funama
- Department of Medical Physics, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| | - Takashi Tsutsumi
- Disease Applied Research Department, Research and Development Center, Canon Medical Systems, Otawara, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Graduate School of Medical Sciences, Kumamoto University, Honjo 1-1-1, Kumamoto, 860-8556, Japan
| |
Collapse
|
5
|
Wojcik A, Zölzer F. The scientific nature of the linear no-threshold (LNT) model used in the system of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2024; 63:483-489. [PMID: 39222266 PMCID: PMC11588861 DOI: 10.1007/s00411-024-01092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
During the first half of the 20th century, it was commonly assumed that radiation-induced health effects occur only when the dose exceeds a certain threshold. This idea was discarded for stochastic effects when more knowledge was gained about the mechanisms of radiation-induced cancer. Currently, a key tenet of the international system of radiological protection is the linear no-threshold (LNT) model where the risk of radiation-induced cancer is believed to be directly proportional to the dose received, even at dose levels where the effects cannot be proven directly. The validity of the LNT approach has been questioned on the basis of a claim that only conclusions that can be verified experimentally or epidemiologically are scientific and LNT should, thus, be discarded because the system of radiological protection must be based on solid science. The aim of this publication is to demonstrate that the LNT concept can be tested in principle and fulfils the criteria of a scientific hypothesis. The fact that the system of radiological protection is also based on ethics does not render it unscientific either. One of the fundamental ethical concepts underlying the LNT model is the precautionary principle. We explain why it is the best approach, based on science and ethics (as well as practical experience), in situations of prevailing uncertainty.
Collapse
Affiliation(s)
- Andrzej Wojcik
- Centre for Radiation Protection Research, MBW Department, Stockholm University, Stockholm, Sweden.
- Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Friedo Zölzer
- Institute of Radiology, Toxicology and Civil Protection, Faculty of Health and Social Sciences, University of South Bohemia in Ceske Budejovice, Ceske Budejovice, Czech Republic
| |
Collapse
|
6
|
Frush DP, Vassileva J, Brambilla M, Mahesh M, Rehani M, Samei E, Applegate K, Bourland J, Ciraj-Bjenlac O, Dahlstrom D, Gershan V, Gilligan P, Godthelp B, Hjemly H, Kainberger F, Mikhail-Lette M, Holmberg O, Paez D, Schrandt S, Valentin A, Van Deventer T, Wakeford R. Recurrent medical imaging exposures for the care of patients: one way forward. Eur Radiol 2024; 34:6475-6487. [PMID: 38592419 DOI: 10.1007/s00330-024-10659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Medical imaging is both valuable and essential in the care of patients. Much of this imaging depends on ionizing radiation with attendant responsibilities for judicious use when performing an examination. This responsibility applies in settings of both individual as well as multiple (recurrent) imaging with associated repeated radiation exposures. In addressing the roles and responsibilities of the medical communities in the paradigm of recurrent imaging, both the International Atomic Energy Agency (IAEA) and the American Association of Physicists in Medicine (AAPM) have issued position statements, each affirmed by other organizations. The apparent difference in focus and approach has resulted in a lack of clarity and continued debate. Aiming towards a coherent approach in dealing with radiation exposure in recurrent imaging, the IAEA convened a panel of experts, the purpose of which was to identify common ground and reconcile divergent perspectives. The effort has led to clarifying recommendations for radiation exposure aspects of recurrent imaging, including the relevance of patient agency and the provider-patient covenant in clinical decision-making. CLINICAL RELEVANCE STATEMENT: An increasing awareness, generating some lack of clarity and divergence in perspectives, with patients receiving relatively high radiation doses (e.g., ≥ 100 mSv) from recurrent imaging warrants a multi-stakeholder accord for the benefit of patients, providers, and the imaging community. KEY POINTS: • Recurrent medical imaging can result in an accumulation of exposures which exceeds 100 milli Sieverts. • Professional organizations have different perspectives on roles and responsibilities for recurrent imaging. • An expert panel reconciles differing perspectives for addressing radiation exposure from recurrent medical imaging.
Collapse
Affiliation(s)
- Donald Paul Frush
- Department of Radiology, Duke University Medical Center, Durham, NC, 27705, USA.
| | - Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Marco Brambilla
- Department of Medical Physics, University Hospital of Novara, Novara, Italy
| | - Mahadevappa Mahesh
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Madan Rehani
- Department of Radiology, Massachusetts General Hospital, Boston, USA
| | - Ehsan Samei
- Department of Radiology, Duke University Medical Center, Durham, NC, 27705, USA
| | | | - John Bourland
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | - Vesna Gershan
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Paddy Gilligan
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Barbara Godthelp
- Authority for Nuclear Safety and Radiation Protection, The Hague, The Netherlands
| | - Hakon Hjemly
- International Society of Radiographers and Radiological Technologists, London, UK
| | - Franz Kainberger
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - Ola Holmberg
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, International Atomic Energy Agency, Vienna, Austria
| | - Suz Schrandt
- ExPPect, Founder & CEO, and Patients for Patient Safety US, Champion (Affiliate, WHO PFPS Network), Arlington, VA, USA
| | - Andreas Valentin
- Department of Internal Medicine With Cardiology & Intensive Care Medicine Clinic Donaustadt Vienna Health Care Group, Vienna, Austria
| | | | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, UK
| |
Collapse
|
7
|
Mataac MT, Li X, Rehani MM. What proportion of CT scan patients are alive or deceased after 10 years? Eur J Radiol 2024; 178:111629. [PMID: 39024663 DOI: 10.1016/j.ejrad.2024.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/16/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE When discussing radiation risks for patients who undergo many CT examinations, some question the risks, believing that most of these patients are already very sick and likely to die within a few years, thus negating worry about radiation risk. This study seeks to evaluate the validity of this notion. METHODS In this retrospective single large-hospital study, patients who received CT exams in 2013 were sorted into four cumulative effective dose (CED) groups: Group A (>0 to <10 mSv), Group B (10 to <50 mSv), Group C (50 to < 100 mSv), and Group D (≥100 mSv). The death rates of patients in each group were analyzed, up to December 2023. RESULTS 36,545 patients underwent CT examinations in 2013 (mean age, 56 ± 20 years, 51.4 % men). Death rates for all dose groups peaked in the year of imaging or 1 year after. At one year after imaging, Group D had 6.7 times and Group C had 4.3 times the death rate of Group A. However, a significant portion of these patients are alive after 10 years, with 1324/2756 patients (48.0 %) in Group C and 282/769 patients (36.7 %) in Group D with the potential to face radiation effects. CONCLUSIONS While it is true that patients receiving relatively higher doses (≥50 mSv) are more likely to die within the first two years of receiving such doses, nearly one-third to half remain alive a decade after their CT scans, potentially facing the effects of radiation. This knowledge may help policymakers and practitioners.
Collapse
Affiliation(s)
- Maria T Mataac
- Massachusetts General Hospital, 55 Fruit Str., Boston, MA, USA
| | - Xinhua Li
- Massachusetts General Hospital, 55 Fruit Str., Boston, MA, USA
| | - Madan M Rehani
- Massachusetts General Hospital, 55 Fruit Str., Boston, MA, USA.
| |
Collapse
|
8
|
Kussainova A, Aripova A, Ibragimova M, Bersimbaev R, Bulgakova O. Radiation-Induced miRNAs Changes and cf mtDNA Level in Trauma Surgeons: Epigenetic and Molecular Biomarkers of X-ray Exposure. Int J Mol Sci 2024; 25:8446. [PMID: 39126012 PMCID: PMC11313199 DOI: 10.3390/ijms25158446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Exposure to ionizing radiation can result in the development of a number of diseases, including cancer, cataracts and neurodegenerative pathologies. Certain occupational groups are exposed to both natural and artificial sources of radiation as a consequence of their professional activities. The development of non-invasive biomarkers to assess the risk of exposure to ionizing radiation for these groups is of great importance. In this context, our objective was to identify epigenetic and molecular biomarkers that could be used to monitor exposure to ionizing radiation. The impact of X-ray exposure on the miRNAs profile and the level of cf mtDNA were evaluated using the RT-PCR method. The levels of pro-inflammatory cytokines in their blood were quantified using the ELISA method. A significant decrease in miR-19a-3p, miR-125b-5p and significant increase in miR-29a-3p was observed in the blood plasma of individuals exposed to X-ray. High levels of pro-inflammatory cytokines and cf mtDNA were also detected. In silico identification of potential targets of these miRNAs was conducted using MIENTURNET. VDAC1 and ALOX5 were identified as possible targets. Our study identified promising biomarkers such as miRNAs and cf mtDNA that showed a dose-dependent effect of X-ray exposure.
Collapse
Affiliation(s)
| | | | | | | | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan; (A.K.); (A.A.); (M.I.); (R.B.)
| |
Collapse
|
9
|
Borrego D, Nagata JS, Boyd MA, DeCair SD, Matakas LR, Wang EW, Pawel DJ, Ansari AJ. Science-informed Policy Making for Protecting People and the Environment from Radiation. HEALTH PHYSICS 2024; 126:367-373. [PMID: 38568162 DOI: 10.1097/hp.0000000000001831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The process to arrive at the radiation protection practices of today to protect workers, patients, and the public, including sensitive populations, has been a long and deliberative one. This paper presents an overview of the US Environmental Protection Agency's (US EPA) responsibility in protecting human health and the environment from unnecessary exposure to radiation. The origins of this responsibility can be traced back to early efforts, a century ago, to protect workers from x rays and radium. The system of radiation protection we employ today is robust and informed by the latest scientific consensus. It has helped reduce or eliminate unnecessary exposures to workers, patients, and the public while enabling the safe and beneficial uses of radiation and radioactive material in diverse areas such as energy, medicine, research, and space exploration. Periodic reviews and analyses of research on health effects of radiation by scientific bodies such as the National Academy of Sciences, National Council on Radiation Protection and Measurements, United Nations Scientific Committee on the Effects of Atomic Radiation, and the International Commission on Radiological Protection continue to inform radiation protection practices while new scientific information is gathered. As a public health agency, US EPA is keenly interested in research findings that can better elucidate the effects of exposure to low doses and low dose rates of radiation as applicable to protection of diverse populations from various sources of exposure. Professional organizations such as the Health Physics Society can provide radiation protection practitioners with continuing education programs on the state of the science and describe the key underpinnings of the system of radiological protection. Such efforts will help equip and prepare radiation protection professionals to more effectively communicate radiation health information with their stakeholders.
Collapse
|
10
|
Bahadori P, Molina-Recalde AP, Saleh Alruwaili A, Alanazy A, Tilahun WT, Ayub G, Haq ZU, Bashir MB. Assessment of medical students' knowledge regarding radiation associated risk and its protection: finding from a cross-sectional study. Ir J Med Sci 2024; 193:1515-1519. [PMID: 38041750 DOI: 10.1007/s11845-023-03583-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE The current study assessed the knowledge of the medical students regarding the nature of radiation, associated risks, and protective measures. METHOD A cross-sectional study was conducted among international students enrolled in different medical colleges/universities in Xian, PR China. A self-developed and self-reported questionnaire was used for the current study. The descriptive statistics was carried out to summarize the finding of the study. Chi-square and Fisher exact tests were conducted to assess the association of the demographics with knowledge level. RESULTS A total of 796 students responded among 980. Most of the participants fell in the age range of 20-25 years (42.6%), being male (67.1%) and having bachelor's education (56.7%). Participants with previous experience was 58.7%. The age group of 20-25 years (p < 0.001), being male (p < 0.001), having bachelor education (p < 0.001), and previous experience (p = 0.009) was significantly associated with moderate to good knowledge. The overall knowledge about the nature of radiation (96%) and associated risk (82%) was good, but regarding protection, 59% of the participants showed good knowledge. CONCLUSION Most of the participants showed satisfactory result. However, the knowledge regarding protection measures was poor in almost half of the population.
Collapse
Affiliation(s)
- Pardis Bahadori
- Xi'an Jiaotong University School of Medicine, Xi'an Shaanxi, People's Republic of China
| | | | - Abdullah Saleh Alruwaili
- Emergency Medical Services Program, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia
- Ministry of National Guard - Health Affairs, Al Ahsa, Saudi Arabia
- School of Health, University of New England, Armidale, NSW, Australia
| | - Ahmed Alanazy
- Emergency Medical Services Program, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, Al Ahsa, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa, Saudi Arabia
- Ministry of National Guard - Health Affairs, Al Ahsa, Saudi Arabia
| | | | - Gulsanga Ayub
- Department of Radiology, Combined Military Hospital, Peshawar, Pakistan
| | - Zia Ul Haq
- Xi'an Jiaotong University School of Medicine, Xi'an Shaanxi, People's Republic of China
| | - Musa Bin Bashir
- Department of Cardiology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Shaanxi, China.
| |
Collapse
|
11
|
Wang Y, Gao J, Tang B, Mo W, Gao H, Guo J, Kong X, Zhang W, Yin Y, Jiao Y, Sun L. A comparative study on the dose-effect of low-dose radiation based on microdosimetric analysis and single-cell sequencing technology. Sci Rep 2024; 14:11524. [PMID: 38773212 PMCID: PMC11109114 DOI: 10.1038/s41598-024-62501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024] Open
Abstract
The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.
Collapse
Affiliation(s)
- Yidi Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jin Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Bo Tang
- Department of Public Health Surveillance and Evaluation, Shandong Center for Disease Control and Prevention, Jinan, 250014, China
| | - Wei Mo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Han Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Jiahao Guo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Xianghui Kong
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Wenyue Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yuchen Yin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Yang Jiao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| | - Liang Sun
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
12
|
Chauhan V, Beaton D, Tollefsen KE, Preston J, Burtt JJ, Leblanc J, Hamada N, Azzam EI, Armant O, Bouffler S, Azimzadeh O, Moertl S, Yamada Y, Tanaka IB, Kaiser JC, Applegate K, Laurier D, Garnier-Laplace J. Radiation Adverse Outcome pathways (AOPs): examining priority questions from an international horizon-style exercise. Int J Radiat Biol 2024; 100:982-995. [PMID: 38718325 DOI: 10.1080/09553002.2024.2348072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/14/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Danielle Beaton
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Julian Preston
- Office of Air and Radiation, Radiation Protection Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julie J Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Edouard I Azzam
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Olivier Armant
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | | | - Omid Azimzadeh
- Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Simone Moertl
- Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, Japan
| | | | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine, Lexington, KY, USA (retired)
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay aux Roses, France
| | - Jacqueline Garnier-Laplace
- On secondment from IRSN to the Committee on Radiological Protection and Public Health's secretariat, Paris, France
| |
Collapse
|
13
|
ETHICS IN RADIOLOGICAL PROTECTION FOR MEDICAL DIAGNOSIS AND TREATMENT. Ann ICRP 2024; 53:3-149. [PMID: 40018998 DOI: 10.1177/01466453231220518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Publication 138 defines the ethical foundations of the ICRP System of Radiological Protection based on core values (beneficence and non-maleficence, dignity, justice, and prudence) and procedural values (accountability, transparency, and inclusiveness). The purpose of the present publication is to propose a practical application of values for medical radiological protection professions. As medicine has a long history and strong culture of ethics, this publication starts by identifying the shared values, and defines a common language between biomedical ethics and radiological protection. The core values are very similar, with the autonomy of biomedical ethics, which can be seen as a corollary of dignity, and the precautionary principle, which can be understood as the implementation of prudence. In recent years, medical education and training has emphasised the values of solidarity, honesty, and, above all, empathy. All these values are defined and interpreted in the specific context of the use of ionising radiation in medicine. For those more familiar with radiological protection, the ethical implications of their actions are described. Conversely, for those who already have a good background in ethics, this publication highlights the specificities of ionising radiation that also deserve consideration.In order to emphasise the coherence between the values involved in biomedical ethics and those involved in radiological protection, this publication proposes to combine them: dignity and autonomy; beneficence and non-maleficence; prudence and precaution; justice and solidarity; transparency, accountability, and honesty; and inclusiveness and empathy. This allows a structured review of practical situations from an ethical perspective. For the sake of both example and education, this publication proposes 21 realistic scenarios (11 in imaging procedures and 10 in radiation therapies). Sensitising questions are provided to stimulate reflection and discussion. The ultimate goal is to be able to use ethical values in clinical imaging and therapy situations. Required education and training in ethics is essential for medical radiological workers throughout their career span. An example of a framework of knowledge, skills, and competencies is proposed. In order to assist the reader in a theoretically complex subject, key messages are distributed throughout the text as fixed points that can be easily understood. Although primarily aimed at medical radiological protection professionals, this publication is also intended for authorities, patients, and the public.© 2024 ICRP. Published by SAGE.
Collapse
|
14
|
Lee D, Cha ES, Park S, Sung H, Noh E, Jeong H, Jang WI, Seo S. Cohort Profile: The Korean Radiation Workers Study (KRWS). Int J Epidemiol 2024; 53:dyae060. [PMID: 38628072 DOI: 10.1093/ije/dyae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Affiliation(s)
- Dalnim Lee
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eun Shil Cha
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Soojin Park
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyoju Sung
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Eunbi Noh
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Haesu Jeong
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Won-Il Jang
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Songwon Seo
- National Radiation Emergency Medical Center, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| |
Collapse
|
15
|
Picano E, Vano E. Updated Estimates of Radiation Risk for Cancer and Cardiovascular Disease: Implications for Cardiology Practice. J Clin Med 2024; 13:2066. [PMID: 38610831 PMCID: PMC11012972 DOI: 10.3390/jcm13072066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
This review aims to furnish an updated assessment of the societal healthcare load, including cancer and cardiovascular disease resulting from diagnostic radiologic operations. The previously projected additional cancer risk of 0.9% in a United States 2004 study referred to radiological conditions in 1996 with an X-ray exposure of 0.50 millisievert (mSv) per capita annually. Radiological exposure (radiology + nuclear medicine) has escalated to 2.29 mSv (2016) per capita per year. Low-dose exposures were previously assumed to have a lower biological impact, since they allow the DNA repair system to mitigate molecular damage. However, epidemiological data matured and disproved this assumption, as shown by updated cancer risk assessments derived from the World Health Organization 2013 and the German Institute of Radioprotection 2014 data. The risk of cardiovascular disease aligns within the same order of magnitude as cancer risk and compounds it, as shown by a comprehensive meta-analysis of 93 studies. The collective societal burden arising from the augmented risks of cancer and cardiovascular disease attributable to diagnostic radiology and nuclear medicine is higher than previously thought.
Collapse
Affiliation(s)
- Eugenio Picano
- Cardiology Clinic, University Center Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Eliseo Vano
- Cardiology Department, Medical Faculty, Complutense University, 28040 Madrid, Spain;
| |
Collapse
|
16
|
Picano E, Pierard L, Peteiro J, Djordjevic-Dikic A, Sade LE, Cortigiani L, Van De Heyning CM, Celutkiene J, Gaibazzi N, Ciampi Q, Senior R, Neskovic AN, Henein M. The clinical use of stress echocardiography in chronic coronary syndromes and beyond coronary artery disease: a clinical consensus statement from the European Association of Cardiovascular Imaging of the ESC. Eur Heart J Cardiovasc Imaging 2024; 25:e65-e90. [PMID: 37798126 DOI: 10.1093/ehjci/jead250] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023] Open
Abstract
Since the 2009 publication of the stress echocardiography expert consensus of the European Association of Echocardiography, and after the 2016 advice of the American Society of Echocardiography-European Association of Cardiovascular Imaging for applications beyond coronary artery disease, new information has become available regarding stress echo. Until recently, the assessment of regional wall motion abnormality was the only universally practiced step of stress echo. In the state-of-the-art ABCDE protocol, regional wall motion abnormality remains the main step A, but at the same time, regional perfusion using ultrasound-contrast agents may be assessed. Diastolic function and pulmonary B-lines are assessed in step B; left ventricular contractile and preload reserve with volumetric echocardiography in step C; Doppler-based coronary flow velocity reserve in the left anterior descending coronary artery in step D; and ECG-based heart rate reserve in non-imaging step E. These five biomarkers converge, conceptually and methodologically, in the ABCDE protocol allowing comprehensive risk stratification of the vulnerable patient with chronic coronary syndromes. The present document summarizes current practice guidelines recommendations and training requirements and harmonizes the clinical guidelines of the European Society of Cardiology in many diverse cardiac conditions, from chronic coronary syndromes to valvular heart disease. The continuous refinement of imaging technology and the diffusion of ultrasound-contrast agents improve image quality, feasibility, and reader accuracy in assessing wall motion and perfusion, left ventricular volumes, and coronary flow velocity. Carotid imaging detects pre-obstructive atherosclerosis and improves risk prediction similarly to coronary atherosclerosis. The revolutionary impact of artificial intelligence on echocardiographic image acquisition and analysis makes stress echo more operator-independent and objective. Stress echo has unique features of low cost, versatility, and universal availability. It does not need ionizing radiation exposure and has near-zero carbon dioxide emissions. Stress echo is a convenient and sustainable choice for functional testing within and beyond coronary artery disease.
Collapse
Affiliation(s)
- Eugenio Picano
- Institute of Clinical Physiology of the National Research Council, CNR, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luc Pierard
- University of Liège, Walloon Region, Belgium
| | - Jesus Peteiro
- CHUAC-Complexo Hospitalario Universitario A Coruna, CIBER-CV, University of A Coruna, 15070 La Coruna, Spain
| | - Ana Djordjevic-Dikic
- Cardiology Clinic, University Clinical Centre of Serbia, Medical School, University of Belgrade, 11000 Belgrade, Serbia
| | - Leyla Elif Sade
- University of Pittsburgh Medical Center UPMC Heart & Vascular Institute, Pittsburgh, PA, USA
| | | | | | - Jelena Celutkiene
- Centre of Cardiology and Angiology, Clinic of Cardiac and Vascular Diseases, Faculty of Medicine, Institute of Clinical Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Nicola Gaibazzi
- Cardiology Department, Parma University Hospital, 43100 Parma, Italy
| | - Quirino Ciampi
- Cardiology Division, Fatebenefratelli Hospital, 82100 Benevento, Italy
| | - Roxy Senior
- Imperial College, UK
- Royal Brompton Hospital Imperial College London, UK
- Northwick Park Hospital, London, UK
| | - Aleksandar N Neskovic
- Department of Cardiology, University Clinical Hospital Center Zemun-Belgrade Faculty of Medicine, University of Belgrade, Serbia
| | - Michael Henein
- Department of Public Health and Clinical Medicine Units: Section of Medicine, Umea University, Umea, Sweden
| |
Collapse
|
17
|
Osman ND, Abdulkadir MK, Shuaib IL, Nasirudin RA. Evaluation of a new predictive equation for automated calculation of size-specific dose estimate (SSDE) in CT imaging. Radiography (Lond) 2024; 30:237-244. [PMID: 38035439 DOI: 10.1016/j.radi.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION The adoption of size-specific dose estimate (SSDE) in clinical practice is still limited owing to the tedious and complex manual measurement of individual patient size for the clinical calculation of SSDE. Thus, the automation of SSDE is imperative. This study aims to evaluate a predictive equation for the automated calculation of SSDE. METHODS A user-friendly software was developed to accurately predict the individual size-specific dose estimation of paediatric patients undergoing computed tomography (CT) scans of the head, thorax, and abdomen. The software includes a calculation equation developed based on a novel SSDE prediction equation that used a population's pre-determined percentage difference between volume-weighted computed tomography dose index (CTDIvol) and SSDE with age. American Association of Physicists in Medicine (AAPM RPT 204) method (manual) and segmentation-based SSDE calculators (indoseCT and XXautocalc) were used to assess the proposed software predictions comparatively. RESULTS The results of this study show that the automated equation-based calculation of SSDE and the manual and segmentation-based calculation of SSDE are in good agreement for patients. The differences between the automated equation-based calculation of SSDE and the manual and segmentation-based calculation are less than 3%. CONCLUSION This study validated an accurate SSDE calculator that allows users to enter key input values and calculate SSDE. IMPLICATION FOR PRACTICE The automated equation-based SSDE software (PESSD) seems a promising tool for estimating individualised CT doses during CT scans.
Collapse
Affiliation(s)
- N D Osman
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, 13200, Penang, Malaysia
| | - M K Abdulkadir
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, 13200, Penang, Malaysia; Department of Radiography, Faculty of Basic Clinical Sciences, University of Ilorin, 240213 Ilorin, Nigeria.
| | - I L Shuaib
- Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, 13200, Penang, Malaysia
| | - R A Nasirudin
- Department of Radiography, Faculty of Basic Clinical Sciences, University of Ilorin, 240213 Ilorin, Nigeria
| |
Collapse
|
18
|
Gizewski ER, Verius M, Rehani MM, Jaschke W. Cumulative Effective Dose During Fluoroscopically Guided Interventions (FGI): Analysis of More Than 5000 FGIs in a Single European Center. Cardiovasc Intervent Radiol 2024; 47:101-108. [PMID: 38110753 DOI: 10.1007/s00270-023-03604-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/23/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The number of fluoroscopically guided interventions (FGI) has increased significantly over time. However, little attention has been paid to possible stochastic radiation effects. The aim of this retrospective study was to investigate the number of patients who received cumulative effective doses over 100 mSv during FGI procedures. MATERIAL AND METHODS Five thousand five hundred and fifty four classified FGI procedures were included. Radiation dose data, retrieved from an in-house-dose-management system, was analysed. Effective doses and cumulative effective doses (CED) were calculated. Patients who received a CED > 100 mSv were identified. Radiology reports, patient age, imaging and clinical data of these patients were used to identify reasons for CED ≥ 100 mSv. RESULTS One Hundred and thirty two (41.1% female) of 3981 patients received a CED > 100 mSy, with a mean CED of 173.5 ± 84.5 mSv. Mean age at first intervention was 66.1 ± 11.7 years. 81 (61.4%) of 132 were older than 64 years, one patient was < 30 years. 110 patients received ≥ 100 mSv within one year (83.4%), through FGIs: EVAR, pelvic/mesenteric interventions (stent or embolization), hepatic interventions (chemoembolization, TIPSS), embolization of cerebral aneurysms or arterio-venous-malformations. CONCLUSIONS Substantial CED may occur in a small but not ignorable fraction of patients (~ 3%) undergoing FGIs. Approximately 2/3rd of patients may most likely not encounter radiation-related stochastic effects due to life-threatening diseases and age at first treatment > 65 years but 1/3rd may. Patients undergoing more than one FGI (77%) carry a higher risk of accumulating effective doses > 100 mSv. Remarkably, 23% received a mean CED 162.2 ± 72.3 mSv in a single procedure.
Collapse
Affiliation(s)
- Elke R Gizewski
- Department of Neuroradiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Radiology, Medical University Innsbruck, Anichstrasse. 35, 6020, Innsbruck, Austria
| | - Michael Verius
- Department of Radiology, Medical University Innsbruck, Anichstrasse. 35, 6020, Innsbruck, Austria.
| | - Madan M Rehani
- Global Outreach for Radiation Protection Program; Chair, Radiation Safety Committee, Massachusetts General Hospital, 175 Cambridge Street, Suite 244, Boston, MA, 02114, USA
| | - Werner Jaschke
- Department of Radiology, Medical University Innsbruck, Anichstrasse. 35, 6020, Innsbruck, Austria
| |
Collapse
|
19
|
Ngoye W, Ndukeki M, Muhogora W, Jusabani A, Ngaile J, Ngoya P, Sungura R, Ngatunga C, Hashmi N, Makungu H, Onoka E, Amirali M, Kileo A, Makoba A, Muhulo A, Ngulimi M, Balobegwa V, Edmund E, Masoud A, Matulanya M. Radiation exposure during CT procedures in Tanzania. RADIATION PROTECTION DOSIMETRY 2023; 200:97-105. [PMID: 37981295 DOI: 10.1093/rpd/ncad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 09/03/2023] [Accepted: 10/02/2023] [Indexed: 11/21/2023]
Abstract
The aim of this study was to evaluate optimisation status during common computed tomography (CT) procedures by determining values of volume computed tomography dose index (CTDIvol) and dose-length product (DLP) per examination. Patient and exposure data were collected from the CT console during various CT procedures. The results show that variations in CTDIvol and DLP values were mainly because of differences in the techniques used. The 75th percentile values were set as the third quartile of the median CTDIvol or DLP values for all hospitals. These values of 40.9, 9.0, 9.4 and 16.2 mGy for CTDIvol were determined for head, high-resolution chest, abdomen-pelvis and lumbar spine, respectively. The corresponding DLP values for the same sequence of CT procedures were 900, 360, 487 and 721 mGy.cm, respectively. The updated results provide a basis for optimising the procedures of CT in this country.
Collapse
Affiliation(s)
- Wilson Ngoye
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Mussa Ndukeki
- Muhimbili National Hospital, Malik Road, P.O. Box 65000, West Upanga, 8920 Dar es Salaam, Tanzania
| | - Wilbroad Muhogora
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Ahmed Jusabani
- Aga Khan Medical Centre, P.O. Box 2289, Baraka Obama Road, 11103 Dar es Salaam, Tanzania
| | - Justine Ngaile
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Patrick Ngoya
- Bugando Medical Centre, P.O. Box 1370, Makongoro Road, 33109 Mwanza, Tanzania
| | - Richard Sungura
- Arusha Lutheran Medical Centre, P.O. Box 17047, Fr. Babu Road, Block No. 54 Levolosi, 23104 Arusha, Tanzania
| | - Cecilia Ngatunga
- Mbeya Zonal Referral Hospital, P.O. Box 419, Hospital Hill Road, 53107 Mbeya, Tanzania
| | - Nazrina Hashmi
- TMJ Hospital, Mwai Kibaki Road, P.O. Box 20439, Mikocheni, 14112 Dar es Salaam, Tanzania
| | - Hilda Makungu
- Muhimbili National Hospital, Malik Road, P.O. Box 65000, West Upanga, 8920 Dar es Salaam, Tanzania
| | - Erick Onoka
- Arusha Lutheran Medical Centre, P.O. Box 17047, Fr. Babu Road, Block No. 54 Levolosi, 23104 Arusha, Tanzania
| | - Mudassir Amirali
- Muhimbili National Hospital, Malik Road, P.O. Box 65000, West Upanga, 8920 Dar es Salaam, Tanzania
| | - Abdallah Kileo
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Atumaini Makoba
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Alex Muhulo
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Miguta Ngulimi
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Vitus Balobegwa
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Elisha Edmund
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Ali Masoud
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| | - Machibya Matulanya
- Tanzania Atomic Energy Commission, P.O. Box 743, Block J, Njiro, 23114 Arusha, Tanzania
| |
Collapse
|
20
|
Picano E. Economic, ethical, and environmental sustainability of cardiac imaging. Eur Heart J 2023; 44:4748-4751. [PMID: 36477859 DOI: 10.1093/eurheartj/ehac716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/20/2022] [Accepted: 11/20/2022] [Indexed: 12/02/2023] Open
Abstract
Current cardiology guidelines assign a class of recommendation 1 for the diagnosis of chest pain to five imaging techniques based on either anatomic (coronary computed tomography angiography) or functional approaches, such as stress single-photon emission tomography, stress positron emission tomography, stress cardiovascular magnetic resonance, and stress echocardiography. The choice is left to the prescribing physician, based on local availability and expertise. However, the five techniques differ substantially in their cost, applicability based on patient characteristics, long-term risk, and environmental impact. The average European immediate cost ranges from 50 to 1000 euros. The radiation exposure ranges from 0 to 500 chest x-rays. The environmental footprint ranges from 3 to 300 kg of carbon dioxide emissions equivalent. The ethical code of the World Medical Association 2021 recommends the responsible use of healthcare money by doctors, with the minimization of potential damage to patients and the environment. The Euratom law 2013/directive 59 reinforces the justification principle and the optimization principle for medical radiation exposures, with the legal responsibility of both the referrer and the practitioner. A small cost, a minimal long-term risk, and a modest carbon emission per examination multiplied by billions of tests per year become an unaffordable economic burden in the short-term, significant population damage to public health over the years, and impacts on climate change in decades. The cardiology community may wish to adopt a more sustainable practice with affordable, radiation-optimized, and carbon-neutral practices for the benefit of patients, physicians, payers, and the planet.
Collapse
Affiliation(s)
- Eugenio Picano
- Research Director, Institute of Clinical Physiology of the National Research Council, CNR Research Campus, Via Moruzzi, 1, Building C- First floor- Room 130, 56124 Pisa, Italy
| |
Collapse
|
21
|
Abdoul-Latif FM, Ainane A, Houmed Aboubaker I, Mohamed J, Ainane T. An Overview of Cancer in Djibouti: Current Status, Therapeutic Approaches, and Promising Endeavors in Local Essential Oil Treatment. Pharmaceuticals (Basel) 2023; 16:1617. [PMID: 38004482 PMCID: PMC10674319 DOI: 10.3390/ph16111617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Djibouti, a developing economy, grapples with significant socioeconomic obstacles and the prevalence of infectious pathologies, including certain forms of neoplasms. These challenges are exacerbated by limited access to affordable medical technologies for diagnosis, coupled with a lack of preventive interventions, particularly in disadvantaged areas. The attention devoted to local phytotherapeutic treatments underscores the uniqueness of Djibouti's flora, resulting from its distinctive geographical position. International focus specifically centers on harnessing this potential as a valuable resource, emphasizing the phytoconstituents used to counter pathologies, notably carcinomas. This comprehensive overview covers a broad spectrum, commencing with an examination of the current state of knowledge, namely an in-depth investigation of oncological risk factors. Essential elements of control are subsequently studied, highlighting the fundamental prerequisites for effective management. The significance of dietary habits in cancer prevention and support is explored in depth, while traditional methods are examined, highlighting the cultural significance of indigenous essential oil therapies and encouraging further research based on the promising results.
Collapse
Affiliation(s)
- Fatouma Mohamed Abdoul-Latif
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Ayoub Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| | | | - Jalludin Mohamed
- Medicinal Research Institute, Center for Studies and Research of Djibouti, IRM-CERD, Route de l’Aéroport, Haramous, Djibouti P.O. Box 486, Djibouti;
| | - Tarik Ainane
- Superior School of Technology of Khenifra (EST-Khenifra), University of Sultan Moulay Slimane, P.O. Box 170, Khenifra 54000, Morocco; (A.A.); (T.A.)
| |
Collapse
|
22
|
Rosen S, Singer C, Vaknin S, Kaim A, Luxenburg O, Makori A, Goldberg N, Rad M, Gitman S, Saban M. Inappropriate CT examinations: how much, who and where? Insights from a clinical decision support system (CDSS) analysis. Eur Radiol 2023; 33:7796-7804. [PMID: 37646812 DOI: 10.1007/s00330-023-10136-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE To assess the appropriateness of Computed Tomography (CT) examinations, using the ESR-iGuide. MATERIAL AND METHODS A retrospective study was conducted in 2022 in a medium-sized acute care teaching hospital. A total of 278 consecutive cases of CT referral were included. For each imaging referral, the ESR-iGuide provided an appropriateness score using a scale of 1-9 and the Relative Radiation Level using a scale of 0-5. These were then compared with the appropriateness score and the radiation level of the recommended ESR-iGuide exam. DATA ANALYSIS Pearson's chi-square test or Fisher exact test was used to explore the correlation between ESR-iGuide appropriateness level and physician, patients, and shift characteristics. A stepwise logistic regression model was used to capture the contribution of each of these factors. RESULTS Most of exams performed were CT head (63.67%) or CT abdominal pelvis (23.74%). Seventy percent of the actual imaging referrals resulted in an ESR-iGuide score corresponding to "usually appropriate." The mean radiation level for actual exam was 3.2 ± 0.45 compared with 2.16 ± 1.56 for the recommended exam. When using a stepwise logistic regression for modeling the probability of non-appropriate score, both physician specialty and status were significant (p = 0.0011, p = 0.0192 respectively). Non-surgical and specialist physicians were more likely to order inappropriate exams than surgical physicians. CONCLUSIONS ESR-iGuide software indicates a substantial rate of inappropriate exams of CT head and CT abdominal-pelvis and unnecessary radiation exposure mainly in the ED department. Inappropriate exams were found to be related to physicians' specialty and seniority. CLINICAL RELEVANCE STATEMENT These findings underscore the urgent need for improved imaging referral practices to ensure appropriate healthcare delivery and effective resource management. Additionally, they highlight the potential benefits and necessity of integrating CDSS as a standard medical practice. By implementing CDSS, healthcare providers can make more informed decisions, leading to enhanced patient care, optimized resource allocation, and improved overall healthcare outcomes. KEY POINTS • The overall mean of appropriateness for the actual exam according to the ESR-iGuide was 6.62 ± 2.69 on a scale of 0-9. • Seventy percent of the actual imaging referrals resulted in an ESR-iGuide score corresponding to "usually appropriate." • Inappropriate examination is related to both the specialty of the physician who requested the exam and the seniority status of the physician.
Collapse
Affiliation(s)
- Shani Rosen
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Clara Singer
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Sharona Vaknin
- Department of Health Technology and Policy Evaluation, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel HaShomer, Israel
| | - Arielle Kaim
- Department of Emergency and Disaster Management, School of Public Health, Faculty of Medicine, Tel-Aviv University, Tel-Aviv-Yafo, Israel
- National Center for Trauma and Emergency Medicine Research, Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center, Tel-HaShomer, Israel
| | - Osnat Luxenburg
- Medical Technology, Health Information and Research Directorate, Ministry of Health, Jerusalem, Israel
| | - Arnon Makori
- Community Medical Services Division, Clalit Health Services, Tel Aviv, Israel
| | | | - Moran Rad
- Research Division, Carmel Medical Center, Haifa, Israel
| | - Shani Gitman
- Research Division, Carmel Medical Center, Haifa, Israel
| | - Mor Saban
- Nursing Department, School of Health Sciences, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
23
|
Richardson DB, Leuraud K, Laurier D, Gillies M, Haylock R, Kelly-Reif K, Bertke S, Daniels RD, Thierry-Chef I, Moissonnier M, Kesminiene A, Schubauer-Berigan MK. Cancer mortality after low dose exposure to ionising radiation in workers in France, the United Kingdom, and the United States (INWORKS): cohort study. BMJ 2023; 382:e074520. [PMID: 37586731 PMCID: PMC10427997 DOI: 10.1136/bmj-2022-074520] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/18/2023]
Abstract
OBJECTIVE To evaluate the effect of protracted low dose, low dose rate exposure to ionising radiation on the risk of cancer. DESIGN Multinational cohort study. SETTING Cohorts of workers in the nuclear industry in France, the UK, and the US included in a major update to the International Nuclear Workers Study (INWORKS). PARTICIPANTS 309 932 workers with individual monitoring data for external exposure to ionising radiation and a total follow-up of 10.7 million person years. MAIN OUTCOME MEASURES Estimates of excess relative rate per gray (Gy) of radiation dose for mortality from cancer. RESULTS The study included 103 553 deaths, of which 28 089 were due to solid cancers. The estimated rate of mortality due to solid cancer increased with cumulative dose by 52% (90% confidence interval 27% to 77%) per Gy, lagged by 10 years. Restricting the analysis to the low cumulative dose range (0-100 mGy) approximately doubled the estimate of association (and increased the width of its confidence interval), as did restricting the analysis to workers hired in the more recent years of operations when estimates of occupational external penetrating radiation dose were recorded more accurately. Exclusion of deaths from lung cancer and pleural cancer had a modest effect on the estimated magnitude of association, providing indirect evidence that the association was not substantially confounded by smoking or occupational exposure to asbestos. CONCLUSIONS This major update to INWORKS provides a direct estimate of the association between protracted low dose exposure to ionising radiation and solid cancer mortality based on some of the world's most informative cohorts of radiation workers. The summary estimate of excess relative rate solid cancer mortality per Gy is larger than estimates currently informing radiation protection, and some evidence suggests a steeper slope for the dose-response association in the low dose range than over the full dose range. These results can help to strengthen radiation protection, especially for low dose exposures that are of primary interest in contemporary medical, occupational, and environmental settings.
Collapse
Affiliation(s)
- David B Richardson
- Department of Environmental and Occupational Health, Program in Public Health, University of California, Irvine, CA, USA
| | - Klervi Leuraud
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Dominique Laurier
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | | | - Kaitlin Kelly-Reif
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Stephen Bertke
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Robert D Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|
24
|
Laurier D, Billarand Y, Klokov D, Leuraud K. The scientific basis for the use of the linear no-threshold (LNT) model at low doses and dose rates in radiological protection. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2023; 43:024003. [PMID: 37339605 DOI: 10.1088/1361-6498/acdfd7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The linear no-threshold (LNT) model was introduced into the radiological protection system about 60 years ago, but this model and its use in radiation protection are still debated today. This article presents an overview of results on effects of exposure to low linear-energy-transfer radiation in radiobiology and epidemiology accumulated over the last decade and discusses their impact on the use of the LNT model in the assessment of radiation-related cancer risks at low doses. The knowledge acquired over the past 10 years, both in radiobiology and epidemiology, has reinforced scientific knowledge about cancer risks at low doses. In radiobiology, although certain mechanisms do not support linearity, the early stages of carcinogenesis comprised of mutational events, which are assumed to play a key role in carcinogenesis, show linear responses to doses from as low as 10 mGy. The impact of non-mutational mechanisms on the risk of radiation-related cancer at low doses is currently difficult to assess. In epidemiology, the results show excess cancer risks at dose levels of 100 mGy or less. While some recent results indicate non-linear dose relationships for some cancers, overall, the LNT model does not substantially overestimate the risks at low doses. Recent results, in radiobiology or in epidemiology, suggest that a dose threshold, if any, could not be greater than a few tens of mGy. The scientific knowledge currently available does not contradict the use of the LNT model for the assessment of radiation-related cancer risks within the radiological protection system, and no other dose-risk relationship seems more appropriate for radiological protection purposes.
Collapse
Affiliation(s)
- Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Yann Billarand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Klervi Leuraud
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
25
|
ALIÇ T, GÜLER C, ÇALBIYIK M, HASSA E. Which of the three different intramedullary nail designs is superior in the treatment of femoral shaft fractures? JOURNAL OF HEALTH SCIENCES AND MEDICINE 2023. [DOI: 10.32322/jhsm.1227816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Aim: The aim of this study a retrospective comparison was the clinical and radiological results results of patients with femoral shaft fracture made oftreated with three different types of intramedullary nail (IMN).
Material and Method: The study included 54 patients operated on in our clinic because of femoral shaft fracture. The records were retrospectively examined of 18 patients applied with locked IMN (LIMN), 17 with blade expandable IMN (BEIMN), and 19 with talon distalfix IMN (TDIMN). The groups were compared statistically in respect of age, gender, BMI, affected side, operating time (mins), radiation exposure (number of shots), time to union (weeks), visual analog scale (VAS) score, soft tissue problems associated with implant irritation, amount of shortening (mm), coronal, sagittal and torsional angulation (degrees).
Results: The mean VAS score of the TDIMN group was determined to be statistically significantly higher than that of the LIMN and BEIMN groups (p=0.008, p=0.045). The operating times were similar in the BEIN and TDIMN groups (p=0.768) and significantly shorter than in the LIMN group (p
Collapse
|
26
|
Ferrari C, Manenti G, Malizia A. Sievert or Gray: Dose Quantities and Protection Levels in Emergency Exposure. SENSORS (BASEL, SWITZERLAND) 2023; 23:1918. [PMID: 36850517 PMCID: PMC9959072 DOI: 10.3390/s23041918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Mitigation or even elimination of adverse effects caused by ionizing radiation is the main scope of the radiation protection discipline. The interaction of radiation with living matter is quantified and correlated with biological effects by dose. The Sievert is the most well-known quantity, and it is used with the equivalent and effective dose to minimize stochastic effects. However, Gray is the reference quantity for sizing tissue reactions that could occur under high-exposure conditions such as in a radiation emergency. The topics addressed in this review are the choice to move from Sievert to Gray, how the operational quantities for environmental and individual monitoring of the detectors should consider such a change of units, and why reference levels substitute dose levels in emergency exposure.
Collapse
Affiliation(s)
- Chiara Ferrari
- Department Industrial Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Guglielmo Manenti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Malizia
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
27
|
Factors to Consider for the Correct Use of γH2AX in the Evaluation of DNA Double-Strand Breaks Damage Caused by Ionizing Radiation. Cancers (Basel) 2022; 14:cancers14246204. [PMID: 36551689 PMCID: PMC9776434 DOI: 10.3390/cancers14246204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
People exposed to ionizing radiation (IR) both for diagnostic and therapeutic purposes is constantly increasing. Since the use of IR involves a risk of harmful effects, such as the DNA DSB induction, an accurate determination of this induced DNA damage and a correct evaluation of the risk-benefit ratio in the clinical field are of key relevance. γH2AX (the phosphorylated form of the histone variant H2AX) is a very early marker of DSBs that can be induced both in physiological conditions, such as in the absence of specific external agents, and by external factors such as smoking, heat, background environmental radiation, and drugs. All these internal and external conditions result in a basal level of γH2AX which must be considered for the correct assessment of the DSBs after IR exposure. In this review we analyze the most common conditions that induce H2AX phosphorylation, including specific exogenous stimuli, cellular states, basic environmental factors, and lifestyles. Moreover, we discuss the most widely used methods for γH2AX determination and describe the principal applications of γH2AX scoring, paying particular attention to clinical studies. This knowledge will help us optimize the use of available methods in order to discern the specific γH2AX following IR-induced DSBs from the basal level of γH2AX in the cells.
Collapse
|
28
|
Simon S, Kendall G, Bouffler S, Little M. The Evidence for Excess Risk of Cancer and Non-Cancer Disease at Low Doses and Dose Rates. Radiat Res 2022; 198:615-624. [PMID: 36136740 PMCID: PMC9797580 DOI: 10.1667/rade-22-00132.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/06/2022] [Indexed: 12/31/2022]
Abstract
The question of whether there are excess radiation-associated health risks at low dose is controversial. We present evidence of excess cancer risks in a number of (largely pediatrically or in utero exposed) groups exposed to low doses of radiation (<0.1 Gy). Moreover, the available data on biological mechanisms do not provide support for the idea of a low-dose threshold or hormesis for any of these endpoints. There are emerging data suggesting risks of cardiovascular disease and cataract at low doses, but this is less well established. This large body of evidence does not suggest and, indeed, is not statistically compatible with any very large threshold in dose (>10 mGy), or with possible beneficial effects from exposures. The presented data suggest that exposure to low-dose radiation causes excess cancer risks and quite possibly also excess risks of various non-cancer endpoints.
Collapse
Affiliation(s)
- S.L. Simon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (retired)
| | - G.M. Kendall
- Cancer Epidemiology Unit, Oxford Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, United Kingdom
| | - S.D. Bouffler
- Radiation Effects Department, UK Health Security Agency (UKHSA), Chilton, Didcot OX11 0RQ, United Kingdom
| | - M.P. Little
- Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892-9778
| |
Collapse
|
29
|
Evaluation of photon interaction parameters of Anti-HIV drugs. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
30
|
Lowe D, Roy L, Tabocchini MA, Rühm W, Wakeford R, Woloschak GE, Laurier D. Radiation dose rate effects: what is new and what is needed? RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:507-543. [PMID: 36241855 PMCID: PMC9630203 DOI: 10.1007/s00411-022-00996-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 05/04/2023]
Abstract
Despite decades of research to understand the biological effects of ionising radiation, there is still much uncertainty over the role of dose rate. Motivated by a virtual workshop on the "Effects of spatial and temporal variation in dose delivery" organised in November 2020 by the Multidisciplinary Low Dose Initiative (MELODI), here, we review studies to date exploring dose rate effects, highlighting significant findings, recent advances and to provide perspective and recommendations for requirements and direction of future work. A comprehensive range of studies is considered, including molecular, cellular, animal, and human studies, with a focus on low linear-energy-transfer radiation exposure. Limits and advantages of each type of study are discussed, and a focus is made on future research needs.
Collapse
Affiliation(s)
- Donna Lowe
- UK Health Security Agency, CRCE Chilton, Didcot, OX11 0RQ, Oxfordshire, UK
| | - Laurence Roy
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| | - Maria Antonella Tabocchini
- Istituto Nazionale i Fisica Nucleare, Sezione i Roma, Rome, Italy
- Istituto Superiore Di Sanità, Rome, Italy
| | - Werner Rühm
- Institute of Radiation Medicine, Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University School of Medicine, Chicago, IL, USA.
| | - Dominique Laurier
- Institut de Radioprotection Et de Sûreté Nucléaire, Fontenay-Aux-Roses, France
| |
Collapse
|
31
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
32
|
Rehani MM, Applegate K, Bodzay T, Heon Kim C, Miller DL, Ali Nassiri M, Chul Paeng J, Srimahachota S, Srinivasa S, Takenaka M, Terez S, Vassileva J, Zhuo W. Accounting for radiation exposure from previous CT exams while deciding on the next exam: What do referring clinicians think? Eur J Radiol 2022; 155:110468. [PMID: 35973303 DOI: 10.1016/j.ejrad.2022.110468] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To obtain clinicians' views of the need to account for radiation exposure from previous CT scans and the advisability of a regulatory mechanism to control the number of CT scans for an individual patient. METHODS A convenience survey was conducted by emailing a link to a three-question electronic survey to clinicians in many countries, mostly through radiology and radiation protection contacts. RESULTS 505 responses were received from 24 countries. 293 respondents (58%) understand that current regulations do not limit the number of CT scans that can be prescribed for a single patient in a year. When asked whether there should be a regulation to limit the number of CT scans that can be prescribed for a single patient in one year, only a small fraction (143, 28%) answered 'No', 182 (36%) answered 'Maybe' and 166 (33%) answered 'Yes'. Most respondents (337; 67%) think that radiation risk should form part of the consideration when deciding whether to request a CT exam. A minority (138; 27%) think the decision should be based only on the medical indication for the CT exam. Comparison among the 4 countries (South Korea, Hungary, USA and Canada) with the largest number of respondents indicated wide variations in responses. CONCLUSIONS A majority of the surveyed clinicians consider radiation risk, in addition to clinical factors, when prescribing CT exams. Most respondents are in favor of, or would consider, regulation to control the number of CT scans that could be performed on a patient annually.
Collapse
Affiliation(s)
- Madan M Rehani
- Radiology, Massachusetts General Hospital, Boston, MA, USA.
| | | | - Tamás Bodzay
- Traumatology, Dr. Manninger Jenő Trauma Center, Budapest, Hungary
| | - Chi Heon Kim
- Neurosurgery, Seoul National University College of Medicine, South Korea
| | - Donald L Miller
- Center for Devices and Radiological Health, U.S. Food and Drug Administration, USA
| | | | - Jin Chul Paeng
- Nuclear Medicine, Seoul National University College of Medicine, South Korea
| | - Suphot Srimahachota
- Cardiovascular Medicine, King Chulalongkorn Memorial Hospital and Chulalongkorn University, Bangkok, Thailand
| | | | - Mamoru Takenaka
- Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Sera Terez
- Radiology Clinic and Nuclear Medicine, University of Szeged, Hungary
| | - Jenia Vassileva
- Radiation Protection of Patients Unit, International Atomic Energy Agency, Vienna, Austria
| | - Weihai Zhuo
- Medical Physics, Institute of Radiation Medicine, Fudan University, China
| |
Collapse
|
33
|
Chauhan V, Hamada N, Wilkins R, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE. A high-level overview of the Organisation for Economic Co-operation and Development Adverse Outcome Pathway Programme. Int J Radiat Biol 2022; 98:1704-1713. [PMID: 35938955 DOI: 10.1080/09553002.2022.2110311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background The Organisation for Economic Co-operation and Development (OECD), through its Chemical Safety Programme, is delegated to ensure the safety of humans and wildlife from harmful toxicants. To support these needs, initiatives to increase the efficiency of hazard identification and risk management are under way. Amongst these, the adverse outcome pathway (AOP) approach integrates information on biological knowledge and test methodologies (both established and new) to support regulatory decision making. AOPs collate biological knowledge from different sources, assess lines of evidence through considerations of causality and undergo rigorous peer-review before being subsequently endorsed by the OECD. It is envisioned that the OECD AOP Development Programme will transform the toxicity testing paradigm by leveraging the strengths of mechanistic and modelling based approaches and enhance the utility of high throughput screening assays. Since its launch, in 2012, the AOP Development Programme has matured with a greater number of AOPs endorsed since inception, and the attraction of new scientific disciplines (e.g. the radiation field). Recently, a Radiation and Chemical (Rad/Chem) AOP Joint Topical Group has been formed by the OECD Nuclear Energy Agency High-Level Group on Low-Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The topical group will work to evolve the development and use of the AOP framework in radiation research and regulation. As part of these efforts, the group will bring awareness and understanding on the programme, as it has matured from the chemical perspective. In this context, this paper provides the radiation community with a high-level overview of the OECD AOP Development Programme, including examples of application using knowledge gleaned from the field of chemical toxicology, and their work towards regulatory implementation. Conclusion: Although the drivers for developing AOPs in chemical sector differ from that of the radiation field, the principles and transparency of the approach can benefit both scientific disciplines. By providing perspectives and an understanding of the evolution of the OECD AOP Development Programme including case examples and work towards quantitative AOP development, it may motivate the expansion and implementation of AOPs in the radiation field.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | - Ruth Wilkins
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
34
|
Chauhan V, Hamada N, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE, Locke PA. Establishing a Communication and Engagement Strategy to Facilitate the Adoption of the Adverse Outcome Pathways in Radiation Research and Regulation. Int J Radiat Biol 2022; 98:1714-1721. [PMID: 35666945 DOI: 10.1080/09553002.2022.2086716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on human health and ecological effects of ionizing radiation are rapidly evolving as innovative technologies arise and the body of scientific knowledge grows. Structuring this information could effectively support the development of decision making tools and health risk models to complement current system of radiation protection. To this end, the adverse outcome pathway (AOP) approach is being explored as a means to consolidate the most relevant research to identify causation between exposure to a chemical or non-chemical stressor and disease or adverse effect progression. This tool is particularly important for low dose and low dose rate radiation exposures because of the latency and uncertainties in the biological responses at these exposure levels. To progress this aspect, it is essential to build a community of developers, facilitators, risk assessors (in the private sector and in government), policy-makers, and regulators who understand the strengths and weaknesses of, and how to appropriately utilize AOPs for consolidating our knowledge on the impact of low dose ionizing radiation. Through co-ordination with the Organisation of Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) High-Level Group on Low-Dose Research (HLG-LDR) and OECD's AOP Programme, initiatives are under way to demonstrate this approach in radiation research and regulation. Among these, a robust communications strategy and stakeholder engagement will be essential. It will help establish best practices for AOPs in institutional project development and aid in dissemination for more efficient and timely uptake and use of AOPs. In this regard, on June 1, 2021, the Radiation and Chemical (Rad/Chem) AOP Joint Topical Group was formed as part of the initiative from the NEA's HLG-LDR. The topical group will work to develop a communication and engagement strategy to define the target audiences, establish the clear messages and identify the delivery and engagement platforms. CONCLUSION The incorporation of the best science and better decision-making should motive the radiation protection community to develop, refine and use AOPs, recognizing that their incorporation into radiation health risk assessments is critical for public health and environmental protection in the 21st century.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Paul A Locke
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
35
|
Obrador E, Salvador-Palmer R, Villaescusa JI, Gallego E, Pellicer B, Estrela JM, Montoro A. Nuclear and Radiological Emergencies: Biological Effects, Countermeasures and Biodosimetry. Antioxidants (Basel) 2022; 11:1098. [PMID: 35739995 PMCID: PMC9219873 DOI: 10.3390/antiox11061098] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/17/2022] Open
Abstract
Atomic and radiological crises can be caused by accidents, military activities, terrorist assaults involving atomic installations, the explosion of nuclear devices, or the utilization of concealed radiation exposure devices. Direct damage is caused when radiation interacts directly with cellular components. Indirect effects are mainly caused by the generation of reactive oxygen species due to radiolysis of water molecules. Acute and persistent oxidative stress associates to radiation-induced biological damages. Biological impacts of atomic radiation exposure can be deterministic (in a period range a posteriori of the event and because of destructive tissue/organ harm) or stochastic (irregular, for example cell mutation related pathologies and heritable infections). Potential countermeasures according to a specific scenario require considering basic issues, e.g., the type of radiation, people directly affected and first responders, range of doses received and whether the exposure or contamination has affected the total body or is partial. This review focuses on available medical countermeasures (radioprotectors, radiomitigators, radionuclide scavengers), biodosimetry (biological and biophysical techniques that can be quantitatively correlated with the magnitude of the radiation dose received), and strategies to implement the response to an accidental radiation exposure. In the case of large-scale atomic or radiological events, the most ideal choice for triage, dose assessment and victim classification, is the utilization of global biodosimetry networks, in combination with the automation of strategies based on modular platforms.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Juan I. Villaescusa
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| | - Eduardo Gallego
- Energy Engineering Department, School of Industrial Engineering, Polytechnic University of Madrid, 28040 Madrid, Spain;
| | - Blanca Pellicer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - José M. Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain; (R.S.-P.); (B.P.); (J.M.E.)
| | - Alegría Montoro
- Service of Radiological Protection, Clinical Area of Medical Image, La Fe University Hospital, 46026 Valencia, Spain; (J.I.V.); (A.M.)
- Biomedical Imaging Research Group GIBI230, Health Research Institute (IISLaFe), La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|
36
|
Review of the effect of reduced levels of background radiation on living organisms. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Friedman-Jimenez G, Kato I, Factor-Litvak P, Shore R. Low-dose ionizing radiation and cancer mortality among enlisted men stationed on nuclear-powered submarines in the United States Navy. Int J Radiat Biol 2022; 98:1542-1550. [PMID: 35316164 DOI: 10.1080/09553002.2022.2055805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Men stationed on nuclear-powered submarines are occupationally exposed to external ionizing radiation at very low levels and radiation dose for each individual is closely monitored. Little is known about ionizing radiation (IR) risks of cancer mortality for populations with levels of cumulative ionizing radiation exposure this low. MATERIALS AND METHODS This historical cohort study followed 85,033 enlisted men who had served on a nuclear-powered submarine in the U.S. Navy between 1969 and 1982 to determine patterns of cancer mortality. Occupational radiation doses were measured by badge dosimeters for each individual for all periods of Navy service potentially involving radiation exposure. Deaths were ascertained through 1995 by searches of multiple national mortality databases. Within-cohort dose-response relationships for cancer mortality were estimated using linear Poisson regression models. Individual level smoking status was not available so cancer risks were estimated separately for cancers with and without previously published evidence of consistently moderate or strong associations with smoking. RESULTS A total of 584 cancer deaths occurred during a follow-up period of up to 27 years. The mean and median cumulative occupational radiation doses received while in the Navy were 5.7 and 1.1 milliSieverts (mSv) respectively, range 0-242 mSv. Mortality Excess Relative Risks (ERRs) per 10 mSv and 95% confidence intervals (CI) were 0.053 (CI -0.03, 0.17) for all cancers, 0.052 (CI -0.03, 0.18) for all solid cancers, and 0.003 (CI -0.29, 0.30) for leukemias excluding chronic lymphocytic leukemia. The ERRs per 10 mSv were 0.052 (CI -0.07, 0.17) for cancers previously associated with smoking and 0.012 (CI -0.10, 0.12) for cancers that were not. CONCLUSIONS The ERR point estimates for solid cancers and leukemia were statistically compatible with those reported in previous published studies of other ionizing radiation-exposed and monitored cohorts, albeit with wide confidence intervals. This study, with high quality measurements of in-Navy occupational external IR doses, high follow-up proportion, and detailed IR dose-response analyses, is consistent with the premise of a small excess cancer risk from low-dose IR.
Collapse
Affiliation(s)
- George Friedman-Jimenez
- Bellevue/NYU Occupational Environmental Medicine Clinic.,NYU Grossman School of Medicine, New York, NY
| | - Ikuko Kato
- Wayne State University, Karmanos Cancer Institute, Detroit, MI
| | | | - Roy Shore
- NYU Grossman School of Medicine, New York, NY
| |
Collapse
|
38
|
Brambilla M, D’Alessio A, Kuchcinska A, Segota D, Sukupova L. A systematic review of conversion factors between kerma-area product and effective/organ dose for cardiac interventional fluoroscopy procedures performed in adult and paediatric patients. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
The aim of this systematic review is to undertake a critical appraisal of the evidence in the published literature concerning the conversion factors between kerma-area product (P
KA) and effective/organ dose (DCED_PKA, DCHT_PKA) for cardiac interventional fluoroscopy procedures performed in adults and paediatric patients and to propose reference conversion factors to help standardize dose calculations. A search strategy utilizing MeSH headings in three databases identified 59 (adult) and 37 (paediatric) papers deemed eligible for the review. Exclusion criteria were adopted to select data only from publications which established DCED_PKA in patients using the ICRP 103 tissue weighting factors. A time restriction from January 2007 was introduced in the search to capture the evolving trends of utilization of fluoroscopy-guided intervention technologies only in recent years. The suggested DCED_PKA and DCHT_PKA were synthesized by calculating the weighted averages of the values reported by the authors with weights corresponding to the study sample size. Eighteen studies for both adult (9) and paediatric (9) patients matching the search terms fulfilled the inclusion criteria. The suggested value for DCED_PKA in adult patients amounts to 0.24 mSv Gy−1cm−2. The suggested values for DCHT_PKA ranged from a minimum of 0.15 mSv Gy−1cm−2 for the female breast to a maximum of 0.97 mSv Gy−1cm−2 for the lungs. The suggested values for DCED_PKA in paediatric patients ranged from 3.45 mSv Gy−1cm−2 for the new-born to 0.49 mSv Gy−1cm−2 in the 15 years age class. The suggested values for DCHT_PKA ranged from a minimum of 0.33 mSv Gy−1cm−2 for bone marrow in the 15 years age class to a maximum of 11.49 mSv Gy−1cm−2 for the heart in the new-born. To conclude, values of DCED_PKA/DCHT_PKA were provided for calculating effective/organ doses in cardiac interventional procedures. They can be useful for standardizing dose calculations, hence for comparison of the radiation detriment from different imaging procedures and in the framework of epidemiologic studies.
Collapse
|