1
|
Curtis BN, Gladfelter AS. Drivers of Morphogenesis: Curvature Sensor Self-Assembly at the Membrane. Cold Spring Harb Perspect Biol 2024; 16:a041528. [PMID: 38697653 PMCID: PMC11610757 DOI: 10.1101/cshperspect.a041528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
This review examines the relationships between membrane chemistry, curvature-sensing proteins, and cellular morphogenesis. Curvature-sensing proteins are often orders of magnitude smaller than the membrane curvatures they localize to. How are nanometer-scale proteins used to sense micrometer-scale membrane features? Here, we trace the journey of curvature-sensing proteins as they engage with lipid membranes through a combination of electrostatic and hydrophobic interactions. We discuss how curvature sensing hinges on membrane features like lipid charge, packing, and the directionality of membrane curvature. Once bound to the membrane, many curvature sensors undergo self-assembly (i.e., they oligomerize or form higher-order assemblies that are key for initiating and regulating cell shape transformations). Central to these discussions are the micrometer-scale curvature-sensing proteins' septins. By discussing recent literature surrounding septin membrane association, assembly, and their many functions in morphogenesis with support from other well-studied curvature sensors, we aim to synthesize possible mechanisms underlining cell shape sensing.
Collapse
Affiliation(s)
- Brandy N Curtis
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| | - Amy S Gladfelter
- Department of Cell Biology, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
2
|
Degli Esposti L, Squitieri D, Fusacchia C, Bassi G, Torelli R, Altamura D, Manicone E, Panseri S, Adamiano A, Giannini C, Montesi M, Bugli F, Iafisco M. Bioinspired oriented calcium phosphate nanocrystal arrays with bactericidal and osteogenic properties. Acta Biomater 2024; 186:470-488. [PMID: 39117114 DOI: 10.1016/j.actbio.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
The global diffusion of antibiotic resistance poses a severe threat to public health. Addressing antibiotic-resistant infections requires innovative approaches, such as antibacterial nanostructured surfaces (ANSs). These surfaces, featuring ordered arrays of nanostructures, exhibit the ability to kill bacteria upon contact. However, most currently developed ANSs utilize bioinert materials, lacking bioactivity crucial for promoting tissue regeneration, particularly in the context of bone infections. This study introduces ANSs composed of bioactive calcium phosphate nanocrystals. Two distinct ANSs were created through a biomineralization-inspired growth of amorphous calcium phosphate (ACP) precursors. The ANSs demonstrated efficient antibacterial properties against both Gram-negative (P. aeruginosa) and Gram-positive (S. aureus) antibiotic resistant bacteria, with up to 75 % mortality in adhered bacteria after only 4 h of contact. Notably, the ANS featuring thinner and less oriented nano-needles exhibited superior efficacy attributed to simultaneous membrane rupturing and oxidative stress induction. Moreover, the ANSs facilitate the proliferation of mammalian cells, enhancing adhesion, spreading, and reducing oxidative stress. The ANSs displayed also significant bioactivity towards human mesenchymal stem cells, promoting colonization and inducing osteogenic differentiation. Specifically, the ANS with thicker and more ordered nano-needles demonstrated heightened effects. In conclusion, ANSs introduced in this work have the potential to serve as foundation for developing bone graft materials capable of eradicate site infections while concurrently stimulating bone regeneration. STATEMENT OF SIGNIFICANCE: Nanostructured surfaces with antibacterial properties through a mechano-bactericidal mechanism have shown significant potential in fighting antibiotic resistance. However, these surfaces have not been fabricated with bioactive materials necessary for developing devices that are both antibacterial and able to stimulate tissue regeneration. This study demonstrates the feasibility of creating nanostructured surfaces of ordered calcium phosphate nano-needles through a biomineralization-inspired growth. These surfaces exhibit dual functionality, serving as effective bactericidal agents against Gram-negative and Gram-positive antibiotic-resistant bacteria while also promoting the proliferation of mammalian cells and inducing osteogenic differentiation of human mesenchymal stem cells. Consequently, this approach holds promise in the context of bone infections, introducing innovative nanostructured surfaces that could be utilized in the development of antimicrobial and osteogenic grafts.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Fusacchia
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Via delle Scienze 11/A, 43124, Parma (PR), Italy
| | - Giada Bassi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy; Department of Neuroscience, Imaging and Clinical Science. University of G. d'Annunzio, Via dei Vestini 31, 66100, Chieti, Italy
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Davide Altamura
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Erika Manicone
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy; Dipartimento di Chimica, Università degli studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Silvia Panseri
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Alessio Adamiano
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Cinzia Giannini
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Monica Montesi
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy.
| | - Michele Iafisco
- Institute of Science, Technology and Sustainability for Ceramics (ISSMC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
| |
Collapse
|
3
|
Sun Q, Yang Z, Xu R, Li R, Li Y, Wang F, Li Y. Smart responsive staple for dynamic promotion of anastomotic stoma healing. Bioact Mater 2024; 39:630-642. [PMID: 38883312 PMCID: PMC11180322 DOI: 10.1016/j.bioactmat.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/21/2024] [Indexed: 06/18/2024] Open
Abstract
The precise combination of conflicting biological properties through sophisticated structural and functional design to meet all the requirements of anastomotic healing is of great demand but remains challenging. Here, we develop a smart responsive anastomotic staple (Ti-OH-MC) by integrating porous titanium anastomotic staple with multifunctional polytannic acid/tannic acid coating. This design achieves dynamic sequential regulation of antibacterial, anti-inflammatory, and cell proliferation properties. During the inflammatory phase of the anastomotic stoma, our Ti-OH-MC can release tannic acid to provide antibacterial and anti-inflammatory properties, together with immune microenvironment regulation function. At the same time, as the healing progresses, the multifunctional coating gradually falls off to expose the porous structure of the titanium anastomotic staple, which promotes cell adhesion and proliferation during the later proliferative and remodeling phases. As a result, our Ti-OH-MC exceeds the properties of clinically used titanium anastomotic staple, and can effectively promote the healing. The staple's preparation strategy is simple and biocompatible, promising for industrialisation and clinical application. This work provides an effective anastomotic staple for anastomotic stoma healing and serve as a reference for the functional design and preparation of other types of titanium-based tissue repair materials.
Collapse
Affiliation(s)
- Qi Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zifeng Yang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Ruijun Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Renjie Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yang Li
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Feng Wang
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Guangxi Engineering Research Center for New Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou, 535011, China
| | - Yong Li
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
- Department of Gastrointestinal Surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
4
|
Moghaddas O, Seyedjafari E, Mahoutchi DS. Biological behavior of mesenchymal stem cells on two types of commercial dermal scaffolds: An in vitro study. JOURNAL OF ADVANCED PERIODONTOLOGY & IMPLANT DENTISTRY 2024; 16:133-138. [PMID: 39758268 PMCID: PMC11699267 DOI: 10.34172/japid.2024.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/30/2024] [Indexed: 01/07/2025]
Abstract
Background Acellular dermal matrix (ADM) has been introduced as an alternative to autogenous grafts. This study assessed the biological behavior of mesenchymal stem cells (MSCs) on two types of commercial ADM scaffolds. Methods The present in vitro study investigated the behavior of MSCs cultured on scaffold type I CenoDerm® (Tissue Regeneration Corporation) and type II Acellular Dermis (Iranian Tissue Product Co.) as the test groups and an empty well plate as the control group (n=78). Cell attachment was assessed after 12 hours of incubation using 6,4-diamidino-2-phenylindole (DAPI) staining and methyl thiazole tetrazolium (MTT) assay. Cell proliferation was assessed using the MTT assay at 24- and 84-hour and 7-day intervals. Cell morphology was also assessed under a scanning electron microscope (SEM) at 24 hours. MTT assay and DAPI staining were repeated for five samples in all the three groups. Mann-Whitney, ANOVA, and post hoc Tukey tests were used for statistical analysis. Results The DAPI staining and MTT assay showed similar results concerning cell attachment between all the groups at 12 hours (P=0.4). At 24 hours, cell proliferation was significantly higher in scaffold groups (P<0.001). At seven days, the lowest cell proliferation was noted in the scaffold II group, with a significant difference between the groups (P=0.01). At 24 hours, cell expansion was greater in the control group, followed by the scaffold I group. Conclusion Both scaffolds were similar in MSC attachment, but scaffold I appeared superior to scaffold II in terms of MSC proliferation and morphology in vitro.
Collapse
Affiliation(s)
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Donya Sadat Mahoutchi
- Department of Periodontics, Faculty of Dentistry, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
5
|
Ferrai C, Schulte C. Mechanotransduction in stem cells. Eur J Cell Biol 2024; 103:151417. [PMID: 38729084 DOI: 10.1016/j.ejcb.2024.151417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
Nowadays, it is an established concept that the capability to reach a specialised cell identity via differentiation, as in the case of multi- and pluripotent stem cells, is not only determined by biochemical factors, but that also physical aspects of the microenvironment play a key role; interpreted by the cell through a force-based signalling pathway called mechanotransduction. However, the intricate ties between the elements involved in mechanotransduction, such as the extracellular matrix, the glycocalyx, the cell membrane, Integrin adhesion complexes, Cadherin-mediated cell/cell adhesion, the cytoskeleton, and the nucleus, are still far from being understood in detail. Here we report what is currently known about these elements in general and their specific interplay in the context of multi- and pluripotent stem cells. We furthermore merge this overview to a more comprehensive picture, that aims to cover the whole mechanotransductive pathway from the cell/microenvironment interface to the regulation of the chromatin structure in the nucleus. Ultimately, with this review we outline the current picture of the interplay between mechanotransductive cues and epigenetic regulation and how these processes might contribute to stem cell dynamics and fate.
Collapse
Affiliation(s)
- Carmelo Ferrai
- Institute of Pathology, University Medical Centre Göttingen, Germany.
| | - Carsten Schulte
- Department of Biomedical and Clinical Sciences and Department of Physics "Aldo Pontremoli", University of Milan, Italy.
| |
Collapse
|
6
|
Huo Z, Yang W, Harati J, Nene A, Borghi F, Piazzoni C, Milani P, Guo S, Galluzzi M, Boraschi D. Biomechanics of Macrophages on Disordered Surface Nanotopography. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27164-27176. [PMID: 38750662 DOI: 10.1021/acsami.4c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Macrophages are involved in every stage of the innate/inflammatory immune responses in the body tissues, including the resolution of the reaction, and they do so in close collaboration with the extracellular matrix (ECM). Simplified substrates with nanotopographical features attempt to mimic the structural properties of the ECM to clarify the functional features of the interaction of the ECM with macrophages. We still have a limited understanding of the macrophage behavior upon interaction with disordered nanotopography, especially with features smaller than 10 nm. Here, we combine atomic force microscopy (AFM), finite element modeling (FEM), and quantitative biochemical approaches in order to understand the mechanotransduction from the nanostructured surface into cellular responses. AFM experiments show a decrease of macrophage stiffness, measured with the Young's modulus, as a biomechanical response to a nanostructured (ns-) ZrOx surface. FEM experiments suggest that ZrOx surfaces with increasing roughness represent weaker mechanical boundary conditions. The mechanical cues from the substrate are transduced into the cell through the formation of integrin-regulated focal adhesions and cytoskeletal reorganization, which, in turn, modulate cell biomechanics by downregulating cell stiffness. Surface nanotopography and consequent biomechanical response impact the overall behavior of macrophages by increasing movement and phagocytic ability without significantly influencing their inflammatory behavior. Our study suggests a strong potential of surface nanotopography for the regulation of macrophage functions, which implies a prospective application relative to coating technology for biomedical devices.
Collapse
Affiliation(s)
- Zixin Huo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjie Yang
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Javad Harati
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ajinkya Nene
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Francesca Borghi
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Paolo Milani
- CIMaINa and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Shifeng Guo
- Shenzhen Key Laboratory of Smart Sensing and Intelligent Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Guangdong Provincial Key Lab of Robotics and Intelligent System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- The Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Massimiliano Galluzzi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Diana Boraschi
- Laboratory of Inflammation and Vaccines, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pharmacology, Shenzhen University of Advanced Technology, Shenzhen 518055, China
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen 518055, China
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Italy
- Stazione Zoologica Anton Dohrn, 80122 Napoli, Italy
| |
Collapse
|
7
|
Li M. Harnessing atomic force microscopy-based single-cell analysis to advance physical oncology. Microsc Res Tech 2024; 87:631-659. [PMID: 38053519 DOI: 10.1002/jemt.24467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Single-cell analysis is an emerging and promising frontier in the field of life sciences, which is expected to facilitate the exploration of fundamental laws of physiological and pathological processes. Single-cell analysis allows experimental access to cell-to-cell heterogeneity to reveal the distinctive behaviors of individual cells, offering novel opportunities to dissect the complexity of severe human diseases such as cancers. Among the single-cell analysis tools, atomic force microscopy (AFM) is a powerful and versatile one which is able to nondestructively image the fine topographies and quantitatively measure multiple mechanical properties of single living cancer cells in their native states under aqueous conditions with unprecedented spatiotemporal resolution. Over the past few decades, AFM has been widely utilized to detect the structural and mechanical behaviors of individual cancer cells during the process of tumor formation, invasion, and metastasis, yielding numerous unique insights into tumor pathogenesis from the biomechanical perspective and contributing much to the field of cancer mechanobiology. Here, the achievements of AFM-based analysis of single cancer cells to advance physical oncology are comprehensively summarized, and challenges and future perspectives are also discussed. RESEARCH HIGHLIGHTS: Achievements of AFM in characterizing the structural and mechanical behaviors of single cancer cells are summarized, and future directions are discussed. AFM is not only capable of visualizing cellular fine structures, but can also measure multiple cellular mechanical properties as well as cell-generated mechanical forces. There is still plenty of room for harnessing AFM-based single-cell analysis to advance physical oncology.
Collapse
Affiliation(s)
- Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Kim HS, Taghizadeh A, Taghizadeh M, Kim HW. Advanced materials technologies to unravel mechanobiological phenomena. Trends Biotechnol 2024; 42:179-196. [PMID: 37666712 DOI: 10.1016/j.tibtech.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 09/06/2023]
Abstract
Advancements in materials-driven mechanobiology have yielded significant progress. Mechanobiology explores how cellular and tissue mechanics impact development, physiology, and disease, where extracellular matrix (ECM) dynamically interacts with cells. Biomaterial-based platforms emulate synthetic ECMs, offering precise control over cellular behaviors by adjusting mechanical properties. Recent technological advances enable in vitro models replicating active mechanical stimuli in vivo. These models manipulate cellular mechanics even at a subcellular level. In this review we discuss recent material-based mechanomodulatory studies in mechanobiology. We highlight the endeavors to mimic the dynamic properties of native ECM during pathophysiological processes like cellular homeostasis, lineage specification, development, aging, and disease progression. These insights may inform the design of accurate in vitro mechanomodulatory platforms that replicate ECM mechanics.
Collapse
Affiliation(s)
- Hye Sung Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Ali Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Mohsen Taghizadeh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea.
| |
Collapse
|
9
|
Toita R, Kitamura M, Tsuchiya A, Kang J, Kasahara S. Releasable, Immune-Instructive, Bioinspired Multilayer Coating Resists Implant-Induced Fibrosis while Accelerating Tissue Repair. Adv Healthc Mater 2024; 13:e2302611. [PMID: 38095751 PMCID: PMC11468989 DOI: 10.1002/adhm.202302611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 12/21/2023]
Abstract
Implantable biomaterials trigger foreign body reactions (FBRs), which reduces the functional life of medical devices and prevents effective tissue regeneration. Although existing therapeutic approaches can circumvent collagen-rich fibrotic encapsulation secondary to FBRs, they disrupt native tissue repair. Herein, a new surface engineering strategy in which an apoptotic-mimetic, immunomodulatory, phosphatidylserine liposome (PSL) is released from an implant coating to induce the formation of a macrophage phenotype that mitigates FBRs and improves tissue healing is described. PSL-multilayers constructed on implant surfaces via the layer-by-layer method release PSLs over a 1-month period. In rat muscles, poly(etheretherketone) (PEEK), a nondegradable polymer implant model, induces FBRs with dense fibrotic scarring under an aberrant cellular profile that recruits high levels of inflammatory infiltrates, foreign body giant cells (FBGCs), scar-forming myofibroblasts, and inflammatory M1-like macrophages but negligible amounts of anti-inflammatory M2-like phenotypes. However, the PSL-multilayer coating markedly diminishes these detrimental signatures by shifting the macrophage phenotype. Unlike other therapeutics, PSL-multilayered coatings also stimulate muscle regeneration. This study demonstrates that PSL-multilayered coatings are effective in eliminating FBRs and promoting regeneration, hence offering potent and broad applications for implantable biomaterials.
Collapse
Affiliation(s)
- Riki Toita
- Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)1‐8‐31 MidorigaokaIkedaOsaka563‐8577Japan
- AIST‐Osaka University Advanced Photonics and Biosensing Open Innovation LaboratoryAIST2‐1 YamadaokaSuitaOsaka565‐0871Japan
| | - Masahiro Kitamura
- Niterra Co., Ltd.2808 IwasakiKomakiAichi485–8510Japan
- NGK Spark Plug‐AIST Healthcare Materials Cooperative Research Laboratory2266–98 AnagahoraShimoshidami, Moriyama‐kuNagoyaAichi463–8560Japan
| | - Akira Tsuchiya
- Department of BiomaterialsFaculty of Dental ScienceKyushu University3‐1‐1 MaidashiHigashi‐kuFukuoka812–8582Japan
| | - Jeong‐Hun Kang
- Division of Biopharmaceutics and PharmacokineticsNational Cerebral and Cardiovascular Center Research Institute6‐1 Shinmachi, KishibeSuitaOsaka564–8565Japan
| | | |
Collapse
|
10
|
Erdogan YK, Uslu E, Aydınol MK, Saglam ASY, Odabas S, Ercan B. Morphology of Nanostructured Tantalum Oxide Controls Stem Cell Differentiation and Improves Corrosion Behavior. ACS Biomater Sci Eng 2024; 10:377-390. [PMID: 38078685 DOI: 10.1021/acsbiomaterials.3c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tantalum is receiving increasing attention in the biomedical field due to its biocompatible nature and superior mechanical properties. However, the bioinert nature of tantalum still poses a challenge and limits its integration into the bone tissue. To address these issues, we fabricated nanotubular (NT), nanocoral (NC), and nanodimple morphologies on tantalum surfaces via anodization. The size of these nanofeatures was engineered to be approximately 30 nm for all anodized samples. Thus, the influence of the anodized nanostructured morphology on the chemical and biological properties of tantalum was evaluated. The NT and NC samples exhibited higher surface roughness, surface energy, and hydrophilicity compared to the nonanodized samples. In addition, the NT samples exhibited the highest corrosion resistance among all of the investigated samples. Biological experiments indicated that NT and NC samples promoted human adipose tissue-derived mesenchymal stem cell (hADMSC) spreading and proliferation up to 5 days in vitro. ALP, COL1A1, and OSC gene expressions as well as calcium mineral synthesis were upregulated on the NT and NC samples in the second and third weeks in vitro. These findings highlight the significance of nanostructured feature morphology for anodized tantalum, where the NT morphology was shown to be a potential candidate for orthopedic applications.
Collapse
Affiliation(s)
- Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Biomedical Engineering, Isparta University of Applied Science, Isparta 32260, Turkey
| | - Ece Uslu
- Institute of Bioengineering, School of Engineering, EPFL, Lausanne 1015, Switzerland
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Mehmet Kadri Aydınol
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| | - Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara 06500, Turkey
| | - Sedat Odabas
- Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara 06560, Turkey
- Faculty of Science, Department of Chemistry, Biomaterials and Tissue Engineering Laboratory (BteLAB), Ankara University, Ankara 06100, Turkey
- Interdisciplinary Research Unit for Advanced Materials (INTRAM), Ankara University, Ankara 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Cankaya, Ankara 06800, Turkey
| |
Collapse
|
11
|
Wang H, Xue J, Li Y, Shi K, Fang J, Zheng J, Lyu X, Gao Z, Xu D, Hu N. Optimizing the Cell-Nanostructure Interface: Nanoconcave/Nanoconvex Device for Intracellular Recording of Cardiomyocytes. NANO LETTERS 2023; 23:11884-11891. [PMID: 38064276 DOI: 10.1021/acs.nanolett.3c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Nanostructures are powerful components for the development of high-performance nanodevices. Revealing and understanding the cell-nanostructure interface are essential for improving and guiding nanodevice design for investigations of cell physiology. For intracellular electrophysiological detection, the cell-nanostructure interface significantly affects the quality of recorded intracellular action potentials and the application of nanodevices in cardiology research and pharmacological screening. Most of the current investigations of biointerfaces focus on nanovertical structures, and few involve nanoconcave structures. Here, we design both nanoconvex and nanoconcave devices to perform intracellular electrophysiological recordings. The amplitude, signal-to-noise ratio, duration, and repeatability of the recorded intracellular electrophysiological signals provide a multifaceted characterization of the cell-nanostructure interface. We demonstrate that devices based on both convex and concave nanostructures can create tight coupling, which facilitates high-quality and stable intracellular recordings and paves the way for precise electrophysiological study.
Collapse
Affiliation(s)
- Hao Wang
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Jiajin Xue
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Ying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Keda Shi
- Department of Lung Transplantation and General Thoracic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jiaru Fang
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jilin Zheng
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Xuelian Lyu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
| | - Zhigang Gao
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Dongxin Xu
- School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ning Hu
- Department of Chemistry, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310058, China
- General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| |
Collapse
|
12
|
Ghosh S, Bhatti GK, Sharma PK, Kandimalla R, Mastana SS, Bhatti JS. Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:6. [PMID: 38104307 DOI: 10.1007/s10571-023-01434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/06/2023] [Indexed: 12/19/2023]
Abstract
Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations. This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.
Collapse
Affiliation(s)
- Sushruta Ghosh
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India
| | - Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Pushpender Kumar Sharma
- Amity Institute of Biotechnology, Amity University, Rajasthan, India
- Amity Centre for Nanobiotechnology and Nanomedicine, Amity University, Rajasthan, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal, Telangana, India
- Department of Applied Biology, CSIR-Indian Institute of Technology, Hyderabad, India
| | - Sarabjit Singh Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences Central, University of Punjab, Bathinda, India.
| |
Collapse
|
13
|
Couvrette LJ, Walker KLA, Bui TV, Pelling AE. Plant Cellulose as a Substrate for 3D Neural Stem Cell Culture. Bioengineering (Basel) 2023; 10:1309. [PMID: 38002433 PMCID: PMC10669287 DOI: 10.3390/bioengineering10111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
Neural stem cell (NSC)-based therapies are at the forefront of regenerative medicine strategies for various neural defects and injuries such as stroke, traumatic brain injury, and spinal cord injury. For several clinical applications, NSC therapies require biocompatible scaffolds to support cell survival and to direct differentiation. Here, we investigate decellularized plant tissue as a novel scaffold for three-dimensional (3D), in vitro culture of NSCs. Plant cellulose scaffolds were shown to support the attachment and proliferation of adult rat hippocampal neural stem cells (NSCs). Further, NSCs differentiated on the cellulose scaffold had significant increases in their expression of neuron-specific beta-III tubulin and glial fibrillary acidic protein compared to 2D culture on a polystyrene plate, indicating that the scaffold may enhance the differentiation of NSCs towards astrocytic and neuronal lineages. Our findings suggest that plant-derived cellulose scaffolds have the potential to be used in neural tissue engineering and can be harnessed to direct the differentiation of NSCs.
Collapse
Affiliation(s)
- Lauren J. Couvrette
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Krystal L. A. Walker
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| | - Tuan V. Bui
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
| | - Andrew E. Pelling
- Department of Biology, University of Ottawa, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 5N5, Canada
- Department of Physics, University of Ottawa, STEM Complex, 150 Louis Pasteur Pvt., Ottawa, ON K1N 5N5, Canada
| |
Collapse
|
14
|
Wu P, Yanagi K, Yokota K, Hakamada M, Mabuchi M. Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:54. [PMID: 37884819 PMCID: PMC10602965 DOI: 10.1007/s10856-023-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Kazuya Yanagi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
15
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
Umer A, Ghouri MD, Muyizere T, Aqib RM, Muhaymin A, Cai R, Chen C. Engineered Nano-Bio Interfaces for Stem Cell Therapy. PRECISION CHEMISTRY 2023; 1:341-356. [PMID: 37654807 PMCID: PMC10466455 DOI: 10.1021/prechem.3c00056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 09/02/2023]
Abstract
Engineered nanomaterials (ENMs) with different topographies provide effective nano-bio interfaces for controlling the differentiation of stem cells. The interaction of stem cells with nanoscale topographies and chemical cues in their microenvironment at the nano-bio interface can guide their fate. The use of nanotopographical cues, in particular nanorods, nanopillars, nanogrooves, nanofibers, and nanopits, as well as biochemical forces mediated factors, including growth factors, cytokines, and extracellular matrix proteins, can significantly impact stem cell differentiation. These factors were seen as very effective in determining the proliferation and spreading of stem cells. The specific outgrowth of stem cells can be decided with size variation of topographic nanomaterial along with variation in matrix stiffness and surface structure like a special arrangement. The precision chemistry enabled controlled design, synthesis, and chemical composition of ENMs can regulate stem cell behaviors. The parameters of size such as aspect ratio, diameter, and pore size of nanotopographic structures are the main factors for specific termination of stem cells. Protein corona nanoparticles (NPs) have shown a powerful facet in stem cell therapy, where combining specific proteins could facilitate a certain stem cell differentiation and cellular proliferation. Nano-bio reactions implicate the interaction between biological entities and nanoparticles, which can be used to tailor the stem cells' culmination. The ion release can also be a parameter to enhance cellular proliferation and to commit the early differentiation of stem cells. Further research is needed to fully understand the mechanisms underlying the interactions between engineered nano-bio interfaces and stem cells and to develop optimized regenerative medicine and tissue engineering designs.
Collapse
Affiliation(s)
- Arsalan Umer
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Muhammad Daniyal Ghouri
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Theoneste Muyizere
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Raja Muhammad Aqib
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Abdul Muhaymin
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Rong Cai
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
& CAS Center for Excellence in Nanoscience and Technology of China, Chinese Academy of Sciences (CAS), Beijing100190, China
- University
of Chinese Academy of Sciences, Beijing100049, China
- GBA
National Institute for Nanotechnology Innovation, Guangdong 5110700, China
| |
Collapse
|
17
|
Feng Y, Li M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. NANOSCALE 2023; 15:13346-13358. [PMID: 37526589 DOI: 10.1039/d3nr02404k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Mechanical cues play a crucial role in regulating physiological and pathological processes, and atomic force microscopy (AFM) has become an important and standard tool for measuring the mechanical properties of single cells. In particular, providing a capability to manipulate cells in a three-dimensional (3D) space benefits enhancing the applications of AFM measurements in cell biology. Here, we present the complementary integration of AFM and micropipette micromanipulation, which allows precise 3D manipulations and nanomechanical measurements of single living cells. A micropipette micromanipulation system under the guidance of optical microscopy was established to isolate single living cells, and polydimethylsiloxane (PDMS) micropillar substrates were used to physically immobilize the isolated living cells for downstream AFM detection. The viscoelastic properties (Young's modulus, relaxation time, viscosity) of cells were quantitatively measured by AFM-based indentation assay. The effectiveness of micropipette-assisted AFM in single-cell analysis was confirmed on both living animal suspended cells and living animal adherent cells, showing dramatic changes in cell mechanics in different states and revealing the dynamics of single cells grown on micropillar arrays. The study demonstrates the great potential of a micropipette to aid AFM in single-cell manipulations for better accessing the mechanical cues involved in cellular processes, which will allow additional studies of single-cell mechanics and will benefit the field of mechanobiology.
Collapse
Affiliation(s)
- Yaqi Feng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mi Li
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Cai L, Cui Y, Guo D, Chen H, Li J, Zhou X, Xie J. Microenvironmental Stiffness Directs Chondrogenic Lineages of Stem Cells from the Human Apical Papilla via Cooperation between ROCK and Smad3 Signaling. ACS Biomater Sci Eng 2023; 9:4831-4845. [PMID: 36797839 DOI: 10.1021/acsbiomaterials.2c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Cell-based cartilage tissue engineering faces a great challenge in the repair process, partly due to the special physical microenvironment. Human stem cell from apical papilla (hSCAP) shows great potential as seed cells because of its versatile differentiation capacity. However, whether hSCAP has potent chondrogenic differentiation ability in the physical microenvironment of chondroid remains unknown. In this study, we fabricated poly(dimethylsiloxane) (PDMS) substrates with different stiffnesses and investigated the chondrogenic differentiation potential of hSCAPs. First, we found that hSCAPs cultured on soft substrates spread more narrowly accompanied by cortical actin organization, a hallmark of differentiated chondrocytes. On the contrary, stiff substrates were favorable for cell spreading and stress fiber formation. More importantly, the increased chondrogenic differentiation of hSCAPs seeded on soft substrates was confirmed by characterizing increased extracellular proteoglycan aggregation through Alcian blue staining and Safranin O staining and enhanced markers toward chondrogenic differentiation including SRY-box transcription factor 9 (Sox9), type II collagen (Col2), and aggrecan in both normal α-minimum essential medium (αMEM) and specific chondrogenic medium (CM) culture conditions. Then, we investigated the mechanosensing/mechanotransduction governing the chondrogenic differentiation of hSCAPs in response to different stiffnesses and found that stiffness-sensitive integrin β1 and focal adhesion kinase (FAK) were essential for mechanical signal perception and were oriented at the start of mechanotransduction induced by matrix stiffness. We next showed that the increased nuclear accumulation of Smad3 signaling and target Sox9 facilitated the chondrogenic differentiation of hSCAPs on the soft substrates and further verified the importance of Rho-associated protein kinase (ROCK) signaling in regulating chondrogenic differentiation and its driving factors, Smad3 and Sox9. By using SIS3, the specific inhibitor of p-Smad3, and miRNA targeting Rho-associated protein kinase 1 (ROCK-1), we finally confirmed the importance of ROCK/Smad3/Sox9 axis in the chondrogenic differentiation of hSCAPs in response to substrate stiffness. These results help us to increase the understanding of how microenvironmental stiffness directs chondrogenic differentiation from the aspects of mechanosensing, mechanotransduction, and cell fate decision, which will be of great value in the application of hSCAPs in cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Daimo Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
19
|
Kutluk H, Bastounis EE, Constantinou I. Integration of Extracellular Matrices into Organ-on-Chip Systems. Adv Healthc Mater 2023; 12:e2203256. [PMID: 37018430 PMCID: PMC11468608 DOI: 10.1002/adhm.202203256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/20/2023] [Indexed: 04/07/2023]
Abstract
The extracellular matrix (ECM) is a complex, dynamic network present within all tissues and organs that not only acts as a mechanical support and anchorage point but can also direct fundamental cell behavior, function, and characteristics. Although the importance of the ECM is well established, the integration of well-controlled ECMs into Organ-on-Chip (OoC) platforms remains challenging and the methods to modulate and assess ECM properties on OoCs remain underdeveloped. In this review, current state-of-the-art design and assessment of in vitro ECM environments is discussed with a focus on their integration into OoCs. Among other things, synthetic and natural hydrogels, as well as polydimethylsiloxane (PDMS) used as substrates, coatings, or cell culture membranes are reviewed in terms of their ability to mimic the native ECM and their accessibility for characterization. The intricate interplay among materials, OoC architecture, and ECM characterization is critically discussed as it significantly complicates the design of ECM-related studies, comparability between works, and reproducibility that can be achieved across research laboratories. Improving the biomimetic nature of OoCs by integrating properly considered ECMs would contribute to their further adoption as replacements for animal models, and precisely tailored ECM properties would promote the use of OoCs in mechanobiology.
Collapse
Affiliation(s)
- Hazal Kutluk
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| | - Effie E. Bastounis
- Institute of Microbiology and Infection Medicine (IMIT)Eberhard Karls University of TübingenAuf der Morgenstelle 28, E872076TübingenGermany
- Cluster of Excellence “Controlling Microbes to Fight Infections” EXC 2124Eberhard Karls University of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Iordania Constantinou
- Institute of Microtechnology (IMT)Technical University of BraunschweigAlte Salzdahlumer Str. 20338124BraunschweigGermany
- Center of Pharmaceutical Engineering (PVZ)Technical University of BraunschweigFranz‐Liszt‐Str. 35a38106BraunschweigGermany
| |
Collapse
|
20
|
Babaliari E, Ranella A, Stratakis E. Microfluidic Systems for Neural Cell Studies. Bioengineering (Basel) 2023; 10:902. [PMID: 37627787 PMCID: PMC10451731 DOI: 10.3390/bioengineering10080902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/05/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Whereas the axons of the peripheral nervous system (PNS) spontaneously regenerate after an injury, the occurring regeneration is rarely successful because axons are usually directed by inappropriate cues. Therefore, finding successful ways to guide neurite outgrowth, in vitro, is essential for neurogenesis. Microfluidic systems reflect more appropriately the in vivo environment of cells in tissues such as the normal fluid flow within the body, consistent nutrient delivery, effective waste removal, and mechanical stimulation due to fluid shear forces. At the same time, it has been well reported that topography affects neuronal outgrowth, orientation, and differentiation. In this review, we demonstrate how topography and microfluidic flow affect neuronal behavior, either separately or in synergy, and highlight the efficacy of microfluidic systems in promoting neuronal outgrowth.
Collapse
Affiliation(s)
- Eleftheria Babaliari
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Anthi Ranella
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
| | - Emmanuel Stratakis
- Foundation for Research and Technology—Hellas (F.O.R.T.H.), Institute of Electronic Structure and Laser (I.E.S.L.), Vasilika Vouton, 70013 Heraklion, Greece;
- Department of Physics, University of Crete, 70013 Heraklion, Greece
| |
Collapse
|
21
|
Yang S, Jiang W, Ma X, Wang Z, Sah RL, Wang J, Sun Y. Nanoscale Morphologies on the Surface of 3D-Printed Titanium Implants for Improved Osseointegration: A Systematic Review of the Literature. Int J Nanomedicine 2023; 18:4171-4191. [PMID: 37525692 PMCID: PMC10387278 DOI: 10.2147/ijn.s409033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/10/2023] [Indexed: 08/02/2023] Open
Abstract
Three-dimensional (3D) printing is serving as the most promising approach to fabricate personalized titanium (Ti) implants for the precise treatment of complex bone defects. However, the bio-inert nature of Ti material limits its capability for rapid osseointegration and thus influences the implant lifetime in vivo. Despite the macroscale porosity for promoting osseointegration, 3D-printed Ti implant surface morphologies at the nanoscale have gained considerable attention for their potential to improve specific outcomes. To evaluate the influence of nanoscale surface morphologies on osseointegration outcomes of 3D-printed Ti implants and discuss the available strategies, we systematically searched evidence according to the PRISMA on PubMed, Embase, Web of Science, and Cochrane (until June 2022). The inclusion criteria were in vivo (animal) studies reporting the osseointegration outcomes of nanoscale morphologies on the surface of 3D-printed Ti implants. The risk of bias (RoB) was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE's) tool. The quality of the studies was evaluated using the Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines. (PROSPERO: CRD42022334222). Out of 119 retrieved articles, 9 studies met the inclusion criteria. The evidence suggests that irregular nano-texture, nanodots and nanotubes with a diameter of 40-105nm on the surface of porous/solid 3D-printed Ti implants result in better osseointegration and vertical bone ingrowth compared to the untreated/polished ones by significantly promoting cell adhesion, matrix mineralization, and osteogenic differentiation through increasing integrin expression. The RoB was low in 41.1% of items, unclear in 53.3%, and high in 5.6%. The quality of the studies achieved a mean score of 17.67. Our study demonstrates that nanostructures with specific controlled properties on the surface of 3D-printed Ti implants improve their osseointegration. However, given the small number of studies, the variability in experimental designs, and lack of reporting across studies, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Shiyan Yang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Weibo Jiang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Xiao Ma
- Department of Orthopedics, the China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, Jilin, 130000, People's Republic of China
| | - Robert L Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA, 92037, USA
- Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA, 92037, USA
| | - Jincheng Wang
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| | - Yang Sun
- Orthopedic Medical Center, the Second Hospital of Jilin University, Changchun, Jilin, 130000, People's Republic of China
| |
Collapse
|
22
|
Tian F, Yin L, Lin P, Liu Y, Wang W, Chen Y, Tang Y. Aligned Nanofibrous Net Deposited Perpendicularly on Microridges Supports Endothelium Formation and Promotes the Structural Maturation of hiPSC-Derived Cardiomyocytes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17518-17531. [PMID: 36992621 DOI: 10.1021/acsami.2c22551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cell alignment widely exists in various in vivo tissues and also plays an essential role in the construction of in vitro models, such as vascular endothelial and myocardial models. Recently, microscale and nanoscale hierarchical topographical structures have been drawing increasing attention for engineering in vitro cell alignment. In the present study, we fabricated a micro-/nanohierarchical substrate based on soft lithography and electrospinning to assess the synergetic effect of both the aligned nanofibrous topographical guidance and the off-ground culture environment provided by the substrate on the endothelium formation and the maturation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The morphology, proliferation, and barrier formation of human umbilical vein endothelial cells (HUVECs) as well as the alignment, cardiac-specific proteins, and maturity-related gene expression of hiPSC-CMs on the aligned-nanofiber/microridge (AN-MR) substrate were studied. Compared with the glass slide and the single-aligned nanofiber substrate, the AN-MR substrate enhanced the proliferation, alignment, and cell-cell interaction of HUVECs and improved the length of the sarcomere and maturation-related gene expression of hiPSC-CMs. Finally, the response of hiPSC-CMs on different substrates to two typical cardiac drugs (isoproterenol and E-4031) was tested and analyzed, showing that the hiPSC-CMs on AN-MR substrates were more resistant to drugs than those in other groups, which was related to the higher maturity of the cells. Overall, the proposed micro-/nanohierarchical substrate supports the in vitro endothelium formation and enhances the maturation of hiPSC-CMs, which show great potential to be applied in the construction of in vitro models and tissue engineering.
Collapse
Affiliation(s)
- Feng Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Linlin Yin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiran Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Yurong Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenlong Wang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yong Chen
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 24 Rue Lhomond, Paris 75005, France
| | - Yadong Tang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
23
|
Zhu X, Ma D, Yang B, An Q, Zhao J, Gao X, Zhang L. Research progress of engineered mesenchymal stem cells and their derived exosomes and their application in autoimmune/inflammatory diseases. Stem Cell Res Ther 2023; 14:71. [PMID: 37038221 PMCID: PMC10088151 DOI: 10.1186/s13287-023-03295-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/22/2023] [Indexed: 04/12/2023] Open
Abstract
Autoimmune/inflammatory diseases affect many people and are an important cause of global incidence and mortality. Mesenchymal stem cells (MSCs) have low immunogenicity, immune regulation, multidifferentiation and other biological characteristics, play an important role in tissue repair and immune regulation and are widely used in the research and treatment of autoimmune/inflammatory diseases. In addition, MSCs can secrete extracellular vesicles with lipid bilayer structures under resting or activated conditions, including exosomes, microparticles and apoptotic bodies. Among them, exosomes, as the most important component of extracellular vesicles, can function as parent MSCs. Although MSCs and their exosomes have the characteristics of immune regulation and homing, engineering these cells or vesicles through various technical means, such as genetic engineering, surface modification and tissue engineering, can further improve their homing and other congenital characteristics, make them specifically target specific tissues or organs, and improve their therapeutic effect. This article reviews the advanced technology of engineering MSCs or MSC-derived exosomes and its application in some autoimmune/inflammatory diseases by searching the literature published in recent years at home and abroad.
Collapse
Affiliation(s)
- Xueqing Zhu
- School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, 030032, China.
| |
Collapse
|
24
|
Xu Y, Liu J, Song W, Wang Q, Sun X, Zhao Q, Huang Y, Li H, Peng Y, Yuan J, Ji B, Ren L. Biomimetic Convex Implant for Corneal Regeneration Through 3D Printing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205878. [PMID: 36775872 PMCID: PMC10104657 DOI: 10.1002/advs.202205878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Blindness caused by corneal damage affects millions of people worldwide, and this number continues to rise. However, rapid epithelization and a stable epithelium process are the two biggest challenges for traditional corneal materials. These processes are related to corneal curvature, which is an important factor in determination of the corneal healing process and epithelial behavior during corneal damage. In this study, smooth 3D-printed convex corneal implants based on gelatin methacrylate and collagen are generated. As epithelium distribution and adhesion vary in different regions of the natural cornea, this work separates the surfaces into four regions and studies how cells sense topological cues on curvature. It is found that rabbit corneal epithelial cells (RCECs) seeded on steeper slope gradient surfaces on convex structures result in more aligned cell organization and tighter cell-substrate adhesion, which can also be verified through finite element simulation and signaling pathway analysis. In vivo transplantation of convex implants result in a better fit with adjacent tissue and stronger cell adhesion than flat implants, thereby accelerating corneal epithelialization and promoting collagen fibers and neural regeneration within 180 days. Taken together, printed convex corneal implants that facilitate corneal regeneration may offer a translational strategy for the treatment of corneal damage.
Collapse
Affiliation(s)
- Yingni Xu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Jia Liu
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Wenjing Song
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qianchun Wang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001P. R. China
| | - Xiaomin Sun
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Qi Zhao
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yongrui Huang
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Haochen Li
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
| | - Yuehai Peng
- National Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Guangzhou Proud Seeing Biotechnology Co., LtdGuangzhou510320P. R. China
| | - Jin Yuan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510623P. R. China
| | - Baohua Ji
- Institute of Biomechanics and Applications, Department of Engineering MechanicsZhejiang UniversityHangzhou310027P. R. China
| | - Li Ren
- School of Materials Science and EngineeringNational Engineering Research Center for Tissue Restoration and ReconstructionKey Laboratory of Biomedical Engineering of Guangdong ProvinceKey Laboratory of Biomedical Materials and Engineering of the Ministry of EducationInnovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006P. R. China
- Bioland LaboratoryGuangzhou Regenerative Medicine and Health Guangdong LaboratoryGuangzhou510005P. R. China
| |
Collapse
|
25
|
Taheri S, Ghazali HS, Ghazali ZS, Bhattacharyya A, Noh I. Progress in biomechanical stimuli on the cell-encapsulated hydrogels for cartilage tissue regeneration. Biomater Res 2023; 27:22. [PMID: 36935512 PMCID: PMC10026525 DOI: 10.1186/s40824-023-00358-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Worldwide, many people suffer from knee injuries and articular cartilage damage every year, which causes pain and reduces productivity, life quality, and daily routines. Medication is currently primarily used to relieve symptoms and not to ameliorate cartilage degeneration. As the natural healing capacity of cartilage damage is limited due to a lack of vascularization, common surgical methods are used to repair cartilage tissue, but they cannot prevent massive damage followed by injury. MAIN BODY Functional tissue engineering has recently attracted attention for the repair of cartilage damage using a combination of cells, scaffolds (constructs), biochemical factors, and biomechanical stimuli. As cyclic biomechanical loading is the key factor in maintaining the chondrocyte phenotype, many studies have evaluated the effect of biomechanical stimulation on chondrogenesis. The characteristics of hydrogels, such as their mechanical properties, water content, and cell encapsulation, make them ideal for tissue-engineered scaffolds. Induced cell signaling (biochemical and biomechanical factors) and encapsulation of cells in hydrogels as a construct are discussed for biomechanical stimulation-based tissue regeneration, and several notable studies on the effect of biomechanical stimulation on encapsulated cells within hydrogels are discussed for cartilage regeneration. CONCLUSION Induction of biochemical and biomechanical signaling on the encapsulated cells in hydrogels are important factors for biomechanical stimulation-based cartilage regeneration.
Collapse
Affiliation(s)
- Shiva Taheri
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Hanieh Sadat Ghazali
- Department of Nanotechnology, School of Advanced Technologies, Iran University of Science and Technology, Tehran, 1684613114, Iran
| | - Zahra Sadat Ghazali
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, 158754413, Iran
| | - Amitava Bhattacharyya
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
- Functional, Innovative, and Smart Textiles, PSG Institute of Advanced Studies, Coimbatore, 641004, India
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
26
|
Ren X, Gao X, Cheng Y, Xie L, Tong L, Li W, Chu PK, Wang H. Maintenance of multipotency of bone marrow mesenchymal stem cells on poly(ε-caprolactone) nanoneedle arrays through the enhancement of cell-cell interaction. Front Bioeng Biotechnol 2023; 10:1076345. [PMID: 36698633 PMCID: PMC9870049 DOI: 10.3389/fbioe.2022.1076345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Mesenchymal stem cells (MSCs), with high self-renewal ability and multipotency, are commonly used as the seed cells for tissue engineering. However, the reduction and loss of multipotential ability after necessary expansion in vitro set up a heavy obstacle to the clinical application of MSCs. Here in this study, we exploit the autologous crystallization ability of biocompatible poly (ε-caprolactone) (PCL) to obtain uniformly distributed nanoneedle arrays. By controlling the molecular weight of PCL, nanoneedle with a width of 2 μm and height of 50 nm, 80 nm, and 100 nm can be successfully fabricated. After surface chemical modification with polydopamine (PDA), the water contact angle of the fabricated PCL nanoneedle arrays are reduced from 84° to almost 60° with no significant change of the nanostructure. All the fabricated substrates are cultured with bone marrow MSCs (BMMSCs), and the adhesion, spreading, proliferation ability and multipotency of cells on different substrates are investigated. Compared with the BMMSCs cultured on pure PCL nanoneedle arrays, the decoration of PDA can improve the adhesion and spreading of cells and further change them from aggregated distribution to laminar distribution. Nevertheless, the laminar distribution of cultured cells leads to a weak cell-cell interaction, and hence the multipotency of BMMSCs cultured on the PCL-PDA substrates is decimated. On the contrary, the pure PCL nanoneedle arrays can be used to maintain the multipotency of BMMSCs via clustered growth, and the PCL1 nanoneedle array with a height of 50 nm is more promising than the other 2 with regard to the highest proliferation rate and best multipotential differentiation ability of cultured cells. Interestingly, there is a positive correlation between the strength of cell-cell interaction and the multipotency of stem cells in vitro. In conclusion, we have successfully maintained the multipotency of BMMSCs by using the PCL nanoneedle arrays, especially the PCL1 nanoneedle array with a height of 50 nm, as the substrates for in vitro extension, and further revealed the importance of cell-cell interaction on the multipotency of MSCs. The study provides a theoretical basis for the behavioral regulation of MSCs, and is instructive to the design of tissue engineering scaffolds.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoting Gao
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,University of Chinese Academy of Sciences, Beijing, China
| | - Yicheng Cheng
- Department of Stomatology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| | - Paul K. Chu
- Department of Physics, Department of Materials Science and Engineering, Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China,*Correspondence: Yicheng Cheng, ; Wei Li, ; Huaiyu Wang,
| |
Collapse
|
27
|
Li P, Kim S, Tian B. Nanoenabled Trainable Systems: From Biointerfaces to Biomimetics. ACS NANO 2022; 16:19651-19664. [PMID: 36516872 PMCID: PMC9798864 DOI: 10.1021/acsnano.2c08042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 05/30/2023]
Abstract
In the dynamic biological system, cells and tissues adapt to diverse environmental conditions and form memories, an essential aspect of training for survival and evolution. An understanding of the biological training principles will inform the design of biomimetic materials whose properties evolve with the environment and offer routes to programmable soft materials, neuromorphic computing, living materials, and biohybrid robotics. In this perspective, we examine the mechanisms by which cells are trained by environmental cues. We outline the artificial platforms that enable biological training and examine the relationship between biological training and biomimetic materials design. We place emphasis on nanoscale material platforms which, given their applicability to chemical, mechanical and electrical stimulation, are critical to bridging natural and synthetic systems.
Collapse
Affiliation(s)
- Pengju Li
- Pritzker
School of Molecular Engineering, The University
of Chicago, Chicago, Illinois 60637, United States
| | - Saehyun Kim
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Bozhi Tian
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- The
James Franck Institute, The University of
Chicago, Chicago, Illinois 60637, United States
- The
Institute for Biophysical Dynamics, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
28
|
Toita R, Kang JH, Tsuchiya A. Phosphatidylserine liposome multilayers mediate the M1-to-M2 macrophage polarization to enhance bone tissue regeneration. Acta Biomater 2022; 154:583-596. [PMID: 36273800 DOI: 10.1016/j.actbio.2022.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
An appropriate immune microenvironment, governed by macrophages, is essential for rapid tissue regeneration after biomaterial implantation. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. In this study, a new strategy to promote tissue repair and tissue-to-biomaterial integration by M1-to-M2 macrophage transition using artificial apoptotic cell mimetics (phosphatidylserine liposomes; PSLs) was developed using bone as a model tissue. Titanium was also selected as a model substrate material because it is widely used for dental and orthopedic implants. Titanium implants were functionalized with multilayers via layer-by-layer assembly of cationic protamine and negatively charged PSLs that were chemically stabilized to prevent disruption of lipid bilayers. Samples carrying PSL multilayers could drive M1-type macrophages into M2-biased phenotypes, resulting in a dramatic change in macrophage secretion for tissue regeneration. In a rat femur implantation model, the PSL-multilayer-coated implant displayed augmented de novo bone formation and bone-to-implant integration, associated with an increased M1-to-M2-like phenotypic transition. This triggered the proper generation and activation of bone-forming osteoblasts and bone-resorbing osteoclasts relative to their uncoated counterparts. This study demonstrates the benefit of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for potent bone regeneration and bone-to-implant integration. The results of this study may help in the design of new immunomodulatory biomaterials. STATEMENT OF SIGNIFICANCE: Effective strategies for tissue regeneration are essential in the clinical practice. The macrophage phenotypes, M1 (inflammatory) and M2 (anti-inflammatory/healing), exert opposing effects on the repair of various tissues. Artificially produced phosphatidylserine-containing liposomes (PSLs) can induce M2 macrophage polarization by mimicking the inverted plasma membranes of apoptotic cells. This study demonstrates the advantages of local M1-to-M2 macrophage polarization induced by PSL-multilayers constructed on implants for effective bone regeneration and osseointegration (bone-to-implant integration). Mechanistically, M2 macrophages promote osteogenesis but inhibit osteoclastogenesis, and M1 macrophages vice versa. We believe that our study makes a significant contribution to the design of new immunomodulatory biomaterials for regenerative medicine because it is the first to validate the benefit of PSLs for tissue regeneration.
Collapse
Affiliation(s)
- Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka, 564-8565, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
29
|
Zhang Q, Yuan C, Liu L, Wen S, Wang X. Effect of 3-dimensional Collagen Fibrous Scaffolds with Different Pore Sizes on Pulp Regeneration. J Endod 2022; 48:1493-1501. [DOI: 10.1016/j.joen.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
30
|
Chighizola M, Dini T, Marcotti S, D'Urso M, Piazzoni C, Borghi F, Previdi A, Ceriani L, Folliero C, Stramer B, Lenardi C, Milani P, Podestà A, Schulte C. The glycocalyx affects the mechanotransductive perception of the topographical microenvironment. J Nanobiotechnology 2022; 20:418. [PMID: 36123687 PMCID: PMC9484177 DOI: 10.1186/s12951-022-01585-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/29/2022] [Indexed: 11/10/2022] Open
Abstract
The cell/microenvironment interface is the starting point of integrin-mediated mechanotransduction, but many details of mechanotransductive signal integration remain elusive due to the complexity of the involved (extra)cellular structures, such as the glycocalyx. We used nano-bio-interfaces reproducing the complex nanotopographical features of the extracellular matrix to analyse the glycocalyx impact on PC12 cell mechanosensing at the nanoscale (e.g., by force spectroscopy with functionalised probes). Our data demonstrates that the glycocalyx configuration affects spatio-temporal nanotopography-sensitive mechanotransductive events at the cell/microenvironment interface. Opposing effects of major glycocalyx removal were observed, when comparing flat and specific nanotopographical conditions. The excessive retrograde actin flow speed and force loading are strongly reduced on certain nanotopographies upon strong reduction of the native glycocalyx, while on the flat substrate we observe the opposite trend. Our results highlight the importance of the glycocalyx configuration in a molecular clutch force loading-dependent cellular mechanism for mechanosensing of microenvironmental nanotopographical features.
Collapse
Affiliation(s)
- Matteo Chighizola
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Tania Dini
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Mirko D'Urso
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Claudio Piazzoni
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Francesca Borghi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Anita Previdi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Laura Ceriani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Claudia Folliero
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.,The FIRC Institute of Molecular Oncology (IFOM), Milan, Italy
| | - Brian Stramer
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| | - Cristina Lenardi
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Paolo Milani
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy
| | - Alessandro Podestà
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| | - Carsten Schulte
- Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics "Aldo Pontremoli", University of Milan, Milan, Italy.
| |
Collapse
|
31
|
Yang L, Conley BM, Yoon J, Rathnam C, Pongkulapa T, Conklin B, Hou Y, Lee KB. High-Content Screening and Analysis of Stem Cell-Derived Neural Interfaces Using a Combinatorial Nanotechnology and Machine Learning Approach. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9784273. [PMID: 36204248 PMCID: PMC9513834 DOI: 10.34133/2022/9784273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022]
Abstract
A systematic investigation of stem cell-derived neural interfaces can facilitate the discovery of the molecular mechanisms behind cell behavior in neurological disorders and accelerate the development of stem cell-based therapies. Nevertheless, high-throughput investigation of the cell-type-specific biophysical cues associated with stem cell-derived neural interfaces continues to be a significant obstacle to overcome. To this end, we developed a combinatorial nanoarray-based method for high-throughput investigation of neural interface micro-/nanostructures (physical cues comprising geometrical, topographical, and mechanical aspects) and the effects of these complex physical cues on stem cell fate decisions. Furthermore, by applying a machine learning (ML)-based analytical approach to a large number of stem cell-derived neural interfaces, we comprehensively mapped stem cell adhesion, differentiation, and proliferation, which allowed for the cell-type-specific design of biomaterials for neural interfacing, including both adult and human-induced pluripotent stem cells (hiPSCs) with varying genetic backgrounds. In short, we successfully demonstrated how an innovative combinatorial nanoarray and ML-based platform technology can aid with the rational design of stem cell-derived neural interfaces, potentially facilitating precision, and personalized tissue engineering applications.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brian M. Conley
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinho Yoon
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
Singh RK, Yoon DS, Mandakhbayar N, Li C, Kurian AG, Lee NH, Lee JH, Kim HW. Diabetic bone regeneration with nanoceria-tailored scaffolds by recapitulating cellular microenvironment: Activating integrin/TGF-β co-signaling of MSCs while relieving oxidative stress. Biomaterials 2022; 288:121732. [PMID: 36031457 DOI: 10.1016/j.biomaterials.2022.121732] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 07/10/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022]
Abstract
Regenerating defective bone in patients with diabetes mellitus remains a significant challenge due to high blood glucose level and oxidative stress. Here we aim to tackle this issue by means of a drug- and cell-free scaffolding approach. We found the nanoceria decorated on various types of scaffolds (fibrous or 3D-printed one; named nCe-scaffold) could render a therapeutic surface that can recapitulate the microenvironment: modulating oxidative stress while offering a nanotopological cue to regenerating cells. Mesenchymal stem cells (MSCs) recognized the nanoscale (tens of nm) topology of nCe-scaffolds, presenting highly upregulated curvature-sensing membrane protein, integrin set, and adhesion-related molecules. Osteogenic differentiation and mineralization were further significantly enhanced by the nCe-scaffolds. Of note, the stimulated osteogenic potential was identified to be through integrin-mediated TGF-β co-signaling activation. Such MSC-regulatory effects were proven in vivo by the accelerated bone formation in rat calvarium defect model. The nCe-scaffolds further exhibited profound enzymatic and catalytic potential, leading to effectively scavenging reactive oxygen species in vivo. When implanted in diabetic calvarium defect, nCe-scaffolds significantly enhanced early bone regeneration. We consider the currently-exploited nCe-scaffolds can be a promising drug- and cell-free therapeutic means to treat defective tissues like bone in diabetic conditions.
Collapse
Affiliation(s)
- Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Dong Suk Yoon
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chengji Li
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Na-Hyun Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea; Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea; Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea; Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea; UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
33
|
Zhang Y, Habibovic P. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110267. [PMID: 35385176 DOI: 10.1002/adma.202110267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Biochemical signals, such as growth factors, cytokines, and transcription factors are known to play a crucial role in regulating a variety of cellular activities as well as maintaining the normal function of different tissues and organs. If the biochemical signals are assumed to be one side of the coin, the other side comprises biophysical cues. There is growing evidence showing that biophysical signals, and in particular mechanical cues, also play an important role in different stages of human life ranging from morphogenesis during embryonic development to maturation and maintenance of tissue and organ function throughout life. In order to investigate how mechanical signals influence cell and tissue function, tremendous efforts have been devoted to fabricating various materials and devices for delivering mechanical stimuli to cells and tissues. Here, an overview of the current state of the art in the design and development of such materials and devices is provided, with a focus on their design principles, and challenges and perspectives for future research directions are highlighted.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, Maastricht, 6229 ER, The Netherlands
| |
Collapse
|
34
|
Godau B, Stefanek E, Gharaie SS, Amereh M, Pagan E, Marvdashti Z, Libert-Scott E, Ahadian S, Akbari M. Non-destructive mechanical assessment for optimization of 3D bioprinted soft tissue scaffolds. iScience 2022; 25:104251. [PMID: 35521534 PMCID: PMC9062268 DOI: 10.1016/j.isci.2022.104251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/31/2022] [Accepted: 04/07/2022] [Indexed: 10/25/2022] Open
Abstract
Characterizing the mechanical properties of engineered tissue constructs provides powerful insight into the function of engineered tissues for their desired application. Current methods of mechanical characterization of soft hydrogels used in tissue engineering are often destructive and ignore the effect of 3D bioprinting on the overall mechanical properties of a whole tissue construct. This work reports on using a non-destructive method of viscoelastic analysis to demonstrate the influence of bioprinting strategy on mechanical properties of hydrogel tissue scaffolds. Structure-function relationships are developed for common 3D bioprinting parameters such as printed fiber size, printed scaffold pattern, and bioink formulation. Further studies include mechanical properties analysis during degradation, real-time monitoring of crosslinking, mechanical characterization of multi-material scaffolds, and monitoring the effect of encapsulated cell growth on the mechanical strength of 3D bioprinted scaffolds. We envision this method of characterization opening a new wave of understanding and strategy in tissue engineering.
Collapse
Affiliation(s)
- Brent Godau
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Sadaf Samimi Gharaie
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Meitham Amereh
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Erik Pagan
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Zohreh Marvdashti
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Eryn Libert-Scott
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada.,Centre for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC V8P 5C2, Canada.,Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Biotechnology Center, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| |
Collapse
|
35
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
36
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
37
|
He J, You D, Li Q, Wang J, Ding S, He X, Zheng H, Ji Z, Wang X, Ye X, Liu C, Kang H, Xu X, Xu X, Wang H, Yu M. Osteogenesis-Inducing Chemical Cues Enhance the Mechanosensitivity of Human Mesenchymal Stem Cells for Osteogenic Differentiation on a Microtopographically Patterned Surface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200053. [PMID: 35373921 PMCID: PMC9165486 DOI: 10.1002/advs.202200053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/25/2022] [Indexed: 05/13/2023]
Abstract
Mechanical cues are widely used for regulating cell behavior because of their overarching, extensive, and non-invasive advantages. However, unlike chemical cues, mechanical cues are not efficient enough to determine cell fate independently and improving the mechanosensitivity of cells is rather challenging. In this study, the combined effect of chemical and mechanical cues on the osteogenic differentiation of human mesenchymal stem cells is examined. These results show that chemical cues such as the presence of an osteogenic medium, induce cells to secrete more collagen, and induce integrin for recruiting focal adhesion proteins that mature and cascade a series of events with the help of the mechanical force of the scaffold material. High-resolution, highly ordered hollow-micro-frustum-arrays using double-layer lithography, combined with modified methacrylate gelatin loaded with pre-defined soluble chemicals to provide both chemical and mechanical cues to cells. This approach ultimately facilitates the achievement of cellular osteodifferentiation and enhances bone repair efficiency in a model of femoral fracture in vivo in mice. Moreover, the results also reveal these pivotal roles of Integrin α2/Focal adhesion kinase/Ras homolog gene family member A/Large Tumor Suppressor 1/Yes-associated protein in human mesenchymal stem cells osteogenic differentiation both in vitro and in vivo. Overall, these results show that chemical cues enhance the microtopographical sensitivity of cells.
Collapse
Affiliation(s)
- Jianxiang He
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Dongqi You
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Qi Li
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Jiabao Wang
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Sijia Ding
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Xiaotong He
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Haiyan Zheng
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Zhenkai Ji
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xia Wang
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Xin Ye
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Chao Liu
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| | - Hanyue Kang
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xiuzhen Xu
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Xiaobin Xu
- School of Materials Science and Engineeringand Institute for Advanced StudyTongji UniversityShanghai201804P. R. China
| | - Huiming Wang
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
- School of StomatologyThe First Affiliated Hospital of Zhejiang University School of MedicineHangzhou310003P. R. China
| | - Mengfei Yu
- Key Laboratory of Oral Biomedical Research of Zhejiang ProvinceStomatology HospitalSchool of StomatologyZhejiang University School of MedicineZhejiang Provincial Clinical Research Center for Oral DiseasesHangzhou310006P. R. China
| |
Collapse
|
38
|
Cao S, Yuan Q. An update of nanotopographical surfaces in modulating stem cell fate: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:55-64. [PMID: 35837345 PMCID: PMC9255793 DOI: 10.12336/biomatertransl.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/06/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Stem cells have been one of the ideal sources for tissue regeneration owing to their capability of self-renewal and differentiation. In vivo, the extracellular microenvironment plays a vital role in modulating stem cell fate. When developing biomaterials for regenerative medicine, incorporating biochemical and biophysical cues to mimic extracellular matrix can enhance stem cell lineage differentiation. More specifically, modulating the stem cell fate can be achieved by controlling the nanotopographic features on synthetic surfaces. Optimization of nanotopographical features leads to desirable stem cell functions, which can maximize the effectiveness of regenerative treatment. In this review, nanotopographical surfaces, including static patterned surface, dynamic patterned surface, and roughness are summarized, and their fabrication, as well as the impact on stem cell behaviour, are discussed. Later, the recent progress of applying nanotopographical featured biomaterials for altering different types of stem cells is presented, which directs the design and fabrication of functional biomaterial. Last, the perspective in fundamental research and for clinical application in this field is discussed.
Collapse
|
39
|
Mahjoubnia A, Haghbin Nazarpak M, Karkhaneh A. Polypyrrole-chitosan hydrogel reinforced with collagen-grafted PLA sub-micron fibers as an electrically responsive scaffold. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2020.1825086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Alireza Mahjoubnia
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Masoumeh Haghbin Nazarpak
- New Technologies Research Center, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Akbar Karkhaneh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
40
|
Guo Y, Mi J, Ye C, Ao Y, Shi M, Shan Z, Li B, Chen Z, Chen Z, Vasilev K, Xiao Y. A practical guide to promote informatics-driven efficient biotopographic material development. Bioact Mater 2022; 8:515-528. [PMID: 34541417 PMCID: PMC8433058 DOI: 10.1016/j.bioactmat.2021.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/10/2021] [Indexed: 01/14/2023] Open
Abstract
Micro/nano topographic structures have shown great utility in many biomedical areas including cell therapies, tissue engineering, and implantable devices. Computer-assisted informatics methods hold great promise for the design of topographic structures with targeted properties for a specific medical application. To benefit from these methods, researchers and engineers require a highly reusable "one structural parameter - one set of cell responses" database. However, existing confounding factors in topographic cell culture devices seriously impede the acquisition of this kind of data. Through carefully dissecting the confounding factors and their possible reasons for emergence, we developed corresponding guideline requirements for topographic cell culture device development to remove or control the influence of such factors. Based on these requirements, we then suggested potential strategies to meet them. In this work, we also experimentally demonstrated a topographic cell culture device with controlled confounding factors based on these guideline requirements and corresponding strategies. A "guideline for the development of topographic cell culture devices" was summarized to instruct researchers to develop topographic cell culture devices with the confounding factors removed or well controlled. This guideline aims to promote the establishment of a highly reusable "one structural parameter - one set of cell responses" database that could facilitate the application of informatics methods, such as artificial intelligence, in the rational design of future biotopographic structures with high efficacy.
Collapse
Affiliation(s)
- Yuanlong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Jiaomei Mi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Chen Ye
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Yong Ao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Mengru Shi
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhengjie Shan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Bingzhi Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zetao Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou, 510055, China
| | - Krasimir Vasilev
- Academic Unit of Science, Technology, Engineering and Mathematics (STEM), University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, 4059, Australia
| |
Collapse
|
41
|
Roy A, Zhang W, Jahed Z, Tsai CT, Cui B, Moerner WE. Exploring Cell Surface-Nanopillar Interactions with 3D Super-Resolution Microscopy. ACS NANO 2022; 16:192-210. [PMID: 34582687 PMCID: PMC8830212 DOI: 10.1021/acsnano.1c05313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plasma membrane topography has been shown to strongly influence the behavior of many cellular processes such as clathrin-mediated endocytosis, actin rearrangements, and others. Recent studies have used three-dimensional (3D) nanostructures such as nanopillars to imprint well-defined membrane curvatures (the "nano-bio interface"). In these studies, proteins and their interactions were probed by two-dimensional fluorescence microscopy. However, the low resolution and limited axial detail of such methods are not optimal to determine the relative spatial position and distribution of proteins along a 100 nm-diameter object, which is below the optical diffraction limit. Here, we introduce a general method to explore the nanoscale distribution of proteins at the nano-bio interface with 10-20 nm precision using 3D single-molecule super-resolution (SR) localization microscopy. This is achieved by combining a silicone-oil immersion objective and 3D double-helix point spread function microscopy. We carefully adjust the objective to minimize spherical aberrations between quartz nanopillars and the cell. To validate the 3D SR method, we imaged the 3D shape of surface-labeled nanopillars and compared the results with electron microscopy measurements. Turning to transmembrane-anchored labels in cells, the high quality 3D SR reconstructions reveal the membrane tightly wrapping around the nanopillars. Interestingly, the cytoplasmic protein AP-2 involved in clathrin-mediated endocytosis accumulates along the nanopillar above a specific threshold of 1/R (the reciprocal of the radius) membrane curvature. Finally, we observe that AP-2 and actin preferentially accumulate at positive Gaussian curvature near the pillar caps. Our results establish a general method to investigate the nanoscale distribution of proteins at the nano-bio interface using 3D SR microscopy.
Collapse
|
42
|
Liang H, Wang Y, Chen S, Liu Y, Liu Z, Bai J. Nano-Hydroxyapatite Bone Scaffolds with Different Porous Structures Processed by Digital Light Processing 3D Printing. Int J Bioprint 2022; 8:502. [PMID: 35187284 PMCID: PMC8852260 DOI: 10.18063/ijb.v8i1.502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/20/2021] [Indexed: 12/17/2022] Open
Abstract
The morphologies and structures of the scaffold have a significant influence on their mechanical and biological properties. In this work, different types of porous structures: Triply periodic minimal surface-Schwarz primitive (P), body-centered cubic, and cubic pore-shaped (CPS) hydroxyapatite scaffolds with ~70% porosity were fabricated through digital light processing (DLP) 3D printing technology. The compressive properties and in vitro cell evaluations such as cell proliferation and attachment morphology of these scaffolds were systematically compared. The results showed that the CPS scaffolds exhibited the highest compressive strength (~22.5 MPa) and modulus (~400 MPa). In addition, the CPS scaffolds also performed the most active cell metabolisms as compared to other two structures, which may account for the larger pore size and smaller curvature of the substrate. This study provides a general guidance for the fabrication and selection of porous bone scaffolds processed by DLP 3D printing.
Collapse
Affiliation(s)
- Haowen Liang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| | - Yue Wang
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Shangsi Chen
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR, China
| | - Yang Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhengbai Liu
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| | - Jiaming Bai
- Shenzhen Key Laboratory for Additive Manufacturing of High-performance Materials, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
43
|
Ishmukhametov I, Batasheva S, Rozhina E, Akhatova F, Mingaleeva R, Rozhin A, Fakhrullin R. DNA/Magnetic Nanoparticles Composite to Attenuate Glass Surface Nanotopography for Enhanced Mesenchymal Stem Cell Differentiation. Polymers (Basel) 2022; 14:344. [PMID: 35054750 PMCID: PMC8779295 DOI: 10.3390/polym14020344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive pluripotent potential to differentiate into various cell types, and thus they are an important tool for regenerative medicine and biomedical research. In this work, the differentiation of hTERT-transduced adipose-derived MSCs (hMSCs) into chondrocytes, adipocytes and osteoblasts on substrates with nanotopography generated by magnetic iron oxide nanoparticles (MNPs) and DNA was investigated. Citrate-stabilized MNPs were synthesized by the chemical co-precipitation method and sized around 10 nm according to microscopy studies. It was shown that MNPs@DNA coatings induced chondrogenesis and osteogenesis in hTERT-transduced MSCs. The cells had normal morphology and distribution of actin filaments. An increase in the concentration of magnetic nanoparticles resulted in a higher surface roughness and reduced the adhesion of cells to the substrate. A glass substrate modified with magnetic nanoparticles and DNA induced active chondrogenesis of hTERT-transduced MSC in a twice-diluted differentiation-inducing growth medium, suggesting the possible use of nanostructured MNPs@DNA coatings to obtain differentiated cells at a reduced level of growth factors.
Collapse
Affiliation(s)
| | | | - Elvira Rozhina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation; (I.I.); (S.B.); (F.A.); (R.M.); (A.R.)
| | | | | | | | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, 420008 Kazan, Republic of Tatarstan, Russian Federation; (I.I.); (S.B.); (F.A.); (R.M.); (A.R.)
| |
Collapse
|
44
|
Zhang X, Meng Y, Gong B, Wang T, Lu Y, Zhang L, Xue J. Electrospun Nanofibers for Manipulating the Soft Tissue Regeneration. J Mater Chem B 2022; 10:7281-7308. [DOI: 10.1039/d2tb00609j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Soft tissue damage is a common clinical problem that affects the lives of a large number of patients all over the world. It is of great importance to develop functional...
Collapse
|
45
|
Ozdil B, Calik-Kocaturk D, Altunayar-Unsalan C, Acikgoz E, Gorgulu V, Uysal A, Unsalan O, Aktug H. Spectroscopic and microscopic comparisons of cell topology and chemistry analysis of mouse embryonic stem cell, somatic cell and cancer cell. Acta Histochem 2021; 123:151763. [PMID: 34333240 DOI: 10.1016/j.acthis.2021.151763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/16/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022]
Abstract
While embryonic stem cells and cancer cells are known to have many similarities in signalling pathways, healthy somatic cells are known to be different in many ways. Characterization of embryonic stem cell is crucial for cancer development and cancer recurrence due to the shared signalling pathways and life course with cancer initiator and cancer stem cells. Since embryonic stem cells are the sources of the somatic and cancer cells, it is necessary to reveal the relevance between them. The past decade has seen the importance of interdisciplinary studies and it is obvious that the reflection of the physical/chemical phenomena occurring on the cell biology has attracted much more attention. For this reason, the aim of this study is to elementally and topologically characterize the mouse embryonic stem cells, mouse lung squamous cancer cells, and mouse skin fibroblast cells by using Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS) and Scanning Electron Microscopy (SEM) supported with Electron Dispersive Spectroscopy (EDS) techniques in a complementary way. Our AFM findings revealed that roughness data of the mouse embryonic stem cells and cancer cells were similar and somatic cells were found to be statistically different from these two cell types. However, based on both XPS and SEM-EDS results, surface elemental ratios vary in mouse embryonic stem cells, cancer cells and somatic cells. Our results showed that these complementary spectroscopic and microscopic techniques used in this work are very effective in cancer and stem cell characterization and have the potential to gather more detailed information on relevant biological samples.
Collapse
|
46
|
Harawaza K, Cousins B, Roach P, Fernandez A. Modification of the surface nanotopography of implant devices: A translational perspective. Mater Today Bio 2021; 12:100152. [PMID: 34746736 PMCID: PMC8554633 DOI: 10.1016/j.mtbio.2021.100152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 01/24/2023] Open
Abstract
There is an increasing need for the development of superior, safe, and more sophisticated implants, especially as our society historically has been moving towards an increasingly aging population. Currently, most research is being focused on the next generation of advanced medical implants, that are not only biocompatible but have modified surfaces that direct specific immunomodulation at cellular level. While there is a plethora of information on cell-surface interaction and how surfaces can be nanofabricated at research level, less is known about how the academic knowledge has been translated into clinical trials and commercial technologies. In this review, we provide a clinical translational perspective on the use of controlled physical surface modification of medical implants, presenting an analysis of data acquired from clinical trials and commercial products. We also evaluate the state-of-the-art of nanofabrication techniques that are being applied for implant surface modification at a clinical level. Finally, we identify some current challenges in the field, including the need of more advanced nanopatterning techniques, the comparatively small number of clinical trials and comment on future avenues to be explored for a successful clinical translation.
Collapse
Affiliation(s)
- K. Harawaza
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - B. Cousins
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - P. Roach
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| | - A. Fernandez
- Chemistry Department, School of Science, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
47
|
Li M, Xi N, Liu L. Hierarchical micro-/nanotopography for tuning structures and mechanics of cells probed by atomic force microscopy. IEEE Trans Nanobioscience 2021; 20:543-553. [PMID: 34242170 DOI: 10.1109/tnb.2021.3096056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular matrix plays an important role in regulating the behaviors of cells, and utilizing matrix physics to control cell fate has been a promising way for cell and tissue engineering. However, the nanoscale situations taking place during the topography-regulated cell-matrix interactions are still not fully understood to the best of our knowledge. The invention of atomic force microscopy (AFM) provides a powerful tool to characterize the structures and properties of living biological systems under aqueous conditions with unprecedented spatial resolution. In this work, with the use of AFM, structural and mechanical dynamics of individual cells grown on micro-/nanotopographical surface were revealed. First, the microgroove patterned silicon substrates were fabricated by photolithography. Next, nanogranular topography was formed on microgroove substrates by cell culture medium protein deposition, which was visualized by in situ AFM imaging. The micro-/nanotopographical substrates were then used to grow two types of cells (3T3 cell or MCF-7 cell). AFM morphological imaging and mechanical measurements were applied to characterize the changes of cells grown on the micro-/nanotopographical substrates. The experimental results showed the significant alterations in cellular structures and cellular mechanics caused by micro-/nanotopography. The study provides a novel way based on AFM to unveil the native nanostructures and mechanical properties of cell-matrix interfaces with high spatial resolution in liquids, which will have potential impacts on the studies of topography-tuned cell behaviors.
Collapse
|
48
|
Kochhar D, DeBari MK, Abbott RD. The Materiobiology of Silk: Exploring the Biophysical Influence of Silk Biomaterials on Directing Cellular Behaviors. Front Bioeng Biotechnol 2021; 9:697981. [PMID: 34239865 PMCID: PMC8259510 DOI: 10.3389/fbioe.2021.697981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biophysical properties of the extracellular environment dynamically regulate cellular fates. In this review, we highlight silk, an indispensable polymeric biomaterial, owing to its unique mechanical properties, bioactive component sequestration, degradability, well-defined architectures, and biocompatibility that can regulate temporospatial biochemical and biophysical responses. We explore how the materiobiology of silks, both mulberry and non-mulberry based, affect cell behaviors including cell adhesion, cell proliferation, cell migration, and cell differentiation. Keeping in mind the novel biophysical properties of silk in film, fiber, or sponge forms, coupled with facile chemical decoration, and its ability to match functional requirements for specific tissues, we survey the influence of composition, mechanical properties, topography, and 3D geometry in unlocking the body's inherent regenerative potential.
Collapse
Affiliation(s)
- Dakshi Kochhar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Megan K. DeBari
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
49
|
Kumar R, Gulia K. The convergence of nanotechnology‐stem cell, nanotopography‐mechanobiology, and biotic‐abiotic interfaces: Nanoscale tools for tackling the top killer, arteriosclerosis, strokes, and heart attacks. NANO SELECT 2021. [DOI: 10.1002/nano.202000192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Rajiv Kumar
- NIET National Institute of Medical Science Rajasthan India
| | - Kiran Gulia
- Materials and Manufacturing School of Engineering University of Wolverhampton Wolverhampton England, UK
| |
Collapse
|
50
|
Tapeinos C. Graphene‐Based Nanotechnology in Neurodegenerative Disorders. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Christos Tapeinos
- Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki FI-00014 Finland
| |
Collapse
|