1
|
Jarocka-Karpowicz I, Stasiewicz A, Olchowik-Grabarek E, Sękowski S, Kacprowska A, Skrzydlewska E. Antioxidant and membrane-protective effects of the 3-O-ethyl ascorbic acid-cannabigerol system on UVB-irradiated human keratinocytes. Free Radic Biol Med 2025; 228:251-266. [PMID: 39778604 DOI: 10.1016/j.freeradbiomed.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The lack of effective protection against UVB radiation, that severely disrupts the metabolism of keratinocytes, underlines the search for bioactive compounds that would provide effective protection without causing side effects. Therefore, the aim of the study has been to assess the effect of two compounds, that are different in terms of structure and properties: 3-O-ethyl ascorbic acid-EAA (a stable derivative of vitamin C) and cannabigerol-CBG, used separately or concurrently, on the metabolism of keratinocytes previously exposed to UVB. The obtained results indicate diverse, yet mutually reinforcing localization of the tested compounds, both within the membrane structures and cytosol. When used concurrently, EAA + CBG effectively prevent modifications of the structure of cell membranes, particularly the increase in their fluidity and permeability caused by UVB. It promotes cell survival and enhances the expression of membrane transporters, especially BCRP. Moreover, the concurrent use of both compounds, by reducing the level of ROS and regulating the expression of both Nrf2 activators (p62, MAPK) and inhibitors (Keap1, Bach1, PAGM5), supports the antioxidant efficiency of cells, visible in the increased activity of antioxidant enzymes (SOD1/2, CAT) and the effectiveness of GSH- and Trx-dependent antioxidant systems. Consequently, oxidative modifications of lipids (assessed as 4-HNE and isoprostanes) and proteins (measured as 4-HNE-protein adducts and carbonyl groups) are reduced. The tested compounds also reveal anti-inflammatory effects by modifying the expression of the activator (p62) and inhibitors (IKKα, IKKβ) of NFκB. The observed EAA + CBG effect in preventing changes in the structure and functionality of keratinocyte membranes, maintaining redox balance, and mitigating inflammatory effects caused by UVB provides the basis for further research.
Collapse
Affiliation(s)
- Iwona Jarocka-Karpowicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Anna Stasiewicz
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Ewa Olchowik-Grabarek
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Szymon Sękowski
- Department of Microbiology and Biotechnology, Laboratory of Molecular Biophysics, University of Białystok, Ciołkowskiego 1J, 15-245, Białystok, Poland.
| | - Aleksandra Kacprowska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222, Białystok, Poland.
| |
Collapse
|
2
|
Mottola M, Valdivia Pérez JA, Fanani ML. The role of biophysical properties in defining the functional applications of alkyl esters of L-ascorbic acid. Biochem Biophys Res Commun 2025; 748:151311. [PMID: 39809139 DOI: 10.1016/j.bbrc.2025.151311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/30/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Lipophilic derivatives of vitamin C, known as ascorbyl-6-O-alkanoates (ASCn), have been mainly developed for use in cosmetics, pharmaceuticals, and the food industry as antioxidant additives. These derivatives are of biotechnological interest due to their antioxidant properties, amphiphilic behavior, capacity to self-organize into nano- and micro-structures, anionic nature, and low cost of synthesis. In this review, we will focus on the commercial amphiphile, 6-O-palmitoyl L-ascorbic acid (ASC16), and the shorter acyl chains derivatives, such as 6-O-myristoyl (ASC14) and 6-O-lauroyl L-ascorbic acid (ASC12). The biophysical characteristics of the ASCn family members make them promising candidates for applications such as antioxidant additives, drug carriers in topical pharmaceutical formulations, skin permeation enhancers, and vaccine adjuvants. Furthermore, they exhibit antimicrobial and antibiofilm activities, drawing attention from new biotechnology frontiers. By exploring the biophysical properties of ASCn derivatives, this review highlights their potential applications and the fundamental mechanisms driving their functionality.
Collapse
Affiliation(s)
- Milagro Mottola
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina
| | - Jessica Aye Valdivia Pérez
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina
| | - María Laura Fanani
- Depto. de Química Biológica Ranwel Caputto. Facultad. Ciencias Químicas. Univ. Nacional de Córdoba, Argentina; Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) CONICET, Córdoba, Argentina.
| |
Collapse
|
3
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
5
|
Milutinov J, Pavlović N, Ćirin D, Atanacković Krstonošić M, Krstonošić V. The Potential of Natural Compounds in UV Protection Products. Molecules 2024; 29:5409. [PMID: 39598798 PMCID: PMC11597743 DOI: 10.3390/molecules29225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Overexposure to ultraviolet radiation mainly leads to skin disorders (erythema, burns, immunosuppression), skin aging, and skin cancer as the most serious side effect. It has been widely accepted that using sunscreen products is an important way to protect against the harmful effects of UV rays. Although commercial sunscreens have constantly changed and improved over time, there are emerging concerns about the safety of conventional, organic, UV filters due to adverse effects on humans (such as photoallergic dermatitis, contact sensitivity, endocrine-disrupting effects, etc.) as well as accumulation in the environment and aquatic organisms. This is why natural compounds are increasingly being investigated and used in cosmetic and pharmaceutical sunscreens. Some of these compounds are widely available, non-toxic, safer for use, and have considerable UV protective properties and less side effects. Plant-based compounds such as flavonoids can absorb UVA and UVB rays and possess antioxidant, anticarcinogenic, and anti-inflammatory effects that contribute to photoprotection. Apart from flavonoids, other natural products such as certain vegetable oils, carotenoids, stilbenes, and ferulic acid also have UV-absorbing properties. Some vitamins might also be beneficial for skin protection due to their antioxidant activity. Therefore, the aim of this research was to gain insight into the potential of natural compounds to replace or reduce the amount of conventional UV filters, based on recent research.
Collapse
Affiliation(s)
| | - Nebojša Pavlović
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia; (J.M.); (D.Ć.); (M.A.K.); (V.K.)
| | | | | | | |
Collapse
|
6
|
Zhang Q, Qi X, Wang Z, Zhang D, Wang T. The Association Between Dietary Vitamin C and Sleep Disorders: A Cohort Study Based on UK Biobank. Nutrients 2024; 16:3661. [PMID: 39519494 PMCID: PMC11547431 DOI: 10.3390/nu16213661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Objective: Approximately 30% of adults globally suffer from sleep disorders. However, there are few longitudinal studies on the association between dietary vitamin C and sleep disorders. This study aimed to investigate the association between dietary vitamin C intake and various types of sleep disorders, including sleep apnea and insomnia. Methods: We enrolled 68,221 participants from the UK Biobank. Dietary vitamin C intake was assessed using a 24 h dietary recall questionnaire. We employed a Cox regression model to assess the association between dietary vitamin C and sleep disorders and used restricted cubic spline models to investigate potential nonlinear relationships. Stratified and sensitivity analyses were also conducted to validate the findings. Results: The results indicated that vitamin C intake at the Q4 level (132.88-191.51 mg/d) was significantly associated with a reduced risk of sleep disorders, with an HR (95% CI) of 0.78 (0.65-0.94), and against sleep apnea, with an HR (95% CI) of 0.75 (0.62-0.92). The protective effect persisted significant in stratified analyses of men and those aged ≤ 60 years; the results were consistent in the sensitivity analyses. Conclusions: Our findings suggest that sufficient dietary vitamin C intake may help to prevent sleep disorders.
Collapse
Affiliation(s)
- Qiuge Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (Q.Z.); (X.Q.); (D.Z.)
| | - Xueting Qi
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (Q.Z.); (X.Q.); (D.Z.)
| | - Zhaoguo Wang
- Qingdao Centers for Disease Control and Prevention, Qingdao 266021, China;
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (Q.Z.); (X.Q.); (D.Z.)
| | - Tong Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao 266021, China; (Q.Z.); (X.Q.); (D.Z.)
| |
Collapse
|
7
|
Kian W, Remilah AA, Shatat C, Spector M, Roisman LC, Ryvo L. Case report: The efficacy of adding high doses of intravenous vitamin C to the combination therapy of atezolizumab and bevacizumab in unresectable HCC. Front Med (Lausanne) 2024; 11:1461127. [PMID: 39421875 PMCID: PMC11483342 DOI: 10.3389/fmed.2024.1461127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Vitamin C (L-ascorbic acid) plays a vital role in human physiology, serving as both an antioxidant and a cofactor in enzymatic reactions. High-dose intravenous Vitamin C can achieve significantly elevated plasma concentrations, potentially enhancing its anticancer effects. This case study explores the synergistic impact of high-dose intravenous vitamin C in combination with bevacizumab and atezolizumab in the treatment of a patient with unresectable hepatocellular carcinoma (HCC). Case presentation A 68-year-old male was diagnosed with unresectable HCC, presenting with elevated liver enzymes and an alpha-fetoprotein (AFP) level of 2018 ng/mL. Initial treatment with atezolizumab and Bevacizumab commenced in February 2022. Although imaging indicated stable disease, AFP levels decreased modestly to 1,526 ng/mL, while liver function tests remained elevated, accompanied by further clinical deterioration and weight loss. Subsequently, intravenous vitamin C (30 grams) was introduced into the treatment regimen. This addition led to a rapid and significant reduction in AFP levels, normalization of liver function tests, and marked improvement in clinical symptoms. The patient continued on this combined regimen of vitamin c, atezolizumab, and bevacizumab. Four months later, CT scans revealed significant tumor shrinkage and necrosis. As of 30 months post-diagnosis, the patient remains on the regimen with normal liver function and an AFP level of 1.8 ng/mL, maintaining normal activities and stable weight. Conclusion To our knowledge, this is the first reported case of combining high-dose intravenous vitamin C with Bevacizumab and atezolizumab, which proved to be safe and resulted in significant clinical and radiological improvements in unresectable hepatocellular carcinoma (HCC). Further studies are recommended to explore the potential of this combination therapy.
Collapse
Affiliation(s)
- Waleed Kian
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Areen A. Remilah
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Celine Shatat
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| | - Maria Spector
- Department of Radiology, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Laila C. Roisman
- Helmsley Cancer Center, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Larisa Ryvo
- Institute of Oncology, Samson Assuta Ashdod University Hospital, Ashdod, Israel
| |
Collapse
|
8
|
Osman A, Afify SM, Frag A, Alghandour SM. Histological Assessment of Systemic Toxicity Induced by Zinc oxide Nanoparticles and the Prophylactic Potency of Ascorbate in Albino Rats. J Microsc Ultrastruct 2024; 12:177-192. [PMID: 39811592 PMCID: PMC11729027 DOI: 10.4103/jmau.jmau_68_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 01/16/2025] Open
Abstract
Background Nanoparticles of zinc oxide (ZnO-NPs) are frequently implemented in cosmetics, additives, and electronic devices. Moreover, their applications extend to water treatment, drug delivery, and cancer therapy. As a result, NP toxicity became an essential subject in biosafety research. Aim Using histological and immunohistochemical analysis, we attempted to investigate whether ascorbate ("vitamin C") (VC) could protect liver, lung, and spleen tissues from ZnO-NP systemic toxicity. Materials and Methods Rats were classified as control group, NP group injected intraperitoneally (IP), once by dissolved ZnO-NPs (200 mg/kg), and NP + VC group injected IP, once by dissolved ZnO-NPs (200 mg/kg) and then ingested 100 mg/kg of VC orally. Blood samples were collected. Liver, lung, and spleen specimens were prepared for light, electron microscopic, and immunohistochemical analysis. Results In comparison to the control group, the NP group's liver enzyme, i.e. aspartate transaminase and alanine transaminase, values and counts of white blood cells (WBCs) were higher on the 7th day, but their red blood corpuscle (RBC) count, hemoglobin (Hgb) level, platelet count, and albumin values were lower. Histopathological analysis of liver, lung, and spleen tissues showed severe toxicity manifested by cell apoptosis, mononuclear cell infiltration, dilated blood vessels, and hemorrhage. In addition, the NP group showed a significantly higher expression of Ki67 and caspase-3 immunoreactivity. The biochemical, hematological, and histopathological results of the NP + VC group improved overall, reflecting VC's protective effect against systemic toxicity. Conclusion Our study revealed that ascorbate (VC) inhibited the systemic toxicity prompted by ZnO-NPs in lung, liver, and spleen tissues, indicating its importance for future treatment with ZnO-NPs.
Collapse
Affiliation(s)
- Amira Osman
- Department of Histology and Cell Biology, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Said Mohamed Afify
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Al-Menoufia, Egypt
| | - Amira Frag
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | | |
Collapse
|
9
|
Agura T, Shin S, Jo H, Jeong S, Ahn H, Pang SY, Lee J, Park JH, Kim Y, Kang JS. Aptamin C enhances anti-cancer activity NK cells through the activation of STAT3: a comparative study with vitamin C. Anat Cell Biol 2024; 57:408-418. [PMID: 39048513 PMCID: PMC11424563 DOI: 10.5115/acb.24.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 07/27/2024] Open
Abstract
Vitamin C is a well-known antioxidant with antiviral, anticancer, and anti-inflammatory properties based on its antioxidative function. Aptamin C, a complex of vitamin C with its specific aptamer, has been reported to maintain or even enhance the efficacy of vitamin C while increasing its stability. To investigate in vivo distribution of Aptamin C, Gulo knockout mice, which, like humans, cannot biosynthesize vitamin C, were administered Aptamin C orally for 2 and 4 weeks. The results showed higher vitamin C accumulation in all tissues when administered Aptamin C, especially in the spleen. Next, the activity of natural killer (NK) cells were conducted. CD69, a marker known for activating for NK cells, which had decreased due to vitamin C deficiency, did not recover with vitamin C treatment but showed an increasing with Aptamin C. Furthermore, the expression of CD107a, a cell surface marker that increases during the killing process of target cells, also did not recover with vitamin C but increased with Aptamin C. Based on these results, when cultured with tumor cells to measure the extent of tumor cell death, an increase in tumor cell death was observed. To investigate the signaling mechanisms and related molecules involved in the proliferation and activation of NK cells by Aptamin C showed that Aptamin C treatment led to an increase in intracellular STAT3 activation. In conclusion, Aptamin C has a higher capability to activate NK cells and induce tumor cell death compared to vitamin C and it is mediated through the activation of STAT3.
Collapse
Affiliation(s)
- Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Research and Development, N Therapeutics Co., Ltd., Seoul, Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - So Young Pang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
| | | | | | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Medical Research Center, Seoul National University, Seoul, Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
10
|
Hamed R, AbuKwiak AD, Aburayya R, Alkilani AZ, Hamadneh L, Naser M, Al-Adhami Y, Alhusban AA. Microneedles mediated-dermal delivery of Vitamin C: Formulation, characterization, cytotoxicity, and enhancement of stability. Heliyon 2024; 10:e37381. [PMID: 39290271 PMCID: PMC11407233 DOI: 10.1016/j.heliyon.2024.e37381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Vitamin C (VIT C) is an antioxidant that prevents skin aging. Although dermal delivery is one of the most effective routes to transport VIT C to the skin, the impact of this route can be limited by the barrier function of the stratum corneum (SC). Additionally, VIT C rapidly oxidized and degraded under light and temperature. Therefore, this study provides an approach to utilizing microneedles (MNs) to improve the dermal delivery of VIT C and enhance its stability by incorporating a stabilizing system of ethylenediaminetetraacetic acid (EDTA) and sodium metabisulfite (Meta) within the MNs. Vitamin C microneedles (VIT C MNs) were fabricated using different biodegradable polymers and various concentrations of EDTA/Meta. VIT C MNs were evaluated for morphology, VIT C content, mechanical properties, dissolution rate, needles' insertion, physicochemical properties, ex vivo permeation, viscosity of VIT C polymeric solutions, cytotoxicity, and stability. The results showed that VIT C MNs were uniform and mechanically strong. The recovery of VIT C in MNs was 88.3-90.0 %. The dissolution rate of MNs was <30 min. The flux of VIT C varied based on the composition of MNs. VIT C MNs demonstrated safety against human dermal fibroblasts. VIT C MNs with EDTA/Meta (0.1/0.3 %) were stable under different storage conditions for two months. In conclusion, VIT C MNs were successfully developed using biodegradable polymers, and the stabilizing system (EDTA/META) provided a stable dermal delivery system for VIT C to protect skin from aging.
Collapse
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Amani D AbuKwiak
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Rafa Aburayya
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa, Zarqa, 13110, Jordan
| | - Lama Hamadneh
- Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, P.O. Box 206, Al-Salt, 19117, Jordan
| | - Mais Naser
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Yasmeen Al-Adhami
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| | - Ala A Alhusban
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan, Amman, 11733, Jordan
| |
Collapse
|
11
|
Abumansour H, Abusara OH, Khalil W, Abul-Futouh H, Ibrahim AIM, Harb MK, Abulebdah DH, Ismail WH. Biological evaluation of levofloxacin and its thionated derivatives: antioxidant activity, aldehyde dehydrogenase enzyme inhibition, and cytotoxicity on A549 cell line. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6963-6973. [PMID: 38613572 DOI: 10.1007/s00210-024-03075-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Levofloxacin (LVX) is among the fluoroquinolones antibiotics that has also been studied in vitro and in vivo for its anticancer effects. In this study, we used LVX and novel LVX thionated derivatives; compounds 2 and 3, to evaluate their antioxidant activity, aldehyde dehydrogenase (ALDH) enzymes activity inhibition, and anticancer activity. Combination treatments with doxorubicin (DOX) were investigated as well. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was used to determine the antioxidant activity. The NADH fluorescence spectrophotometric activity assay was used to determine the ALDH inhibitory effects. Resazurin dye method was applied for cell viability assays. Molecular Operating Environment software was used for the molecular docking experiments. Compared to ascorbic acid, DPPH assay showed that compound 3 had the highest antioxidant activity among the tested compounds with approximately 35% scavenging activity. On ALDH enzymes, compound 3 showed a significant ALDH activity inhibition compared to compound 2 at 200 µM. The IC50 values for the tested compounds were approximately 100 µM on A549 cell line, a non-small cell lung cancer (NSCLC) cell line. However, significant enhancement of cytotoxicity and reduction of IC50 values were observed by combining DOX and synergism was achieved with LVX with a combination index value of 0.4. The molecular docking test showed a minimum binding energy with a good affinity for compound 3 towards ALDH enzymes. Thionated LVX derivatives, may be repurposed for NSCLC therapy in combination with DOX, taking into account the antioxidant activity, ALDH activity inhibition, and the molecular docking results of compound 3.
Collapse
Affiliation(s)
- Hamza Abumansour
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan.
| | - Osama H Abusara
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Wiam Khalil
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Hassan Abul-Futouh
- Department of Chemistry, Faculty of Science, The Hashemite University, P.O. Box 330127, Zarqa, 13133, Jordan
| | - Ali I M Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Mohammad K Harb
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Dina H Abulebdah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| | - Worood H Ismail
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
12
|
Lamie C, Elmowafy E, Attia D, Mortada ND. Glucospanlastics: innovative antioxidant and anticancer ascorbyl-2-glucoside vesicles for striking topical performance of repurposed itraconazole. RSC Adv 2024; 14:26524-26543. [PMID: 39175684 PMCID: PMC11339782 DOI: 10.1039/d4ra03542a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/18/2024] [Indexed: 08/24/2024] Open
Abstract
Presently, the development of functional derivatives exploiting biocompatible pharmaceutical materials has become a pressing demand. Among them, ascorbyl-2-glucoside (AA-2G), an ascorbic acid derivative, has significant potential owing to its stability, solubilization and antioxidant prospects. Herein, AA-2G was utilized for the fabrication of itraconazole (ITZ) spanlastics, which were denoted as "glucospanlastics". Subsequently, the newly designed glucospanlastics were characterized to determine their dimensions, charge, entrapment, solubilization efficiency, morphology, stability and antioxidant activity. Further, their cytotoxicity towards A431 cells and their ex vivo skin deposition were investigated. Subsequently, the competence of the formulated cream containing glucospanlastics to suppress Ehrlich carcinoma and modulate the antioxidant profile was evaluated in vivo. The results revealed that the proposed nano-sized glucospanlastics performed better than conventional spanlastics (without AA-2G) with respect to optimal solubilization efficiency and ITZ entrapment (>95%) together with antioxidant, cytotoxic and skin permeation potentials. More importantly, glucospanlastics containing 10 and 20 mg AA-2G demonstrated considerable tumor suppression and necrosis, improvement in glutathione (GSH) content by 1.68- and 2.26-fold, elevation of total antioxidant capacity (TAC) levels by 1.67- and 2.84-fold and 1.78- and 2.03-fold reduction in malondialdehyde (MDA) levels, respectively, compared to a conventional ITZ cream. These innovative antioxidant vesicles show future potential for the dermal delivery of cancer-directed therapies.
Collapse
Affiliation(s)
- Caroline Lamie
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
- Drug Discovery, Delivery and Patient Care (DDDPC), School of Life Sciences, Pharmacy and Chemistry, Kingston University London Kingston Upon Thames Surrey KT1 2EE UK
| | - Enas Elmowafy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| | - Dalia Attia
- Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt Cairo 11837 Egypt +20-2-26300010/20 +20-2-01111414144
| | - Nahed D Mortada
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University Monazzamet Elwehda Elafrikeya Street, Abbaseyya Cairo 11566 Egypt
| |
Collapse
|
13
|
Kim S, Kim Y, Kim C, Choi WI, Kim BS, Hong J, Lee H, Sung D. A novel transdermal drug delivery system: drug-loaded ROS-responsive ferrocene fibers for effective photoprotective and wound healing activity. DISCOVER NANO 2024; 19:119. [PMID: 39073653 PMCID: PMC11286613 DOI: 10.1186/s11671-024-04058-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
The present study proposes an innovative transdermal drug delivery system using ferrocene-incorporated fibers to enhance the bioavailability and therapeutic efficacy of ascorbyl tetraisopalmitate. Using electrospinning technology, the authors created ferrocene polymer fibers capable of highly efficient drug encapsulation and controlled release in response to reactive oxygen species commonly found in wound sites. The approach improves upon previous methods significantly by offering higher drug loading capacities and sustained release, directly targeting diseased cells. The results confirm the potential of ferrocene fibers for localized drug delivery, potentially reducing side effects and increasing patient convenience. The method could facilitate the application of bioactive compounds in medical textiles and targeted therapy.
Collapse
Affiliation(s)
- Sangwoo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yoon Kim
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
- Department of Biosystems & Biomaterials Science and Engineering, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Chaehyun Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
- Department of Applied Bioengineering, Research Institute for Convergence Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Il Choi
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Byoung Soo Kim
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hoik Lee
- Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do, 15588, Republic of Korea.
| | - Daekyung Sung
- Bio-Convergence Materials R&D Division, Center for Bio-Healthcare Materials, Korea Institute of Ceramic Engineering and Technology, 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
14
|
Wang LJ, Pang YB, Li WQ, He QY, Zhang XE, Liu E, Guo J. Global research trends on melasma: a bibliometric and visualized study from 2014 to 2023. Front Pharmacol 2024; 15:1421499. [PMID: 39119611 PMCID: PMC11306164 DOI: 10.3389/fphar.2024.1421499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Melasma, a prevalent pigmentary disorder, is characterized by its complex etiology, propensity for recurrence, and resistance to treatment. However, there is currently no research on melasma through bibliometrics and visualisation. This study analyses the hotspots and trends in the field based on 2,709 publications from the Web of Science Core Collection (WOSCC). We carried out bibliometric analyses using Citespace software for different countries/regions, institutions, authors, and keywords. References were also analysed using VoSviewer. The results indicate that overall, there has been an increase in publications related to melasma since 2014. According to the analysis of the collaborative network diagram, the United States, Egyptian Knowledge Bank, and Benjakul Soottawat are the most contributing countries, institutions, and authors, respectively. Reference and keyword analyses have identified the pathogenesis and treatment of melasma as a prevalent topic in recent years. And how to find new treatment options and more effective therapeutic drugs is a future research trend. This is the first bibliometric and visual analysis of melasma-related literature to explore research hotspots and trends.
Collapse
Affiliation(s)
- Li-Jun Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao-Bin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Quan Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing-Ying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Er Zhang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - E. Liu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
15
|
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024; 16:962. [PMID: 39065659 PMCID: PMC11280113 DOI: 10.3390/pharmaceutics16070962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
L-ascorbic acid represents one of the most potent antioxidant, photoprotective, anti-aging, and anti-pigmentation cosmeceutical agents, with a good safety profile. However, the main challenge is the formulation of stable topical formulation products, which would optimize the penetrability of L-ascorbic acid through the skin. The aim of our research was to evaluate the performance of ascorbyl palmitate on the skin, incorporated in creams and emulgels (2%) as carriers, as well as to determine the impact of its incorporation into liposomes on the penetration profile of this ingredient. Tape stripping was used to study the penetration of ascorbyl palmitate into the stratum corneum. In addition, the sensory and textural properties of the formulations were determined. The liposomal formulations exhibited a better penetration profile (p < 0.05) of the active substance compared to the non-liposomal counterpart, leading to a 1.3-fold and 1.2 fold-increase in the total amount of penetrated ascorbyl palmitate in the stratum corneum for the emulgel and cream, respectively. Encapsulation of ascorbyl palmitate into liposomes led to an increase in the adhesiveness and density of the prepared cream and emulgel samples. The best spreadability and absorption during application were detected in liposomal samples. The obtained results confirmed that liposomal encapsulation of ascorbyl palmitate improved dermal penetration for both the cream and emulgel formulations.
Collapse
Affiliation(s)
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia; (V.M.T.); (A.Ž.)
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia; (M.M.); (I.N.)
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia;
| | - Nebojša Jasnić
- Faculty of Biology, University of Belgrade, Studentski trg 16, 11158 Beograd, Serbia;
| | - Tomislav Tosti
- Institute of Chemistry, Technology and Metallurgy-National Institute of the Republic of Serbia, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia;
| |
Collapse
|
16
|
Cifuentes M, Vahid F, Devaux Y, Bohn T. Biomarkers of food intake and their relevance to metabolic syndrome. Food Funct 2024; 15:7271-7304. [PMID: 38904169 DOI: 10.1039/d4fo00721b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Metabolic syndrome (MetS) constitutes a prevalent risk factor associated with non communicable diseases such as cardiovascular disease and type 2 diabetes. A major factor impacting the etiology of MetS is diet. Dietary patterns and several individual food constituents have been related to the risk of developing MetS or have been proposed as adjuvant treatment. However, traditional methods of dietary assessment such as 24 h recalls rely greatly on intensive user-interaction and are subject to bias. Hence, more objective methods are required for unbiased dietary assessment and efficient prevention. While it is accepted that some dietary-derived constituents in blood plasma are indicators for certain dietary patterns, these may be too unstable (such as vitamin C as a marker for fruits/vegetables) or too broad (e.g. polyphenols for plant-based diets) or reflect too short-term intake only to allow for strong associations with prolonged intake of individual food groups. In the present manuscript, commonly employed biomarkers of intake including those related to specific food items (e.g. genistein for soybean or astaxanthin and EPA for fish intake) and novel emerging ones (e.g. stable isotopes for meat intake or microRNA for plant foods) are emphasized and their suitability as biomarker for food intake discussed. Promising alternatives to plasma measures (e.g. ethyl glucuronide in hair for ethanol intake) are also emphasized. As many biomarkers (i.e. secondary plant metabolites) are not limited to dietary assessment but are also capable of regulating e.g. anti-inflammatory and antioxidant pathways, special attention will be given to biomarkers presenting a double function to assess both dietary patterns and MetS risk.
Collapse
Affiliation(s)
- Miguel Cifuentes
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
- Doctoral School in Science and Engineering, University of Luxembourg, 2, Avenue de l'Université, 4365 Esch-sur-Alzette, Luxembourg
| | - Farhad Vahid
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Yvan Devaux
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| | - Torsten Bohn
- Luxembourg Institute of Health, Department of Precision Health, Strassen, Luxembourg.
| |
Collapse
|
17
|
Sotomayor CG, González C, Soto M, Moreno-Bertero N, Opazo C, Ramos B, Espinoza G, Sanhueza Á, Cárdenas G, Yévenes S, Díaz-Jara J, de Grazia J, Manterola M, Castro D, Gajardo AAIJ, Rodrigo R. Ionizing Radiation-Induced Oxidative Stress in Computed Tomography-Effect of Vitamin C on Prevention of DNA Damage: PREVIR-C Randomized Controlled Trial Study Protocol. J Clin Med 2024; 13:3866. [PMID: 38999430 PMCID: PMC11242585 DOI: 10.3390/jcm13133866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
Exposure to ionizing radiation (IR) is inevitable in various X-ray imaging examinations, with computed tomography (CT) being a major contributor to increased human radiation exposure. Ionizing radiation may cause structural damage to macromolecules, particularly DNA, mostly through an indirect pathway in diagnostic imaging. The indirect pathway primarily involves the generation of reactive oxygen species (ROS) due to water radiolysis induced by IR, leading to DNA damage, including double-strand breaks (DSB), which are highly cytotoxic. Antioxidants, substances that prevent oxidative damage, are proposed as potential radioprotective agents. This Study Protocol article presents the rationale for selecting vitamin C as a preventive measure against CT-associated IR-induced DNA damage, to be investigated in a randomized placebo-controlled trial, with a full in vivo design, using an oral easy-to-use schedule administration in the outpatient setting, for the single CT examination with the highest total global IR dose burden (contrast-enhanced abdomen and pelvis CT). The study also aims to explore the mediating role of oxidative stress, and it has been written in adherence to the Standard Protocol Items recommendations.
Collapse
Affiliation(s)
- Camilo G Sotomayor
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Camila González
- Faculty of Medicine, University of Santiago Chile, Santiago 9170022, Chile
| | - Miki Soto
- School of Medicine, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | | | - Claudina Opazo
- School of Medicine, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Baltasar Ramos
- School of Medicine, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Gonzalo Espinoza
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Álvaro Sanhueza
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Gonzalo Cárdenas
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Sebastián Yévenes
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Jorge Díaz-Jara
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - José de Grazia
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Marcia Manterola
- Human Genetics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Daniel Castro
- Radiology Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
| | - Abraham A I J Gajardo
- Intensive Care Unit, Medicine Department, University of Chile Clinical Hospital, University of Chile, Santiago 8380420, Chile
- Program of Pathophysiology, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, 8380453 Santiago, Chile
| | - Ramón Rodrigo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 8380000, Chile
| |
Collapse
|
18
|
Zheng Y, Jin J, Wei C, Huang C. Association of dietary vitamin C consumption with severe headache or migraine among adults: a cross-sectional study of NHANES 1999-2004. Front Nutr 2024; 11:1412031. [PMID: 38962437 PMCID: PMC11221565 DOI: 10.3389/fnut.2024.1412031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 07/05/2024] Open
Abstract
Background An antioxidant-rich diet has been shown to protect against migraines in previous research. However, little has been discovered regarding the association between migraines and vitamin C (an essential dietary antioxidant). This study assessed the dietary vitamin C intake among adult migraineurs in the United States to determine if there is a correlation between migraine incidence and vitamin C consumption in adults. Methods This cross-sectional research encompassed adults who participated in the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2004, providing detailed information on their dietary vitamin C intake as well as their history of severe headaches or migraines. The study used weighted multivariable and logistic regression analyses to find an independent connection between vitamin C consumption and severe headache or migraine. Tests of interactions and subgroup analysis were conducted. Results Among the 13,445 individuals in the sample, 20.42% had a severe headache or migraine. In fully adjusted models, dietary vitamin C consumption was substantially linked negatively with severe headache or migraine (odds ratio [OR] = 0.94, 95% confidence interval [CI] = 0.91-0.98, p = 0.0007). Compared to quartile 1, quartile 4 had 22% fewer odds of having a severe headache or migraine (OR = 0.78, 95% CI = 0.69-0.89, p = 0.0002). Subgroup analyses showed a significant difference between vitamin C intake and severe headaches or migraines by gender (p for interaction < 0.01). Conclusion Reduced risk of severe headaches or migraines may be associated with increased consumption of vitamin C.
Collapse
Affiliation(s)
| | | | | | - Chunyuan Huang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
19
|
Hou J, Wei W, Geng Z, Zhang Z, Yang H, Zhang X, Li L, Gao Q. Developing Plant Exosomes as an Advanced Delivery System for Cosmetic Peptide. ACS APPLIED BIO MATERIALS 2024; 7:3050-3060. [PMID: 38598772 DOI: 10.1021/acsabm.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Peptides are a promising skincare ingredient, but due to their inherent instability and the barrier function of the skin's surface, they often have limited skin absorption and penetration, which can significantly hinder their skincare benefits. To address this, a novel technique called NanoGlow has been introduced for encapsulating peptide-based cosmetic raw materials into engineered nanosized plant-derived exosomes (pExo) to achieve the goal of a healthier and more radiant skin state. In this approach, pExo served as carriers for cosmetic peptides across the intact skin barrier, enhancing their biological effectiveness in skin beauty. The NanoGlow strategy combines chemical activation and physical proencapsulation, boasting a high success rate and straightforward and stable operation, making it suitable for large-scale production. Comprehensive analysis using in vitro cellular absorption and skin penetration models has demonstrated that the nanosized pExo carriers significantly improve peptide penetration into the skin compared to free peptides. Furthermore, in vivo tissue slice studies have shown that pExo carriers efficiently deliver acetyl hexapeptide-8 to the skin's dermis, surpassing the performance of free peptides. Cosmetic skincare effect analysis has also indicated that pExo-loaded cosmetic peptides deliver superior results. Therefore, the NanoGlow technique harnesses the natural size and properties of pExo to maximize the bioavailability of cosmetic peptides, holding great promise for developing advanced peptide delivery systems in both the cosmetic and medical drug industries.
Collapse
Affiliation(s)
- Jiali Hou
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Wei Wei
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Zaijun Geng
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Zhenxing Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Hui Yang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Xuhui Zhang
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| | - Li Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Gao
- Beijing Youngen Biotechnology Co. Ltd., Beijing 102600, China
| |
Collapse
|
20
|
Ying M, Zeng Z, Li Q, Chen X, Xiong Y, Wu B, Peng L, Zhang Q, Wang L, Dai Z, Li S, Chen H, Yang X. Water-soluble intracellular extract of Desmodesmus sp. YT enhanced the antioxidant capacity of human skin fibroblast to protect the skin from UV damage. J Cosmet Dermatol 2024; 23:1850-1861. [PMID: 38327116 DOI: 10.1111/jocd.16184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND The oxidative stress induced by ultraviolet (UV) radiation is a pivotal factor in skin aging and can even contribute to the development of skin cancer. AIM This study explored the antioxidant effect and mechanism of water-soluble intracellular extract (WIE) of Desmodesmus sp.YT (YT), aiming to develop a natural antioxidant suitable for incorporation into cosmetics. METHODS The study evaluated the scavenging capacity of YT-WIE against free radicals and assessed its impact on human skin fibroblasts (HSF) cell viability and UV resistance using Cell Counting Kit-8 (CCK-8). Transcriptome sequencing was employed to elucidate the mechanism of action, while RT-qPCR and western blot were used to validate the expression of key genes. RESULTS YT-WIE displayed robust antioxidant activity, demonstrating potent scavenging abilities against 2,2-diphenyl-1-picrylhydrazyl (DPPH; IC50 = 0.55 mg mL-1), 2,2'-Azino-bis (3 ethylbenzothiazoline-6-sulfonic acid; ABTS; IC50 = 3.11 mg mL-1), Hydroxyl (·OH; IC50 = 2.21 mg mL-1), and Superoxide anion (O2 •-; IC50 = 0.98 mg mL-1). Furthermore, compared to the control group, the YT-WIE group exhibited an 89.30% enhancement in HSF viability and a 44.63% increase in survival rate post-UV irradiation. Significant upregulation of antioxidant genes (GCLC, GCLM, TXNRD1, HMOX1, NQO1) was observed with YT-WIE treatment at 400 μg mL-1, with fold increases ranging from 1.13 to 5.85 times. CONCLUSION YT-WIE demonstrated considerable potential as an antioxidant, shielding human cells from undue oxidative stress triggered by external stimuli such as UV radiation. This suggests its promising application in cosmetics antioxidants.
Collapse
Affiliation(s)
- Ming Ying
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Innova Bay (Shenzhen) Technology Co. Ltd, Shenzhen, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zuye Zeng
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qin Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xianglan Chen
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ying Xiong
- Department of Dermatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Bo Wu
- Department of Dermatology, Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Liang Peng
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen, China
| | - Qian Zhang
- The Sixth Affiliated Hospital of Shenzhen University and Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Li Wang
- Department of Dermatology, Shenzhen University General Hospital, Shenzhen, China
| | - Zhongming Dai
- Shenzhen University General Hospital, Shenzhen, China
| | - Shuangfei Li
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huirong Chen
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xuewei Yang
- Guangdong Key Laboratory of Plant Epigenetics, Guangdong Technology Research Center for Marine Algal Bioengineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
22
|
Sami A, Han S, Haider MZ, Khizar R, Ali Q, Shafiq M, Tabassum J, Khalid MN, Javed MA, Sajid M, Manzoor MA, Sabir IA. Genetics aspect of vitamin C (Ascorbic Acid) biosynthesis and signaling pathways in fruits and vegetables crops. Funct Integr Genomics 2024; 24:73. [PMID: 38598147 DOI: 10.1007/s10142-024-01352-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/11/2024]
Abstract
Vitamin C, also known as ascorbic acid, is an essential nutrient that plays a critical role in many physiological processes in plants and animals. In humans, vitamin C is an antioxidant, reducing agent, and cofactor in diverse chemical processes. The established role of vitamin C as an antioxidant in plants is well recognized. It neutralizes reactive oxygen species (ROS) that can cause damage to cells. Also, it plays an important role in recycling other antioxidants, such as vitamin E, which helps maintain the overall balance of the plant's antioxidant system. However, unlike plants, humans cannot synthesize ascorbic acid or vitamin C in their bodies due to the absence of an enzyme called gulonolactone oxidase. This is why humans need to obtain vitamin C through their diet. Different fruits and vegetables contain varying levels of vitamin C. The biosynthesis of vitamin C in plants occurs primarily in the chloroplasts and the endoplasmic reticulum (ER). The biosynthesis of vitamin C is a complex process regulated by various factors such as light, temperature, and plant hormones. Recent research has identified several key genes that regulate vitamin C biosynthesis, including the GLDH and GLDH genes. The expression of these genes is known to be regulated by various factors such as light, temperature, and plant hormones. Recent studies highlight vitamin C's crucial role in regulating plant stress response pathways, encompassing drought, high salinity, and oxidative stress. The key enzymes in vitamin C biosynthesis are L-galactose dehydrogenase (GLDH) and L-galactono-1, 4-lactone dehydrogenase (GLDH). Genetic studies reveal key genes like GLDH and GLDH in Vitamin C biosynthesis, offering potential for crop improvement. Genetic variations influence nutritional content through their impact on vitamin C levels. Investigating the roles of genes in stress responses provides insights for developing resilient techniques in crop growth. Some fruits and vegetables, such as oranges, lemons, and grapefruits, along with strawberries and kiwi, are rich in vitamin C. Guava. Papaya provides a boost of vitamin C and dietary fiber. At the same time, red and yellow bell peppers, broccoli, pineapple, mangoes, and kale are additional sources of this essential nutrient, promoting overall health. In this review, we will discuss a brief history of Vitamin C and its signaling and biosynthesis pathway and summarize the regulation of its content in various fruits and vegetables.
Collapse
Affiliation(s)
- Adnan Sami
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Shiming Han
- School of Biological Sciences and Technology, Liupanshui Normal University, Liupanshui, 553004, China.
| | - Muhammad Zeshan Haider
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Rameen Khizar
- Department of Food Sciences, University Of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan.
| | - Muhammad Shafiq
- Department of Horticulture, University Of Punjab, Lahore, P.O BOX 54590, Pakistan.
| | - Javaria Tabassum
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Muhammad Nouman Khalid
- Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Arshad Javed
- Department of Plant Breeding and Genetics, University of Punjab, Lahore, P.O BOX 54590, Pakistan
| | - Mateen Sajid
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Irfan Ali Sabir
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
23
|
Andriolo IRL, Venzon L, da Silva LM. Perspectives About Ascorbic Acid to Treat Inflammatory Bowel Diseases. Drug Res (Stuttg) 2024; 74:149-155. [PMID: 38467159 DOI: 10.1055/a-2263-1388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
It is known that reactive oxygen species cause abnormal immune responses in the gut during inflammatory bowel diseases (IBD). Therefore, oxidative stress has been theorized as an agent of IBD development and antioxidant compounds such as vitamin C (L-ascorbic acid) have been studied as a new tool to treat IBD. Therefore, the potential of vitamin C to treat IBD was reviewed here as a critical discussion about this field and guide future research. Indeed, some preclinical studies have shown the beneficial effects of vitamin C in models of ulcerative colitis in mice and clinical and experimental findings have shown that deficiency in this vitamin is associated with the development of IBD and its worsening. The main mechanisms that may be involved in the activity of ascorbic acid in IBD include its well-established role as an antioxidant, but also others diversified actions. However, some experimental studies employed high doses of vitamin C and most of them did not perform dose-response curves and neither determined the minimum effective dose nor the ED50. Allometric extrapolations were also not made. Also, clinical studies on the subject are still in their infancy. Therefore, it is suggested that the research agenda in this matter covers experimental studies that assess the effective, safe, and translational doses, as well as the appropriate administration route and its action mechanism. After that, robust clinical trials to increase knowledge about the role of ascorbic acid deficiency in IBD patients and the effects of their supplementation in these patients can be encouraged.
Collapse
Affiliation(s)
| | - Larissa Venzon
- Pharmaceutical Sciences Graduate Program - University of Itajai Valley, Itajai, SC, Brazil
| | - Luisa Mota da Silva
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
24
|
Hang C, Moawad MS, Lin Z, Guo H, Xiong H, Zhang M, Lu R, Liu J, Shi D, Xie D, Liu Y, Liang D, Chen YH, Yang J. Biosafe cerium oxide nanozymes protect human pluripotent stem cells and cardiomyocytes from oxidative stress. J Nanobiotechnology 2024; 22:132. [PMID: 38532378 DOI: 10.1186/s12951-024-02383-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.
Collapse
Affiliation(s)
- Chengwen Hang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 3725005, Egypt.
| | - Zheyi Lin
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Huixin Guo
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hui Xiong
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Mingshuai Zhang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Renhong Lu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Junyang Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dan Shi
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
| | - Duanyang Xie
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Yi Liu
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Dandan Liang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China
| | - Yi-Han Chen
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| | - Jian Yang
- State Key Laboratory of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Arrhythmia Research Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
- Shanghai Frontiers Center of Nanocatalytic Medicine, Shanghai, 200092, China.
- Department of Cell Biology, Tongji University School of Medicine, Shanghai, 200092, China.
- Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai, 200092, China.
| |
Collapse
|
25
|
Abric E, Mathias J, Tardieu AS, Mateos L, Eeckhout C, Drulhon F, Ardiet N. Anti-Spot, Lightening Effect and Cutaneous Acceptability of a Stable Anhydrous Ecobiological Formulation of 10% L-Ascorbic Acid. Clin Cosmet Investig Dermatol 2024; 17:489-491. [PMID: 38435841 PMCID: PMC10909327 DOI: 10.2147/ccid.s443182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Affiliation(s)
- Elise Abric
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Jessica Mathias
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Anne-Sophie Tardieu
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Léa Mateos
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Chantal Eeckhout
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Fanny Drulhon
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| | - Nathalie Ardiet
- Research and Development Department, NAOS Ecobiology Company (Bioderma - Institut Esthederm - Etat Pur), Aix-en-Provence, France
| |
Collapse
|
26
|
Barnawi BM, Alrashidi NS, Albalawi AM, Alakeel NS, Hamed JT, Barashid AA, Alduraibi MS, Alhussain GS, Alghadeer JY, Alarifi NA, Altalhi AM. Nutritional Modulation of Periodontal Diseases: A Narrative Review of Recent Evidence. Cureus 2023; 15:e50200. [PMID: 38192930 PMCID: PMC10771989 DOI: 10.7759/cureus.50200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2023] [Indexed: 01/10/2024] Open
Abstract
The role of nutrition in managing periodontal diseases is a dynamic and evolving area of study. This review presents an in-depth analysis of various nutritional elements, including essential fatty acids, proteins, vitamins (D, E, and C), coenzyme Q10, melatonin, and probiotics, and their impact on periodontal health. It synthesizes findings from randomized clinical trials and observational studies to highlight the multifaceted influence of these nutrients on periodontal disease management. Key areas of focus include their role in reducing inflammation, altering the composition of the oral microbiota, and enhancing tissue repair and bone health. The review consistently points to the potential benefits of these nutrients, either as standalone agents or in conjunction with standard periodontal treatments, offering valuable insights for both clinicians and researchers. It advocates for a more nutritionally informed approach to periodontal disease management, emphasizing the importance of a well-rounded, preventive, and therapeutic strategy in dental health.
Collapse
Affiliation(s)
| | | | | | | | | | - Afnan A Barashid
- Radiology, Maternity and Children Specialized Hospital, Jeddah, SAU
| | | | | | | | | | | |
Collapse
|
27
|
Wang J, Xing F, Sheng N, Xiang Z. Associations of dietary oxidative balance score with femur osteoporosis in postmenopausal women: data from the National Health and Nutrition Examination Survey. Osteoporos Int 2023; 34:2087-2100. [PMID: 37648795 DOI: 10.1007/s00198-023-06896-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
We used data from the NHANES to explore associations of DOBS with femur BMD and osteoporosis in postmenopausal women. We found that DOBS was positively associated with femur BMD and negatively associated with the risk of osteoporosis in postmenopausal women. PURPOSE The study aimed to investigate the relationship between dietary oxidative balance score (DOBS) and the risk of osteoporosis in American postmenopausal women. METHODS A total of 3043 participants were included in this study. The linear relationship between DOBS and femur BMD was evaluated using a weighted multivariate linear regression model. The association between DOBS and the risk of osteoporosis was assessed using a weighted logistic regression model, with odds ratios (ORs) and 95% confidence intervals (CIs) calculated. Moreover, the relationship was further characterized through smooth curve fitting (SCF) and weighted generalized additive model (GAM) analysis. RESULTS After adjusting for all covariates, the weighted multivariable linear regression models showed a positive correlation between DOBS and femur BMD. Moreover, the weighted logistic regression model demonstrated that compared to the first tertile of DOBS, the highest tertile of DOBS was significantly associated with a lower risk of osteoporosis, with ORs of 0.418 (95% CI, 0.334, 0.522) for individuals under the age of 70 and 0.632 (95% CI, 0.506, 0.790) for individuals aged 70 or above. Similar trends were also observed in SCF and GAM models. CONCLUSION The present study indicated that postmenopausal women with a higher DOBS have a lower risk of femur osteoporosis. This finding may highlight the potential protective role of an antioxidant-rich diet for the bones of the postmenopausal population. Moreover, DOBS may also be a valuable tool in identifying individuals with osteoporosis. Screening and early intervention for osteoporosis may be essential for postmenopausal women with low DOBS.
Collapse
Affiliation(s)
- Jie Wang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Fei Xing
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Ning Sheng
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China
| | - Zhou Xiang
- Department of Orthopaedics, Orthopaedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
28
|
Saebi MR, Moradinezhad F, Ansarifar E. Quality preservation and decay reduction of minimally processed seedless barberry fruit via postharvest ultrasonic treatment. Food Sci Nutr 2023; 11:7816-7825. [PMID: 38107101 PMCID: PMC10724632 DOI: 10.1002/fsn3.3698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 12/19/2023] Open
Abstract
Seedless barberry fruit is one of the important horticultural products of Iran, which has health benefits due to great amounts of phenolic compounds, flavonoids, and antioxidant activity. However, fresh barberry fruit has a short shelf life even at cold storage, mainly due to high water content and thin skin that leads to fungal decay and high postharvest loss. We examined the effectiveness of the postharvest ultrasonic technology on the quality preservation and nutritional value of fresh seedless barberry fruit and their decay reduction during cold storage. Experimental treatments were the time and temperature of ultrasound (US) and included: (1) control, fruit without US, (2) 5 min US at 20°C, (3) 5 min US at 30°C, (4) 5 min US at 40°C, (5) 10 min US at 20°C, (6) 10 min US at 30°C, (7) 10 min US at 40°C, (8) 15 min US at 20°C, (9) 15 min US at 30°C, and (10) 15 min US at 40°C. After applying the treatments, the fruits were sealed in polyethylene bags and stored at 4 ± 1°C for 20 days. The results showed that all US treatments had higher titratable acidity, antioxidant activity, phenol content, and vitamin C content than the control. However, the highest titratable acidity and antioxidant activity values were obtained in US treatments at 40°C and 30°C for 15 min. Also, US treatment significantly reduced the total soluble solids, decay percentage, and microbial load of fresh barberry fruit. As the US treatment temperature increased from 20°C to 40°C, the decay and microbial load of fruit significantly decreased. In conclusion, this study proved the potential application of the US for preserving the quality of fresh seedless barberry fruit, and the most optimal US temperature and its application time was 40°C for 15 min.
Collapse
Affiliation(s)
- Mohammad Reza Saebi
- Department of Horticultural Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Farid Moradinezhad
- Department of Horticultural Science, Faculty of AgricultureUniversity of BirjandBirjandIran
| | - Elham Ansarifar
- Department of Public Health, School of Health, Social Determinants of Health Research CenterBirjand University of Medical ScienceBirjandIran
| |
Collapse
|
29
|
Konisky H, Bowe WP, Yang P, Kobets K. A clinical evaluation of the efficacy and tolerability of a novel topical antioxidant formulation featuring vitamin C, astaxanthin, and fermented turmeric. J Cosmet Dermatol 2023; 22:3088-3094. [PMID: 37608511 DOI: 10.1111/jocd.15967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Ultraviolet light, visible light, infrared light, and pollution are a few examples of environmental factors that exacerbate the formation of reactive oxygen species (ROS) that cause damage to skin cells' DNA, proteins, and lipids. By supplementing the skin with antioxidants, we can help neutralize ROS formed by these extrinsic factors before they can damage the skin. AIMS This prospective open-label study explores the safety and efficacy of this novel topical formulation of antioxidants (vitamin C, astaxanthin, fermented turmeric, and vitamin E) designed to fight free radical damage and improve overall skin quality, as well as the appearance of fine lines, wrinkles, radiance, and hyperpigmentation of the skin. PATIENTS/METHODS This single-center clinical study evaluated the efficacy of twice-daily application of the test article (Asta C™ Vitamin C Age Defense Serum, Dr. Whitney Bowe Beauty) in 32 subjects for 12 weeks. Healthy female subjects aged 35-60 with mild to moderate fine lines, wrinkles, and hyperpigmentation/uneven skin tone were enrolled in this study. Fitzpatrick skin types I-VI, all skin types (dry, normal, combination, oily), and subjects with sensitive skin were included. RESULTS All subjects demonstrated improvement in overall skin quality (face, neck, and chest) by the end of the 12-week study period. One hundred percent of subjects demonstrated improvement in the appearance of fine lines at Week 12. CONCLUSIONS Overall, the current clinical study demonstrates that Asta C™ is safe, well-tolerated, and effective in improving overall skin quality, as well as the appearance of fine lines, wrinkles, radiance, and hyperpigmentation of the skin.
Collapse
Affiliation(s)
- Hailey Konisky
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Whitney P Bowe
- Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Dr. Whitney Bowe Beauty, Greenwich, Connecticut, USA
| | - Pada Yang
- Dr. Whitney Bowe Beauty, Greenwich, Connecticut, USA
| | - Kseniya Kobets
- Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
30
|
Lee S, Ahn HJ, Park YS, Kim JH, Kim YS, Cho JJ, Park CS. NXP081, DNA Aptamer-Vitamin C Complex Ameliorates DNFB-Induced Atopic Dermatitis in Balb/c Mice. Nutrients 2023; 15:4172. [PMID: 37836456 PMCID: PMC10574402 DOI: 10.3390/nu15194172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic inflammatory disease characterized by dry and itchy skin. Recently, it has been reported that oxidative stress is involved in skin diseases, possibly including AD. Vitamin C, also referred to as ascorbic acid, is a vital water-soluble compound that functions as an essential nutrient. It plays a significant role as both an antioxidant and an additive in various pharmaceutical and food products. Despite the fact that vitamin C is easily oxidized, we have developed NXP081, a single-stranded DNA aptamer that selectively binds to vitamin C, thereby inhibiting its oxidation. The objective of the current research was to examine the impact of NXP081, an animal model of AD induced by 2,4-dinitrofluorobenzene (DNFB). The experimental drug NXP081, when taken orally, showed promising results in reducing inflammation and improving the skin conditions caused by DNFB. The administration of NXP081 resulted in a significant reduction in ear swelling and a noticeable improvement in the appearance of skin lesions. In addition, the administration of NXP081 resulted in a significant decrease in the migration of mast cells in the skin lesions induced by DNFB. Moreover, NXP081 inhibited the production of interferon-gamma (IFN-γ) in CD4+ T cells that were activated and derived from the lymph nodes. Our findings provide useful information about the anti-inflammatory effect of NXP081 on AD.
Collapse
Affiliation(s)
- Sanggon Lee
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (H.-J.A.); (Y.S.P.); (J.-J.C.)
| | - Hyun-Jong Ahn
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (H.-J.A.); (Y.S.P.); (J.-J.C.)
| | - Yong Seek Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (H.-J.A.); (Y.S.P.); (J.-J.C.)
| | - Ji-Hyun Kim
- Nexmos Co., Ltd., U-Tower, 767, Sinsu-ro, Yongin-si 16827, Republic of Korea; (J.-H.K.); (Y.-S.K.)
| | - Yoon-Seong Kim
- Nexmos Co., Ltd., U-Tower, 767, Sinsu-ro, Yongin-si 16827, Republic of Korea; (J.-H.K.); (Y.-S.K.)
| | - Jeong-Je Cho
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (H.-J.A.); (Y.S.P.); (J.-J.C.)
| | - Cheung-Seog Park
- Department of Microbiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.L.); (H.-J.A.); (Y.S.P.); (J.-J.C.)
| |
Collapse
|
31
|
Maurya VK, Shakya A, McClements DJ, Srinivasan R, Bashir K, Ramesh T, Lee J, Sathiyamoorthi E. Vitamin C fortification: need and recent trends in encapsulation technologies. Front Nutr 2023; 10:1229243. [PMID: 37743910 PMCID: PMC10517877 DOI: 10.3389/fnut.2023.1229243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 09/26/2023] Open
Abstract
The multifaceted role of vitamin C in human health intrudes several biochemical functions that are but not limited to antioxidant activity, homoeostasis, amino acid synthesis, collagen synthesis, osteogenesis, neurotransmitter production and several yet to be explored functions. In absence of an innate biosynthetic pathway, humans are obligated to attain vitamin C from dietary sources to maintain its optimal serum level (28 μmol/L). However, a significant amount of naturally occurring vitamin C may deteriorate due to food processing, storage and distribution before reaching to the human gastrointestinal tract, thus limiting or mitigating its disease combating activity. Literature acknowledges the growing prevalence of vitamin C deficiency across the globe irrespective of geographic, economic and population variations. Several tools have been tested to address vitamin C deficiency, which are primarily diet diversification, biofortification, supplementation and food fortification. These strategies inherit their own advantages and limitations. Opportunely, nanotechnology promises an array of delivery systems providing encapsulation, protection and delivery of susceptible compounds against environmental factors. Lack of clear understanding of the suitability of the delivery system for vitamin C encapsulation and fortification; growing prevalence of its deficiency, it is a need of the hour to develop and design vitamin C fortified food ensuring homogeneous distribution, improved stability and enhanced bioavailability. This article is intended to review the importance of vitamin C in human health, its recommended daily allowance, its dietary sources, factors donating to its stability and degradation. The emphasis also given to review the strategies adopted to address vitamin c deficiency, delivery systems adopted for vitamin C encapsulation and fortification.
Collapse
Affiliation(s)
- Vaibhav Kumar Maurya
- Field Application Specialist, PerkinElmer, New Delhi, India
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - Amita Shakya
- Amity Institute of Biotechnology, Amity University Chhattisgarh, Raipur, India
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Ramachandran Srinivasan
- Centre for Ocean Research (DST-FIST Sponsored Centre), MoES-Earth Science and Technology Cell (Marine Biotechnological Studies), Sathyabama Research Park, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Khalid Bashir
- Department of Food Technology, Jamia Hamdard University, New Delhi, India
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| | | |
Collapse
|
32
|
Mehta N, Pokharna P, Shetty SR. Unwinding the potentials of vitamin C in COVID-19 and other diseases: An updated review. Nutr Health 2023; 29:415-433. [PMID: 36445072 PMCID: PMC9713540 DOI: 10.1177/02601060221139628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: The discovery of vitamin C (ascorbic acid) is related to the ancient history of persistent research on the origins of the haemorrhagic disease scurvy. Vitamin C is an important nutrient that aids in a variety of biological and physiological processes. Scientists have been researching the function of vitamin C in the prevention and ailment of sepsis and pneumonia for decades. This has created a potential platform for applying these results to individuals suffering from severe coronavirus infection (COVID-19). Vitamin C's ability to activate and enhance the immune system makes it a promising treatment in the present COVID-19 pandemic. Vitamin C also aids in the activation of vitamin B, the production of certain neurotransmitters, and the transformation of cholesterol into bile acids. Hence, vitamin C is used for the treatment of many diseases. Aim: This review highlights the Vitamin C investigations that are performed by various researchers on patients with COVID 19 infection, the clinical studies and their observations. The authors have additionally updated information on the significance of vitamin C insufficiency, as well as its relevance and involvement in diseases such as cancer, wound healing, iron deficiency anaemia, atherosclerosis and neurodegenerative disorders. Here, we discuss them with the references. Methods: The method used in order to perform literature search was done using SciFinder, PubMed and ScienceDirect. Results: There is a potential role of vitamin C in various diseases including neurodegenerative disorders, COVID-19 and other diseases and the results are highlighted in the review with the help of clinical and preclinical data. Conclusion: More research on vitamin C and the undergoing clinical trials might prove a potential role of vitamin C in protecting the population from current COVID-19 pandemic.
Collapse
Affiliation(s)
- Nikhil Mehta
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Purvi Pokharna
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| | - Saritha R Shetty
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKMs NMIMS. Mumbai, India
| |
Collapse
|
33
|
Liu J, Min S, Kim D, Park J, Park E, Pei S, Koh Y, Shin DY, Byun JM, Ko M, Yoon SS, Hong J. Pharmacological GLUT3 salvage augments the efficacy of vitamin C-induced TET2 restoration in acute myeloid leukemia. Leukemia 2023; 37:1638-1648. [PMID: 37393342 DOI: 10.1038/s41375-023-01954-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
Vitamin C has been demonstrated to regulate hematopoietic stem cell frequencies and leukemogenesis by augmenting and restoring Ten-Eleven Translocation-2 (TET2) function, potentially acting as a promising adjunctive therapeutic agent for leukemia. However, glucose transporter 3 (GLUT3) deficiency in acute myeloid leukemia (AML) impedes vitamin C uptake and abolishes the clinical benefit of vitamin C. In this study, we aimed to investigate the therapeutic value of GLUT3 restoration in AML. In vitro GLUT3 restoration was conducted with the transduction of GLUT3-overexpressing lentivirus or the pharmacological salvage with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) treatment to OCI-AML3, a naturally GLUT3-deficient AML cell line. The effects of GLUT3 salvage were further confirmed in patient-derived primary AML cells. Upregulation of GLUT3 expression made AML cells successfully augment TET2 activity and enhanced the vitamin C-induced anti-leukemic effect. Pharmacological GLUT3 salvage has the potential to overcome GLUT3 deficiency in AML and improves the antileukemic effect of vitamin C treatments.
Collapse
Affiliation(s)
- Jun Liu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Suji Min
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongchan Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jihyun Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eunchae Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shanshan Pei
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ja Min Byun
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Myunggon Ko
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Soo Yoon
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Center for Medical Innovation, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Silva GCC, Machado MDA, Sakumoto K, Inumaro RS, Gonçalves JE, Mandim F, Vaz J, do Valle JS, Faria MGI, Ruiz SP, Piau Junior R, Gonçalves DD, Gazim ZC. Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms. Molecules 2023; 28:5406. [PMID: 37513277 PMCID: PMC10383254 DOI: 10.3390/molecules28145406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Gallesia integrifolia, a notable species in the Atlantic Forest, has been traditionally employed in folk medicine for treating rheumatism, asthma, and worms. This study investigated the cellular antioxidant, antiproliferative, and anti-inflammatory activities of the essential oils (EOs) and crude extracts (CEs) from G. integrifolia flowers, fruits, and leaves. The chemical identification of EOs was performed by GC-MS and CEs by UHPLC-MS. Cellular antioxidant and anti-inflammatory activities were assessed through mouse macrophage cell culture. In addition, the antiproliferative potential was evaluated in gastric, colorectal, breast, and lung tumor cell lines and non-tumor VERO cells. EOs predominantly contained organosulfur compounds in flowers (96.29%), fruits (94.94%), and leaves (90.72%). We found the main compound is 2,2'-Disulfanediyldiethanethiol in the EOs of flowers (47.00%), leaves (41.82%), and fruits (44.39%). Phenolic compounds were identified in CEs. The EOs and CEs demonstrated potential against the tumor cell lines tested (GI50 between 51 and 230 µg/mL). The selectivity index values were greater than 1.0 (1.01 to 3.37), suggesting a relative safety profile. Moreover, the anti-inflammatory activity IC50 ranged from 36.00 to 268 µg/mL, and the cellular oxidation inhibition ranged from 69% to 82%. The results suggest that oils and extracts derived from G. integrifolia have potential for use in various industrial sectors.
Collapse
Affiliation(s)
| | - Mariane de Almeida Machado
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Karina Sakumoto
- Graduate Program in Medicinal and Phytotherapeutic Plants in Primary Care, Universidade Paranaense, Umuarama 87502-210, Brazil
| | | | - José Eduardo Gonçalves
- Graduate Program in Clean Technologies, UniCesumar, Maringá 87050-390, Brazil
- Cesumar Institute of Science, Technology and Innovation, UniCesumar, Maringá 87050-390, Brazil
| | - Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana Vaz
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Juliana Silveira do Valle
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama 87502-210, Brazil
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Maria Graciela Iecher Faria
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Suelen Pereira Ruiz
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Ranulfo Piau Junior
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Daniela Dib Gonçalves
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama 87502-210, Brazil
- Graduate Program in Medicinal and Phytotherapeutic Plants in Primary Care, Universidade Paranaense, Umuarama 87502-210, Brazil
| | - Zilda Cristiani Gazim
- Graduate Program in Biotechnology Applied to Agriculture, Universidade Paranaense, Umuarama 87502-210, Brazil
- Graduate Program in Animal Science with Emphasis on Bioactive Products, Universidade Paranaense, Umuarama 87502-210, Brazil
| |
Collapse
|
35
|
Wang Y, Jia J, Wang Q, Wei Y, Yuan H. Secondary Metabolites from the Cultures of Medicinal Mushroom Vanderbylia robiniophila and Their Tyrosinase Inhibitory Activities. J Fungi (Basel) 2023; 9:702. [PMID: 37504691 PMCID: PMC10381909 DOI: 10.3390/jof9070702] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023] Open
Abstract
Vanderbylia robiniophila (Huaier in Chinese) has been used as a traditional herbal medicine in China for over 1600 years. However, the secondary metabolites of V. robiniophila have not been systematically examined. Corresponding chemical investigation in this study led to the discovery of two new compounds, (22E, 24R)-6β, 7α-dimethoxyergosta-8(14), 22-diene-3β, 5α-diol (1) and vanderbyliolide A (8), along with eight known ones (2-7, 9-10). Their structures were determined by extensive spectroscopic analyses and electronic circular dichroism (ECD) calculations. The tyrosinase inhibitory activity of all isolated compounds was evaluated, and compound 10 showed a potential tyrosinase inhibitory effect with an IC50 value of 60.47 ± 2.63 μM. Kinetic studies of the inhibition reactions suggested that 10 provides the inhibitory ability on tyrosinase in an uncompetitive way.
Collapse
Affiliation(s)
- Yuxi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Jinghui Jia
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- College of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Qi Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yulian Wei
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Haisheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
- College of Life Sciences, Liaoning University, Shenyang 110036, China
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
36
|
Kacemi R, Campos MG. Translational Research on Bee Pollen as a Source of Nutrients: A Scoping Review from Bench to Real World. Nutrients 2023; 15:2413. [PMID: 37242296 PMCID: PMC10221365 DOI: 10.3390/nu15102413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
The emphasis on healthy nutrition is gaining a forefront place in current biomedical sciences. Nutritional deficiencies and imbalances have been widely demonstrated to be involved in the genesis and development of many world-scale public health burdens, such as metabolic and cardiovascular diseases. In recent years, bee pollen is emerging as a scientifically validated candidate, which can help diminish conditions through nutritional interventions. This matrix is being extensively studied, and has proven to be a very rich and well-balanced nutrient pool. In this work, we reviewed the available evidence on the interest in bee pollen as a nutrient source. We mainly focused on bee pollen richness in nutrients and its possible roles in the main pathophysiological processes that are directly linked to nutritional imbalances. This scoping review analyzed scientific works published in the last four years, focusing on the clearest inferences and perspectives to translate cumulated experimental and preclinical evidence into clinically relevant insights. The promising uses of bee pollen for malnutrition, digestive health, metabolic disorders, and other bioactivities which could be helpful to readjust homeostasis (as it is also true in the case of anti-inflammatory or anti-oxidant needs), as well as the benefits on cardiovascular diseases, were identified. The current knowledge gaps were identified, along with the practical challenges that hinder the establishment and fructification of these uses. A complete data collection made with a major range of botanical species allows more robust clinical information.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Laboratory of Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Heath Sciences Campus, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313), Faculty of Science and Technology, University of Coimbra, Rua Larga, 3004-516 Coimbra, Portugal
| |
Collapse
|
37
|
Capecchi E, Piccinino D, Nascimben C, Tomaino E, Ceccotti Vlas N, Gabellone S, Saladino R. Biosynthesis of Novel Ascorbic Acid Esters and Their Encapsulation in Lignin Nanoparticles as Carriers and Stabilizing Systems. Int J Mol Sci 2023; 24:ijms24109044. [PMID: 37240391 DOI: 10.3390/ijms24109044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
A dual-target strategy was designed for the application of lignin nanoparticles in the lipase mediated biosynthesis of novel 3-O-ethyl-L-ascorbyl-6-ferulate and 3-O-ethyl-L-ascorbyl-6-palmitate and in their successive solvent-shift encapsulation in order to improve stability and antioxidant activity against temperature and pH-dependent degradation. The loaded lignin nanoparticles were fully characterized in terms of kinetic release, radical scavenging activity and stability under pH 3 and thermal stress (60 °C), showing improved antioxidant activity and high efficacy in the protection of ascorbic acid esters from degradation.
Collapse
Affiliation(s)
- Eliana Capecchi
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Davide Piccinino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Chiara Nascimben
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Elisabetta Tomaino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Natalia Ceccotti Vlas
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Sofia Gabellone
- Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori"-IRST-IRCCS, Via Piero Maroncelli 40, 47014 Meldola, Italy
| | - Raffaele Saladino
- Department of Biological and Ecological Sciences (DEB), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| |
Collapse
|
38
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
39
|
Zaid Alkilani A, Abo-Zour H, Basheer HA, Abu-Zour H, Donnelly RF. Development and Evaluation of an Innovative Approach Using Niosomes Based Polymeric Microneedles to Deliver Dual Antioxidant Drugs. Polymers (Basel) 2023; 15:polym15081962. [PMID: 37112106 PMCID: PMC10145612 DOI: 10.3390/polym15081962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Ascorbic acid (AA) and caffeine (CAFF) work to protect cells from ultraviolet (UV) radiation and slow down the photoaging process of the skin. However, cosmetic application of AA and CAFF is limited due to poor penetration across the skin and rapid oxidation of AA. The aim of this study was to design and evaluate the dermal delivery of dual antioxidants utilizing microneedles (MNs) loaded with AA and CAFF niosomes. The niosomal nanovesicles were prepared using the thin film method and had particle sizes ranging from 130.6-411.2 nm and a negative Zeta potential of around -35 mV. The niosomal formulation was then combined with polyvinylpyrrolidone (PVP) and polyethylene glycol 400 (PEG 400) to create an aqueous polymer solution. The best skin deposition of AA and CAFF was achieved with the formulation containing 5% PEG 400 (M3) and PVP. Furthermore, the role of AA and CAFF as antioxidants in preventing cancer formation has been well-established. Here we validated the antioxidant properties of ascorbic acid (AA) and caffeine (CAFF) in a novel niosomal formulation referred to as M3 by testing its ability to prevent H2O2-indued cell damage and apoptosis in MCF-7 breast cancer cells. Results showed that M3 was able to shield MCF-7 cells from H2O2 induced damage at concentrations below 2.1 µg/mL for AA and 1.05 µg/mL for CAFF, and also exhibited anticancer effects at higher concentrations of 210 µg/mL for AA and 105 µg/mL. The formulations were stable for two months at room temperature in terms of moisture and drug content. The use of MNs and niosomal carriers could be a promising approach for dermal delivery of hydrophilic drugs like AA and CAFF.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Hana Abu-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Ryan F Donnelly
- Medical Biology Centre, School of Pharmacy, Queen's University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
40
|
Jarmakiewicz-Czaja S, Ferenc K, Filip R. Antioxidants as Protection against Reactive Oxidative Stress in Inflammatory Bowel Disease. Metabolites 2023; 13:metabo13040573. [PMID: 37110231 PMCID: PMC10146410 DOI: 10.3390/metabo13040573] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/13/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) belongs to a group of chronic diseases characterised by periods of exacerbation and remission. Despite many studies and observations, its aetiopathogenesis is still not fully understood. The interactions of genetic, immunological, microbiological, and environmental factors can induce disease development and progression, but there is still a lack of information on these mechanisms. One of the components that can increase the risk of occurrence of IBD, as well as disease progression, is oxidative stress. Oxidative stress occurs when there is an imbalance between reactive oxygen species (ROS) and antioxidants. The endogenous and exogenous components that make up the body's antioxidant defence can significantly affect IBD prophylaxis and reduce the risk of exacerbation by neutralising and removing ROS, as well as influencing the inflammatory state.
Collapse
Affiliation(s)
| | - Katarzyna Ferenc
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
41
|
Calzado-Delgado M, Guerrero-Pérez MO, Yeung KL. Dissolvable Topical Formulations for Burst and Constant Delivery of Vitamin C. ACS OMEGA 2023; 8:12636-12643. [PMID: 37065060 PMCID: PMC10099438 DOI: 10.1021/acsomega.2c06738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 06/19/2023]
Abstract
Healthy skin has a high vitamin C concentration that protects against ultraviolet (UV)-induced damage, promotes wound healing, and lowers cancer risk. The present contribution describes two drug delivery systems for topical administration of vitamin C. The electrospun poly(vinyl alcohol) (PVA) nanofiber carrier of vitamin C exhibits a burst release profile (66 mg/g/h followed by 6.3 mg/g/h). In comparison, a new composite PVA nanofiber-molecular capsule delivers vitamin C at a constant rate (8.2 mg/g/h) with a zeroth-order release profile for better therapeutic management. Both delivery systems protect vitamin C and afford increased heat stability. The molecular capsules of β-cyclodextrin with the vitamin C inclusion complex are immobilized on cellulose acetate and electrosprayed onto an electrospun PVA nanofiber mat.
Collapse
Affiliation(s)
- Mar Calzado-Delgado
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, P. R. China
- Department
of Chemical Engineering, University de Málaga, E29071Málaga, Spain
| | | | - King Lun Yeung
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, P. R. China
- Division
of Environment and Sustainability, The Hong
Kong University of Science and Technology, Clear Water Bay, Kowloon999077, Hong Kong, P. R. China
- HKUST
Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen518000, Guangdong, P. R. China
| |
Collapse
|
42
|
Hernández D, Montalvo A, Pérez I, Charnay C, Sánchez-Espejo R, Cerezo P, Viseras C, Riela S, Cinà G, Rivera A. Antioxidant Efficacy and "In Vivo" Safety of a Bentonite/Vitamin C Hybrid. Pharmaceutics 2023; 15:pharmaceutics15041171. [PMID: 37111657 PMCID: PMC10144955 DOI: 10.3390/pharmaceutics15041171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
L-ascorbic acid (LAA), commonly known as vitamin C, is an excellent and recognized antioxidant molecule used in pharmaceutical and cosmetic formulations. Several strategies have been developed in order to preserve its chemical stability, connected with its antioxidant power, but there is little research regarding the employment of natural clays as LAA host. A safe bentonite (Bent)-which was verified by in vivo ophthalmic irritability and acute dermal toxicity assays-was used as carrier of LAA. The supramolecular complex between LAA and clay may constitute an excellent alternative, since the molecule integrity does not seem to be affected, at least from the point of view of its antioxidant capacity. The Bent/LAA hybrid was prepared and characterized through ultraviolet (UV) spectroscopy, X-ray diffraction (XRD), infrared (IR) spectroscopy, thermogravimetric analysis (TG/DTG) and zeta potential measurements. Photostability and antioxidant capacity tests were also performed. The LAA incorporation into Bent clay was demonstrated, as well as the drug stability due to the Bent photoprotective effect onto the LAA molecule. Moreover, the antioxidant capacity of the drug in the Bent/LAA composite was confirmed.
Collapse
Affiliation(s)
- Dayaris Hernández
- Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana 10400, Cuba
| | - Anaela Montalvo
- Department of Drugs Technology and Control, Institute of Pharmacy and Food (IFAL), University of Havana, Havana 13600, Cuba
| | - Irela Pérez
- Department of Drugs Technology and Control, Institute of Pharmacy and Food (IFAL), University of Havana, Havana 13600, Cuba
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier, CNRS UMR 5253, Université de Montpellier, 34095 Montpellier, France
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - Pilar Cerezo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
| | - César Viseras
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-University of Granada, Avda. de Las Palmeras 4, 18100 Armilla, Spain
| | - Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Giuseppe Cinà
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Aramis Rivera
- Zeolites Engineering Laboratory, Institute of Materials Science and Technology (IMRE), University of Havana, Havana 10400, Cuba
| |
Collapse
|
43
|
El-Far M, Essam A, El-Senduny FF, El-Azim AO, Yahia S, El-Sherbiny IM. Novel highly effective combination of naturally-derived quercetin and ascorbyl palmitate and their nanoformulations as an advancement therapy of cancer. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
44
|
Baptista S, Baptista F, Freitas F. Development of Emulsions Containing L-Ascorbic Acid and α-Tocopherol Based on the Polysaccharide FucoPol: Stability Evaluation and Rheological and Texture Assessment. COSMETICS 2023. [DOI: 10.3390/cosmetics10020056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The main function of vitamin C, as an antioxidant, is to combat free radicals and prevent premature aging, smoothing wrinkles and expression lines. In addition, it acts directly on depigmentation and prevention of blemishes on the skin. In this study, natural oils (30 wt.%) and α-tocopherol (2.5 wt.%) containing oil-in-water (O/W) emulsions stabilized with the bacterial fucose-rich polysaccharide FucoPol were formulated, adding L-ascorbic acid as an antioxidant. The optimized formulations were obtained with 8.0 wt.% L-ascorbic acid for the Olea europaea oil formulation (C1) with a ƞ value of 2.71 Pa.s (measured at shear rate of 2.3 s−1) and E24 = 96% and with 15 wt.% L-ascorbic acid for the Prunus amygdalus dulcis formulation (C2) with a ƞ value of 5.15 Pa.s (at a shear rate of 2.3 s−1) and E24 = 99%. The stability of the FucoPol-based formulations was investigated over 45 days at 4 °C, 20 °C, and 30 °C. The results showed that all formulations maintained the organoleptic characteristics, with pH variations (5.7–6.8 for C1, and 5.5–6.03 for C2) within the regulations for cosmetic products (4 ≤ pH ≤ 7). The accelerated stability tests proved the formulations’ stability at 4 °C with EI = 95% for C1 and EI = 100% for C2. The rheological assessment demonstrated that the formulation presents a shear-thinning and liquid-like behavior. Regarding textural parameters, formulations C1 and C2 displayed an increase in firmness and consistency with similar spreadability during the shelf life. These findings further demonstrate FucoPol’s functional properties, acting as an emulsifier and stabilizer polysaccharide in cosmetic formulations containing L-ascorbic acid.
Collapse
|
45
|
Khan N, Singh AK, Saneja A. Preparation, Characterization, and Antioxidant Activity of L-Ascorbic Acid/HP- β-Cyclodextrin Inclusion Complex-Incorporated Electrospun Nanofibers. Foods 2023; 12:foods12071363. [PMID: 37048184 PMCID: PMC10093489 DOI: 10.3390/foods12071363] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
L-Ascorbic acid (LAA) is a key vitamin, implicated in a variety of physiological processes in humans. Due to its free radical scavenging activity, it is extensively employed as an excipient in pharmaceutical products and food supplements. However, its application is greatly impeded by poor thermal and aqueous stability. Herein, to improve the stability and inhibit oxidative degradation, we prepared LAA-cyclodextrin inclusion complex-incorporated nanofibers (NFs). The continuous variation method (Job plot) demonstrated that LAA forms inclusions with hydroxypropyl-β-cyclodextrin (HP-β-CD) at a 2:1 molar stoichiometric ratio. The NFs were prepared via the single step electrospinning technique, without using any polymer matrix. The solid-state characterizations of LAA/HP-β-CD-NF via powder x-ray diffractometry (PXRD), Fourier-transform infrared (FT-IR) analysis, differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA), and nuclear magnetic resonance (1H NMR and 2D-NOESY) spectroscopy, reveal the effective encapsulation of the LAA (guest molecule) inside the HP-β-CD (host) cavity. The SEM micrograph reveals an average fiber diameter of ~339 nm. The outcomes of the thermal investigations demonstrated that encapsulation of LAA within HP-β-CD cavities provides improved thermal stability of LAA (by increasing the thermal degradation temperature). The radical scavenging assay demonstrated the enhanced antioxidant potential of LAA/HP-β-CD-NF, as compared to native LAA. Overall, the study shows that cyclodextrin inclusion complex-incorporated NFs, are an effective approach for improving the limitations associated with LAA, and provide promising avenues in its therapeutic and food applications.
Collapse
Affiliation(s)
- Nabab Khan
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar Singh
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Saneja
- Formulation Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
46
|
Stolić Jovanović A, Martinović M, Žugić A, Nešić I, Tosti T, Blagojević S, Tadić VM. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023; 15:pharmaceutics15030813. [PMID: 36986679 PMCID: PMC10056080 DOI: 10.3390/pharmaceutics15030813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The dual controlled release of emulgels makes them efficient drug delivery systems of increasing interest. The framework of this study was to incorporate selected L-ascorbic acid derivatives into emulgels. From the formulated emulgels, the release profiles of actives were evaluated considering their different polarities and concentrations, and consequently their effectiveness on the skin via a long-term in vivo study that lasted for 30 days was determined. Skin effects were assessed by measuring the electrical capacitance of the stratum corneum (EC), trans-epidermal water loss (TEWL), melanin index (MI) and skin pH. In addition, the sensory and textural properties of emulgel formulations were compared with each other. The changes in the rate of the release of the L-ascorbic acid derivatives were monitored using the Franz diffusion cells. The obtained data were statistically significant, and indicated an increase in the degree of hydration of the skin and skin whitening potential, while no significant changes in TEWL and pH values were detected. The consistency, firmness and stickiness of the emulgels were estimated by volunteers applying the established sensory evaluation protocol. In addition, it was revealed that the difference in hydrophilic/lipophilic properties of L-ascorbic acid derivatives influenced their release profiles without changing their textural characteristics. Therefore, this study highlighted emulgels as L-ascorbic acid suitable carrier systems and one of the promising candidates as novel drug delivery systems.
Collapse
Affiliation(s)
| | - Milica Martinović
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Ana Žugić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
| | - Ivana Nešić
- Department of Pharmacy, Faculty of Medicine, University of Nis, Boulevard Dr. Zorana Djindjića 81, 18000 Nis, Serbia
| | - Tomislav Tosti
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Stevan Blagojević
- The Institute of General and Physical Chemistry, Studentski trg 12/V, 11158 Beograd, Serbia
| | - Vanja M. Tadić
- Department for Pharmaceutical Research and Development, Institute for Medicinal Plant Research “Dr. Josif Pančić”, Tadeuša Koscuška 1, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
47
|
Hassane Hamadou A, Zhang J, Chen C, Xu J, Xu B. Vitamin C and β-carotene co-loaded in marine and egg nanoliposomes. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Caritá AC, Resende de Azevedo J, Chevalier Y, Arquier D, Vinícius Buri M, Riske KA, Ricci Leonardi Ideas G, Bolzinger MA. ELASTIC CATIONIC LIPOSOMES FOR VITAMIN C DELIVERY: DEVELOPMENT, CHARACTERIZATION AND SKIN ABSORPTION STUDY. Int J Pharm 2023; 638:122897. [PMID: 37003313 DOI: 10.1016/j.ijpharm.2023.122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/10/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023]
Abstract
The influence of hydrophilic surfactants acting on the membrane elasticity of liposomes on the skin absorption of vitamin C is investigated. The purpose of encapsulation inside cationic liposomes is to improve the skin delivery of vitamin C. The properties of elastic liposomes (ELs) are compared to that of conventional liposomes (CLs). ELs are formed by the addition of the "edge activator" Polysorbate 80 to the CLs composed of soybean lecithin, cationic lipid DOTAP (1,2-dioleoyl-3-trimethylammoniopropane chloride), and cholesterol. The liposomes are characterized by dynamic light scattering and electron microscopy. No toxicity is detected in human keratinocyte cells. Evidences of Polysorbate 80 incorporation into liposome bilayers and of the higher flexibility of ELs are given by isothermal titration calorimetry and pore edge tension measurements in giant unilamellar vesicles. The presence of a positive charge in the liposomal membrane increases the encapsulation efficacy by approximately 30% for both CLs and ELs. Skin absorption of vitamin C from CLs, ELs and a control aqueous solution measured in Franz cells shows a high delivery of vitamin C into each skin layer and the acceptor fluid from both liposome types. These results suggest that another mechanism drives skin diffusion, involving interactions between cationic lipids and vitamin C depending on the skin pH.
Collapse
|
49
|
Effect of liposomal formulation of ascorbic acid on corneal permeability. Sci Rep 2023; 13:3448. [PMID: 36859418 PMCID: PMC9977777 DOI: 10.1038/s41598-023-29290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/02/2023] [Indexed: 03/03/2023] Open
Abstract
Ascorbic acid (AA) has a pivotal role in corneal wound healing via stimulating the biosynthesis of highly organized extracellular matrix components, but its rapid degradation and low corneal permeability limits its therapeutic effects. In this paper, we present the pharmacokinetic properties of a liposomal-based formulation of AA in terms of corneal permeation. Chemical stability, shelf-life, and drug release rate of lyophilized liposome (AA-LLipo) formulation was determined in comparison to free-form of AA solution using high-performance liquid chromatography (HPLC) and rapid equilibrium dialysis. In vitro transcorneal permeability was studied using a parallel artificial membrane permeability assay (PAMPA). Ex vivo permeation was examined on AA-LLipo-treated porcine cornea by determining the AA content on the ocular surface, in the cornea as well as in the aqueous humor using HPLC, and by Raman-mapping visualizing the AA-distribution. Our results showed that the liposomal formulation improved the chemical stability of AA, while drug release was observed with the same kinetic efficiency as from the free-form of AA solution. Both corneal-PAMPA and porcine corneal permeability studies showed that AA-LLipo markedly improved the corneal absorption kinetics of AA, thus, increasing the AA content in the cornea and aqueous humor. AA-LLipo formulation could potentially increase the bioavailability of AA in corneal tissues.
Collapse
|
50
|
Lavilla I, Romero V, Costas P, Bendicho C. Kinetic spectrophotometric assay for the determination of vitamin C in cosmetics following ultrasound-assisted emulsification. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:951-958. [PMID: 36723195 DOI: 10.1039/d2ay01795d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this work, a new analytical approach based on ultrasound-assisted emulsification followed by a photoreaction with methylene blue (MB) and kinetic analysis by UV-vis spectrophotometry has been developed for the determination of L-ascorbic acid (AA) in cosmetic samples. The emulsification of cosmetic samples results in a transparent solution that allows an easy and rapid quantitation by UV-vis spectrophotometry. The emulsified sample is mixed with a MB aqueous solution and this mixture is subjected to irradiation with a tungsten lamp for 5 min (fixed-time kinetic assay). A reduction in the MB absorbance intensity at 664 nm occurs as the concentration of AA increases. The observed change in absorbance intensity was used for calibration and further quantitation using the relationship of absorbance logarithm vs. AA concentration (μg mL-1). In order to achieve an optimal response, different parameters involved in the reaction between AA and MB were fully investigated. Under optimal conditions, the limits of detection and quantification were 0.04 μg mL-1 and 0.15 μg mL-1, respectively. Repeatability and reproducibility, expressed as relative standard deviation, were in the range of 0.4-0.6% and 0.6-1.5%, respectively. Finally, the proposed method was applied to the analysis of 15 cosmetic samples, namely, (i) 12 samples without AA, which were used to carry out recovery studies, obtaining results in the range of 97.5-100.7%; (ii) 3 serum samples containing pure AA among their ingredients, which were used for AA stability studies.
Collapse
Affiliation(s)
- Isela Lavilla
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, QA2 group, Vigo, 36310, Spain.
| | - Vanesa Romero
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, QA2 group, Vigo, 36310, Spain.
| | - Paula Costas
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, QA2 group, Vigo, 36310, Spain.
| | - Carlos Bendicho
- Centro de Investigación Mariña, Universidade de Vigo, Departamento de Química Analítica y Alimentaria, QA2 group, Vigo, 36310, Spain.
| |
Collapse
|