1
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
2
|
van der Geest AT, Jakobs CE, Ljubikj T, Huffels CFM, Cañizares Luna M, Vieira de Sá R, Adolfs Y, de Wit M, Rutten DH, Kaal M, Zwartkruis MM, Carcolé M, Groen EJN, Hol EM, Basak O, Isaacs AM, Westeneng HJ, van den Berg LH, Veldink JH, Schlegel DK, Pasterkamp RJ. Molecular pathology, developmental changes and synaptic dysfunction in (pre-) symptomatic human C9ORF72-ALS/FTD cerebral organoids. Acta Neuropathol Commun 2024; 12:152. [PMID: 39289761 PMCID: PMC11409520 DOI: 10.1186/s40478-024-01857-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
A hexanucleotide repeat expansion (HRE) in C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Human brain imaging and experimental studies indicate early changes in brain structure and connectivity in C9-ALS/FTD, even before symptom onset. Because these early disease phenotypes remain incompletely understood, we generated iPSC-derived cerebral organoid models from C9-ALS/FTD patients, presymptomatic C9ORF72-HRE (C9-HRE) carriers, and controls. Our work revealed the presence of all three C9-HRE-related molecular pathologies and developmental stage-dependent size phenotypes in cerebral organoids from C9-ALS/FTD patients. In addition, single-cell RNA sequencing identified changes in cell type abundance and distribution in C9-ALS/FTD organoids, including a reduction in the number of deep layer cortical neurons and the distribution of neural progenitors. Further, molecular and cellular analyses and patch-clamp electrophysiology detected various changes in synapse structure and function. Intriguingly, organoids from all presymptomatic C9-HRE carriers displayed C9-HRE molecular pathology, whereas the extent to which more downstream cellular defects, as found in C9-ALS/FTD models, were detected varied for the different presymptomatic C9-HRE cases. Together, these results unveil early changes in 3D human brain tissue organization and synaptic connectivity in C9-ALS/FTD that likely constitute initial pathologies crucial for understanding disease onset and the design of therapeutic strategies.
Collapse
Affiliation(s)
- Astrid T van der Geest
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Channa E Jakobs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Tijana Ljubikj
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marta Cañizares Luna
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Renata Vieira de Sá
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marina de Wit
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Daan H Rutten
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marthe Kaal
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maria M Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Ewout J N Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL and Dept. of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Henk-Jan Westeneng
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Domino K Schlegel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Wu Y, Wang Y, Lu Y, Yan J, Zhao H, Yang R, Pan J. Research advances in huntingtin-associated protein 1 and its application prospects in diseases. Front Neurosci 2024; 18:1402996. [PMID: 38975245 PMCID: PMC11224548 DOI: 10.3389/fnins.2024.1402996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 07/09/2024] Open
Abstract
Huntingtin-associated protein 1 (HAP1) was the first protein discovered to interact with huntingtin. Besides brain, HAP1 is also expressed in the spinal cord, dorsal root ganglion, endocrine, and digestive systems. HAP1 has diverse functions involving in vesicular transport, receptor recycling, gene transcription, and signal transduction. HAP1 is strongly linked to several neurological diseases, including Huntington's disease, Alzheimer's disease, epilepsy, ischemic stroke, and depression. In addition, HAP1 has been proved to participate in cancers and diabetes mellitus. This article provides an overview of HAP1 regarding the tissue distribution, cell localization, functions, and offers fresh perspectives to investigate its role in diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jingying Pan
- Department of Histology and Embryology, Medical School of Nantong University, Nantong, China
| |
Collapse
|
4
|
Ratié L, Humbert S. A developmental component to Huntington's disease. Rev Neurol (Paris) 2024; 180:357-362. [PMID: 38614929 DOI: 10.1016/j.neurol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Huntington's disease is a dominantly inherited disorder characterized by the dysfunction and death of cortical and striatal neurons. Striatal degeneration in Huntington's disease is due, at least in part, to defective cortical signalling to the striatum. Although Huntington's disease generally manifests at the adult stage, mouse and neuroimaging studies of presymptomatic mutation carriers suggest that it may affect neurodevelopment. In support of this notion, the development of the cortex is altered in mice with Huntington's disease and the foetuses of human Huntington's disease gene carriers. We will discuss these studies and the contribution of abnormal brain development to the later appearance of the disease.
Collapse
Affiliation(s)
- L Ratié
- U1216, CEA, Grenoble Institute Neurosciences, Inserm, université Grenoble Alpes, 38000 Grenoble, France
| | - S Humbert
- Institut du Cerveau-Paris Brain Institute, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France.
| |
Collapse
|
5
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
6
|
Schultz JL, Neema M, Nopoulos PC. Unravelling the role of huntingtin: from neurodevelopment to neurodegeneration. Brain 2023; 146:4408-4410. [PMID: 37816304 PMCID: PMC10629758 DOI: 10.1093/brain/awad353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
This scientific commentary refers to ‘Genetic topography and cortical cell loss in Huntington’s disease link development and neurodegeneration’ by Estevez-Fraga et al. (https://doi.org/10.1093/brain/awad275).
Collapse
Affiliation(s)
- Jordan L Schultz
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- University of Iowa College of Pharmacy, Iowa City, IA, USA
| | - Mohit Neema
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
| | - Peg C Nopoulos
- Department of Psychiatry, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Department of Neurology, Carver College of Medicine at the University of Iowa, Iowa City, IA, USA
- Stead Family Children’s Hospital at the University of Iowa, Iowa City, IA, USA
| |
Collapse
|
7
|
Pan Y, Lu J, Feng X, Lu S, Yang Y, Yang G, Tan S, Wang L, Li P, Luo S, Lu B. Gelation of cytoplasmic expanded CAG RNA repeats suppresses global protein synthesis. Nat Chem Biol 2023; 19:1372-1383. [PMID: 37592155 DOI: 10.1038/s41589-023-01384-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/13/2023] [Indexed: 08/19/2023]
Abstract
RNA molecules with the expanded CAG repeat (eCAGr) may undergo sol-gel phase transitions, but the functional impact of RNA gelation is completely unknown. Here, we demonstrate that the eCAGr RNA may form cytoplasmic gel-like foci that are rapidly degraded by lysosomes. These RNA foci may significantly reduce the global protein synthesis rate, possibly by sequestering the translation elongation factor eEF2. Disrupting the eCAGr RNA gelation restored the global protein synthesis rate, whereas enhanced gelation exacerbated this phenotype. eEF2 puncta were significantly enhanced in brain slices from a knock-in mouse model and from patients with Huntington's disease, which is a CAG expansion disorder expressing eCAGr RNA. Finally, neuronal expression of the eCAGr RNA by adeno-associated virus injection caused significant behavioral deficits in mice. Our study demonstrates the existence of RNA gelation inside the cells and reveals its functional impact, providing insights into repeat expansion diseases and functional impacts of RNA phase transition.
Collapse
Affiliation(s)
- Yuyin Pan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Junmei Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinran Feng
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shengyi Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi Yang
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Guang Yang
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Shudan Tan
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Pilong Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
| | - Shouqing Luo
- Peninsula Medical School, University of Plymouth, Plymouth, UK.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, New Cornerstone Science Laboratory, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Ferrari Bardile C, Radulescu CI, Pouladi MA. Oligodendrocyte pathology in Huntington's disease: from mechanisms to therapeutics. Trends Mol Med 2023; 29:802-816. [PMID: 37591764 DOI: 10.1016/j.molmed.2023.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes (OLGs), highly specialized glial cells that wrap axons with myelin sheaths, are critical for brain development and function. There is new recognition of the role of OLGs in the pathogenesis of neurodegenerative diseases (NDDs), including Huntington's disease (HD), a prototypic NDD caused by a polyglutamine tract expansion in huntingtin (HTT), which results in gain- and loss-of-function effects. Clinically, HD is characterized by a constellation of motor, cognitive, and psychiatric disturbances. White matter (WM) structures, representing myelin-rich regions of the brain, are profoundly affected in HD, and recent findings reveal oligodendroglia dysfunction as an early pathological event. Here, we focus on mechanisms that underlie oligodendroglial deficits and dysmyelination in the progression of the disease, highlighting the pathogenic contributions of mutant HTT (mHTT). We also discuss potential therapeutic implications involving these molecular pathways.
Collapse
Affiliation(s)
- Costanza Ferrari Bardile
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Carola I Radulescu
- UK Dementia Research Institute, Imperial College London, London, W12 0NN, UK
| | - Mahmoud A Pouladi
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Djavad Mowafaghian Centre for Brain Health, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada.
| |
Collapse
|
9
|
Hendricks E, Quihuis AM, Hung ST, Chang J, Dorjsuren N, Der B, Staats KA, Shi Y, Sta Maria NS, Jacobs RE, Ichida JK. The C9ORF72 repeat expansion alters neurodevelopment. Cell Rep 2023; 42:112983. [PMID: 37590144 PMCID: PMC10757587 DOI: 10.1016/j.celrep.2023.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/05/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
Genetic mutations that cause adult-onset neurodegenerative diseases are often expressed during embryonic stages, but it is unclear whether they alter neurodevelopment and how this might influence disease onset. Here, we show that the most common cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), a repeat expansion in C9ORF72, restricts neural stem cell proliferation and reduces cortical and thalamic size in utero. Surprisingly, a repeat expansion-derived dipeptide repeat protein (DPR) not known to reduce neuronal viability plays a key role in impairing neurodevelopment. Pharmacologically mimicking the effects of the repeat expansion on neurodevelopment increases susceptibility of C9ORF72 mice to motor defects. Thus, the C9ORF72 repeat expansion stunts development of the brain regions prominently affected in C9ORF72 FTD/ALS patients.
Collapse
Affiliation(s)
- Eric Hendricks
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alicia M Quihuis
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Shu-Ting Hung
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Jonathan Chang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nomongo Dorjsuren
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Balint Der
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Kim A Staats
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Yingxiao Shi
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Naomi S Sta Maria
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Russell E Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Physiology and Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin K Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
10
|
Abstract
Neurodegenerative diseases are characterized by the progressive loss of structure or function of neurons. In this Spotlight, we explore the idea that genetic forms of neurodegenerative disorders might be rooted in neural development. Focusing on Alzheimer's, Parkinson's and Huntington's disease, we first provide a brief overview of the pathology for these diseases. Although neurodegenerative diseases are generally thought of as late-onset diseases, we discuss recent evidence promoting the notion that they might be considered neurodevelopmental disorders. With this view in mind, we consider the suitability of animal models for studying these diseases, highlighting human-specific features of human brain development. We conclude by proposing that one such feature, human-specific regulation of neurogenic time, might be key to understanding the etiology and pathophysiology of human neurodegenerative disease.
Collapse
Affiliation(s)
- Khadijeh Shabani
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Bassem A. Hassan
- Institut du Cerveau – Paris Brain Institute – ICM, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| |
Collapse
|
11
|
Chen X, He E, Su C, Zeng Y, Xu J. Huntingtin-associated protein 1-associated intracellular trafficking in neurodegenerative diseases. Front Aging Neurosci 2023; 15:1100395. [PMID: 36824265 PMCID: PMC9941194 DOI: 10.3389/fnagi.2023.1100395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
Huntingtin-associated protein 1 (HAP1), the first identified HTT-binding partner, is highly expressed in the central nervous system, and has been found to associated with neurological diseases. Mounting evidence suggests that HAP1 functions as a component of cargo-motor molecules to bind various proteins and participates in intracellular trafficking. It is known that the failure of intracellular transport is a key contributor to the progression of neurodegenerative disorders (NDs) including Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA) and spinocerebellar ataxia (SCA). The link between HAP1 and various NDs is supported by growing evidence. This review aims to provide a comprehensive overview of the intracellular trafficking function of HAP1 and its involvement in NDs.
Collapse
Affiliation(s)
- Xingxing Chen
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Xingxing Chen, ✉
| | - Enhao He
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Chonglin Su
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Yan Zeng
- Brain Science and Advanced Technology Institute, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan, Hubei, China,Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei, China
| | - Jiang Xu
- Hubei Key Laboratory of Nerve Injury and Functional Reconstruction, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,Jiang Xu, ✉
| |
Collapse
|
12
|
Matsushima A, Pineda SS, Crittenden JR, Lee H, Galani K, Mantero J, Tombaugh G, Kellis M, Heiman M, Graybiel AM. Transcriptional vulnerabilities of striatal neurons in human and rodent models of Huntington's disease. Nat Commun 2023; 14:282. [PMID: 36650127 PMCID: PMC9845362 DOI: 10.1038/s41467-022-35752-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Striatal projection neurons (SPNs), which progressively degenerate in human patients with Huntington's disease (HD), are classified along two axes: the canonical direct-indirect pathway division and the striosome-matrix compartmentation. It is well established that the indirect-pathway SPNs are susceptible to neurodegeneration and transcriptomic disturbances, but less is known about how the striosome-matrix axis is compromised in HD in relation to the canonical axis. Here we show, using single-nucleus RNA-sequencing data from male Grade 1 HD patient post-mortem brain samples and male zQ175 and R6/2 mouse models, that the two axes are multiplexed and differentially compromised in HD. In human HD, striosomal indirect-pathway SPNs are the most depleted SPN population. In mouse HD models, the transcriptomic distinctiveness of striosome-matrix SPNs is diminished more than that of direct-indirect pathway SPNs. Furthermore, the loss of striosome-matrix distinction is more prominent within indirect-pathway SPNs. These results open the possibility that the canonical direct-indirect pathway and striosome-matrix compartments are differentially compromised in late and early stages of disease progression, respectively, differentially contributing to the symptoms, thus calling for distinct therapeutic strategies.
Collapse
Affiliation(s)
- Ayano Matsushima
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sergio Sebastian Pineda
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Jill R Crittenden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hyeseung Lee
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kyriakitsa Galani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Julio Mantero
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | | | - Manolis Kellis
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
| | - Myriam Heiman
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Santos-Lobato BL, Rocha JSDS, Rocha LC. Case report: Cerebellar sparing in juvenile Huntington's disease. Front Neurol 2023; 13:1089193. [PMID: 36712421 PMCID: PMC9874289 DOI: 10.3389/fneur.2022.1089193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/28/2022] [Indexed: 01/13/2023] Open
Abstract
Juvenile Huntington's disease is an early-onset variant of Huntington's disease, generally associated with large CAG repeats and distinct clinical symptoms. The role of the cerebellum in Huntington's disease has been reevaluated, based on the presence of ataxia and findings on the impact of the disease on cerebellar volume. Recent studies showed a hyperconnectivity between the cerebellum and the basal ganglia in premanifest children with expanded CAG repeats, as well as an enlargement of the cerebellum in adolescence-onset Huntington's disease. We report a 21-year-old Brazilian female with Huntington's disease (age at disease onset 16 years) with Parkinsonism and no ataxic features. There was no reduction of cerebellar volume over 3 years of follow-up, despite the brain atrophy in other regions and clinical worsening. Furthermore, the cerebellar volume of the patient was similar to age- and sex-matched controls. These findings support the existence of compensatory mechanisms involving the cerebellum in individuals with a moderate-to-high number of CAG repeats (50-100 copies) in the early stages of life.
Collapse
Affiliation(s)
- Bruno Lopes Santos-Lobato
- Laboratory of Experimental Neuropathology, Federal University of Pará, Belém, PA, Brazil,Hospital Ophir Loyola, Belém, PA, Brazil,*Correspondence: Bruno Lopes Santos-Lobato ✉
| | | | | |
Collapse
|
14
|
Humbert S, Barnat M. Huntington's disease and brain development. C R Biol 2022; 345:77-90. [PMID: 36847466 DOI: 10.5802/crbiol.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Huntington's disease is a rare inherited neurological disorder that generally manifests in mild-adulthood. The disease is characterized by the dysfunction and the degeneration of specific brain structures leading progressively to psychiatric, cognitive and motor disorders. The disease is caused by a mutation in the gene coding for huntingtin and, although it appears in adulthood, embryos carry the mutated gene from their development in utero. Studies based on mouse models and human stem cells have reported altered developmental mechanisms in disease conditions. However, does the mutation affect development in humans? Focusing on the early stages of brain development in human fetuses carrying the HD mutation, we have identified abnormalities in the development of the neocortex, the structure that ensure higher cerebral functions. Altogether, these studies suggests that developmental defects could contribute to the onset symptoms in adults, changing the perspective on disease and thus the health care of patients.
Collapse
|
15
|
Braz BY, Wennagel D, Ratié L, de Souza DAR, Deloulme JC, Barbier EL, Buisson A, Lanté F, Humbert S. Treating early postnatal circuit defect delays Huntington's disease onset and pathology in mice. Science 2022; 377:eabq5011. [PMID: 36137051 DOI: 10.1126/science.abq5011] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent evidence has shown that even mild mutations in the Huntingtin gene that are associated with late-onset Huntington's disease (HD) disrupt various aspects of human neurodevelopment. To determine whether these seemingly subtle early defects affect adult neural function, we investigated neural circuit physiology in newborn HD mice. During the first postnatal week, HD mice have less cortical layer 2/3 excitatory synaptic activity than wild-type mice, express fewer glutamatergic receptors, and show sensorimotor deficits. The circuit self-normalizes in the second postnatal week but the mice nonetheless develop HD. Pharmacologically enhancing glutamatergic transmission during the neonatal period, however, rescues these deficits and preserves sensorimotor function, cognition, and spine and synapse density as well as brain region volume in HD adult mice.
Collapse
Affiliation(s)
- Barbara Yael Braz
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Doris Wennagel
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Leslie Ratié
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Emmanuel L Barbier
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France.,Institut du Cerveau-Paris Brain Institute, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
16
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
17
|
Dinamarca MC, Colombo L, Tousiaki NE, Müller M, Pecho-Vrieseling E. Synaptic and functional alterations in the development of mutant huntingtin expressing hiPSC-derived neurons. Front Mol Biosci 2022; 9:916019. [PMID: 35928225 PMCID: PMC9343803 DOI: 10.3389/fmolb.2022.916019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a monogenic disease that results in a combination of motor, psychiatric, and cognitive symptoms. It is caused by a CAG trinucleotide repeat expansion in the exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant HTT protein (mHTT) with an extended polyglutamine tract (PolyQ). Severe motor symptoms are a hallmark of HD and typically appear during middle age; however, mild cognitive and personality changes often occur already during early adolescence. Wild-type HTT is a regulator of synaptic functions and plays a role in axon guidance, neurotransmitter release, and synaptic vesicle trafficking. These functions are important for proper synapse assembly during neuronal network formation. In the present study, we assessed the effect of mHTT exon1 isoform on the synaptic and functional maturation of human induced pluripotent stem cell (hiPSC)-derived neurons. We used a relatively fast-maturing hiPSC line carrying a doxycycline-inducible pro-neuronal transcription factor, (iNGN2), and generated a double transgenic line by introducing only the exon 1 of HTT, which carries the mutant CAG (mHTTEx1). The characterization of our cell lines revealed that the presence of mHTTEx1 in hiPSC-derived neurons alters the synaptic protein appearance, decreases synaptic contacts, and causes a delay in the development of a mature neuronal activity pattern, recapitulating some of the developmental alterations observed in HD models, nonetheless in a shorted time window. Our data support the notion that HD has a neurodevelopmental component and is not solely a degenerative disease.
Collapse
Affiliation(s)
| | - Laura Colombo
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Matthias Müller
- Novartis Institute for Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
18
|
Neurogenetic disorders across the lifespan: from aberrant development to degeneration. Nat Rev Neurol 2022; 18:117-124. [PMID: 34987232 PMCID: PMC10132523 DOI: 10.1038/s41582-021-00595-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Intellectual disability and autism spectrum disorder (ASD) are common, and genetic testing is increasingly performed in individuals with these diagnoses to inform prognosis, refine management and provide information about recurrence risk in the family. For neurogenetic conditions associated with intellectual disability and ASD, data on natural history in adults are scarce; however, as older adults with these disorders are identified, it is becoming clear that some conditions are associated with both neurodevelopmental problems and neurodegeneration. Moreover, emerging evidence indicates that some neurogenetic conditions associated primarily with neurodegeneration also affect neurodevelopment. In this Perspective, we discuss examples of diseases that have developmental and degenerative overlap. We propose that neurogenetic disorders should be studied continually across the lifespan to understand the roles of the affected genes in brain development and maintenance, and to inform strategies for treatment.
Collapse
|
19
|
Davidson CD, Gibson AL, Gu T, Baxter LL, Deverman BE, Beadle K, Incao AA, Rodriguez-Gil JL, Fujiwara H, Jiang X, Chandler RJ, Ory DS, Gradinaru V, Venditti CP, Pavan WJ. Improved systemic AAV gene therapy with a neurotrophic capsid in Niemann-Pick disease type C1 mice. Life Sci Alliance 2021; 4:e202101040. [PMID: 34407999 PMCID: PMC8380657 DOI: 10.26508/lsa.202101040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/24/2022] Open
Abstract
Niemann-Pick C1 disease (NPC1) is a rare, fatal neurodegenerative disease caused by mutations in NPC1, which encodes the lysosomal cholesterol transport protein NPC1. Disease pathology involves lysosomal accumulation of cholesterol and lipids, leading to neurological and visceral complications. Targeting the central nervous system (CNS) from systemic circulation complicates treatment of neurological diseases with gene transfer techniques. Selected and engineered capsids, for example, adeno-associated virus (AAV)-PHP.B facilitate peripheral-to-CNS transfer and hence greater CNS transduction than parental predecessors. We report that systemic delivery to Npc1 m1N/m1N mice using an AAV-PHP.B vector ubiquitously expressing NPC1 led to greater disease amelioration than an otherwise identical AAV9 vector. In addition, viral copy number and biodistribution of GFP-expressing reporters showed that AAV-PHP.B achieved more efficient, albeit variable, CNS transduction than AAV9 in Npc1 m1N/m1N mice. This variability was associated with segregation of two alleles of the putative AAV-PHP.B receptor Ly6a in Npc1 m1N/m1N mice. Our data suggest that robust improvements in NPC1 disease phenotypes occur even with modest CNS transduction and that improved neurotrophic capsids have the potential for superior NPC1 AAV gene therapy vectors.
Collapse
Affiliation(s)
- Cristin D Davidson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alana L Gibson
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tansy Gu
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin E Deverman
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Keith Beadle
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Arturo A Incao
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jorge L Rodriguez-Gil
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hideji Fujiwara
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Randy J Chandler
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel S Ory
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institutes of Technology, Pasadena, CA, USA
| | - Charles P Venditti
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Galgoczi S, Ruzo A, Markopoulos C, Yoney A, Phan-Everson T, Li S, Haremaki T, Metzger JJ, Etoc F, Brivanlou AH. Huntingtin CAG expansion impairs germ layer patterning in synthetic human 2D gastruloids through polarity defects. Development 2021; 148:272380. [PMID: 34608934 PMCID: PMC8513611 DOI: 10.1242/dev.199513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022]
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by an expansion of the CAG repeats in the huntingtin gene (HTT). Although HD has been shown to have a developmental component, how early during human embryogenesis the HTT-CAG expansion can cause embryonic defects remains unknown. Here, we demonstrate a specific and highly reproducible CAG length-dependent phenotypic signature in a synthetic model for human gastrulation derived from human embryonic stem cells (hESCs). Specifically, we observed a reduction in the extension of the ectodermal compartment that is associated with enhanced activin signaling. Surprisingly, rather than a cell-autonomous effect, tracking the dynamics of TGFβ signaling demonstrated that HTT-CAG expansion perturbs the spatial restriction of activin response. This is due to defects in the apicobasal polarization in the context of the polarized epithelium of the 2D gastruloid, leading to ectopic subcellular localization of TGFβ receptors. This work refines the earliest developmental window for the prodromal phase of HD to the first 2 weeks of human development, as modeled by our 2D gastruloids. Summary: 2D gastruloids of isogenic human embryonic stem cells modeling Huntington's Disease reveal that huntingtin CAG expansion perturbs the spatial restriction of the activin response in the context of the polarized epithelium.
Collapse
Affiliation(s)
- Szilvia Galgoczi
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Albert Ruzo
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Christian Markopoulos
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Yoney
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Tien Phan-Everson
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Shu Li
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Tomomi Haremaki
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Jakob J Metzger
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Fred Etoc
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA.,Laboratory of condensed matter physics, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
21
|
van der Plas E, Schultz JL, Nopoulos PC. The Neurodevelopmental Hypothesis of Huntington's Disease. J Huntingtons Dis 2021; 9:217-229. [PMID: 32925079 PMCID: PMC7683043 DOI: 10.3233/jhd-200394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The current dogma of HD pathoetiology posits it is a degenerative disease affecting primarily the striatum, caused by a gain of function (toxicity) of the mutant mHTT that kills neurons. However, a growing body of evidence supports an alternative theory in which loss of function may also influence the pathology.This theory is predicated on the notion that HTT is known to be a vital gene for brain development. mHTT is expressed throughout life and could conceivably have deleterious effects on brain development. The end event in the disease is, of course, neurodegeneration; however the process by which that occurs may be rooted in the pathophysiology of aberrant development.To date, there have been multiple studies evaluating molecular and cellular mechanisms of abnormal development in HD, as well as studies investigating abnormal brain development in HD animal models. However, direct study of how mHTT could affect neurodevelopment in humans has not been approached until recent years. The current review will focus on the most recent findings of a unique study of children at-risk for HD, the Kids-HD study. This study evaluates brain structure and function in children ages 6-18 years old who are at risk for HD (have a parent or grand-parent with HD).
Collapse
Affiliation(s)
- Ellen van der Plas
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Jordan L Schultz
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| | - Peg C Nopoulos
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, USA
| |
Collapse
|
22
|
Hickman RA, Faust PL, Rosenblum MK, Marder K, Mehler MF, Vonsattel JP. Developmental malformations in Huntington disease: neuropathologic evidence of focal neuronal migration defects in a subset of adult brains. Acta Neuropathol 2021; 141:399-413. [PMID: 33517535 PMCID: PMC7882590 DOI: 10.1007/s00401-021-02269-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/27/2020] [Accepted: 01/19/2021] [Indexed: 12/14/2022]
Abstract
Neuropathologic hallmarks of Huntington Disease (HD) include the progressive neurodegeneration of the striatum and the presence of Huntingtin (HTT) aggregates that result from abnormal polyQ expansion of the HTT gene. Whether the pathogenic trinucleotide repeat expansion of the HTT gene causes neurodevelopmental abnormalities has garnered attention in both murine and human studies; however, documentation of discrete malformations in autopsy brains of HD individuals has yet to be described. We retrospectively searched the New York Brain Bank (discovery cohort) and an independent cohort (validation cohort) to determine whether developmental malformations are more frequently detected in HD versus non-HD brains and to document their neuropathologic features. One-hundred and thirty HD and 1600 non-HD whole brains were included in the discovery cohort and 720 HD and 1989 non-HD half brains were assessed in the validation cohort. Cases with developmental malformations were found at 6.4–8.2 times greater frequency in HD than in non-HD brains (discovery cohort: OR 8.68, 95% CI 3.48–21.63, P=4.8 × 10-5; validation cohort: OR 6.50, 95% CI 1.83–23.17, P=0.0050). Periventricular nodular heterotopias (PNH) were the most frequent malformations and contained HTT and p62 aggregates analogous to the cortex, whereas cortical malformations with immature neuronal populations did not harbor such inclusions. HD individuals with malformations had heterozygous HTT CAG expansions between 40 and 52 repeats, were more frequently women, and all were asymmetric and focal, aside from one midline hypothalamic hamartoma. Using two independent brain bank cohorts, this large neuropathologic series demonstrates an increased occurrence of developmental malformations in HD brains. Since pathogenic HTT gene expansion is associated with genomic instability, one possible explanation is that neuronal precursors are more susceptible to somatic mutation of genes involved in cortical migration. Our findings further support emerging evidence that pathogenic trinucleotide repeat expansions of the HTT gene may impact neurodevelopment.
Collapse
Affiliation(s)
- R A Hickman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA.
| | - P L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA
| | - M K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, USA
| | - K Marder
- Department of Neurology and Psychiatry, Columbia University Irving Medical Center, New York, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| | - M F Mehler
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, New York, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, USA
| | - J P Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and New York Presbyterian Hospital, New York, USA
- Taub Institute for Research on Alzheimer's disease and the Aging Brain, Columbia University Medical Center, 710 West 168th Street, New York, NY, 10032, USA
| |
Collapse
|
23
|
Virlogeux A, Scaramuzzino C, Lenoir S, Carpentier R, Louessard M, Genoux A, Lino P, Hinckelmann MV, Perrier AL, Humbert S, Saudou F. Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. SCIENCE ADVANCES 2021; 7:7/14/eabb0799. [PMID: 33789888 PMCID: PMC8011966 DOI: 10.1126/sciadv.abb0799] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 02/11/2021] [Indexed: 05/02/2023]
Abstract
Huntington disease (HD) damages the corticostriatal circuitry in large part by impairing transport of brain-derived neurotrophic factor (BDNF). We hypothesized that improving vesicular transport of BDNF could slow or prevent disease progression. We therefore performed selective proteomic analysis of vesicles transported within corticostriatal projecting neurons followed by in silico screening and identified palmitoylation as a pathway that could restore defective huntingtin-dependent trafficking. Using a synchronized trafficking assay and an HD network-on-a-chip, we found that increasing brain palmitoylation via ML348, which inhibits the palmitate-removing enzyme acyl-protein thioesterase 1 (APT1), restores axonal transport, synapse homeostasis, and survival signaling to wild-type levels without toxicity. In human HD induced pluripotent stem cell-derived cortical neurons, ML348 increased BDNF trafficking. In HD knock-in mice, it efficiently crossed the blood-brain barrier to restore palmitoylation levels and reverse neuropathology, locomotor deficits, and anxio-depressive behaviors. APT1 and its inhibitor ML348 thus hold therapeutic interest for HD.
Collapse
Affiliation(s)
- Amandine Virlogeux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Chiara Scaramuzzino
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Sophie Lenoir
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Rémi Carpentier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | | | - Aurélie Genoux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Patricia Lino
- INSERM U861, UEVE, I-STEM, AFM, 91100, Corbeil-Essonnes, France
| | - Maria-Victoria Hinckelmann
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Anselme L Perrier
- INSERM U861, UEVE, I-STEM, AFM, 91100, Corbeil-Essonnes, France
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale, Institut François Jacob, Molecular Imaging Center (MIRCen), CNRS UMR 9199, Université Paris-Saclay, 92265, Fontenay-aux-Roses, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, 38000, Grenoble, France.
| |
Collapse
|
24
|
Durr A, Humbert S. [Huntington disease: Neurodegeneration rooted in brain development?]. Med Sci (Paris) 2021; 37:120-123. [PMID: 33591252 DOI: 10.1051/medsci/2020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alexandra Durr
- Sorbonne Université, Institut du cerveau, AP-HP, Inserm, CNRS, Hôpital Pitié-Salpêtrière, 47 boulevard de l'Hôpital, 75013 Paris, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm U1216, Grenoble Institut Neurosciences, Chemin Fortuné-Ferrini, 38700 La Tronche, France
| |
Collapse
|
25
|
Cepeda C, Levine MS. Synaptic Dysfunction in Huntington's Disease: Lessons from Genetic Animal Models. Neuroscientist 2020; 28:20-40. [PMID: 33198566 DOI: 10.1177/1073858420972662] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The understanding of the functional and structural changes occurring in the cerebral cortex and basal ganglia in Huntington's disease (HD) has benefited considerably from the generation of genetic animal models. Most studies of synaptic alterations in HD models have focused on the striatum, but a more complete picture of synaptic dysfunction in the cortico-basal ganglia-cortical loop is emerging. Here, we provide a review and analysis of current developments in the study of synaptic alterations in these areas using HD rodent models. Recent evidence indicates that cortical maldevelopment plays a role in synaptic dysfunction along the corticostriatal pathway that may have its roots in the way mutant huntingtin interacts with synaptic proteins. Furthermore, a progressive disconnection in the corticostriatal pathway leads to abnormal function engaging extrasynaptic N-methyl-D-aspartate glutamate receptors that contribute to eventual cell degeneration. In addition, biphasic increases followed by decreases in glutamate and dopamine release in the striatum could explain contrasting symptomatology in early and late stages of the disease. Changes in striatal output regions also are beginning to be examined. Finally, we highlight some therapeutic avenues aimed at rescuing synaptic dysfunction.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
26
|
Xiang C, Cong S, Liang B, Cong S. Bioinformatic gene analysis for potential therapeutic targets of Huntington's disease in pre-symptomatic and symptomatic stage. J Transl Med 2020; 18:388. [PMID: 33054835 PMCID: PMC7559361 DOI: 10.1186/s12967-020-02549-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 09/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder characterized by psychiatric symptoms, serious motor and cognitive deficits. Certain pathological changes can already be observed in pre-symptomatic HD (pre-HD) patients; however, the underlying molecular pathogenesis is still uncertain and no effective treatments are available until now. Here, we reanalyzed HD-related differentially expressed genes from the GEO database between symptomatic HD patients, pre-HD individuals, and healthy controls using bioinformatics analysis, hoping to get more insight in the pathogenesis of both pre-HD and HD, and shed a light in the potential therapeutic targets of the disease. Methods Pre-HD and symptomatic HD differentially expressed genes (DEGs) were screened by bioinformatics analysis Gene Expression Omnibus (GEO) dataset GSE1751. A protein–protein interaction (PPI) network was used to select hub genes. Subsequently, Gene Ontology (GO) enrichment analysis of DEGs and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of hub genes were applied. Dataset GSE24250 was downloaded to verify our hub genes by the Kaplan–Meier method using Graphpad Prism 5.0. Finally, target miRNAs of intersected hub genes involved in pre-HD and symptomatic HD were predicted. Results A total of 37 and 985 DEGs were identified in pre-HD and symptomatic HD, respectively. The hub genes, SIRT1, SUZ12, and PSMC6, may be implicated in pre-HD, and the hub genes, FIS1, SIRT1, CCNH, SUZ12, and 10 others, may be implicated in symptomatic HD. The intersected hub genes, SIRT1 and SUZ12, and their predicted target miRNAs, in particular miR-22-3p and miR-19b, may be significantly associated with pre-HD. Conclusion The PSMC6, SIRT1, and SUZ12 genes and their related ubiquitin-mediated proteolysis, transcriptional dysregulation, and histone metabolism are significantly associated with pre-HD. FIS1, CCNH, and their related mitochondrial disruption and transcriptional dysregulation processes are related to symptomatic HD, which might shed a light on the elucidation of potential therapeutic targets in HD.
Collapse
Affiliation(s)
- Chunchen Xiang
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Shengri Cong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China
| | - Bin Liang
- Bioinformatics of Department, School of Life Sciences, China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, People's Republic of China.
| |
Collapse
|
27
|
Lebouc M, Richard Q, Garret M, Baufreton J. Striatal circuit development and its alterations in Huntington's disease. Neurobiol Dis 2020; 145:105076. [PMID: 32898646 DOI: 10.1016/j.nbd.2020.105076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/26/2020] [Accepted: 09/02/2020] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder that usually starts during midlife with progressive alterations of motor and cognitive functions. The disease is caused by a CAG repeat expansion within the huntingtin gene leading to severe striatal neurodegeneration. Recent studies conducted on pre-HD children highlight early striatal developmental alterations starting as soon as 6 years old, the earliest age assessed. These findings, in line with data from mouse models of HD, raise the questions of when during development do the first disease-related striatal alterations emerge and whether they contribute to the later appearance of the neurodegenerative features of the disease. In this review we will describe the different stages of striatal network development and then discuss recent evidence for its alterations in rodent models of the disease. We argue that a better understanding of the striatum's development should help in assessing aberrant neurodevelopmental processes linked to the HD mutation.
Collapse
Affiliation(s)
- Margaux Lebouc
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Quentin Richard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France
| | - Maurice Garret
- Université de Bordeaux, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France; CNRS, Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33000 Bordeaux, France.
| | - Jérôme Baufreton
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
28
|
Piras IS, Picinelli C, Iennaco R, Baccarin M, Castronovo P, Tomaiuolo P, Cucinotta F, Ricciardello A, Turriziani L, Nanetti L, Mariotti C, Gellera C, Lintas C, Sacco R, Zuccato C, Cattaneo E, Persico AM. Huntingtin gene CAG repeat size affects autism risk: Family-based and case-control association study. Am J Med Genet B Neuropsychiatr Genet 2020; 183:341-351. [PMID: 32652810 DOI: 10.1002/ajmg.b.32806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022]
Abstract
The Huntingtin (HTT) gene contains a CAG repeat in exon 1, whose expansion beyond 39 repeats consistently leads to Huntington's disease (HD), whereas normal-to-intermediate alleles seemingly modulate brain structure, function and behavior. The role of the CAG repeat in Autism Spectrum Disorder (ASD) was investigated applying both family-based and case-control association designs, with the SCA3 repeat as a negative control. Significant overtransmission of "long" CAG alleles (≥17 repeats) to autistic children and of "short" alleles (≤16 repeats) to their unaffected siblings (all p < 10-5 ) was observed in 612 ASD families (548 simplex and 64 multiplex). Surprisingly, both 193 population controls and 1,188 neurological non-HD controls have significantly lower frequencies of "short" CAG alleles compared to 185 unaffected siblings and higher rates of "long" alleles compared to 548 ASD patients from the same families (p < .05-.001). The SCA3 CAG repeat displays no association. "Short" HTT alleles seemingly exert a protective effect from clinically overt autism in families carrying a genetic predisposition for ASD, while "long" alleles may enhance autism risk. Differential penetrance of autism-inducing genetic/epigenetic variants may imply atypical developmental trajectories linked to HTT functions, including excitation/inhibition imbalance, cortical neurogenesis and apoptosis, neuronal migration, synapse formation, connectivity and homeostasis.
Collapse
Affiliation(s)
- Ignazio Stefano Piras
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Chiara Picinelli
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Raffaele Iennaco
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Marco Baccarin
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Paola Castronovo
- Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| | - Pasquale Tomaiuolo
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Francesca Cucinotta
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Arianna Ricciardello
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Laura Turriziani
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| | - Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carla Lintas
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Roberto Sacco
- Unit of Child and Adolescent NeuroPsychiatry & Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Chiara Zuccato
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elena Cattaneo
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy.,Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Antonio M Persico
- Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy
| |
Collapse
|
29
|
Barnat M, Capizzi M, Aparicio E, Boluda S, Wennagel D, Kacher R, Kassem R, Lenoir S, Agasse F, Braz BY, Liu JP, Ighil J, Tessier A, Zeitlin SO, Duyckaerts C, Dommergues M, Durr A, Humbert S. Huntington's disease alters human neurodevelopment. Science 2020; 369:787-793. [PMID: 32675289 PMCID: PMC7859879 DOI: 10.1126/science.aax3338] [Citation(s) in RCA: 179] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/27/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
Although Huntington's disease is a late-manifesting neurodegenerative disorder, both mouse studies and neuroimaging studies of presymptomatic mutation carriers suggest that Huntington's disease might affect neurodevelopment. To determine whether this is actually the case, we examined tissue from human fetuses (13 weeks gestation) that carried the Huntington's disease mutation. These tissues showed clear abnormalities in the developing cortex, including mislocalization of mutant huntingtin and junctional complex proteins, defects in neuroprogenitor cell polarity and differentiation, abnormal ciliogenesis, and changes in mitosis and cell cycle progression. We observed the same phenomena in Huntington's disease mouse embryos, where we linked these abnormalities to defects in interkinetic nuclear migration of progenitor cells. Huntington's disease thus has a neurodevelopmental component and is not solely a degenerative disease.
Collapse
Affiliation(s)
- Monia Barnat
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Mariacristina Capizzi
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Esther Aparicio
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Susana Boluda
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Doris Wennagel
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Radhia Kacher
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Rayane Kassem
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Sophie Lenoir
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Fabienne Agasse
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Barbara Y Braz
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Jeh-Ping Liu
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Julien Ighil
- AP-HP, Sorbonne University, Service de Gynécologie Obstétrique, Pitié-Salpêtrière Hospital, Paris, France
| | - Aude Tessier
- AP-HP, Unité d'Embryofoetopathologie, Necker Hospital, Paris, France
| | - Scott O Zeitlin
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Charles Duyckaerts
- Department of Neuropathology Raymond Escourolle, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Marc Dommergues
- AP-HP, Sorbonne University, Service de Gynécologie Obstétrique, Pitié-Salpêtrière Hospital, Paris, France
| | - Alexandra Durr
- Sorbonne University, Paris Brain Institute, APHP, INSERM U1127, CNRS UMR7225, Pitié-Salpêtrière Hospital, Paris, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institut Neurosciences, Grenoble, France.
| |
Collapse
|
30
|
Zhang C, Wu Q, Liu H, Cheng L, Hou Z, Mori S, Hua J, Ross CA, Zhang J, Nopoulos PC, Duan W. Abnormal Brain Development in Huntington' Disease Is Recapitulated in the zQ175 Knock-In Mouse Model. Cereb Cortex Commun 2020; 1:tgaa044. [PMID: 32984817 PMCID: PMC7501464 DOI: 10.1093/texcom/tgaa044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/29/2023] Open
Abstract
Emerging cellular and molecular studies are providing compelling evidence that altered brain development contributes to the pathogenesis of Huntington's disease (HD). There has been lacking longitudinal system-level data obtained from in vivo HD models supporting this hypothesis. Our human MRI study in children and adolescents with HD indicates that striatal development differs between the HD and control groups, with initial hypertrophy and more rapid volume decline in HD group. In this study, we aimed to determine whether brain development recapitulates the human HD during the postnatal period. Longitudinal structural MRI scans were conducted in the heterozygous zQ175 HD mice and their littermate controls. We found that male zQ175 HD mice recapitulated the region-specific abnormal volume development in the striatum and globus pallidus, with early hypertrophy and then rapidly decline in the regional volume. In contrast, female zQ175 HD mice did not show significant difference in brain volume development with their littermate controls. This is the first longitudinal study of brain volume development at the system level in HD mice. Our results suggest that altered brain development may contribute to the HD pathogenesis. The potential effect of gene therapies targeting on neurodevelopmental event is worth to consider for HD therapeutic intervention.
Collapse
Affiliation(s)
- Chuangchuang Zhang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Qian Wu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Liam Cheng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jun Hua
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21285, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jiangyang Zhang
- Deaprtment of Radiology, New York University Grossman School of Medicine, New York City, NY 10016, USA
| | - Peggy C Nopoulos
- Departments of Psychiatry, Neurology, Pediatrics, University of Iowa Carver College of Medicine, Iowa city, IA 52242, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21285, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
31
|
Jiang M, Zhang X, Liu H, LeBron J, Alexandris A, Peng Q, Gu H, Yang F, Li Y, Wang R, Hou Z, Arbez N, Ren Q, Dong JL, Whela E, Wang R, Ratovitski T, Troncoso JC, Mori S, Ross CA, Lim J, Duan W. Nemo-like kinase reduces mutant huntingtin levels and mitigates Huntington's disease. Hum Mol Genet 2020; 29:1340-1352. [PMID: 32242231 PMCID: PMC7254850 DOI: 10.1093/hmg/ddaa061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/15/2020] [Accepted: 03/30/2020] [Indexed: 11/12/2022] Open
Abstract
Nemo-like kinase (NLK), an evolutionarily conserved serine/threonine kinase, is highly expressed in the brain, but its function in the adult brain remains not well understood. In this study, we identify NLK as an interactor of huntingtin protein (HTT). We report that NLK levels are significantly decreased in HD human brain and HD models. Importantly, overexpression of NLK in the striatum attenuates brain atrophy, preserves striatal DARPP32 levels and reduces mutant HTT (mHTT) aggregation in HD mice. In contrast, genetic reduction of NLK exacerbates brain atrophy and loss of DARPP32 in HD mice. Moreover, we demonstrate that NLK lowers mHTT levels in a kinase activity-dependent manner, while having no significant effect on normal HTT protein levels in mouse striatal cells, human cells and HD mouse models. The NLK-mediated lowering of mHTT is associated with enhanced phosphorylation of mHTT. Phosphorylation defective mutation of serine at amino acid 120 (S120) abolishes the mHTT-lowering effect of NLK, suggesting that S120 phosphorylation is an important step in the NLK-mediated lowering of mHTT. A further mechanistic study suggests that NLK promotes mHTT ubiquitination and degradation via the proteasome pathway. Taken together, our results indicate a protective role of NLK in HD and reveal a new molecular target to reduce mHTT levels.
Collapse
Affiliation(s)
- Mali Jiang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoyan Zhang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hongshuai Liu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jared LeBron
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athanasios Alexandris
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qi Peng
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hao Gu
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fanghan Yang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yuchen Li
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruiling Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhipeng Hou
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolas Arbez
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qianwei Ren
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jen-Li Dong
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emma Whela
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald Wang
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara Ratovitski
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Division of Neuropathology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher A Ross
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janghoo Lim
- Departments of Genetics and of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Grassi S, Giussani P, Mauri L, Prioni S, Sonnino S, Prinetti A. Lipid rafts and neurodegeneration: structural and functional roles in physiologic aging and neurodegenerative diseases. J Lipid Res 2020; 61:636-654. [PMID: 31871065 PMCID: PMC7193971 DOI: 10.1194/jlr.tr119000427] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/11/2019] [Indexed: 12/14/2022] Open
Abstract
Lipid rafts are small, dynamic membrane areas characterized by the clustering of selected membrane lipids as the result of the spontaneous separation of glycolipids, sphingolipids, and cholesterol in a liquid-ordered phase. The exact dynamics underlying phase separation of membrane lipids in the complex biological membranes are still not fully understood. Nevertheless, alterations in the membrane lipid composition affect the lateral organization of molecules belonging to lipid rafts. Neural lipid rafts are found in brain cells, including neurons, astrocytes, and microglia, and are characterized by a high enrichment of specific lipids depending on the cell type. These lipid rafts seem to organize and determine the function of multiprotein complexes involved in several aspects of signal transduction, thus regulating the homeostasis of the brain. The progressive decline of brain performance along with physiological aging is at least in part associated with alterations in the composition and structure of neural lipid rafts. In addition, neurodegenerative conditions, such as lysosomal storage disorders, multiple sclerosis, and Parkinson's, Huntington's, and Alzheimer's diseases, are frequently characterized by dysregulated lipid metabolism, which in turn affects the structure of lipid rafts. Several events underlying the pathogenesis of these diseases appear to depend on the altered composition of lipid rafts. Thus, the structure and function of lipid rafts play a central role in the pathogenesis of many common neurodegenerative diseases.jlr;61/5/636/F1F1f1.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy. mailto:
| |
Collapse
|
33
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
34
|
Tereshchenko AV, Schultz JL, Bruss JE, Magnotta VA, Epping EA, Nopoulos PC. Abnormal development of cerebellar-striatal circuitry in Huntington disease. Neurology 2020; 94:e1908-e1915. [PMID: 32265233 DOI: 10.1212/wnl.0000000000009364] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 11/13/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To test the hypothesis that the trajectory of functional connections over time of the striatum and the cerebellum differs between presymptomatic patients with the Huntington disease (HD) gene expansion (GE) and patients with a family history of HD but without the GE (GNE), we evaluated functional MRI data from the Kids-HD study. METHODS We utilized resting-state, functional MRI data from participants in the Kids-HD study between 6 and 18 years old. Participants were divided into GE (CAG 36-59) and GNE (CAG <36) groups. Seed-to-seed correlations were calculated among 4 regions that provide input signals to the anterior cerebellum: (1) dorsocaudal putamen, (2) globus pallidus externa, (3) subthalamic nucleus, and (4) pontine nuclei; and 2 regions that represented output from the cerebellum: the dentate nucleus to the (1) ventrolateral thalamus and (2) dorsocaudal putamen. Linear mixed effects regression models evaluated differences in developmental trajectories of these connections over time between groups. RESULTS Four of the six striatal-cerebellum correlations showed significantly different trajectories between groups. All showed a pattern where in the early age ranges (6-12 years) there was hyperconnectivity in the GE compared to the GNE, with those trajectories showing linear decline in the latter half of the age range. CONCLUSION These results parallel previous findings showing striatal hypertrophy in children with GE as early as age 6. These findings support the notion of developmentally higher connectivity between the striatum and cerebellum early in the life of the child with HD GE, possibly setting the stage for cerebellar compensatory mechanisms.
Collapse
|
35
|
Cepeda C, Oikonomou KD, Cummings D, Barry J, Yazon VW, Chen DT, Asai J, Williams CK, Vinters HV. Developmental origins of cortical hyperexcitability in Huntington's disease: Review and new observations. J Neurosci Res 2019; 97:1624-1635. [PMID: 31353533 PMCID: PMC6801077 DOI: 10.1002/jnr.24503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD), an inherited neurodegenerative disorder that principally affects striatum and cerebral cortex, is generally thought to have an adult onset. However, a small percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that brain development may be altered in HD. Indeed, recent evidence supports an important role of normal huntingtin during embryonic brain development and mutations in this protein cause cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes hyperexcitable with disease progression. In this review, we examine clinical and experimental evidence that cortical development is altered in HD. We also provide preliminary evidence that cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. Finally, we discuss recent treatments aimed at correcting abnormal brain development.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D. Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Damian Cummings
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Dickson T. Chen
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Janelle Asai
- IDDRC, Jane and Terry Semel Institute for Neuroscience and Human Behavior and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine and Department of Neurology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment. Nat Biotechnol 2019; 37:1198-1208. [PMID: 31501559 DOI: 10.1038/s41587-019-0237-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 07/23/2019] [Indexed: 12/14/2022]
Abstract
Harnessing the potential of human embryonic stem cells to mimic normal and aberrant development with standardized models is a pressing challenge. Here we use micropattern technology to recapitulate early human neurulation in large numbers of nearly identical structures called neuruloids. Dual-SMAD inhibition followed by bone morphogenic protein 4 stimulation induced self-organization of neuruloids harboring neural progenitors, neural crest, sensory placode and epidermis. Single-cell transcriptomics unveiled the precise identities and timing of fate specification. Investigation of the molecular mechanism of neuruloid self-organization revealed a pulse of pSMAD1 at the edge that induced epidermis, whose juxtaposition to central neural fates specifies neural crest and placodes, modulated by fibroblast growth factor and Wnt. Neuruloids provide a unique opportunity to study the developmental aspects of human diseases. Using isogenic Huntington's disease human embryonic stem cells and deep neural network analysis, we show how specific phenotypic signatures arise in our model of early human development as a consequence of mutant huntingtin protein, outlining an approach for phenotypic drug screening.
Collapse
|
37
|
Zeitler B, Froelich S, Marlen K, Shivak DA, Yu Q, Li D, Pearl JR, Miller JC, Zhang L, Paschon DE, Hinkley SJ, Ankoudinova I, Lam S, Guschin D, Kopan L, Cherone JM, Nguyen HOB, Qiao G, Ataei Y, Mendel MC, Amora R, Surosky R, Laganiere J, Vu BJ, Narayanan A, Sedaghat Y, Tillack K, Thiede C, Gärtner A, Kwak S, Bard J, Mrzljak L, Park L, Heikkinen T, Lehtimäki KK, Svedberg MM, Häggkvist J, Tari L, Tóth M, Varrone A, Halldin C, Kudwa AE, Ramboz S, Day M, Kondapalli J, Surmeier DJ, Urnov FD, Gregory PD, Rebar EJ, Muñoz-Sanjuán I, Zhang HS. Allele-selective transcriptional repression of mutant HTT for the treatment of Huntington's disease. Nat Med 2019; 25:1131-1142. [PMID: 31263285 DOI: 10.1038/s41591-019-0478-3] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/03/2019] [Indexed: 02/08/2023]
Abstract
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin gene (HTT), which codes for the pathologic mutant HTT (mHTT) protein. Since normal HTT is thought to be important for brain function, we engineered zinc finger protein transcription factors (ZFP-TFs) to target the pathogenic CAG repeat and selectively lower mHTT as a therapeutic strategy. Using patient-derived fibroblasts and neurons, we demonstrate that ZFP-TFs selectively repress >99% of HD-causing alleles over a wide dose range while preserving expression of >86% of normal alleles. Other CAG-containing genes are minimally affected, and virally delivered ZFP-TFs are active and well tolerated in HD neurons beyond 100 days in culture and for at least nine months in the mouse brain. Using three HD mouse models, we demonstrate improvements in a range of molecular, histopathological, electrophysiological and functional endpoints. Our findings support the continued development of an allele-selective ZFP-TF for the treatment of HD.
Collapse
Affiliation(s)
| | | | | | | | - Qi Yu
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Davis Li
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | - Lei Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | - Stephen Lam
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | - Dmitry Guschin
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Laboratory of Intracellular Signalling, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russian Federation
| | - Lexi Kopan
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | | | | | - Josee Laganiere
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Medical Affairs and Innovation, Hema-Quebec, Quebec City, Quebec, Canada
| | - B Joseph Vu
- Sangamo Therapeutics, Inc., Richmond, CA, USA
| | | | | | | | | | | | - Seung Kwak
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Jonathan Bard
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | | | - Larry Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | | | | | - Marie M Svedberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Jenny Häggkvist
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lenke Tari
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Miklós Tóth
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Andrea Varrone
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | | | | | - Michelle Day
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jyothisri Kondapalli
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Fyodor D Urnov
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Innovative Genomics Institute, Berkeley, CA, USA
| | | | | | | | - H Steve Zhang
- Sangamo Therapeutics, Inc., Richmond, CA, USA.,Applied StemCell, Inc., Milpitas, CA, USA
| |
Collapse
|
38
|
Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc Natl Acad Sci U S A 2019; 116:9622-9627. [PMID: 31015293 DOI: 10.1073/pnas.1818042116] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
White matter abnormalities are a nearly universal pathological feature of neurodegenerative disorders including Huntington disease (HD). A long-held assumption is that this white matter pathology is simply a secondary outcome of the progressive neuronal loss that manifests with advancing disease. Using a mouse model of HD, here we show that white matter and myelination abnormalities are an early disease feature appearing before the manifestation of any behavioral abnormalities or neuronal loss. We further show that selective inactivation of mutant huntingtin (mHTT) in the NG2+ oligodendrocyte progenitor cell population prevented myelin abnormalities and certain behavioral deficits in HD mice. Strikingly, the improvements in behavioral outcomes were seen despite the continued expression of mHTT in nonoligodendroglial cells including neurons, astrocytes, and microglia. Using RNA-seq and ChIP-seq analyses, we implicate a pathogenic mechanism that involves enhancement of polycomb repressive complex 2 (PRC2) activity by mHTT in the intrinsic oligodendroglial dysfunction and myelination deficits observed in HD. Our findings challenge the long-held dogma regarding the etiology of white matter pathology in HD and highlight the contribution of epigenetic mechanisms to the observed intrinsic oligodendroglial dysfunction. Our results further suggest that ameliorating white matter pathology and oligodendroglial dysfunction may be beneficial for HD.
Collapse
|
39
|
Kaemmerer WF, Grondin RC. The effects of huntingtin-lowering: what do we know so far? Degener Neurol Neuromuscul Dis 2019; 9:3-17. [PMID: 30881191 PMCID: PMC6413743 DOI: 10.2147/dnnd.s163808] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Therapies targeting mutant huntingtin DNA, mRNA, and protein have a chance at becoming the first disease-modifying treatments for Huntington’s disease, a fatal inherited neurodegenerative disorder for which only symptom management treatments are available today. This review focuses on evidence addressing several key questions pertinent to huntingtin-lowering, ranging from the functions of wild-type huntingtin (wtHTT) that may be disrupted by huntingtin-lowering treatments through the various ways huntingtin can be lowered, the tolerability of wtHTT-lowering in mice and primates, what has been found in the Ionis Pharmaceutical safety trial of a huntingtin-lowering therapy, and to the question of how much mutant huntingtin may need to be lowered for a therapy to be clinically effective. We conclude that adverse consequences of lowering wtHTT in animals appear to be brain region-specific, and/or dependent upon the animal’s stage of development and the amount by which huntingtin is lowered. Therefore, safe approaches to huntingtin-lowering in patients may be to lower huntingtin only moderately, or lower huntingtin only in the most affected brain regions, or lower huntingtin allele-selectively, or all of the above. Many additional questions about huntingtin-lowering remain open, and will only be answered by upcoming clinical trials, such as whether the delivery approaches currently planned will be adequate to get the treatment to the necessary brain regions, and whether non-allele-selective huntingtin-lowering will be safe in the long run. Meantime, there is a role for preclinical research to address key knowledge gaps, including the effects of non-allele-selective huntingtin-lowering on protein trafficking and viability at the cellular level, the tolerability of wtHTT-lowering in the corticostriatal connections of the primate brain, and the effects of this lowering on the functioning of neurotransmitter systems and the transport of neurotrophic factors to the striatum.
Collapse
Affiliation(s)
| | - Richard C Grondin
- Department of Neuroscience, University of Kentucky Medical Center, Lexington, KY, USA,
| |
Collapse
|
40
|
Murthy V, Tebaldi T, Yoshida T, Erdin S, Calzonetti T, Vijayvargia R, Tripathi T, Kerschbamer E, Seong IS, Quattrone A, Talkowski ME, Gusella JF, Georgopoulos K, MacDonald ME, Biagioli M. Hypomorphic mutation of the mouse Huntington's disease gene orthologue. PLoS Genet 2019; 15:e1007765. [PMID: 30897080 PMCID: PMC6445486 DOI: 10.1371/journal.pgen.1007765] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/02/2019] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.
Collapse
Affiliation(s)
- Vidya Murthy
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Toshimi Yoshida
- Cutaneous Biology Research Center (CBRC), Mass General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Teresa Calzonetti
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Frederick Community College, Frederick MD, United States of America
| | - Ravi Vijayvargia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emanuela Kerschbamer
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael E. Talkowski
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Katia Georgopoulos
- Cutaneous Biology Research Center (CBRC), Mass General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Marta Biagioli
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
41
|
Loss-of-Huntingtin in Medial and Lateral Ganglionic Lineages Differentially Disrupts Regional Interneuron and Projection Neuron Subtypes and Promotes Huntington's Disease-Associated Behavioral, Cellular, and Pathological Hallmarks. J Neurosci 2019; 39:1892-1909. [PMID: 30626701 DOI: 10.1523/jneurosci.2443-18.2018] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/21/2018] [Accepted: 12/29/2018] [Indexed: 12/23/2022] Open
Abstract
Emerging studies are providing compelling evidence that the pathogenesis of Huntington's disease (HD), a neurodegenerative disorder with frequent midlife onset, encompasses developmental components. Moreover, our previous studies using a hypomorphic model targeting huntingtin during the neurodevelopmental period indicated that loss-of-function mechanisms account for this pathogenic developmental component (Arteaga-Bracho et al., 2016). In the present study, we specifically ascertained the roles of subpallial lineage species in eliciting the previously observed HD-like phenotypes. Accordingly, we used the Cre-loxP system to conditionally ablate the murine huntingtin gene (Httflx) in cells expressing the subpallial patterning markers Gsx2 (Gsx2-Cre) or Nkx2.1 (Nkx2.1-Cre) in Httflx mice of both sexes. These genetic manipulations elicited anxiety-like behaviors, hyperkinetic locomotion, age-dependent motor deficits, and weight loss in both Httflx;Gsx2-Cre and Httflx;Nkx2.1-Cre mice. In addition, these strains displayed unique but complementary spatial patterns of basal ganglia degeneration that are strikingly reminiscent of those seen in human cases of HD. Furthermore, we observed early deficits of somatostatin-positive and Reelin-positive interneurons in both Htt subpallial null strains, as well as early increases of cholinergic interneurons, Foxp2+ arkypallidal neurons, and incipient deficits with age-dependent loss of parvalbumin-positive neurons in Httflx;Nkx2.1-Cre mice. Overall, our findings indicate that selective loss-of-huntingtin function in subpallial lineages differentially disrupts the number, complement, and survival of forebrain interneurons and globus pallidus GABAergic neurons, thereby leading to the development of key neurological hallmarks of HD during adult life. Our findings have important implications for the establishment and deployment of neural circuitries and the integrity of network reserve in health and disease.SIGNIFICANCE STATEMENT Huntington's disease (HD) is a progressive degenerative disorder caused by aberrant trinucleotide expansion in the huntingtin gene. Mechanistically, this mutation involves both loss- and gain-of-function mechanisms affecting a broad array of cellular and molecular processes. Although huntingtin is widely expressed during adult life, the mutant protein only causes the demise of selective neuronal subtypes. The mechanisms accounting for this differential vulnerability remain elusive. In this study, we have demonstrated that loss-of-huntingtin function in subpallial lineages not only differentially disrupts distinct interneuron species early in life, but also leads to a pattern of neurological deficits that are reminiscent of HD. This work suggests that early disruption of selective neuronal subtypes may account for the profiles of enhanced regional cellular vulnerability to death in HD.
Collapse
|
42
|
Early postnatal behavioral, cellular, and molecular changes in models of Huntington disease are reversible by HDAC inhibition. Proc Natl Acad Sci U S A 2018; 115:E8765-E8774. [PMID: 30150378 PMCID: PMC6140493 DOI: 10.1073/pnas.1807962115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In Huntington disease (HD) gene carriers the disease-causing mutant Huntingtin (mHTT) is already present during early developmental stages, but, surprisingly, HD patients develop clinical symptoms only many years later. While a developmental role of Huntingtin has been described, so far new therapeutic approaches targeting those early neurodevelopmental processes are lacking. Here, we show that behavioral, cellular, and molecular changes associated with mHTT in the postnatal period of genetic animal models of HD can be reverted using low-dose treatment with a histone deacetylation inhibitor. Our findings support a neurodevelopmental basis for HD and provide proof of concept that pre-HD symptoms, including aberrant neuronal differentiation, are reversible by early therapeutic intervention in vivo. Huntington disease (HD) is an autosomal dominant neurodegenerative disorder caused by expanded CAG repeats in the huntingtin gene (HTT). Although mutant HTT is expressed during embryonic development and throughout life, clinical HD usually manifests later in adulthood. A number of studies document neurodevelopmental changes associated with mutant HTT, but whether these are reversible under therapy remains unclear. Here, we identify very early behavioral, molecular, and cellular changes in preweaning transgenic HD rats and mice. Reduced ultrasonic vocalization, loss of prepulse inhibition, and increased risk taking are accompanied by disturbances of dopaminergic regulation in vivo, reduced neuronal differentiation capacity in subventricular zone stem/progenitor cells, and impaired neuronal and oligodendrocyte differentiation of mouse embryo-derived neural stem cells in vitro. Interventional treatment of this early phenotype with the histone deacetylase inhibitor (HDACi) LBH589 led to significant improvement in behavioral changes and markers of dopaminergic neurotransmission and complete reversal of aberrant neuronal differentiation in vitro and in vivo. Our data support the notion that neurodevelopmental changes contribute to the prodromal phase of HD and that early, presymptomatic intervention using HDACi may represent a promising novel treatment approach for HD.
Collapse
|
43
|
Latimer CS, Flanagan ME, Cimino PJ, Jayadev S, Davis M, Hoffer ZS, Montine TJ, Gonzalez-Cuyar LF, Bird TD, Keene CD. Neuropathological Comparison of Adult Onset and Juvenile Huntington's Disease with Cerebellar Atrophy: A Report of a Father and Son. J Huntingtons Dis 2018; 6:337-348. [PMID: 29036832 DOI: 10.3233/jhd-170261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in huntingtin (HTT) on chromosome 4. Anticipation can cause longer repeat expansions in children of HD patients. Juvenile Huntington's disease (JHD), defined as HD arising before age 20, accounts for 5-10% of HD cases, with cases arising in the first decade accounting for approximately 1%. Clinically, JHD differs from the predominately choreiform adult onset Huntington's disease (AOHD) with variable presentations, including symptoms such as myoclonus, seizures, Parkinsonism, and cognitive decline. OBJECTIVE The neuropathologic changes of AOHD are well characterized, but there are fewer reports that describe the neuropathology of JHD. Here we report a case of a six-year-old boy with paternally-inherited JHD caused by 169 CAG trinucleotide repeats who presented at age four with developmental delay, dysarthria, and seizures before dying at age 6. The boy's clinical presentation and neuropathological findings are directly compared to those of his father, who presented with AOHD and 54 repeats. METHODS A full autopsy was performed for the JHD case and a brain-only autopsy was performed for the AOHD case. Histochemically- and immunohistochemically-stained slides were prepared from formalin-fixed, paraffin-embedded tissue sections. RESULTS Both cases had neuropathology corresponding to Vonsattel grade 3. The boy also had cerebellar atrophy with huntingtin-positive inclusions in the cerebellum, findings not present in the father. CONCLUSIONS Autopsies of father and son provide a unique opportunity to compare and contrast the neuropathologic findings of juvenile and adult onset HD while also providing the first immunohistochemical evidence of cerebellar involvement in JHD. Additionally this is the first known report to include findings from peripheral tissue in a case of JHD.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret E Flanagan
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,HDSA Center of Excellence at the University of Washington Medical Center, Seattle, WA, USA
| | - Marie Davis
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,GRECC, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Zachary S Hoffer
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Luis F Gonzalez-Cuyar
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,HDSA Center of Excellence at the University of Washington Medical Center, Seattle, WA, USA.,GRECC, VA Puget Sound Health Care System, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
44
|
Perinatal insults and neurodevelopmental disorders may impact Huntington's disease age of diagnosis. Parkinsonism Relat Disord 2018; 55:55-60. [PMID: 29804730 PMCID: PMC6226577 DOI: 10.1016/j.parkreldis.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/30/2018] [Accepted: 05/14/2018] [Indexed: 11/23/2022]
Abstract
INTRODUCTION The age of diagnosis of Huntington's disease (HD) varies among individuals with the same HTT CAG-repeat expansion size. We investigated whether early-life events, like perinatal insults or neurodevelopmental disorders, influence the diagnosis age. METHODS We used data from 13,856 participants from REGISTRY and Enroll-HD, two large international multicenter observational studies. Disease-free survival analyses of mutation carriers with an HTT CAG repeat expansion size above and including 36 were computed through Kaplan-Meier estimates of median time until an HD diagnosis. Comparisons between groups were computed using a Cox proportional hazard survival model adjusted for CAG-repeat expansion length. We also assessed whether the group effect depended on gender and the affected parent. RESULTS Insults in the perinatal period were associated with an earlier median age of diagnosis of 45.00 years (95%CI: 42.07-47.92) compared to 51.00 years (95%CI: 50.68-51.31) in the reference group, with a CAG-adjusted hazard ratio of 1.61 (95%CI: 1.26-2.06). Neurodevelopmental disorders were also associated with an earlier median age of diagnosis than the reference group of 47.00 years (95% CI: 43.38-50.62) with a CAG-adjusted hazard ratio of 1.42 (95%CI: 1.16-1.75). These associations did not change significantly with gender or affected parent. CONCLUSIONS These results, derived from large observational datasets, show that perinatal insults and neurodevelopmental disorders are associated with earlier ages of diagnosis of magnitudes similar to the effects of known genetic modifiers of HD. Given their clear temporal separation, these early events may be causative of earlier HD onset, but further research is needed to prove causation.
Collapse
|
45
|
Lee JK, Conrad A, Epping E, Mathews K, Magnotta V, Dawson JD, Nopoulos P. Effect of Trinucleotide Repeats in the Huntington's Gene on Intelligence. EBioMedicine 2018; 31:47-53. [PMID: 29685790 PMCID: PMC6013750 DOI: 10.1016/j.ebiom.2018.03.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 12/05/2022] Open
Abstract
Background Huntington's Disease (HD) is caused by an abnormality in the HTT gene. This gene includes trinucleotide repeats ranging from 10 to 35, and when expanded beyond 39, causes HD. We previously reported that CAG repeats in the normal range had a direct and beneficial effect on brain development with higher repeats being associated with higher cognitive function. The current study now expands this line of inquiry to evaluate the effects of CAG repeat throughout the entire spectrum of repeats from 15 to 58. Methods We evaluated brain function in children ages 6–18 years old. DNA samples were processed to quantify the number of CAG repeats within HTT. Linear regression was used to determine if number of CAG repeats predicted measures of brain function. Findings The number of repeats in HTT, had a non-linear effect on a measure of general intelligence with an inverted U shape pattern. Increasing repeat length was associated with higher GAI scores up until roughly 40–41 repeats. After this peak, increasing repeat length was associated with declining GAI scores. Interpretation HTT may confer an advantage or a disadvantage depending upon the repeat length, playing a key role in the determination of intelligence, or causing a uniquely human brain disease. The HTT gene includes trinucleotide repeats ranging from 10 to 35 in the normal population. Huntington’s disease is caused when the trinucleotide repeats in the HTT gene expand beyond the normal range. The gene is vital for brain growth in which each repeat contributes to the development of brain function, measured as intelligence. Increasing repeats are beneficial to a certain point, then becomes detrimental to intelligence, forming an inverted U relationship.
A Faustian Bargain: Could the key to the evolution of the human brain be found in a dreadful disease? Huntington's Disease is a fatal progressive brain disease caused by a single gene. Results from the current study show that the same gene is important for brain development and intelligence. Therefore, this gene may have a simultaneous advantage and disadvantage: a role in the evolution of a superior human brain, yet the disadvantage of a uniquely human brain disease.
Collapse
Affiliation(s)
- Jessica K Lee
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Amy Conrad
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Eric Epping
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Kathy Mathews
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Vincent Magnotta
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, IA, United States
| | - Jeffrey D Dawson
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, United States
| | - Peg Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA, United States; Department of Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, United States.
| |
Collapse
|
46
|
Barboza LA, Ghisi NC. Evaluating the current state of the art of Huntington disease research: a scientometric analysis. ACTA ACUST UNITED AC 2018; 51:e6299. [PMID: 29340519 PMCID: PMC5769753 DOI: 10.1590/1414-431x20176299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022]
Abstract
Huntington disease (HD) is an incurable neurodegenerative disorder caused by a dominant mutation on the 4th chromosome. We aim to present a scientometric analysis of the extant scientific undertakings devoted to better understanding HD. Therefore, a quantitative study was performed to examine the current state-of-the-art approaches that foster researchers’ understandings of the current knowledge, research trends, and research gaps regarding this disorder. We performed literature searches of articles that were published up to September 2016 in the “ISI Web of Science™” (http://apps.webofknowledge.com/). The keyword used was “Huntington disease”. Of the initial 14,036 articles that were obtained, 7732 were eligible for inclusion in the study according to their relevance. Data were classified according to language, country of publication, year, and area of concentration. The country leader regarding the number of studies published on HD is the United States, accounting for nearly 30% of all publications, followed by England and Germany, who have published 10 and 7% of all publications, respectively. Regarding the language in which the articles were written, 98% of publications were in English. The first publication to be found on HD was published in 1974. A surge of publications on HD can be seen from 1996 onward. In relation to the various knowledge areas that emerged, most publications were in the fields of neuroscience and neurology, likely because HD is a neurodegenerative disorder. Publications written in areas such as psychiatry, genetics, and molecular biology also predominated.
Collapse
Affiliation(s)
- L A Barboza
- Laboratório de Biologia Molecular, Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil
| | - N C Ghisi
- Laboratório de Biologia Molecular, Universidade Tecnológica Federal do Paraná, Dois Vizinhos, PR, Brasil
| |
Collapse
|
47
|
Yu M, Fu Y, Liang Y, Song H, Yao Y, Wu P, Yao Y, Pan Y, Wen X, Ma L, Hexige S, Ding Y, Luo S, Lu B. Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models. Cell Res 2017; 27:1441-1465. [PMID: 29151587 PMCID: PMC5717400 DOI: 10.1038/cr.2017.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/14/2017] [Accepted: 08/08/2017] [Indexed: 12/13/2022] Open
Abstract
Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases.
Collapse
Affiliation(s)
- Meng Yu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuhua Fu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yijiang Liang
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Haikun Song
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yao Yao
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Peng Wu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuwei Yao
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yuyin Pan
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Xue Wen
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Saiyin Hexige
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Yu Ding
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Research Way, Plymouth, PL68BU, UK
| | - Boxun Lu
- State Key Laboratory of Medical Neurobiology, Huashan Hospital, School of Life Sciences, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai 200438, China
| |
Collapse
|
48
|
Abstract
Huntingtin (HTT) is an essential protein during early embryogenesis and the development of the central nervous system (CNS). Conditional knock-out of mouse Huntingtin (Htt) expression in the CNS beginning during neural development, as well as reducing Htt expression only during embryonic and early postnatal stages, results in neurodegeneration in the adult brain. These findings suggest that HTT is important for the development and/or maintenance of the CNS, but they do not address the question of whether HTT is required specifically in the adult CNS for its normal functions and/or homeostasis. Recently, it was reported that although removing Htt expression in young adult mice causes lethality due to acute pancreatitis, loss of Htt expression in the adult brain is well tolerated and does not result in either motor deficits or neurodegeneration for up to 7 months after Htt inactivation. However, recent studies have also demonstrated that HTT participates in several cellular functions that are important for neuronal homeostasis and survival including sensing reactive oxygen species (ROS), DNA damage repair, and stress responses, in addition to its role in selective macroautophagy. In this review, HTT's functions in development and in the adult CNS will be discussed in the context of these recent discoveries, together with a discussion of their potential impact on the design of therapeutic strategies for Huntington's disease (HD) aimed at lowering total HTT expression.
Collapse
Affiliation(s)
| | - Scott O. Zeitlin
- Correspondence to: Scott O. Zeitlin, Ph.D., Department of Neuroscience, University of Virginia School of Medicine, 409 Lane Rd., Box 801392, MR4-5022, Charlottesville, VA 22908, USA. Tel.: +1 434 924 5011; Fax: +1 434 982 4380; E-mail:
| |
Collapse
|
49
|
Vest KE, Phillips BL, Banerjee A, Apponi LH, Dammer EB, Xu W, Zheng D, Yu J, Tian B, Pavlath GK, Corbett AH. Novel mouse models of oculopharyngeal muscular dystrophy (OPMD) reveal early onset mitochondrial defects and suggest loss of PABPN1 may contribute to pathology. Hum Mol Genet 2017; 26:3235-3252. [PMID: 28575395 PMCID: PMC5886286 DOI: 10.1093/hmg/ddx206] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/14/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Oculopharyngeal muscular dystrophy (OPMD) is a late onset disease caused by polyalanine expansion in the poly(A) binding protein nuclear 1 (PABPN1). Several mouse models have been generated to study OPMD; however, most of these models have employed transgenic overexpression of alanine-expanded PABPN1. These models do not recapitulate the OPMD patient genotype and PABPN1 overexpression could confound molecular phenotypes. We have developed a knock-in mouse model of OPMD (Pabpn1+/A17) that contains one alanine-expanded Pabpn1 allele under the control of the native promoter and one wild-type Pabpn1 allele. This mouse is the closest available genocopy of OPMD patients. We show that Pabpn1+/A17 mice have a mild myopathic phenotype in adult and aged animals. We examined early molecular and biochemical phenotypes associated with expressing native levels of A17-PABPN1 and detected shorter poly(A) tails, modest changes in poly(A) signal (PAS) usage, and evidence of mitochondrial damage in these mice. Recent studies have suggested that a loss of PABPN1 function could contribute to muscle pathology in OPMD. To investigate a loss of function model of pathology, we generated a heterozygous Pabpn1 knock-out mouse model (Pabpn1+/Δ). Like the Pabpn1+/A17 mice, Pabpn1+/Δ mice have mild histologic defects, shorter poly(A) tails, and evidence of mitochondrial damage. However, the phenotypes detected in Pabpn1+/Δ mice only partially overlap with those detected in Pabpn1+/A17 mice. These results suggest that loss of PABPN1 function could contribute to but may not completely explain the pathology detected in Pabpn1+/A17 mice.
Collapse
Affiliation(s)
- Katherine E. Vest
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Brittany L. Phillips
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Ayan Banerjee
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Luciano H. Apponi
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric B. Dammer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Weiting Xu
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Dinghai Zheng
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Julia Yu
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Bin Tian
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Grace K. Pavlath
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
50
|
Huntington Disease as a Neurodevelopmental Disorder and Early Signs of the Disease in Stem Cells. Mol Neurobiol 2017; 55:3351-3371. [PMID: 28497201 PMCID: PMC5842500 DOI: 10.1007/s12035-017-0477-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/01/2017] [Indexed: 02/07/2023]
Abstract
Huntington disease (HD) is a dominantly inherited disorder caused by a CAG expansion mutation in the huntingtin (HTT) gene, which results in the HTT protein that contains an expanded polyglutamine tract. The adult form of HD exhibits a late onset of the fully symptomatic phase. However, there is also a long presymptomatic phase, which has been increasingly investigated and recognized as important for the disease development. Moreover, the juvenile form of HD, evoked by a higher number of CAG repeats, resembles a neurodevelopmental disorder and has recently been the focus of additional interest. Multiple lines of data, such as the developmental necessity of HTT, its role in the cell cycle and neurogenesis, and findings from pluripotent stem cells, suggest the existence of a neurodevelopmental component in HD pathogenesis. Therefore, we discuss the early molecular pathogenesis of HD in pluripotent and neural stem cells, with respect to the neurodevelopmental aspects of HD.
Collapse
|