1
|
Guadagno A, Triki Z. Executive functions and brain morphology of male and female dominant and subordinate cichlid fish. Brain Behav 2024; 14:e3484. [PMID: 38680075 PMCID: PMC11056711 DOI: 10.1002/brb3.3484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Living in a social dominance hierarchy presents different benefits and challenges for dominant and subordinate males and females, which might in turn affect their cognitive needs. Despite the extensive research on social dominance in group-living species, there is still a knowledge gap regarding how social status impacts brain morphology and cognitive abilities. METHODS Here, we tested male and female dominants and subordinates of Neolamprologus pulcher, a social cichlid fish species with size-based hierarchy. We ran three executive cognitive function tests for cognitive flexibility (reversal learning test), self-control (detour test), and working memory (object permanence test), followed by brain and brain region size measurements. RESULTS Performance was not influenced by social status or sex. However, dominants exhibited a brain-body slope that was relatively steeper than that of subordinates. Furthermore, individual performance in reversal learning and detour tests correlated with brain morphology, with some trade-offs among major brain regions like telencephalon, cerebellum, and optic tectum. CONCLUSION As individuals' brain growth strategies varied depending on social status without affecting executive functions, the different associated challenges might yield a potential effect on social cognition instead. Overall, the findings highlight the importance of studying the individual and not just species to understand better how the individual's ecology might shape its brain and cognition.
Collapse
Affiliation(s)
- Angelo Guadagno
- Behavioural Ecology Division, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| | - Zegni Triki
- Behavioural Ecology Division, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
| |
Collapse
|
2
|
Kotov R, Carpenter WT, Cicero DC, Correll CU, Martin EA, Young JW, Zald DH, Jonas KG. Psychosis superspectrum II: neurobiology, treatment, and implications. Mol Psychiatry 2024; 29:1293-1309. [PMID: 38351173 PMCID: PMC11731826 DOI: 10.1038/s41380-024-02410-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/16/2024]
Abstract
Alternatives to traditional categorical diagnoses have been proposed to improve the validity and utility of psychiatric nosology. This paper continues the companion review of an alternative model, the psychosis superspectrum of the Hierarchical Taxonomy of Psychopathology (HiTOP). The superspectrum model aims to describe psychosis-related psychopathology according to data on distributions and associations among signs and symptoms. The superspectrum includes psychoticism and detachment spectra as well as narrow subdimensions within them. Auxiliary domains of cognitive deficit and functional impairment complete the psychopathology profile. The current paper reviews evidence on this model from neurobiology, treatment response, clinical utility, and measure development. Neurobiology research suggests that psychopathology included in the superspectrum shows similar patterns of neural alterations. Treatment response often mirrors the hierarchy of the superspectrum with some treatments being efficacious for psychoticism, others for detachment, and others for a specific subdimension. Compared to traditional diagnostic systems, the quantitative nosology shows an approximately 2-fold increase in reliability, explanatory power, and prognostic accuracy. Clinicians consistently report that the quantitative nosology has more utility than traditional diagnoses, but studies of patients with frank psychosis are currently lacking. Validated measures are available to implement the superspectrum model in practice. The dimensional conceptualization of psychosis-related psychopathology has implications for research, clinical practice, and public health programs. For example, it encourages use of the cohort study design (rather than case-control), transdiagnostic treatment strategies, and selective prevention based on subclinical symptoms. These approaches are already used in the field, and the superspectrum provides further impetus and guidance for their implementation. Existing knowledge on this model is substantial, but significant gaps remain. We identify outstanding questions and propose testable hypotheses to guide further research. Overall, we predict that the more informative, reliable, and valid characterization of psychopathology offered by the superspectrum model will facilitate progress in research and clinical care.
Collapse
Affiliation(s)
- Roman Kotov
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA.
| | | | - David C Cicero
- Department of Psychology, University of North Texas, Denton, TX, USA
| | - Christoph U Correll
- Department of Psychiatry, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Department of Child and Adolescent Psychiatry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Elizabeth A Martin
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - David H Zald
- Rutgers University, The State University of New Jersey, New Brunswick, NJ, USA
| | - Katherine G Jonas
- Department of Psychiatry and Behavioral Health, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Onofrychuk TJ, Heidt AL, Orvold SN, Greba Q, Howland JG. Nucleus accumbens core dopamine D2 receptors are required for performance of the odor span task in male rats. Psychopharmacology (Berl) 2024; 241:963-974. [PMID: 38183429 DOI: 10.1007/s00213-023-06522-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 12/19/2023] [Indexed: 01/08/2024]
Abstract
RATIONALE The nucleus accumbens (NAc) core gates motivationally relevant behavioral action sequences through afferents from cortical and subcortical brain regions. While the role of the NAc core in reward and effort-based decision making is well established, its role in working memory (WM) processes is incompletely understood. The odor span task (OST) has been proposed as a measure of non-spatial working memory capacity (WMC) as it requires rodents to select a novel odor from an increasing number of familiar odors to obtain a food reward. OBJECTIVE To assess the role of the NAc core in the OST using (1) reversible chemical inactivation and (2) selective blockade of dopamine D1 and D2 receptors in the area. METHODS Well-trained male rats were tested on the OST following intra-NAc core infusions of muscimol/baclofen, the D1 receptor antagonist SCH-23390 (1 μg/hemisphere) and the D2 receptor antagonist eticlopride (1 μg/hemisphere). Behavioral measurements included the average odor span, maximum odor span, choice latency, searching vigor, and patterns of responding during foraging that may relate to impulsivity. RESULTS Chemical inactivation of the NAc core significantly decreased odor span relative to sham and vehicle conditions. Selective antagonism of D2, but not D1, receptors in the NAc core also produced deficits in odor span. We found that secondary behavioral measures of choice latency, searching vigor, and responding to the first odor stimulus encountered were largely unaffected by treatment. CONCLUSIONS These findings suggest that D2 receptors in the NAc core are required for OST performance.
Collapse
Affiliation(s)
- Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ashton L Heidt
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Spencer N Orvold
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
4
|
Dembeck M, Dieterich DC, Fendt M. The GluN2C/D-specific positive allosteric modulator CIQ rescues delay-induced working memory deficits in mice. Behav Brain Res 2024; 456:114716. [PMID: 37839756 DOI: 10.1016/j.bbr.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Working memory is of short duration and is, therefore, particularly sensitive to time delays. Moreover, NMDA receptors are significantly involved in working memory. In the present study, we tested whether a commonly used measure of working memory, spontaneous alternation in the Y-maze, is sensitive to time delays and, if so, whether impairments due to time-delay can be rescued by treatment with CIQ, a positive allosteric modulator of the GluN2C/D subunits of NMDA receptor. Our results indicate that the effects of time delay do depend on the performance of the individual mice under basal condition. Those mice that performed well under basal conditions showed impaired spontaneous alternations when tested with a 45-s delay. Treatment with CIQ resulted in an improvement of spontaneous alternations, regardless of delay, sex, or basal performance. On the one hand, our study shows that repeated measures of individual behavior can better control the effects of confounding factors such as time delays. On the other hand, our study also highlights the potential of GluN2C/D-specific positive allosteric modulators in the treatment of human disorders associated with working memory deficits, such as schizophrenia.
Collapse
Affiliation(s)
- Marianne Dembeck
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
5
|
Barnard IL, Onofrychuk TJ, Toderash AD, Patel VN, Glass AE, Adrian JC, Laprairie RB, Howland JG. High-THC Cannabis Smoke Impairs Incidental Memory Capacity in Spontaneous Tests of Novelty Preference for Objects and Odors in Male Rats. eNeuro 2023; 10:ENEURO.0115-23.2023. [PMID: 37973381 PMCID: PMC10714893 DOI: 10.1523/eneuro.0115-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/19/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Abstract
Working memory is an executive function that orchestrates the use of limited amounts of information, referred to as working memory capacity, in cognitive functions. Cannabis exposure impairs working memory in humans; however, it is unclear whether Cannabis facilitates or impairs rodent working memory and working memory capacity. The conflicting literature in rodent models may be at least partly because of the use of drug exposure paradigms that do not closely mirror patterns of human Cannabis use. Here, we used an incidental memory capacity paradigm where a novelty preference is assessed after a short delay in spontaneous recognition-based tests. Either object or odor-based stimuli were used in test variations with sets of identical [identical stimuli test (IST)] and different [different stimuli test (DST)] stimuli (three or six) for low-memory and high-memory loads, respectively. Additionally, we developed a human-machine hybrid behavioral quantification approach which supplements stopwatch-based scoring with supervised machine learning-based classification. After validating the spontaneous IST and DST in male rats, 6-item test versions with the hybrid quantification method were used to evaluate the impact of acute exposure to high-Δ9-tetrahydrocannabinol (THC) or high-CBD Cannabis smoke on novelty preference. Under control conditions, male rats showed novelty preference in all test variations. We found that high-THC, but not high-CBD, Cannabis smoke exposure impaired novelty preference for objects under a high-memory load. Odor-based recognition deficits were seen under both low-memory and high-memory loads only following high-THC smoke exposure. Ultimately, these data show that Cannabis smoke exposure impacts incidental memory capacity of male rats in a memory load-dependent, and stimuli-specific manner.
Collapse
Affiliation(s)
- Ilne L Barnard
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Timothy J Onofrychuk
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Aaron D Toderash
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Vyom N Patel
- Department of Computer Science, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5C9, Canada
| | - Aiden E Glass
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Jesse C Adrian
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| | - Robert B Laprairie
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
- Department of Pharmacology, College of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, S7N5E5, Canada
| |
Collapse
|
6
|
Bennett D, Nakamura J, Vinnakota C, Sokolenko E, Nithianantharajah J, van den Buuse M, Jones NC, Sundram S, Hill R. Mouse Behavior on the Trial-Unique Nonmatching-to-Location (TUNL) Touchscreen Task Reflects a Mixture of Distinct Working Memory Codes and Response Biases. J Neurosci 2023; 43:5693-5709. [PMID: 37369587 PMCID: PMC10401633 DOI: 10.1523/jneurosci.2101-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM) deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N = 163 across three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM, or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assumptions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases. These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behavior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative behavioral strategies in the TUNL task.SIGNIFICANCE STATEMENT Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behavioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.
Collapse
Affiliation(s)
- Daniel Bennett
- School of Psychological Sciences, Monash University, Melbourne, Victoria 3180, Australia
| | - Jay Nakamura
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Chitra Vinnakota
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Neurology, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Mental Health Program, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| |
Collapse
|
7
|
Triki Z, Fong S, Amcoff M, Vàsquez-Nilsson S, Kolm N. Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS NEXUS 2023; 2:pgad129. [PMID: 37346268 PMCID: PMC10281379 DOI: 10.1093/pnasnexus/pgad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.
Collapse
Affiliation(s)
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | | | | |
Collapse
|
8
|
Fu J, Qin W, Cao LQ, Chen ZS, Cao HL. Advances in receptor chromatography for drug discovery and drug-receptor interaction studies. Drug Discov Today 2023; 28:103576. [PMID: 37003514 DOI: 10.1016/j.drudis.2023.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Receptor chromatography involves high-throughput separation and accurate drug screening based on specific drug-receptor recognition and affinity, which has been widely used to screen active compounds in complex samples. This review summarizes the immobilization methods for receptors from three aspects: random covalent immobilization methods, site-specific covalent immobilization methods and dual-target receptor chromatography. Meanwhile, it focuses on its applications from three angles: screening active compounds in natural products, in natural-product-derived DNA-encoded compound libraries and drug-receptor interactions. This review provides new insights for the design and application of receptor chromatography, high-throughput and accurate drug screening, drug-receptor interactions and more. Teaser: This review summarizes the immobilization methods of receptors and the application of receptor chromatography, which will provide new insights for the design and application of receptor chromatography, rapid drug screening, drug-receptor interactions and more.
Collapse
Affiliation(s)
- Jia Fu
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Wei Qin
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China
| | - Lu-Qi Cao
- College of Pharmacy and Health Sciences, St John's University, NY, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, NY, USA.
| | - Hui-Ling Cao
- Xi'an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, College of Pharmacy, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
9
|
Generalized, cross-modal, and incrementing non-matching-to-sample in rats. Learn Behav 2023; 51:88-107. [PMID: 36697934 DOI: 10.3758/s13420-023-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Same/different concept learning has been demonstrated in previous research in rats using matching- and non-matching-to-sample procedures with olfactory stimuli. In Experiment 1, rats were trained on the non-matching-to-sample procedure with either three-dimensional (3D plastic objects; n = 3) or olfactory (household spices, n = 5) stimuli, then tested for transfer to novel stimuli of the same, and then the alternate, modality. While all three rats trained with olfactory stimuli showed generalized non-matching to novel odors, only one rat learned the 3D relation and showed generalized transfer to novel objects. Importantly, in this rat the 3D non-matching relation then immediately transferred to odors. In contrast, rats trained with scents did not show transfer to novel 3D stimuli until after training with one or two 3D stimulus sets. In Experiment 2, four rats were trained on an incrementing non-matching-to-sample task featuring 3D plastic objects as stimuli (3D Span Task). Responses to session-novel stimuli resulted in reinforcement. Only two rats learned the 3D Span Task; one rat performed with high accuracy even with up to 17 session-novel objects in a session. While these findings emphasize the exceptional olfactory discrimination of rats relative to that with 3D/tactile/visual cues, they also show that relational learning can be demonstrated in another modality in this species. Further, the present study provides some evidence of cross-modal transfer of relational responding in rats.
Collapse
|
10
|
Bruno JP. Enhancing the resolution of behavioral measures: Key observations during a forty year career in behavioral neuroscience. Neurosci Biobehav Rev 2023; 145:105004. [PMID: 36549379 DOI: 10.1016/j.neubiorev.2022.105004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
This manuscript reviews several key observations from the research program of Professor John P. Bruno that are believed to have significantly advanced our understanding of the brain's mediation of behavior. This review focuses on findings within several important research areas in behavioral neuroscience, including a) age-dependent neurobehavioral plasticity following brain damage; b) the role of the cortical cholinergic system in attentional processing and cognitive flexibility; and c) the design and validation of animal models of cognitive deficits in schizophrenia. In selecting these observations, emphasis was given to examples in which the heuristic potency was increased by maximizing the resolution and microanalysis of behavioral assays in the same fashion as one typically refines neuronal manipulations. Professor Bruno served the International Behavioral Neuroscience Society (IBNS) as an IBNS Fellow (1995-present) and President of the IBNS (2001-02).
Collapse
Affiliation(s)
- John P Bruno
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
11
|
Cothren TO, Evonko CJ, MacQueen DA. Olfactory Dysfunction in Schizophrenia: Evaluating Olfactory Abilities Across Species. Curr Top Behav Neurosci 2023; 63:363-392. [PMID: 36059004 DOI: 10.1007/7854_2022_390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Though understudied relative to perturbations in the auditory and visual domains, olfactory dysfunction is a common symptom of schizophrenia. Over the past two decades, the availability of standardized assessments to quantify human olfactory abilities, and enhance understanding of the neurophysiology supporting olfaction, has increased, enabling a more thorough characterization of these deficits. In contrast to other psychiatric conditions for which olfactory dysfunction has been observed (e.g., major depressive disorder, bipolar disorder, Alzheimer's disease), the impairments observed in schizophrenia are particularly global and profound. At this level, such deficits in olfactory abilities likely impact the enjoyment of food, detection of environmental hazards, and influence social relationships. More broadly, the study of olfactory phenotypes in schizophrenia presents new avenues for detection of those at-risk for the condition, identification of therapeutic targets for treatment development, and for the characterization of novel animal models relevant to schizophrenia and psychosis. This review will consider the olfactory performance of individuals with schizophrenia in domains for which standardized assessments are available (odor sensitivity, discrimination, identification, and memory). Paradigms available for assessing these abilities in rodents will also be discussed with the aim of facilitating translation. Thus, future studies will be able to include cross-species translation of mechanisms relevant to olfactory function and cognition, what has gone awry in the disease state, and test potential therapeutics.
Collapse
Affiliation(s)
- Taitum O Cothren
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - Christopher J Evonko
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA
| | - David A MacQueen
- Department of Psychology, University of North Carolina at Wilmington, Wilmington, NC, USA.
| |
Collapse
|
12
|
Kayir H, Ruffolo J, McCunn P, Khokhar JY. The Relationship Between Cannabis, Cognition, and Schizophrenia: It's Complicated. Curr Top Behav Neurosci 2023; 63:437-461. [PMID: 36318403 DOI: 10.1007/7854_2022_396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The consequences of cannabis use, especially in the context of schizophrenia, have gained increased importance with the legalization of cannabis in North America and across the globe. Cannabis use has multifaceted impacts on cognition in schizophrenia patients and healthy subjects. Healthy subjects, particularly those who initiated cannabis use at earlier ages and used high-potency cannabis for longer durations, exhibited poorer cognition mainly in working memory and attention. Cannabis use in schizophrenia has been associated with symptom exacerbation, longer and more frequent psychotic episodes, and poorer treatment outcomes. However, cannabis-using patients have better overall cognitive performance compared to patients who were not cannabis users. Interestingly, these effects were only apparent in lifetime cannabis users, but not in current (or within last 6 months) users. Moreover, higher frequency and earlier age of cannabis use initiation (i.e., before 17 years of age) were associated with better cognitive performance, although they had an earlier illness onset. Three possible hypotheses seem to come forward to explain this paradox. First, some components of cannabis may have antipsychotic or cognitive-enhancing properties. Secondly, chronic cannabis use may alter endocannabinoid signaling in the brain which could be a protective factor for developing psychosis or cognitive impairments. A third explanation could be their representation of a phenotypically distinct patient group with more intact cognitive functioning and less neurodevelopmental pathology. Multiple factors need to be considered to understand the complex relationship between cannabis, cognitive function, and schizophrenia. In short, age at initiation, duration and rate of cannabis use, abstinence duration, co-use of substances and alcohol, prescribed medications, relative cannabinoid composition and potency of cannabis, presence of genetic and environmental vulnerability factors are prominent contributors to the variability in outcomes. Animal studies support the disruptive effects of Δ9-tetrahydrocannabinol (THC) administration during adolescence on attention and memory performance. They provide insights about interaction of cannabinoid receptors with other neurotransmitter systems, such as GABA and glutamate, and other regulatory molecules, such as PSD95 and synaptophysin. Cannabidiol (CBD), on the other hand, can improve cognitive deficits seen in neurodevelopmental and chemically-induced animal models of schizophrenia. Future studies focusing on bridging the translational gaps between human and animal studies, through the use of translationally relevant methods of exposure (e.g., vaping), consistent behavioral assessments, and congruent circuit interrogations (e.g., imaging) will help to further clarify this complex picture.
Collapse
Affiliation(s)
- Hakan Kayir
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Jessica Ruffolo
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Patrick McCunn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Jibran Y Khokhar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
13
|
McGonigle CE, Lapish CC, Logrip ML. Male and female impairments in odor span are observed in a rat model of PTSD. Learn Mem 2023; 30:1-11. [PMID: 36543385 PMCID: PMC9872191 DOI: 10.1101/lm.053620.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
Posttraumatic stress disorder (PTSD) is associated with neural and behavioral alterations in response to trauma exposure, including working memory impairments. Rodent models of PTSD have not fully investigated chronic or reactive working memory deficits, despite clinical relevance. The present study uses footshock to induce a posttraumatic stress state in male and female rats and evaluates the effect of footshock and trauma-paired odor cues on working memory performance in the odor span task. Results demonstrate the emergence of chronic deficits in working memory among animals exposed to footshock by 3 wk after traumatic stress. The presentation of a trauma-paired odor cue was associated with further decrement in working memory performance for male animals. Furthermore, anxiety-like behaviors associated with the PTSD-like phenotype could predict the degree of working memory impairment in response to the trauma-paired odor cue. This study enhances validation of an existing rodent model of PTSD through replication of the clinical observations of working memory deficits associated with PTSD and provides novel insight into effects in female rodents. This will facilitate work to probe underlying mechanistic dysregulation of working memory following footshock trauma exposure and future development of novel treatment strategies.
Collapse
Affiliation(s)
- Colleen E McGonigle
- Addiction Neuroscience, Department of Psychology, Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Christopher C Lapish
- Addiction Neuroscience, Department of Psychology, Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Stark Neuroscience Research Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | - Marian L Logrip
- Addiction Neuroscience, Department of Psychology, Indiana Alcohol Research Center, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
- Stark Neuroscience Research Institute, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| |
Collapse
|
14
|
Jiang LX, Huang GD, Wang HL, Zhang C, Yu X. The protocol for assessing olfactory working memory capacity in mice. Brain Behav 2022; 12:e2703. [PMID: 35849713 PMCID: PMC9392537 DOI: 10.1002/brb3.2703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/04/2022] [Accepted: 06/27/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Working memory capacity (WMC) is the ability to maintain information over a few seconds. Although it has been extensively studied in healthy subjects and neuropsychiatric patients, few tasks have been developed to measure such changes in rodents. Many procedures have been used to measure WM in rodents, including the radial arm maze, the WM version of the Morris swimming task, and various delayed matching and nonmatching-to-sample tasks. It should be noted, however, that the memory components assessed in these procedures do not include memory capacity. METHODS We developed an olfactory working memory capacity (OWMC) paradigm to assess the WMC of 3-month-old 5×FAD mice, a mouse model of Alzheimer's disease. The task is divided into five phases: context adaptation, digging training, rule learning for nonmatching to a single sample odor (NMSS), rule learning for nonmatching to multiple sample odors (NMMS), and capacity testing. RESULTS In the NMSS rule-learning phase, there was no difference between wild-type (WT) mice and 5×FAD mice in the performance correct rate, correct option rate, and correct rejection rate. The WT mice and 5×FAD mice showed similar memory capacity in the NMMS rule-learning phase. After capacity test, we found that the WMC was significantly diminished in 5×FAD mice. As the memory load increased, 5×FAD mice also made significantly more errors than WT mice. CONCLUSION The OWMC task, based on a nonmatch-to-sample rule, is a sensitive and robust behavioral assay that we validated as a reliable method for measuring WMC and exploring different components of memory in mice.
Collapse
Affiliation(s)
- Li-Xin Jiang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Geng-Di Huang
- Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, China
| | - Hua-Li Wang
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| | - Chen Zhang
- Capital Medical University, Youanmenwai, Beijing, China
| | - Xin Yu
- Peking University Institute of Mental Health (Sixth Hospital), Beijing, China.,National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University), Beijing, China.,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, Beijing, China
| |
Collapse
|
15
|
Howland JG, Ito R, Lapish CC, Villaruel FR. The rodent medial prefrontal cortex and associated circuits in orchestrating adaptive behavior under variable demands. Neurosci Biobehav Rev 2022; 135:104569. [PMID: 35131398 PMCID: PMC9248379 DOI: 10.1016/j.neubiorev.2022.104569] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/17/2021] [Accepted: 02/01/2022] [Indexed: 11/28/2022]
Abstract
Emerging evidence implicates rodent medial prefrontal cortex (mPFC) in tasks requiring adaptation of behavior to changing information from external and internal sources. However, the computations within mPFC and subsequent outputs that determine behavior are incompletely understood. We review the involvement of mPFC subregions, and their projections to the striatum and amygdala in two broad types of tasks in rodents: 1) appetitive and aversive Pavlovian and operant conditioning tasks that engage mPFC-striatum and mPFC-amygdala circuits, and 2) foraging-based tasks that require decision making to optimize reward. We find support for region-specific function of the mPFC, with dorsal mPFC and its projections to the dorsomedial striatum supporting action control with higher cognitive demands, and ventral mPFC engagement in translating affective signals into behavior via discrete projections to the ventral striatum and amygdala. However, we also propose that defined mPFC subdivisions operate as a functional continuum rather than segregated functional units, with crosstalk that allows distinct subregion-specific inputs (e.g., internal, affective) to influence adaptive behavior supported by other subregions.
Collapse
Affiliation(s)
- John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Rutsuko Ito
- Department of Psychology, University of Toronto-Scarborough, Toronto, ON, Canada.
| | - Christopher C Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| | - Franz R Villaruel
- Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Büki A, Bohár Z, Kekesi G, Vécsei L, Horvath G. Wisket rat model of schizophrenia: Impaired motivation and, altered brain structure, but no anhedonia. Physiol Behav 2021; 244:113651. [PMID: 34800492 DOI: 10.1016/j.physbeh.2021.113651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 01/17/2023]
Abstract
It is well-known that the poor cognition in schizophrenia is strongly linked to negative symptoms, including motivational deficit, which due to, at least partially, anhedonia. The goal of this study was to explore whether the schizophrenia-like Wisket animals with impaired motivation (obtained in the reward-based hole-board test), also show decreased hedonic behavior (investigated with the sucrose preference test). While neurochemical alterations of different neurotransmitter systems have been detected in the Wisket rats, no research has been performed on structural changes. Therefore, our additional aim was to reveal potential neuroanatomical and structural alterations in different brain regions in these rats. The rats showed decreased general motor activity (locomotion, rearing and exploration) and impaired task performance in the hole-board test compared to the controls, whereas no significant difference was observed in the sucrose preference test between the groups. The Wisket rats exhibited a significant decrease in the frontal cortical thickness and the hippocampal area, and moderate increases in the lateral ventricles and cell disarray in the CA3 subfield of hippocampus. To our knowledge, this is the first study to investigate the hedonic behavior and neuroanatomical alterations in a multi-hit animal model of schizophrenia. The results obtained in the sucrose preference test suggest that anhedonic behavior might not be involved in the impaired motivation obtained in the hole-board test. The neuropathological changes agree with findings obtained in patients with schizophrenia, which refine the high face validity of the Wisket model.
Collapse
Affiliation(s)
- Alexandra Büki
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary.
| | - Zsuzsanna Bohár
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Gabriella Kekesi
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, H-6725, Hungary; Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725, Hungary; Interdisciplinary Excellence Center, Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6., Szeged, H-6725 Hungary
| | - Gyongyi Horvath
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 10., Szeged, H-6720, Hungary
| |
Collapse
|
17
|
Duda W, Węsierska M. Spatial working memory in rats: Crucial role of the hippocampus in the allothetic place avoidance alternation task demanding stimuli segregation. Behav Brain Res 2021; 412:113414. [PMID: 34119508 DOI: 10.1016/j.bbr.2021.113414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Working memory is a construct that contains goal maintenance, interference control and memory capacity domains. Spatial working memory in presence of conflicting stimuli requires segregation and maintenance of the relevant information about a goal over a short period of time. Besides the prefrontal cortex, the hippocampus is an anatomical substrate for the working memory. We hypothesized that in a highly challenging task, where spatial stimuli are in a conflict and only some of them describe the goal location, the spatial working memory will be strongly dependant on the hippocampus. To verify this, we used an allothetic place avoidance alternation task (APAAT). Performance of this task demands a small number of entries and a long maximum time avoided between consecutive entries to the shock sector. These parameters reflected both domains of working memory. The experiment was conducted on hippocampal lesioned (HIPP n = 12) and sham-operated (CTRL n = 8) rats trained in four APAAT days, each consisting of four 5-minute stages: habituation, stage1 (st1) and stage2 (st2) of memory training, a 5-minute break followed by a retrieval test. The position of the shock sector was changed each day. The HIPP rats were impaired on both stages of memory training, whereas CTRL rats presented significant memory improvement on stage2. In HIPP rats the cognitive skill learning measured as shock per entrance ratio was compromised. Hippocampal lesions did not impair locomotor activity. In summary, even slight bilateral damage to the hippocampus is blocking working memory formation in a difficult task.
Collapse
Affiliation(s)
- Weronika Duda
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland.
| | - Małgorzata Węsierska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Huang GD, Jiang LX, Su F, Wang HL, Zhang C, Yu X. A novel paradigm for assessing olfactory working memory capacity in mice. Transl Psychiatry 2020; 10:431. [PMID: 33319773 PMCID: PMC7738675 DOI: 10.1038/s41398-020-01120-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/30/2020] [Accepted: 11/17/2020] [Indexed: 01/10/2023] Open
Abstract
A decline in working memory (WM) capacity is suggested to be one of the earliest symptoms observed in Alzheimer's disease (AD). Although WM capacity is widely studied in healthy subjects and neuropsychiatric patients, few tasks are developed to measure this variation in rodents. The present study describes a novel olfactory working memory capacity (OWMC) task, which assesses the ability of mice to remember multiple odours. The task was divided into five phases: context adaptation, digging training, rule-learning for non-matching to a single-sample odour (NMSS), rule-learning for non-matching to multiple sample odours (NMMS) and capacity testing. During the capacity-testing phase, the WM capacity (number of odours that the mice could remember) remained stable (average capacity ranged from 6.11 to 7.00) across different testing sessions in C57 mice. As the memory load increased, the average errors of each capacity level increased and the percent correct gradually declined to chance level, which suggested a limited OWMC in C57 mice. Then, we assessed the OWMC of 5 × FAD transgenic mice, an animal model of AD. We found that the performance displayed no significant differences between young adult (3-month-old) 5 × FAD mice and wild-type (WT) mice during the NMSS phase and NMMS phase; however, during the capacity test with increasing load, we found that the OWMC of young adult 5 × FAD mice was significantly decreased compared with WT mice, and the average error was significantly increased while the percent correct was significantly reduced, which indicated an impairment of WM capacity at the early stage of AD in the 5 × FAD mice model. Finally, we found that FOS protein levels in the medial prefrontal cortex and entorhinal cortex after the capacity test were significantly lower in 5 × FAD than WT mice. In conclusion, we developed a novel paradigm to assess the capacity of olfactory WM in mice, and we found that OWMC was impaired in the early stage of AD.
Collapse
Affiliation(s)
- Geng-Di Huang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Li-Xin Jiang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Feng Su
- grid.452723.50000 0004 7887 9190Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871 Beijing, China ,grid.24696.3f0000 0004 0369 153XSchool of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069 Beijing, China
| | - Hua-Li Wang
- grid.459847.30000 0004 1798 0615Peking University Sixth Hospital, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319Peking University Institute of Mental Health, 100191 Beijing, China ,grid.11135.370000 0001 2256 9319NHC Key Laboratory of Mental Health (Peking University), 100191 Beijing, China ,grid.459847.30000 0004 1798 0615National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191 Beijing, China ,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191 Beijing, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 100069, Beijing, China.
| | - Xin Yu
- Peking University Sixth Hospital, 100191, Beijing, China. .,Peking University Institute of Mental Health, 100191, Beijing, China. .,NHC Key Laboratory of Mental Health (Peking University), 100191, Beijing, China. .,National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), 100191, Beijing, China. .,Beijing Municipal Key Laboratory for Translational Research on Diagnosis and Treatment of Dementia, 100191, Beijing, China.
| |
Collapse
|
19
|
Hatzipantelis C, Langiu M, Vandekolk TH, Pierce TL, Nithianantharajah J, Stewart GD, Langmead CJ. Translation-Focused Approaches to GPCR Drug Discovery for Cognitive Impairments Associated with Schizophrenia. ACS Pharmacol Transl Sci 2020; 3:1042-1062. [PMID: 33344888 PMCID: PMC7737210 DOI: 10.1021/acsptsci.0c00117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Indexed: 01/07/2023]
Abstract
There are no effective therapeutics for cognitive impairments associated with schizophrenia (CIAS), which includes deficits in executive functions (working memory and cognitive flexibility) and episodic memory. Compounds that have entered clinical trials are inadequate in terms of efficacy and/or tolerability, highlighting a clear translational bottleneck and a need for a cohesive preclinical drug development strategy. In this review we propose hippocampal-prefrontal-cortical (HPC-PFC) circuitry underlying CIAS-relevant cognitive processes across mammalian species as a target source to guide the translation-focused discovery and development of novel, procognitive agents. We highlight several G protein-coupled receptors (GPCRs) enriched within HPC-PFC circuitry as therapeutic targets of interest, including noncanonical approaches (biased agonism and allosteric modulation) to conventional clinical targets, such as dopamine and muscarinic acetylcholine receptors, along with prospective novel targets, including the orphan receptors GPR52 and GPR139. We also describe the translational limitations of popular preclinical cognition tests and suggest touchscreen-based assays that probe cognitive functions reliant on HPC-PFC circuitry and reflect tests used in the clinic, as tests of greater translational relevance. Combining pharmacological and behavioral testing strategies based in HPC-PFC circuit function creates a cohesive, translation-focused approach to preclinical drug development that may improve the translational bottleneck currently hindering the development of treatments for CIAS.
Collapse
Affiliation(s)
- Cassandra
J. Hatzipantelis
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Monica Langiu
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Teresa H. Vandekolk
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Tracie L. Pierce
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jess Nithianantharajah
- Florey
Institute of Neuroscience
and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Gregory D. Stewart
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Christopher J. Langmead
- Drug
Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Thomson DM, Openshaw RL, Mitchell EJ, Kouskou M, Millan MJ, Mannoury la Cour C, Morris BJ, Pratt JA. Impaired working memory, cognitive flexibility and reward processing in mice genetically lacking Gpr88: Evidence for a key role for Gpr88 in multiple cortico-striatal-thalamic circuits. GENES BRAIN AND BEHAVIOR 2020; 20:e12710. [PMID: 33078498 DOI: 10.1111/gbb.12710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
The GPR88 orphan G protein-coupled receptor is expressed throughout the striatum, being preferentially localised in medium spiny neurons. It is also present in lower densities in frontal cortex and thalamus. Rare mutations in humans suggest a role in cognition and motor function, while common variants are associated with psychosis. Here we evaluate the influence of genetic deletion of GPR88 upon performance in translational tasks interrogating motivation, reward evaluation and cognitive function. In an automated radial arm maze 'N-back' working memory task, Gpr88 KO mice showed impaired correct responding, suggesting a role for GPR88 receptors in working memory circuitry. Associative learning performance was similar to wild-type controls in a touchscreen task but performance was impaired at the reversal learning stage, suggesting cognitive inflexibility. Gpr88 KO mice showed higher breakpoints, reduced latencies and lengthened session time in a progressive ratio task consistent with enhanced motivation. Simultaneously, locomotor hyperactivity was apparent in this task, supporting previous findings of actions of GPR88 in a cortico-striatal-thalamic motor loop. Evidence for a role of GPR88 in reward processing was demonstrated in a touchscreen-based equivalent of the Iowa gambling task. Although both Gpr88 KO and wild-type mice showed a preference for an optimum contingency choice, Gpr88 KO mice selected more risky choices at the expense of more advantageous lower risk options. Together these novel data suggest that striatal GPR88 receptors influence activity in a range of procedures integrated by prefrontal, orbitofrontal and anterior cingulate cortico-striatal-thalamic loops leading to altered cognitive, motivational and reward evaluation processes.
Collapse
Affiliation(s)
- David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Rebecca L Openshaw
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Marianna Kouskou
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| | - Mark J Millan
- Centre for Therapeutic Innovation-CNS, Institute de Recherche Servier, Croissy-sur-Seine, France
| | | | - Brian J Morris
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow, G4 0RE, United Kingdom
| |
Collapse
|
21
|
Galizio M, Mason MG, Bruce K. Successive incrementing non-matching-to-samples in rats: An automated version of the odor span task. J Exp Anal Behav 2020; 114:248-265. [PMID: 32725820 DOI: 10.1002/jeab.619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The odor span task is a procedure frequently used to study remembering of multiple stimuli in rodents. A large arena is used and odor stimuli are presented using scented cups. Selection of each odor is reinforced when first presented, but not on subsequent presentations; correct selections depend on remembering which stimuli were previously presented. The use of an arena setting with manual stimulus presentation makes the odor span task labor-intensive and limits experimental control; thus, an automated version of the task would be of value. The present study used an operant chamber equipped with an olfactometer and trained rats using successive conditional discrimination procedures under an incrementing non-matching-to-samples contingency. High rates of responding developed to odor stimuli when they were session-novel with low rates of responding to subsequent presentations of that odor. Additional experiments assessed variations of the procedure to determine the role of the frequency of odor presentation and the retention interval separating sample and comparison. Discrimination was impaired with long retention intervals suggesting the importance of this variable. These findings confirmed that rats differentiate between stimuli that are session-novel and those previously encountered and support the use of an automated procedure as an alternative to the odor span task.
Collapse
|
22
|
Young JW, Roberts BZ, Breier M, Swerdlow NR. Amphetamine improves rat 5-choice continuous performance test (5C-CPT) irrespective of concurrent low-dose haloperidol treatment. Psychopharmacology (Berl) 2020; 237:1959-1972. [PMID: 32318751 DOI: 10.1007/s00213-020-05511-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
RATIONALE Cognitive dysfunction mediates functional impairment in patients with schizophrenia, necessitating the timely development of pro-cognitive therapeutics. An important initial step in this process is to establish what, if any, pro-cognitive agents and associated mechanisms can be identified using cross-species translational paradigms. For example, attentional deficits-a core feature of schizophrenia-can be measured across species using the 5-choice continuous performance test (5C-CPT). The psychostimulant, amphetamine, improves human and rodent 5C-CPT performance. OBJECTIVE Here, we tested whether amphetamine would similarly improve 5C-CPT performance in the presence of dopamine D2 receptor blockade, since pro-cognitive treatments in schizophrenia would virtually always be used in conjunction with D2 receptor antagonists. METHODS We established the dose-response effects of amphetamine (0, 0.1, 0.3, or 1.0 mg/kg) and haloperidol (0, 3.2, 10, or 32 μg/kg) on 5C-CPT performance in Long Evans rats, and then tested an amphetamine (0.3 mg/kg) × haloperidol (10 μg/kg) interaction; the low dose was chosen because higher doses exerted deleterious non-specific effects on performance. RESULTS Amphetamine improved 5C-CPT performance in poorly performing rats by increasing target detection, independent of haloperidol pretreatment. CONCLUSIONS The pro-attentional effects of amphetamine were most likely mediated by dopamine release at D1-family receptors, since they persisted in the presence of acute D2 blockade. Alternative explanations for these findings are also discussed, as are their potential implications for future pro-cognitive therapeutics in schizophrenia.
Collapse
Affiliation(s)
- Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA. .,Research Service, VA San Diego Healthcare System, San Diego, CA, USA.
| | - Benjamin Z Roberts
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Michelle Breier
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| | - Neal R Swerdlow
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA, 92093-0804, USA
| |
Collapse
|
23
|
Scott GA, Cai S, Song Y, Liu MC, Greba Q, Howland JG. Task phase-specific involvement of the rat posterior parietal cortex in performance of the TUNL task. GENES BRAIN AND BEHAVIOR 2020; 20:e12659. [PMID: 32348610 DOI: 10.1111/gbb.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
The posterior parietal cortex (PPC) participates in cognitive processes including working memory (WM), sensory evidence accumulation, and perceptually guided decision making. However, surprisingly little work has used temporally precise manipulations to dissect its role in different epochs of behavior taking place over short timespans, such as WM tasks. As a result, a consistent view of the temporally precise role of the PPC in these processes has not been described. In the present study, we investigated the temporally specific role of the PPC in the Trial-Unique, Nonmatching-to-Location (TUNL) task, a touchscreen-based, visuospatial WM task that relies on the PPC. To disrupt PPC activity in a temporally precise manner, we applied mild intracranial electrical stimulation (ICES). We found that intra-PPC ICES (100 μA) significantly impaired accuracy in TUNL without significantly altering response latency. Moreover, we found that the impairment was specific to ICES applied during the delay and test phases of TUNL. Consistent with previous reports showing delay- and choice-specific neuronal activity in the PPC, the results provide evidence that the rat PPC is required for maintaining memory representations of stimuli over a delay period as well as for making successful comparisons and choices between test stimuli. In contrast, the PPC appears not to be critical for initial encoding of sample stimuli. This pattern of results may indicate that early encoding of visual stimuli is independent of the PPC or that the PPC becomes engaged only when visual stimuli are spatially complex or involve memory or decision making.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Shuang Cai
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
24
|
Gogos JA, Crabtree G, Diamantopoulou A. The abiding relevance of mouse models of rare mutations to psychiatric neuroscience and therapeutics. Schizophr Res 2020; 217:37-51. [PMID: 30987923 PMCID: PMC6790166 DOI: 10.1016/j.schres.2019.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
Studies using powerful family-based designs aided by large scale case-control studies, have been instrumental in cracking the genetic complexity of the disease, identifying rare and highly penetrant risk mutations and providing a handle on experimentally tractable model systems. Mouse models of rare mutations, paired with analysis of homologous cognitive and sensory processing deficits and state-of-the-art neuroscience methods to manipulate and record neuronal activity have started providing unprecedented insights into pathogenic mechanisms and building the foundation of a new biological framework for understanding mental illness. A number of important principles are emerging, namely that degradation of the computational mechanisms underlying the ordered activity and plasticity of both local and long-range neuronal assemblies, the building blocks necessary for stable cognition and perception, might be the inevitable consequence and the common point of convergence of the vastly heterogeneous genetic liability, manifesting as defective internally- or stimulus-driven neuronal activation patterns and triggering the constellation of schizophrenia symptoms. Animal models of rare mutations have the unique potential to help us move from "which" (gene) to "how", "where" and "when" computational regimes of neural ensembles are affected. Linking these variables should improve our understanding of how symptoms emerge and how diagnostic boundaries are established at a circuit level. Eventually, a better understanding of pathophysiological trajectories at the level of neural circuitry in mice, aided by basic human experimental biology, should guide the development of new therapeutics targeting either altered circuitry itself or the underlying biological pathways.
Collapse
Affiliation(s)
- Joseph A. Gogos
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA,Department of Neuroscience, Columbia University, New York, NY 10032 USA,Correspondence should be addressed to: Joseph A. Gogos ()
| | - Gregg Crabtree
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anastasia Diamantopoulou
- Mortimer B. Zuckerman Mind Brain and Behavior Institute Columbia University, New York, NY 10027 USA,Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
25
|
Scott GA, Liu MC, Tahir NB, Zabder NK, Song Y, Greba Q, Howland JG. Roles of the medial prefrontal cortex, mediodorsal thalamus, and their combined circuit for performance of the odor span task in rats: analysis of memory capacity and foraging behavior. ACTA ACUST UNITED AC 2020; 27:67-77. [PMID: 31949038 PMCID: PMC6970426 DOI: 10.1101/lm.050195.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/16/2019] [Indexed: 11/29/2022]
Abstract
Working memory (WM), the capacity for short-term storage of small quantities of information for immediate use, is thought to depend on activity within the prefrontal cortex. Recent evidence indicates that the prefrontal neuronal activity supporting WM is driven by thalamocortical connections arising in mediodorsal thalamus (mdThal). However, the role of these connections has not been studied using olfactory stimuli leaving open the question of whether this circuit extends to all sensory modalities. Additionally, manipulations of the mdThal in olfactory memory tasks have yielded mixed results. In the present experiment, we investigated the role of connections between the rat medial prefrontal cortex (mPFC) and mdThal in the odor span task (OST) using a pharmacological contralateral disconnection technique. Inactivation of either the mPFC or mdThal alone both significantly impaired memory performance in the OST, replicating previous findings with the mPFC and confirming that the mdThal plays an essential role in intact OST performance. Contralateral disconnection of the two structures impaired OST performance in support of the idea that the OST relies on mPFC-mdThal connections, but ipsilateral control infusions also impaired performance, complicating this interpretation. We also performed a detailed analysis of rats’ errors and foraging behavior and found a dissociation between mPFC and mdThal inactivation conditions. Inactivation of the mdThal and mPFC caused a significant reduction in the number of approaches rats made per odor, whereas only mdThal inactivation or mPFC-mdThal disconnection caused significant increases in choice latency. Our results confirm that the mdThal is necessary for performance of the OST and that it may critically interact with the mPFC to mediate OST performance. Additionally, we have provided evidence that the mPFC and mdThal play dissociable roles in mediating foraging behavior.
Collapse
Affiliation(s)
- Gavin A Scott
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Max C Liu
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Nimra B Tahir
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Nadine K Zabder
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Yuanyi Song
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - John G Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
26
|
Paul ES, Sher S, Tamietto M, Winkielman P, Mendl MT. Towards a comparative science of emotion: Affect and consciousness in humans and animals. Neurosci Biobehav Rev 2020; 108:749-770. [PMID: 31778680 PMCID: PMC6966324 DOI: 10.1016/j.neubiorev.2019.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/08/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023]
Abstract
The componential view of human emotion recognises that affective states comprise conscious, behavioural, physiological, neural and cognitive elements. Although many animals display bodily and behavioural changes consistent with the occurrence of affective states similar to those seen in humans, the question of whether and in which species these are accompanied by conscious experiences remains controversial. Finding scientifically valid methods for investigating markers for the subjective component of affect in both humans and animals is central to developing a comparative understanding of the processes and mechanisms of affect and its evolution and distribution across taxonomic groups, to our understanding of animal welfare, and to the development of animal models of affective disorders. Here, contemporary evidence indicating potential markers of conscious processing in animals is reviewed, with a view to extending this search to include markers of conscious affective processing. We do this by combining animal-focused approaches with investigations of the components of conscious and non-conscious emotional processing in humans, and neuropsychological research into the structure and functions of conscious emotions.
Collapse
Affiliation(s)
- Elizabeth S Paul
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK.
| | - Shlomi Sher
- Department of Psychology, Pomona College, Claremont, CA, USA
| | - Marco Tamietto
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands; Department of Psychology, University of Torino, Torino, Italy
| | - Piotr Winkielman
- Department of Psychology, University of California, San Diego, La Jolla, CA, 92093, USA; Faculty of Psychology, SWPS University of Social Sciences and Humanities, 03-815, Warsaw, Poland
| | - Michael T Mendl
- Bristol Veterinary School, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| |
Collapse
|
27
|
Sloin H, Stark E. Response and sample bridging in a primate short-term memory task. Neurobiol Learn Mem 2019; 166:107106. [PMID: 31705981 DOI: 10.1016/j.nlm.2019.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022]
Abstract
Freely-moving rodents can solve short-term memory (STM) tasks using "response bridging" strategies, relying on motor patterns instead of mnemonic functions. This limits the interpretational power of results yielded by some STM tasks in rodents. To determine whether head-fixed monkeys can employ parallel non-mnemonic strategies, we measured eye position and velocity of two head-fixed monkeys performing a delayed response reaching and grasping task. We found that eye position during the delay period was correlated with reach direction. Moreover, reach direction as well as grasp object could be predicted from eye kinematics during the delay. Both eye velocity and eye position contributed to the prediction of reach direction. These results show that motor signals carry sufficient information to allow monkeys to solve STM tasks without using any mnemonic functions. Thus, the potential of animals to solve STM tasks using motor patterns is more diverse than previously recognized.
Collapse
Affiliation(s)
- Hadas Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
28
|
Effects of NMDA antagonist dizocilpine (MK-801) are modulated by the number of distractor stimuli in the rodent odor span task of working memory. Neurobiol Learn Mem 2019; 161:51-56. [PMID: 30862525 DOI: 10.1016/j.nlm.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/28/2019] [Accepted: 03/08/2019] [Indexed: 11/22/2022]
Abstract
The rodent odor span task (OST) uses an incrementing non-matching to sample procedure in which a series of odors is presented and selection of the session-novel odor is reinforced. An OST is frequently used to test the effects of neurobiological variables on memory capacity as the number of odors to remember increases during the course of the session. In this regard, one important finding has been that NMDA receptor antagonists selectively impair OST performance at doses that spare accuracy on control tasks. However, in many versions of the odor span task the number of stimuli to remember is confounded with the number of distractor odors presented to the rat on each trial. The present study compared the effects of the NMDA antagonist dizocilpine when the number of choices was held constant at two (one novel odor-S+ and one previously presented distractor odor-S-) and when the number of choice stimuli was permitted to increase up to 10 (one S+ and 9 S-). Dizocilpine impaired OST accuracy at doses that had no effect on a reference memory control task in both 2-choice and 10-choice conditions; however, the dose-response function was shifted to the left in the 10-choice tests. The impairments produced by dizocilpine were exacerbated as the memory load increased in both 2- and 10-choice conditions. These findings support the hypothesis that NMDA antagonism reduces the number of stimuli that rats can remember accurately, but the interaction between the effective DZP dose and the number of distractors shows that drug effects on OST performances may involve attentional factors in addition to memory capacity. The findings also demonstrate that variations in number of OST distractors can be used to alter sensitivity of the task.
Collapse
|
29
|
De Falco E, An L, Sun N, Roebuck AJ, Greba Q, Lapish CC, Howland JG. The Rat Medial Prefrontal Cortex Exhibits Flexible Neural Activity States during the Performance of an Odor Span Task. eNeuro 2019; 6:ENEURO.0424-18.2019. [PMID: 31008186 PMCID: PMC6472939 DOI: 10.1523/eneuro.0424-18.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/21/2022] Open
Abstract
Medial prefrontal cortex (mPFC) activity is fundamental for working memory (WM), attention, and behavioral inhibition; however, a comprehensive understanding of the neural computations underlying these processes is still forthcoming. Toward this goal, neural recordings were obtained from the mPFC of awake, behaving rats performing an odor span task of WM capacity. Neural populations were observed to encode distinct task epochs and the transitions between epochs were accompanied by abrupt shifts in neural activity patterns. Putative pyramidal neuron activity increased earlier in the delay for sessions where rats achieved higher spans. Furthermore, increased putative interneuron activity was only observed at the termination of the delay thus indicating that local processing in inhibitory networks was a unique feature to initiate foraging. During foraging, changes in neural activity patterns associated with the approach to a novel odor, but not familiar odors, were robust. Collectively, these data suggest that distinct mPFC activity states underlie the delay, foraging, and reward epochs of the odor span task. Transitions between these states likely enables adaptive behavior in dynamic environments that place strong demands on the substrates of working memory.
Collapse
Affiliation(s)
- Emanuela De Falco
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indiana 46202
| | - Lei An
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ninglei Sun
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Andrew J. Roebuck
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Christopher C. Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indiana 46202
| | - John G. Howland
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
30
|
Scott GA, Roebuck AJ, Greba Q, Howland JG. Performance of the trial-unique, delayed non-matching-to-location (TUNL) task depends on AMPA/Kainate, but not NMDA, ionotropic glutamate receptors in the rat posterior parietal cortex. Neurobiol Learn Mem 2019; 159:16-23. [DOI: 10.1016/j.nlm.2019.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/04/2018] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
|
31
|
Terry AV, Callahan PM. Nicotinic Acetylcholine Receptor Ligands, Cognitive Function, and Preclinical Approaches to Drug Discovery. Nicotine Tob Res 2019; 21:383-394. [PMID: 30137518 PMCID: PMC6379039 DOI: 10.1093/ntr/nty166] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022]
Abstract
Interest in nicotinic acetylcholine receptor (nAChR) ligands as potential therapeutic agents for cognitive disorders began more than 30 years ago when it was first demonstrated that the tobacco alkaloid nicotine could improve cognitive function in nicotine-deprived smokers as well as nonsmokers. Numerous animal and human studies now indicate that nicotine and a variety of nAChR ligands have the potential to improve multiple domains of cognition including attention, spatial learning, working memory, recognition memory, and executive function. The purpose of this review is to (1) discuss several pharmacologic strategies that have been developed to enhance nAChR activity (eg, agonist, partial agonist, and positive allosteric modulator) and improve cognitive function, (2) provide a brief overview of some of the more common rodent behavioral tasks with established translational validity that have been used to evaluate nAChR ligands for effects on cognitive function, and (3) briefly discuss some of the topics of debate regarding the development of optimal therapeutic strategies using nAChR ligands. Because of their densities in the mammalian brain and the amount of literature available, the review primarily focuses on ligands of the high-affinity α4β2* nAChR ("*" indicates the possible presence of additional subunits in the complex) and the low-affinity α7 nAChR. The behavioral task discussion focuses on representative methods that have been designed to model specific domains of cognition that are relevant to human neuropsychiatric disorders and often evaluated in human clinical trials. IMPLICATIONS The preclinical literature continues to grow in support of the development of nAChR ligands for a variety of illnesses that affect humans. However, to date, no new nAChR ligand has been approved for any condition other than nicotine dependence. As discussed in this review, the studies conducted to date provide the impetus for continuing efforts to develop new nAChR strategies (ie, beyond simple agonist and partial agonist approaches) as well as to refine current behavioral strategies and create new animal models to address translational gaps in the drug discovery process.
Collapse
Affiliation(s)
- Alvin V Terry
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| | - Patrick M Callahan
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
- Small Animal Behavior Core Laboratory, Augusta University, Augusta, GA
| |
Collapse
|
32
|
Gilmour G, Porcelli S, Bertaina-Anglade V, Arce E, Dukart J, Hayen A, Lobo A, Lopez-Anton R, Merlo Pich E, Pemberton DJ, Havenith MN, Glennon JC, Harel BT, Dawson G, Marston H, Kozak R, Serretti A. Relating constructs of attention and working memory to social withdrawal in Alzheimer’s disease and schizophrenia: issues regarding paradigm selection. Neurosci Biobehav Rev 2019; 97:47-69. [DOI: 10.1016/j.neubiorev.2018.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 08/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022]
|
33
|
Diamantopoulou A, Gogos JA. Neurocognitive and Perceptual Processing in Genetic Mouse Models of Schizophrenia: Emerging Lessons. Neuroscientist 2019; 25:597-619. [PMID: 30654694 DOI: 10.1177/1073858418819435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the past two decades, the number of animal models of psychiatric disorders has grown exponentially. Of these, genetic animal models that are modeled after rare but highly penetrant mutations hold great promise for deciphering critical molecular, synaptic, and neurocircuitry deficits of major psychiatric disorders, such as schizophrenia. Animal models should aim to focus on core aspects rather than capture the entire human disease. In this context, animal models with strong etiological validity, where behavioral and neurophysiological phenotypes and the features of the disease being modeled are in unambiguous homology, are being used to dissect both elementary and complex cognitive and perceptual processing deficits present in psychiatric disorders at the level of neurocircuitry, shedding new light on critical disease mechanisms. Recent progress in neuroscience along with large-scale initiatives that propose a consistent approach in characterizing these deficits across different laboratories will further enhance the efficacy of these studies that will ultimately lead to identifying new biological targets for drug development.
Collapse
Affiliation(s)
- Anastasia Diamantopoulou
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY, USA.,Zuckerman Mind Brain Behavior Institute, New York, NY, USA.,Department of Neuroscience, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
34
|
Nikiforuk A. Assessment of cognitive functions in animal models of schizophrenia. Pharmacol Rep 2018; 70:639-649. [DOI: 10.1016/j.pharep.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/19/2018] [Accepted: 01/31/2018] [Indexed: 12/16/2022]
|
35
|
Gallo FT, Katche C, Morici JF, Medina JH, Weisstaub NV. Immediate Early Genes, Memory and Psychiatric Disorders: Focus on c-Fos, Egr1 and Arc. Front Behav Neurosci 2018; 12:79. [PMID: 29755331 PMCID: PMC5932360 DOI: 10.3389/fnbeh.2018.00079] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/10/2018] [Indexed: 01/08/2023] Open
Abstract
Many psychiatric disorders, despite their specific characteristics, share deficits in the cognitive domain including executive functions, emotional control and memory. However, memory deficits have been in many cases undervalued compared with other characteristics. The expression of Immediate Early Genes (IEGs) such as, c-fos, Egr1 and arc are selectively and promptly upregulated in learning and memory among neuronal subpopulations in regions associated with these processes. Changes in expression in these genes have been observed in recognition, working and fear related memories across the brain. Despite the enormous amount of data supporting changes in their expression during learning and memory and the importance of those cognitive processes in psychiatric conditions, there are very few studies analyzing the direct implication of the IEGs in mental illnesses. In this review, we discuss the role of some of the most relevant IEGs in relation with memory processes affected in psychiatric conditions.
Collapse
Affiliation(s)
- Francisco T Gallo
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Juan F Morici
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Jorge H Medina
- Instituto de Biología Celular y Neurociencias (IBCN) Dr. Eduardo de Robertis, Facultad de Medicina, CONICET, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina.,Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos (UBA), Buenos Aires, Argentina
| | - Noelia V Weisstaub
- Instituto de Fisiología y Biofísica Bernardo Houssay, Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
36
|
Scott GA, Zabder NK, Greba Q, Howland JG. Performance of the odour span task is not impaired following inactivations of parietal cortex in rats. Behav Brain Res 2018; 341:181-188. [DOI: 10.1016/j.bbr.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/24/2017] [Accepted: 12/09/2017] [Indexed: 12/15/2022]
|
37
|
Mathews MJ, Mead RN, Galizio M. Effects of N-Methyl-D-aspartate (NMDA) antagonists ketamine, methoxetamine, and phencyclidine on the odor span test of working memory in rats. Exp Clin Psychopharmacol 2018; 26:6-17. [PMID: 29389166 PMCID: PMC5797997 DOI: 10.1037/pha0000158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The glutamate hypothesis proposes that N-Methyl-D-aspartate (NMDA) receptor hypofunction underlies cognitive and perhaps other schizophrenic symptoms. The present study used the odor span task to assess the effects of NMDA antagonists on remembering multiple stimuli in rodents. This task uses an incrementing nonmatching-to-sample procedure in which responses to a new olfactory stimulus are reinforced on each trial, whereas responses to previously presented stimuli are not. NMDA antagonists have been associated with memory impairments in a variety of animal models; however, there are inconsistencies across different NMDA antagonists and tasks used. The current study compared the acute effects of phencyclidine (PCP), ketamine (KET), and the novel NMDA antagonist methoxetamine (MXE) on responding in the odor span task and a simple discrimination control task. PCP and MXE impaired odor span accuracy at doses that did not impair simple discrimination in most rats; however, the effects of KET were less selective. Within-session analyses indicated that the effects of PCP and MXE depended on the number of stimuli to remember, that is, impairment only occurred when the memory load was relatively high. These effects of PCP and MXE were consistent with the hypothesis that NMDA antagonists may interfere with working memory, but the basis for less selective results with KET are unclear. (PsycINFO Database Record
Collapse
|
38
|
Pratt JA, Morris B, Dawson N. Deconstructing Schizophrenia: Advances in Preclinical Models for Biomarker Identification. Curr Top Behav Neurosci 2018; 40:295-323. [PMID: 29721851 DOI: 10.1007/7854_2018_48] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Schizophrenia is considered to develop as a consequence of genetic and environmental factors impacting on brain neural systems and circuits during vulnerable neurodevelopmental periods, thereby resulting in symptoms in early adulthood. Understanding of the impact of schizophrenia risk factors on brain biology and behaviour can help in identifying biologically relevant pathways that are attractive for informing clinical studies and biomarker development. In this chapter, we emphasize the importance of adopting a reciprocal forward and reverse translation approach that is iteratively updated when additional new information is gained, either preclinically or clinically, for offering the greatest opportunity for discovering panels of biomarkers for the diagnosis, prognosis and treatment of schizophrenia. Importantly, biomarkers for identifying those at risk may inform early intervention strategies prior to the development of schizophrenia.Given the emerging nature of this approach in the field, this review will highlight recent research of preclinical biomarkers in schizophrenia that show the most promise for informing clinical needs with an emphasis on relevant imaging, electrophysiological, cognitive behavioural and biochemical modalities. The implementation of this reciprocal translational approach is exemplified firstly by the production and characterization of preclinical models based on the glutamate hypofunction hypothesis, genetic and environmental risk factors for schizophrenia (reverse translation), and then the recent clinical recognition of the thalamic reticular thalamus (TRN) as an important locus of brain dysfunction in schizophrenia as informed by preclinical findings (forward translation).
Collapse
Affiliation(s)
- Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | - Brian Morris
- Institute of Neuroscience and Psychology, College of Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
39
|
Arime Y, Akiyama K. Abnormal neural activation patterns underlying working memory impairment in chronic phencyclidine-treated mice. PLoS One 2017; 12:e0189287. [PMID: 29253020 PMCID: PMC5734723 DOI: 10.1371/journal.pone.0189287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/23/2017] [Indexed: 11/18/2022] Open
Abstract
Working memory impairment is a hallmark feature of schizophrenia and is thought be caused by dysfunctions in the prefrontal cortex (PFC) and associated brain regions. However, the neural circuit anomalies underlying this impairment are poorly understood. The aim of this study is to assess working memory performance in the chronic phencyclidine (PCP) mouse model of schizophrenia, and to identify the neural substrates of working memory. To address this issue, we conducted the following experiments for mice after withdrawal from chronic administration (14 days) of either saline or PCP (10 mg/kg): (1) a discrete paired-trial variable-delay task in T-maze to assess working memory, and (2) brain-wide c-Fos mapping to identify activated brain regions relevant to this task performance either 90 min or 0 min after the completion of the task, with each time point examined under working memory effort and basal conditions. Correct responses in the test phase of the task were significantly reduced across delays (5, 15, and 30 s) in chronic PCP-treated mice compared with chronic saline-treated controls, suggesting delay-independent impairments in working memory in the PCP group. In layer 2-3 of the prelimbic cortex, the number of working memory effort-elicited c-Fos+ cells was significantly higher in the chronic PCP group than in the chronic saline group. The main effect of working memory effort relative to basal conditions was to induce significantly increased c-Fos+ cells in the other layers of prelimbic cortex and the anterior cingulate and infralimbic cortex regardless of the different chronic regimens. Conversely, this working memory effort had a negative effect (fewer c-Fos+ cells) in the ventral hippocampus. These results shed light on some putative neural networks relevant to working memory impairments in mice chronically treated with PCP, and emphasize the importance of the layer 2-3 of the prelimbic cortex of the PFC.
Collapse
Affiliation(s)
- Yosefu Arime
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
- * E-mail:
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| |
Collapse
|
40
|
Validation of the human odor span task: effects of nicotine. Psychopharmacology (Berl) 2017; 234:2871-2882. [PMID: 28710519 PMCID: PMC5772879 DOI: 10.1007/s00213-017-4680-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/21/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE Amongst non-smokers, nicotine generally enhances performance on tasks of attention, with limited effect on working memory. In contrast, nicotine has been shown to produce robust enhancements of working memory in non-humans. OBJECTIVES To address this gap, the present study investigated the effects of nicotine on the performance of non-smokers on a cognitive battery which included a working memory task reverse-translated from use with rodents (the odor span task, OST). Nicotine has been reported to enhance OST performance in rats and the present study assessed whether this effect generalizes to human performance. METHODS Thirty non-smokers were tested on three occasions after consuming either placebo, 2 mg, or 4 mg nicotine gum. On each occasion, participants completed a battery of clinical and experimental tasks of working memory and attention. RESULTS Nicotine was associated with dose-dependent enhancements in sustained attention, as evidenced by increased hit accuracy on the rapid visual information processing (RVIP) task. However, nicotine failed to produce main effects on OST performance or on alternative measures of working memory (digit span, spatial span, letter-number sequencing, 2-back) or attention (digits forward, 0-back). Interestingly, enhancement of RVIP performance occurred concomitant to significant reductions in self-reported attention/concentration. Human OST performance was significantly related to N-back performance, and as in rodents, OST accuracy declined with increasing memory load. CONCLUSIONS Given the similarity of human and rodent OST performance under baseline conditions and the strong association between OST and visual 0-back accuracy, the OST may be particular useful in the study of conditions characterized by inattention.
Collapse
|
41
|
Davies DA, Greba Q, Selk JC, Catton JK, Baillie LD, Mulligan SJ, Howland JG. Interactions between medial prefrontal cortex and dorsomedial striatum are necessary for odor span capacity in rats: role of GluN2B-containing NMDA receptors. ACTA ACUST UNITED AC 2017; 24:524-531. [PMID: 28916627 PMCID: PMC5602347 DOI: 10.1101/lm.045419.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/05/2017] [Indexed: 11/30/2022]
Abstract
Working memory is involved in the maintenance and manipulation of information essential for complex cognition. While the neural substrates underlying working memory capacity have been studied in humans, considerably less is known about the circuitry mediating working memory capacity in rodents. Therefore, the present experiments tested the involvement of medial prefrontal cortex (mPFC) and dorsal striatum (STR) in the odor span task (OST), a task proposed to assay working memory capacity in rodents. Initially, Long Evans rats were trained to dig in scented sand for food following a serial delayed nonmatching-to-sample rule. Temporary inactivation of dorsomedial (dm) STR significantly reduced span in well trained rats. Inactivation of mPFC or contralateral disconnection of the mPFC and dmSTR also reduced span. Infusing the GluN2B-containing NMDA receptor antagonist Ro 25-6981 into mPFC did not affect span; however, span was significantly reduced following bilateral Ro 25-6981 infusions into dmSTR or contralateral disconnection of mPFC (inactivation) and dmSTR (Ro 25-6981). These results suggest that span capacity in rats depends on GluN2B-containing NMDA receptor-dependent interactions between the mPFC and the dmSTR. Therefore, interventions targeting this circuit may improve the working memory capacity impairments in patients with schizophrenia, Alzheimer's disease, and Parkinson's disease.
Collapse
Affiliation(s)
- Don A Davies
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Quentin Greba
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jantz C Selk
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jillian K Catton
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Landon D Baillie
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Sean J Mulligan
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - John G Howland
- Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
42
|
Galizio M, Mathews M, Mason M, Panoz-Brown D, Prichard A, Soto P. Amnestic drugs in the odor span task: Effects of flunitrazepam, zolpidem and scopolamine. Neurobiol Learn Mem 2017; 145:67-74. [PMID: 28893667 DOI: 10.1016/j.nlm.2017.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 08/10/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
Abstract
The odor span task is an incrementing non-matching-to-sample procedure designed to provide an analysis of working memory capacity in rodents. The procedure takes place in an arena apparatus and rats are exposed to a series of odor stimuli in the form of scented lids with the selection of new stimuli reinforced. This procedure makes it possible to study drug effects as a function of the number of stimuli to remember. In the present study, the non-selective positive allosteric GABAA receptor modulator flunitrazepam impaired odor span performance at doses that did not affect a control odor discrimination. In contrast, the alpha-1 selective positive GABAA receptor modulator zolpidem and the cholinergic receptor antagonist scopolamine only impaired odor span at doses that produced more global impairment, including decreased accuracy in the control discrimination and increased response omissions in the both the odor span and control discrimination procedures. Even though the effects of flunitrazepam were selective to odor span performance, they did not depend on the number of stimuli to remember-the same degree of impairment occurred regardless of the memory load. These findings suggest that flunitrazepam interfered selectively with conditional discrimination performance rather than working memory and tentatively suggest that flunitrazepam's selective effects in the odor span task relative to the control odor discrimination are mediated by one or more non-alpha1 GABAA receptor subtypes.
Collapse
Affiliation(s)
- Mark Galizio
- University of North Carolina Wilmington, United States.
| | | | | | | | | | - Paul Soto
- Louisiana State University, United States
| |
Collapse
|
43
|
Meehan C, Harms L, Frost JD, Barreto R, Todd J, Schall U, Shannon Weickert C, Zavitsanou K, Michie PT, Hodgson DM. Effects of immune activation during early or late gestation on schizophrenia-related behaviour in adult rat offspring. Brain Behav Immun 2017; 63:8-20. [PMID: 27423491 DOI: 10.1016/j.bbi.2016.07.144] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/22/2016] [Accepted: 07/12/2016] [Indexed: 12/16/2022] Open
Abstract
Maternal exposure to infectious agents during gestation has been identified as a significant risk factor for schizophrenia. Using a mouse model, past work has demonstrated that the gestational timing of the immune-activating event can impact the behavioural phenotype and expression of dopaminergic and glutamatergic neurotransmission markers in the offspring. In order to determine the inter-species generality of this effect to rats, another commonly used model species, the current study investigated the impact of a viral mimetic Poly (I:C) at either an early (gestational day 10) or late (gestational day 19) time-point on schizophrenia-related behaviour and neurotransmitter receptor expression in rat offspring. Exposure to Poly (I:C) in late, but not early, gestation resulted in transient impairments in working memory. In addition, male rats exposed to maternal immune activation (MIA) in either early or late gestation exhibited sensorimotor gating deficits. Conversely, neither early nor late MIA exposure altered locomotor responses to MK-801 or amphetamine. In addition, increased dopamine 1 receptor mRNA levels were found in the nucleus accumbens of male rats exposed to early gestational MIA. The findings from this study diverge somewhat from previous findings in mice with MIA exposure, which were often found to exhibit a more comprehensive spectrum of schizophrenia-like phenotypes in both males and females, indicating potential differences in the neurodevelopmental vulnerability to MIA exposure in the rat with regards to schizophrenia related changes.
Collapse
Affiliation(s)
- Crystal Meehan
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lauren Harms
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Jade D Frost
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Rafael Barreto
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia
| | - Juanita Todd
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Ulrich Schall
- Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Randwick, NSW, Australia; School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia
| | | | - Patricia T Michie
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Deborah M Hodgson
- School of Psychology, University of Newcastle, Callaghan, NSW, Australia; Priority Research Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW, Australia; Schizophrenia Research Institute, Randwick, NSW, Australia; Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|
44
|
Acevedo-Triana CA, Rojas MJ, Cardenas FP. Running wheel training does not change neurogenesis levels or alter working memory tasks in adult rats. PeerJ 2017; 5:e2976. [PMID: 28503368 PMCID: PMC5426350 DOI: 10.7717/peerj.2976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/10/2017] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. METHODS An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats' working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. RESULTS No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. DISCUSSION Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level.
Collapse
Affiliation(s)
| | - Manuel J. Rojas
- Animal Health Department, Universidad Nacional de Colombia, Bogotá, Colombia
| | | |
Collapse
|
45
|
Neurophysiological Characterization of Attentional Performance Dysfunction in Schizophrenia Patients in a Reverse-Translated Task. Neuropsychopharmacology 2017; 42:1338-1348. [PMID: 27917869 PMCID: PMC5437886 DOI: 10.1038/npp.2016.268] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 12/30/2022]
Abstract
Attentional dysfunction in schizophrenia (SZ) contributes to the functional deficits ubiquitous to the disorder. Identifying the neural substrates of translational measures of attentional dysfunction would prove invaluable for developing therapeutics. Attentional performance is typically assessed via continuous performance tasks (CPTs), though many place additional cognitive demands with little cross-species test-relevance. Herein, event-related potentials (ERPs) were used to investigate the neurophysiological correlates of attention and response inhibition of SZ and healthy participants, whereas they performed the cross-species-translated five-choice CPT (5C-CPT). Chronically ill, medicated SZ patients and matched controls (n=25 SZ and 26 controls) were tested in the 5C-CPT, in conjunction with ERP and source localization assessments. The ERPs generated in response to correctly identified target and non-target trials revealed three peaks for analysis, corresponding to sensory registration (P1), response selection (N2), and response action (P3). Behavioral responses revealed that SZ patients exhibited impaired attention driven by impaired and slower target detection, and poorer cognitive control. ERPs revealed decreased N2 amplitudes reflecting poorer response selection for both target and non-target trials, plus reduced non-target P3s in SZ patients, the latter accounting for 37% of variance in negative symptoms. Source analyses revealed that the brain regions of significant differences localized to the left dorsolateral prefrontal cortex during response selection and the posterior cingulate cortex for cognitive processes. SZ patients exhibited impaired attention and cognitive control, characterized by less robust frontal and parietal ERP distributions across the response selection and cognitive response time windows, providing neurophysiological characterization of attentional dysfunction in SZ using the reverse-translated 5C-CPT.
Collapse
|
46
|
McArthur RA. Aligning physiology with psychology: Translational neuroscience in neuropsychiatric drug discovery. Neurosci Biobehav Rev 2017; 76:4-21. [DOI: 10.1016/j.neubiorev.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
|
47
|
Murray BG, Davies DA, Molder JJ, Howland JG. Maternal immune activation during pregnancy in rats impairs working memory capacity of the offspring. Neurobiol Learn Mem 2017; 141:150-156. [PMID: 28434949 DOI: 10.1016/j.nlm.2017.04.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/28/2017] [Accepted: 04/16/2017] [Indexed: 01/08/2023]
Abstract
Maternal immune activation during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia in the offspring. Patients with schizophrenia display an array of cognitive symptoms, including impaired working memory capacity. Rodent models have been developed to understand the relationship between maternal immune activation and the cognitive symptoms of schizophrenia. The present experiment was designed to test whether maternal immune activation with the viral mimetic polyinosinic:polycytidylic acid (polyI:C) during pregnancy affects working memory capacity of the offspring. Pregnant Long Evans rats were treated with either saline or polyI:C (4mg/kg; i.v.) on gestational day 15. Male offspring of the litters (2-3months of age) were subsequently trained on a nonmatching-to-sample task with odors. After a criterion was met, the rats were tested on the odor span task, which requires rats to remember an increasing span of different odors to receive food reward. Rats were tested using delays of approximately 40s during the acquisition of the task. Importantly, polyI:C- and saline-treated offspring did not differ in performance of the nonmatching-to-sample task suggesting that both groups could perform a relatively simple working memory task. In contrast, polyI:C-treated offspring had reduced span capacity in the middle and late phases of odor span task acquisition. After task acquisition, the rats were tested using the 40s delay and a 10min delay. Both groups showed a delay-dependent decrease in span, although the polyI:C-treated offspring had significantly lower spans regardless of delay. Our results support the validity of the maternal immune activation model for studying the cognitive symptoms of neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Brendan G Murray
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Don A Davies
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - Joel J Molder
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
| | - John G Howland
- Dept. of Physiology, University of Saskatchewan, GB33, Health Sciences Building, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada.
| |
Collapse
|
48
|
Requiring collaboration: Hippocampal-prefrontal networks needed in spatial working memory and ageing. A multivariate analysis approach. Neurobiol Learn Mem 2017; 140:33-42. [DOI: 10.1016/j.nlm.2017.02.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/12/2017] [Indexed: 11/21/2022]
|
49
|
Qvist P, Rajkumar AP, Redrobe JP, Nyegaard M, Christensen JH, Mors O, Wegener G, Didriksen M, Børglum AD. Mice heterozygous for an inactivated allele of the schizophrenia associated Brd1 gene display selective cognitive deficits with translational relevance to schizophrenia. Neurobiol Learn Mem 2017; 141:44-52. [PMID: 28341151 DOI: 10.1016/j.nlm.2017.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Schizophrenia is a debilitating brain disorder characterized by disturbances of emotion, perception and cognition. Cognitive impairments predict functional outcome in schizophrenia and are detectable even in the prodromal stage of the disorder. However, our understanding of the underlying neurobiology is limited and procognitive treatments remain elusive. We recently demonstrated that mice heterozygous for an inactivated allele of the schizophrenia-associated Brd1 gene (Brd1+/- mice) display behaviors reminiscent of schizophrenia, including impaired social cognition and long-term memory. Here, we further characterize performance of these mice by following the preclinical guidelines recommended by the 'Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS)' and 'Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS)' initiatives to maximize translational value. Brd1+/- mice exhibit relational encoding deficits, compromised working and long term memory, as well as impaired executive cognitive functioning with cognitive behaviors relying on medial prefrontal cortex being particularly affected. Akin to patients with schizophrenia, the cognitive deficits displayed by Brd1+/- mice are not global, but selective. Our results underline the value of Brd1+/- mice as a promising tool for studying the neurobiology of cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Per Qvist
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; H. Lundbeck A/S, Synaptic Transmission, Valby, Denmark
| | - Anto P Rajkumar
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, & Neuroscience, King's College London, London, UK
| | | | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Jane H Christensen
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark
| | | | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Denmark; Centre for Integrative Sequencing, iSEQ, Aarhus University, Denmark.
| |
Collapse
|
50
|
Oikonomidis L, Santangelo AM, Shiba Y, Clarke FH, Robbins TW, Roberts AC. A dimensional approach to modeling symptoms of neuropsychiatric disorders in the marmoset monkey. Dev Neurobiol 2017; 77:328-353. [PMID: 27589556 PMCID: PMC5412688 DOI: 10.1002/dneu.22446] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
Some patients suffering from the same neuropsychiatric disorder may have no overlapping symptoms whilst others may share symptoms common to other distinct disorders. Therefore, the Research Domain Criteria initiative recognises the need for better characterisation of the individual symptoms on which to focus symptom-based treatment strategies. Many of the disorders involve dysfunction within the prefrontal cortex (PFC) and so the marmoset, due to their highly developed PFC and small size, is an ideal species for studying the neurobiological basis of the behavioural dimensions that underlie these symptoms.Here we focus on a battery of tests that address dysfunction spanning the cognitive (cognitive inflexibility and working memory), negative valence (fear generalisation and negative bias) and positive valence (anhedonia) systems pertinent for understanding disorders such as ADHD, Schizophrenia, Anxiety, Depression and OCD. Parsing the separable prefrontal and striatal circuits and identifying the selective neurochemical modulation (serotonin vs dopamine) that underlie cognitive dysfunction have revealed counterparts in the clinical domain. Aspects of the negative valence system have been explored both at individual- (trait anxiety and genetic variation in serotonin transporter) and circuit-based levels enabling the understanding of generalisation processes, negative biases and differential responsiveness to SSRIs. Within the positive valence system, the combination of cardiovascular and behavioural measures provides a framework for understanding motivational, anticipatory and consummatory aspects of anhedonia and their neurobiological mechanisms. Together, the direct comparison of experimental findings in marmosets with clinical studies is proving an excellent translational model to address the behavioural dimensions and neurobiology of neuropsychiatric symptoms. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 328-353, 2017.
Collapse
Affiliation(s)
- Lydia Oikonomidis
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - F Hannah Clarke
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Downing Street, CB2 3EB, United Kingdom
| |
Collapse
|