1
|
Giesler LP, Mychasiuk R, Shultz SR, McDonald SJ. BDNF: New Views of an Old Player in Traumatic Brain Injury. Neuroscientist 2024; 30:560-573. [PMID: 37067029 PMCID: PMC11423547 DOI: 10.1177/10738584231164918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Traumatic brain injury is a common health problem affecting millions of people each year. BDNF has been investigated in the context of traumatic brain injury due to its crucial role in maintaining brain homeostasis. Val66Met is a functional single-nucleotide polymorphism that results in a valine-to-methionine amino acid substitution at codon 66 in the BDNF prodomain, which ultimately reduces secretion of BDNF. Here, we review experimental animal models as well as clinical studies investigating the role of the Val66Met single-nucleotide polymorphism in traumatic brain injury outcomes, including cognitive function, motor function, neuropsychiatric symptoms, and nociception. We also review studies investigating the role of BDNF on traumatic brain injury pathophysiology as well as circulating BDNF as a biomarker of traumatic brain injury.
Collapse
Affiliation(s)
| | - Richelle Mychasiuk
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Sandy R. Shultz
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| | - Stuart J. McDonald
- Department of Neuroscience, Monash University, Melbourne, Australia
- Department of Neurology, The Alfred Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Hou W, Qin X, Li H, Wang Q, Ding Y, Chen X, Wang R, Dong F, Bo Q, Li X, Zhou F, Wang C. Interaction between BDNF Val66Met polymorphism and mismatch negativity for working memory capacity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:70. [PMID: 39174571 PMCID: PMC11341781 DOI: 10.1038/s41537-024-00493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
Both the brain-derived neurotrophic factor (BDNF) valine (Val)/methionine (Met) polymorphism and mismatch negativity (MMN) amplitude are reportedly linked to working memory impairments in schizophrenia. However, there is evident scarcity of research aimed at exploring the relationships among the three factors. In this secondary analysis of a randomized, controlled, double-blind trial, we investigated these relationships. The trial assessed the efficacy of transcranial direct current stimulation for enhancing working memory in clinically stable schizophrenia patients, who were randomly divided into three groups: dorsolateral prefrontal cortex stimulation, posterior parietal cortex stimulation, and sham stimulation groups. Transcranial direct current stimulation was administered concurrently with a working memory task over five days. We assessed the BDNF genotype, MMN amplitude, working memory capacity, and interference control subdomains. These assessments were conducted at baseline with 54 patients and followed up post-intervention with 48 patients. Compared to BDNF Met-carriers, Val homozygotes exhibited fewer positive and general symptoms and increased working memory capacity at baseline. A correlation between MMN amplitude and working memory capacity was noted only in BDNF Val homozygotes. The correlations were significantly different in the two BDNF genotype groups. Furthermore, in the intervention group that showed significant improvement in MMN amplitude, BDNF Val homozygotes exhibited greater enhancement in working memory capacity than Met-carriers. This study provides in vivo evidence for the interaction between MMN and BDNF Val/Met polymorphism for working memory capacity. As MMN has been considered a biomarker of N-methyl-D-aspartate receptor (NMDAR) function, these data shed light on the complex interactions between BDNF and NMDAR in terms of working memory in schizophrenia.
Collapse
Affiliation(s)
- Wenpeng Hou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiangqin Qin
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hang Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qi Wang
- Fengtai Mental Health Center, Beijing, China
| | - Yushen Ding
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xiongying Chen
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ru Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fang Dong
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Qijing Bo
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Xianbin Li
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Fuchun Zhou
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chuanyue Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Almodóvar-Payá C, Guardiola-Ripoll M, Giralt-López M, Oscoz-Irurozqui M, Canales-Rodríguez EJ, Madre M, Soler-Vidal J, Ramiro N, Callado LF, Arias B, Gallego C, Pomarol-Clotet E, Fatjó-Vilas M. NRN1 epistasis with BDNF and CACNA1C: mediation effects on symptom severity through neuroanatomical changes in schizophrenia. Brain Struct Funct 2024; 229:1299-1315. [PMID: 38720004 PMCID: PMC11147852 DOI: 10.1007/s00429-024-02793-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
The expression of Neuritin-1 (NRN1), a neurotrophic factor crucial for neurodevelopment and synaptic plasticity, is enhanced by the Brain Derived Neurotrophic Factor (BDNF). Although the receptor of NRN1 remains unclear, it is suggested that NRN1's activation of the insulin receptor (IR) pathway promotes the transcription of the calcium voltage-gated channel subunit alpha1 C (CACNA1C). These three genes have been independently associated with schizophrenia (SZ) risk, symptomatology, and brain differences. However, research on how they synergistically modulate these phenotypes is scarce. We aimed to study whether the genetic epistasis between these genes affects the risk and clinical presentation of the disorder via its effect on brain structure. First, we tested the epistatic effect of NRN1 and BDNF or CACNA1C on (i) the risk for SZ, (ii) clinical symptoms severity and functionality (onset, PANSS, CGI and GAF), and (iii) brain cortical structure (thickness, surface area and volume measures estimated using FreeSurfer) in a sample of 86 SZ patients and 89 healthy subjects. Second, we explored whether those brain clusters influenced by epistatic effects mediate the clinical profiles. Although we did not find a direct epistatic impact on the risk, our data unveiled significant effects on the disorder's clinical presentation. Specifically, the NRN1-rs10484320 x BDNF-rs6265 interplay influenced PANSS general psychopathology, and the NRN1-rs4960155 x CACNA1C-rs1006737 interaction affected GAF scores. Moreover, several interactions between NRN1 SNPs and BDNF-rs6265 significantly influenced the surface area and cortical volume of the frontal, parietal, and temporal brain regions within patients. The NRN1-rs10484320 x BDNF-rs6265 epistasis in the left lateral orbitofrontal cortex fully mediated the effect on PANSS general psychopathology. Our study not only adds clinical significance to the well-described molecular relationship between NRN1 and BDNF but also underscores the utility of deconstructing SZ into biologically validated brain-imaging markers to explore their mediation role in the path from genetics to complex clinical manifestation.
Collapse
Affiliation(s)
- Carmen Almodóvar-Payá
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Guardiola-Ripoll
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERER (Biomedical Research Network in Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Giralt-López
- Department of Child and Adolescent Psychiatry, Germans Trias i Pujol University Hospital (HUGTP), Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Faculty of Medicine, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Maitane Oscoz-Irurozqui
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Red de Salud Mental de Gipuzkoa, Osakidetza-Basque Health Service, Gipuzkoa, Spain
| | - Erick Jorge Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mercè Madre
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health, IR SANT PAU, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Joan Soler-Vidal
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Benito Menni, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - Núria Ramiro
- Hospital San Rafael, Germanes Hospitalàries, Barcelona, Spain
| | - Luis F Callado
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia, Spain
- BioBizkaia Health Research Institute, Bizkaia, Spain
| | - Bárbara Arias
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Barcelona, Spain
| | - Carme Gallego
- Department of Cells and Tissues, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Fatjó-Vilas
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain.
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.
- CIBERSAM (Biomedical Research Network in Mental Health), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Jaehne EJ, Semaan H, Grosman A, Xu X, Schwarz Q, van den Buuse M. Enhanced methamphetamine sensitisation in a rat model of the brain-derived neurotrophic factor Val66Met variant: Sex differences and dopamine receptor gene expression. Neuropharmacology 2023; 240:109719. [PMID: 37742717 DOI: 10.1016/j.neuropharm.2023.109719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) and the Val66Met polymorphism may play a role in the development of psychosis and schizophrenia. The aim of this study was to investigate long-term effects of methamphetamine (Meth) on psychosis-like behaviour and dopamine receptor and dopamine transporter gene expression in a novel rat model of the BDNF Val66Met polymorphism. At the end of a 7-day subchronic Meth treatment, female rats with the Met/Met genotype selectively showed locomotor hyperactivity sensitisation to the acute effect of Meth. Male rats showed tolerance to Meth irrespective of Val66Met genotype. Two weeks later, female Met/Met rats showed increased locomotor activity following both saline treatment or a low dose of Meth, a hyperactivity which was not observed in other genotypes or in males. Baseline PPI did not differ between the groups but the disruption of PPI by acute treatment with apomorphine was absent in Meth-pretreated Met/Met rats. Female Met/Met rats selectively showed down-regulation of dopamine D2 receptor gene expression in striatum. Behavioural effects of MK-801 or its locomotor sensitisation by prior Meth pretreatment were not influenced by genotype. These data suggest a selective vulnerability of female Met/Met rats to short-term and long-term effects of Meth, which could model increased vulnerability to psychosis development associated with the BDNF Val66Met polymorphism.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Hayette Semaan
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Adam Grosman
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Xiangjun Xu
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
5
|
Hogarth S, Jaehne EJ, Xu X, Schwarz Q, van den Buuse M. Interaction of Brain-Derived Neurotrophic Factor with the Effects of Chronic Methamphetamine on Prepulse Inhibition in Mice Is Independent of Dopamine D3 Receptors. Biomedicines 2023; 11:2290. [PMID: 37626786 PMCID: PMC10452514 DOI: 10.3390/biomedicines11082290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of the present study was to gain a better understanding of the role of brain-derived neurotrophic factor (BDNF) and dopamine D3 receptors in the effects of chronic methamphetamine (METH) on prepulse inhibition (PPI), an endophenotype of psychosis. We compared the effect of a three-week adolescent METH treatment protocol on the regulation of PPI in wildtype mice, BDNF heterozygous mice (HET), D3 receptor knockout mice (D3KO), and double-mutant mice (DM) with both BDNF heterozygosity and D3 receptor knockout. Chronic METH induced disruption of PPI regulation in male mice with BDNF haploinsufficiency (HET and DM), independent of D3 receptor knockout. Specifically, these mice showed reduced baseline PPI, as well as attenuated disruption of PPI induced by acute treatment with the dopamine receptor agonist, apomorphine (APO), or the glutamate NMDA receptor antagonist, MK-801. In contrast, there were no effects of BDNF heterozygosity or D3 knockout on PPI regulation in female mice. Chronic METH pretreatment induced the expected locomotor hyperactivity sensitisation, where female HET and DM mice also showed endogenous sensitisation. Differential sex-specific effects of genotype and METH pretreatment were observed on dopamine receptor and dopamine transporter gene expression in the striatum and frontal cortex. Taken together, these results show a significant involvement of BDNF in the long-term effects of METH on PPI, particularly in male mice, but these effects appear independent of D3 receptors. The role of this receptor in psychosis endophenotypes therefore remains unclear.
Collapse
Affiliation(s)
- Samuel Hogarth
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| | - Emily J. Jaehne
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| | - Xiangjun Xu
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia (Q.S.)
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia (Q.S.)
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia (E.J.J.)
| |
Collapse
|
6
|
Buhusi M, Griffin D, Buhusi CV. Brain-Derived Neurotrophic Factor Val66Met Genotype Modulates Latent Inhibition: Relevance for Schizophrenia. Schizophr Bull 2023; 49:626-634. [PMID: 36484490 PMCID: PMC10154718 DOI: 10.1093/schbul/sbac188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND HYPOTHESIS Latent inhibition (LI) is a measure of selective attention and learning relevant to Schizophrenia (SZ), with 2 abnormality poles: Disrupted LI in acute SZ, thought to underlie positive symptoms, and persistent LI (PLI) in schizotypy and chronic SZ under conditions where normal participants fail to show LI. We hypothesized that Brain-Derived Neurotrophic Factor (BDNF)-Met genotype shifts LI toward the PLI pole. STUDY DESIGN We investigated the role of BDNF-Val66Met polymorphism and neural activation in regions involved in LI in mice, and the interaction between the BDNF and CHL1, a gene associated with SZ. STUDY RESULTS No LI differences occurred between BDNF-wild-type (WT) (Val/Val) and knock-in (KI) (Met/Met) mice after weak conditioning. Chronic stress or stronger conditioning disrupted LI in WT but not KI mice. Behavior correlated with activation in infralimbic and orbitofrontal cortices, and nucleus accumbens. Examination of LI in CHL1-KO mice revealed no LI with no Met alleles (BDNF-WTs), PLI in CHL1-WT mice with 1 Met allele (BDNF-HETs), and PLI in both CHL1-WTs and CHL1-KOs with 2 Met alleles (BDNF-KIs), suggesting a shift to LI persistence with the number of BDNF-Met alleles in the CHL1 model of acute SZ. CONCLUSIONS Results support a role for BDNF polymorphisms in gene-gene and gene-environment interactions relevant to SZ. BDNF-Met allele may reduce expression of some acute SZ symptoms, and may increase expression of negative symptoms in individuals with chronic SZ. Evaluation of (screening for) SZ phenotypes associated with mutations at a particular locus (eg, CHL1), may be masked by strong effects at different loci (eg, BDNF).
Collapse
Affiliation(s)
- Mona Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Daniel Griffin
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| | - Catalin V Buhusi
- Interdisciplinary Program in Neuroscience, Department Psychology, Utah State University, Logan, UT, USA
| |
Collapse
|
7
|
Zhang HC, Du Y, Chen L, Yuan ZQ, Cheng Y. MicroRNA schizophrenia: Etiology, biomarkers and therapeutic targets. Neurosci Biobehav Rev 2023; 146:105064. [PMID: 36707012 DOI: 10.1016/j.neubiorev.2023.105064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
The three sets of symptoms associated with schizophrenia-positive, negative, and cognitive-are burdensome and have serious effects on public health, which affects up to 1% of the population. It is now commonly believed that in addition to the traditional dopaminergic mesolimbic pathway, the etiology of schizophrenia also includes neuronal networks, such as glutamate, GABA, serotonin, BDNF, oxidative stress, inflammation and the immune system. Small noncoding RNA molecules called microRNAs (miRNAs) have come to light as possible participants in the pathophysiology of schizophrenia in recent years by having an impact on these systems. These small RNAs regulate the stability and translation of hundreds of target transcripts, which has an impact on the entire gene network. There may be improved approaches to treat and diagnose schizophrenia if it is understood how these changes in miRNAs alter the critical related signaling pathways that drive the development and progression of the illness.
Collapse
Affiliation(s)
- Heng-Chang Zhang
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Zeng-Qiang Yuan
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
8
|
Corrone M, Ratnayake R, de Oliveira N, Jaehne EJ, van den Buuse M. Methamphetamine-induced locomotor sensitization in mice is not associated with deficits in a range of cognitive, affective and social behaviours: interaction with brain-derived neurotrophic factor Val66Met genotype. Behav Pharmacol 2023; 34:20-36. [PMID: 36373697 DOI: 10.1097/fbp.0000000000000708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chronic methamphetamine (Meth) abuse may induce psychosis similar to that observed in schizophrenia. Brain-derived neurotrophic factor (BDNF) has been implicated in the development of psychosis. We have previously shown long-term protein expression changes in mice treated chronically with Meth depending on BDNF Val66Met genotype. The aim of this study was to investigate if these protein expression changes were associated with differential changes in a range of behavioural paradigms for cognition, anxiety, social and other behaviours. Male and female Val/Val, Val/Met and Met/Met mice were treated with an escalating Meth dose protocol from 6 to 9 weeks of age, with controls receiving saline injections. Several overlapping cohorts were tested in the Y-maze for short-term spatial memory, novel-object recognition test, context and cued fear conditioning, sociability and social preference, elevated plus maze for anxiety-like behaviour and prepulse inhibition (PPI) of acoustic startle. Finally, the animals were assessed for spontaneous exploratory locomotor activity and acute Meth-induced locomotor hyperactivity. Acute Meth caused significantly greater locomotor hyperactivity in mice previously treated with the drug than in saline-pretreated controls. Meth-pretreated female mice showed a mild increase in spontaneous locomotor activity. There were no Meth-induced deficits in any of the other behavioural tests. Val/Met mice showed higher overall social investigation time and lower PPI compared with the Val/Val genotype independent of pretreatment. These results show limited long-term effects of chronic Meth on a range of cognitive, affective and social behaviours despite marked drug-induced locomotor sensitization in mice. There was no interaction with BDNF Val66Met genotype.
Collapse
Affiliation(s)
- Michelle Corrone
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria, Australia
| | | | | | | | | |
Collapse
|
9
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
10
|
Eum S, Hill SK, Bishop JR. Considering medication exposure in genomic association studies of cognition in psychotic disorders. Pharmacogenomics 2022; 23:791-806. [PMID: 36102182 DOI: 10.2217/pgs-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cognitive dysfunction is a core feature of psychosis-spectrum illnesses, and the characterization of related genetic mechanisms may provide insights regarding the disease pathophysiology. Substantial efforts have been made to determine the genetic component of cognitive symptoms, without clear success. Illness-related moderators and environmental factors such as medications hinder the detection of genomic association with cognition. Polypharmacy is common in psychotic disorders, and the cumulative effects of medication regimens can confound gene-cognition associations. A review of the relative contributions of important pharmacological and genetic relationships identifies that the effects of medications on cognition in psychotic disorders may be at least, if not more, impactful than individual genes, thus underscoring the importance of accounting for medication exposure in gene-cognition association studies.
Collapse
Affiliation(s)
- Seenae Eum
- Department of Pharmacogenomics, School of Pharmacy, Shenandoah University, Fairfax, VA 22031, USA
| | - Scot Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine & Science, North Chicago, IL 60064, USA
| | - Jeffrey R Bishop
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Psychiatry & Behavioral Sciences, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Schonfeld L, Jaehne EJ, Ogden AR, Spiers JG, Hogarth S, van den Buuse M. Differential effects of chronic adolescent glucocorticoid or methamphetamine on drug-induced locomotor hyperactivity and disruption of prepulse inhibition in adulthood in mice. Prog Neuropsychopharmacol Biol Psychiatry 2022; 117:110552. [PMID: 35337859 DOI: 10.1016/j.pnpbp.2022.110552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/29/2022]
Abstract
Sensitization of dopaminergic activity has been suggested as an underlying mechanism in the psychotic symptoms of schizophrenia. Adolescent stress and chronic abuse of methamphetamine (Meth) are well-known risk factors for psychosis and schizophrenia; however it remains unknown how these factors compare in terms of dopaminergic behavioural sensitization in adulthood. In addition, while Brain-Derived Neurotrophic Factor (BDNF) has been implicated in dopaminergic activity and schizophrenia, its role in behavioural sensitization remains unclear. In this study we therefore compared the effect of chronic adolescent treatment with the stress hormone, corticosterone (Cort), or with Meth, on drug-induced locomotor hyperactivity and disruption of prepulse inhibition in adulthood in BDNF heterozygous mice and their wild-type controls, as well as on dopamine receptor gene expression. Between 6 and 9 weeks of age, the animals either received Cort in the drinking water or were treated with an escalating Meth dose protocol. In adulthood, Cort-pretreated mice showed significantly reduced Meth-induced locomotor hyperactivity compared to vehicle-pretreated mice. In contrast, Meth hyperlocomotion was significantly enhanced in animals pretreated with the drug in adolescence. There were no effects of either pretreatment on prepulse inhibition. BDNF Het mice showed greater Meth-induced hyperlocomotion and lower prepulse inhibition than WT mice. There were no effects of either pretreatment on D1 or D2 gene expression in either the dorsal or ventral striatum, while D3 mRNA was shown to be reduced in male mice only irrespective of genotype. These results suggest that in adolescence, chronically elevated glucocorticoid levels, a component of chronic stress, do not cause dopaminergic sensitization adulthood, in contrast to the effect of chronic Meth treatment in the same age period. BDNF does not appear to be involved in the effects of chronic Cort or chronic Meth.
Collapse
Affiliation(s)
- Lina Schonfeld
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Alexandra R Ogden
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Jereme G Spiers
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Samuel Hogarth
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, Australia; Department of Pharmacology, University of Melbourne, Australia; College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia.
| |
Collapse
|
12
|
Lucaci AG, Notaras MJ, Kosakovsky Pond SL, Colak D. The evolution of BDNF is defined by strict purifying selection and prodomain spatial coevolution, but what does it mean for human brain disease? Transl Psychiatry 2022; 12:258. [PMID: 35732627 PMCID: PMC9217794 DOI: 10.1038/s41398-022-02021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/09/2022] Open
Abstract
Brain-Derived Neurotrophic Factor (BDNF) is an essential mediator of brain assembly, development, and maturation. BDNF has been implicated in a variety of brain disorders such as neurodevelopmental disorders (e.g., autism spectrum disorder), neuropsychiatric disorders (e.g., anxiety, depression, PTSD, and schizophrenia), and various neurodegenerative disorders (e.g., Parkinson's, Alzheimer's, etc.). To better understand the role of BDNF in disease, we sought to define the evolution of BDNF within Mammalia. We conducted sequence alignment and phylogenetic reconstruction of BDNF across a diverse selection of >160 mammalian species spanning ~177 million years of evolution. The selective evolutionary change was examined via several independent computational models of codon evolution including FEL (pervasive diversifying selection), MEME (episodic selection), and BGM (structural coevolution of sites within a single molecule). We report strict purifying selection in the main functional domain of BDNF (NGF domain, essentially comprising the mature BDNF protein). Additionally, we discover six sites in our homologous alignment which are under episodic selection in early regulatory regions (i.e. the prodomain) and 23 pairs of coevolving sites that are distributed across the entirety of BDNF. Coevolving BDNF sites exhibited complex spatial relationships and geometric features including triangular relations, acyclic graph networks, double-linked sites, and triple-linked sites, although the most notable pattern to emerge was that changes in the mature region of BDNF tended to coevolve along with sites in the prodomain. Thus, we propose that the discovery of both local and distal sites of coevolution likely reflects 'evolutionary fine-tuning' of BDNF's underlying regulation and function in mammals. This tracks with the observation that BDNF's mature domain (which encodes mature BDNF protein) is largely conserved, while the prodomain (which is linked to regulation and its own unique functionality) exhibits more pervasive and diversifying evolutionary selection. That said, the fact that negative purifying selection also occurs in BDNF's prodomain also highlights that this region also contains critical sites of sensitivity which also partially explains its disease relevance (via Val66Met and other prodomain variants). Taken together, these computational evolutionary analyses provide important context as to the origins and sensitivity of genetic changes within BDNF that may help to deconvolute the role of BDNF polymorphisms in human brain disorders.
Collapse
Affiliation(s)
- Alexander G. Lucaci
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Michael J. Notaras
- grid.5386.8000000041936877XCenter for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA
| | - Sergei L. Kosakovsky Pond
- grid.264727.20000 0001 2248 3398Institute for Genomics and Evolutionary Medicine, Science & Education Research Center, Temple University, Philadelphia, PA USA
| | - Dilek Colak
- Center for Neurogenetics, Brain & Mind Research Institute, Weill Medical College, Cornell University, New York, New York, USA. .,Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
13
|
The BDNF Val66Met Polymorphism Does Not Increase Susceptibility to Activity-Based Anorexia in Rats. BIOLOGY 2022; 11:biology11050623. [PMID: 35625351 PMCID: PMC9138045 DOI: 10.3390/biology11050623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/18/2022]
Abstract
Simple Summary Genetic animal models are a valuable tool for understanding how human pathologies develop. The type of animal model chosen is important for uncovering effects specific to certain behaviours and neurobiological functions. A polymorphism in the brain-derived neurotrophic factor (BDNF) has been linked with various clinical conditions in human subjects and with mouse models of anorectic behaviour. This study investigated for the first time the role of the BDNF Val66Met allelic substitution in a rat model of anorexia nervosa (AN), known as activity-based anorexia (ABA). Contrary to reports of altered BDNF signaling in patients with AN and increased anorectic behaviour in a mouse model containing the same allelic variation, it showed that 66Met did not alter susceptibility to weight loss or aspects of energy balance, including feeding and exercise in the rat model. It highlights the need to consider species–specific differences when evaluating animal models of human pathologies. Abstract Brain-derived neurotrophic factor (BDNF) is abundantly expressed in brain regions involved in both homeostatic and hedonic feeding, and it circulates at reduced levels in patients with anorexia nervosa (AN). A single nucleotide polymorphism in the gene encoding for BDNF (Val66Met) has been associated with worse outcomes in patients with AN, and it is shown to promote anorectic behaviour in a mouse model of caloric restriction paired with social isolation stress. Previous animal models of the Val66Met polymorphism have been in mice because of the greater ease in modification of the mouse genome, however, the most widely-accepted animal model of AN, known as activity-based anorexia (ABA), is most commonly conducted in rats. Here, we examine ABA outcomes in a novel rat model of the BDNF Val66Met allelic variation (Val68Met), and we investigate the role of this polymorphism in feeding, food choice and sucrose preference, and energy expenditure. We demonstrate that the BDNF Val68Met polymorphism does not influence susceptibility to ABA or any aspect of feeding behaviour. The discrepancy between these results and previous reports in mice may relate to species–specific differences in stress reactivity.
Collapse
|
14
|
Abstract
Most psychiatric illnesses, such as schizophrenia, show profound sex differences in incidence, clinical presentation, course, and outcome. Fortunately, more recently the literature on sex differences and (to a lesser extent) effects of sex steroid hormones is expanding, and in this review we have focused on such studies in psychosis, both from a clinical/epidemiological and preclinical/animal model perspective. We begin by briefly describing the clinical evidence for sex differences in schizophrenia epidemiology, symptomatology, and pathophysiology. We then detail sex differences and sex hormone effects in behavioral animal models of psychosis, specifically psychotropic drug-induced locomotor hyperactivity and disruption of prepulse inhibition. We expand on the preclinical data to include developmental and genetic models of psychosis, such as the maternal immune activation model and neuregulin transgenic animals, respectively. Finally, we suggest several recommendations for future studies, in order to facilitate a better understanding of sex differences in the development of psychosis.
Collapse
|
15
|
Notaras M, Lodhi A, Dündar F, Collier P, Sayles NM, Tilgner H, Greening D, Colak D. Schizophrenia is defined by cell-specific neuropathology and multiple neurodevelopmental mechanisms in patient-derived cerebral organoids. Mol Psychiatry 2022; 27:1416-1434. [PMID: 34789849 PMCID: PMC9095467 DOI: 10.1038/s41380-021-01316-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
Due to an inability to ethically access developing human brain tissue as well as identify prospective cases, early-arising neurodevelopmental and cell-specific signatures of Schizophrenia (Scz) have remained unknown and thus undefined. To overcome these challenges, we utilized patient-derived induced pluripotent stem cells (iPSCs) to generate 3D cerebral organoids to model neuropathology of Scz during this critical period. We discovered that Scz organoids exhibited ventricular neuropathology resulting in altered progenitor survival and disrupted neurogenesis. This ultimately yielded fewer neurons within developing cortical fields of Scz organoids. Single-cell sequencing revealed that Scz progenitors were specifically depleted of neuronal programming factors leading to a remodeling of cell-lineages, altered differentiation trajectories, and distorted cortical cell-type diversity. While Scz organoids were similar in their macromolecular diversity to organoids generated from healthy controls (Ctrls), four GWAS factors (PTN, COMT, PLCL1, and PODXL) and peptide fragments belonging to the POU-domain transcription factor family (e.g., POU3F2/BRN2) were altered. This revealed that Scz organoids principally differed not in their proteomic diversity, but specifically in their total quantity of disease and neurodevelopmental factors at the molecular level. Single-cell sequencing subsequently identified cell-type specific alterations in neuronal programming factors as well as a developmental switch in neurotrophic growth factor expression, indicating that Scz neuropathology can be encoded on a cell-type-by-cell-type basis. Furthermore, single-cell sequencing also specifically replicated the depletion of BRN2 (POU3F2) and PTN in both Scz progenitors and neurons. Subsequently, in two mechanistic rescue experiments we identified that the transcription factor BRN2 and growth factor PTN operate as mechanistic substrates of neurogenesis and cellular survival, respectively, in Scz organoids. Collectively, our work suggests that multiple mechanisms of Scz exist in patient-derived organoids, and that these disparate mechanisms converge upon primordial brain developmental pathways such as neuronal differentiation, survival, and growth factor support, which may amalgamate to elevate intrinsic risk of Scz.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Aiman Lodhi
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Paul Collier
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Nicole M Sayles
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Hagen Tilgner
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Greening
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
- Central Clinical School, Monash University, Melbourne, VIC, Australia
- Baker Institute & Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Dilek Colak
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Gale and Ira Drukier Institute for Children's Health, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
16
|
Bouchekioua Y, Nebuka M, Sasamori H, Nishitani N, Sugiura C, Sato M, Yoshioka M, Ohmura Y. Serotonin 5-HT 2C receptor knockout in mice attenuates fear responses in contextual or cued but not compound context-cue fear conditioning. Transl Psychiatry 2022; 12:58. [PMID: 35145065 PMCID: PMC8831648 DOI: 10.1038/s41398-022-01815-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 11/08/2022] Open
Abstract
Previous findings have proposed that drugs targeting 5-HT2C receptors could be promising candidates in the treatment of trauma- and stress-related disorders. However, the reduction of conditioned freezing observed in 5-HT2C receptor knock-out (KO) mice in previous studies could alternatively be accounted for by increased locomotor activity. To neutralize the confound of individual differences in locomotor activity, we measured a ratio of fear responses during versus before the presentation of a conditioned stimulus previously paired with a footshock (as a fear measure) by utilizing a conditioned licking suppression paradigm. We first confirmed that 5-HT2C receptor gene KO attenuated fear responses to distinct types of single conditioned stimuli (context or tone) independently of locomotor activity. We then assessed the effects of 5-HT2C receptor gene KO on compound fear responses by examining mice that were jointly conditioned to a context and a tone and later re-exposed separately to each. We found that separate re-exposure to individual components of a complex fear memory (i.e., context and tone) failed to elicit contextual fear extinction in both 5-HT2C receptor gene KO and wild-type mice, and also abolished differences between genotypes in tone-cued fear extinction. This study delineates a previously overlooked role of 5-HT2C receptors in conditioned fear responses, and invites caution in the future assessment of molecular targets and candidate therapies for the treatment of PTSD.
Collapse
Affiliation(s)
- Youcef Bouchekioua
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Mao Nebuka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hitomi Sasamori
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Nishitani
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Chiaki Sugiura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Sato
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mitsuhiro Yoshioka
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yu Ohmura
- Department of Neuropharmacology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
17
|
Perry BI, Bowker N, Burgess S, Wareham NJ, Upthegrove R, Jones PB, Langenberg C, Khandaker GM. Evidence for Shared Genetic Aetiology Between Schizophrenia, Cardiometabolic, and Inflammation-Related Traits: Genetic Correlation and Colocalization Analyses. SCHIZOPHRENIA BULLETIN OPEN 2022; 3:sgac001. [PMID: 35156041 PMCID: PMC8827407 DOI: 10.1093/schizbullopen/sgac001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Schizophrenia commonly co-occurs with cardiometabolic and inflammation-related traits. It is unclear to what extent the comorbidity could be explained by shared genetic aetiology. METHODS We used GWAS data to estimate shared genetic aetiology between schizophrenia, cardiometabolic, and inflammation-related traits: fasting insulin (FI), fasting glucose, glycated haemoglobin, glucose tolerance, type 2 diabetes (T2D), lipids, body mass index (BMI), coronary artery disease (CAD), and C-reactive protein (CRP). We examined genome-wide correlation using linkage disequilibrium score regression (LDSC); stratified by minor-allele frequency using genetic covariance analyzer (GNOVA); then refined to locus-level using heritability estimation from summary statistics (ρ-HESS). Regions with local correlation were used in hypothesis prioritization multi-trait colocalization to examine for colocalisation, implying common genetic aetiology. RESULTS We found evidence for weak genome-wide negative correlation of schizophrenia with T2D (rg = -0.07; 95% C.I., -0.03,0.12; P = .002) and BMI (rg = -0.09; 95% C.I., -0.06, -0.12; P = 1.83 × 10-5). We found a trend of evidence for positive genetic correlation between schizophrenia and cardiometabolic traits confined to lower-frequency variants. This was underpinned by 85 regions of locus-level correlation with evidence of opposing mechanisms. Ten loci showed strong evidence of colocalization. Four of those (rs6265 (BDNF); rs8192675 (SLC2A2); rs3800229 (FOXO3); rs17514846 (FURIN)) are implicated in brain-derived neurotrophic factor (BDNF)-related pathways. CONCLUSIONS LDSC may lead to downwardly-biased genetic correlation estimates between schizophrenia, cardiometabolic, and inflammation-related traits. Common genetic aetiology for these traits could be confined to lower-frequency common variants and involve opposing mechanisms. Genes related to BDNF and glucose transport amongst others may partly explain the comorbidity between schizophrenia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Benjamin I Perry
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicholas Bowker
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Rachel Upthegrove
- Institute for Mental Health, University of Birmingham, Birmingham, UK
| | - Peter B Jones
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Golam M Khandaker
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
18
|
BDNF Genetic Variant and Its Genotypic Fluctuation in Major Depressive Disorder. Behav Neurol 2021; 2021:7117613. [PMID: 34760029 PMCID: PMC8575598 DOI: 10.1155/2021/7117613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/28/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) still has an unknown etiology and mechanisms. Many studies have been conducted seeking to associate and understand the connection of different genetic variants to this disease. Researchers have extensively studied the brain-derived neurotrophic factor (BDNF) Val66Met genetic variant in MDD; yet, their findings remain inconsistent. This systematic review sought to verify the GG (Val/Val) genotype frequency fluctuation in different populations with MDD. For this, we searched in different databases and, after applying the eligibility criteria, selected 17 articles. Most studies demonstrate the higher frequency of the ancestral (wild) GG (Val/Val) genotype, although associations of the polymorphic A (Met) allele, changes in BDNF protein serum levels, or both were also found in MDD, whether related to the disease's development or other factors. Nevertheless, despite these findings, disagreements between several studies are seen. For this reason, further BDNF Val66Met genetic variant studies should not only bridge the gap in the knowledge of this polymorphism's role in MDD's different facets but also analyze the genotypic and phenotypic heterogeneity in different populations to help provide a better quality of life for patients.
Collapse
|
19
|
Mhatre SD, Iyer J, Puukila S, Paul AM, Tahimic CGT, Rubinstein L, Lowe M, Alwood JS, Sowa MB, Bhattacharya S, Globus RK, Ronca AE. Neuro-consequences of the spaceflight environment. Neurosci Biobehav Rev 2021; 132:908-935. [PMID: 34767877 DOI: 10.1016/j.neubiorev.2021.09.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/17/2022]
Abstract
As human space exploration advances to establish a permanent presence beyond the Low Earth Orbit (LEO) with NASA's Artemis mission, researchers are striving to understand and address the health challenges of living and working in the spaceflight environment. Exposure to ionizing radiation, microgravity, isolation and other spaceflight hazards pose significant risks to astronauts. Determining neurobiological and neurobehavioral responses, understanding physiological responses under Central Nervous System (CNS) control, and identifying putative mechanisms to inform countermeasure development are critically important to ensuring brain and behavioral health of crew on long duration missions. Here we provide a detailed and comprehensive review of the effects of spaceflight and of ground-based spaceflight analogs, including simulated weightlessness, social isolation, and ionizing radiation on humans and animals. Further, we discuss dietary and non-dietary countermeasures including artificial gravity and antioxidants, among others. Significant future work is needed to ensure that neural, sensorimotor, cognitive and other physiological functions are maintained during extended deep space missions to avoid potentially catastrophic health and safety outcomes.
Collapse
Affiliation(s)
- Siddhita D Mhatre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; COSMIAC Research Center, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Janani Iyer
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Stephanie Puukila
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA; Flinders University, Adelaide, Australia
| | - Amber M Paul
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Candice G T Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; KBR, Houston, TX, 77002, USA; Department of Biology, University of North Florida, Jacksonville, FL, 32224, USA
| | - Linda Rubinstein
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Universities Space Research Association, Columbia, MD, 21046, USA
| | - Moniece Lowe
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Blue Marble Space Institute of Science, Seattle, WA, 98154, USA
| | - Joshua S Alwood
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Marianne B Sowa
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Sharmila Bhattacharya
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Ruth K Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - April E Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA; Wake Forest Medical School, Winston-Salem, NC, 27101, USA.
| |
Collapse
|
20
|
Golubev SA, Lezheiko TV, Korovaitseva GI, Gabaeva MV, Kolesina NY, Kaleda VG, Golimbet VE. [Prognosis of the functional outcome of schizophrenia using a multigene panel]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:70-76. [PMID: 34460160 DOI: 10.17116/jnevro202112107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVE To compare the groups of schizophrenic patients with different levels of functional outcome and different frequency of risk variants in polymorphic loci of five candidate genes to create a multigene panel and to test its predictive ability for long-term outcome of the disease. MATERIAL AND METHODS According to the proposed typology, the patients included in the studies were divided into three groups, which differed in the level of social functioning. Group 1 was characterized by the highest level, in group 2 this indicator was significantly lower, and in group 3 the lowest. The multigenic panel included genes for serotonin receptor type 2a (5-HTR2A T102C), serotonin transporter (5-HTTLPR), C-reactive protein (CRP -717A>G), angiotensin II receptor type 1 (AGTR1 A1166C), and brain neurotrophic factor (BDNF Val66Met). A multi-gene risk score was calculated for each patient by summing the total number all his/her risk alleles. For each polymorphism, a score of 2 was assigned to homozygous high-risk genotypes, a score of 1 to heterozygous genotypes and a score of 0 to homozygous low-risk genotype. Accordingly, the multi-gene risk score for a patient could vary from 0 to 10 risk alleles. RESULTS A significant effect of the group on the multi-gene risk score was shown (p<0.0001). Between-group differences were significant as well (p<0.01). In group 1, there were no carriers of ≥6 risk alleles, and the number of carriers of less than 5 alleles exceeded 50%. In group 2, the number of carriers of ≥6 risk alleles was 19.4%, and in group 3 - 31.7%. Moreover, in these groups there were no carriers of 0-2 risk alleles, while in group 1 their number was 20.7%. CONCLUSION The multi-gene risk score predicts the level of functional outcome in patients with schizophrenia. In the case of a smaller number of risk alleles (0-4) in an individual, a favorable functional outcome can be predicted with a high probability in the long-term period of the disease.
Collapse
Affiliation(s)
- S A Golubev
- Mental Health Research Centre, Moscow, Russia.,Gannushkin Psychiatric Clinical Hospital No. 4, Moscow, Russia
| | | | | | - M V Gabaeva
- Mental Health Research Centre, Moscow, Russia
| | | | - V G Kaleda
- Mental Health Research Centre, Moscow, Russia
| | - V E Golimbet
- Mental Health Research Centre, Moscow, Russia.,Alexeev Moscow Psychiatric Hospital No. 1, Moscow, Russia
| |
Collapse
|
21
|
Greening DW, Notaras M, Chen M, Xu R, Smith JD, Cheng L, Simpson RJ, Hill AF, van den Buuse M. Chronic methamphetamine interacts with BDNF Val66Met to remodel psychosis pathways in the mesocorticolimbic proteome. Mol Psychiatry 2021; 26:4431-4447. [PMID: 31822818 DOI: 10.1038/s41380-019-0617-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023]
Abstract
Methamphetamine (Meth) abuse has reached epidemic proportions in many countries and can induce psychotic episodes mimicking the clinical profile of schizophrenia. Brain-derived neurotrophic factor (BDNF) is implicated in both Meth effects and schizophrenia. We therefore studied the long-term effects of chronic Meth exposure in transgenic mice engineered to harbor the human BDNFVal66Met polymorphism expressed via endogenous mouse promoters. These mice were chronically treated with an escalating Meth regime during late adolescence. At least 4 weeks later, all hBDNFVal66Met Meth-treated mice exhibited sensitization confirming persistent behavioral effects of Meth. We used high-resolution quantitative mass spectrometry-based proteomics to biochemically map the long-term effects of Meth within the brain, resulting in the unbiased detection of 4808 proteins across the mesocorticolimbic circuitry. Meth differentially altered dopamine signaling markers (e.g., Dat, Comt, and Th) between hBDNFVal/Val and hBDNFMet/Met mice, implicating involvement of BDNF in Meth-induced reprogramming of the mesolimbic proteome. Targeted analysis of 336 schizophrenia-risk genes, as well as 82 growth factor cascade markers, similarly revealed that hBDNFVal66Met genotype gated the recruitment of these factors by Meth in a region-specific manner. Cumulatively, these data represent the first comprehensive analysis of the long-term effects of chronic Meth exposure within the mesocorticolimbic circuitry. In addition, these data reveal that long-term Meth-induced brain changes are strongly dependent upon BDNF genetic variation, illustrating how drug-induced psychosis may be modulated at the molecular level by a single genetic locus.
Collapse
Affiliation(s)
- David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, VIC, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Michael Notaras
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Maoshan Chen
- Australian Centre for Blood Diseases (ACBD), Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rong Xu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Joel D Smith
- Biological Research Unit, Racing Analytical Services Ltd, Flemington, VIC, Australia
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.
| |
Collapse
|
22
|
Jaehne EJ, Chong EMS, Sbisa A, Gillespie B, Hill R, Gogos A, van den Buuse M. TrkB agonist 7,8-dihydroxyflavone reverses an induced prepulse inhibition deficit selectively in maternal immune activation offspring: implications for schizophrenia. Behav Pharmacol 2021; 32:404-412. [PMID: 33883449 DOI: 10.1097/fbp.0000000000000632] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Reduced brain-derived neurotrophic factor (BDNF) signalling has been implicated in schizophrenia endophenotypes, including deficits in prepulse inhibition (PPI). Maternal immune activation (MIA) is a widely used neurodevelopmental animal model for schizophrenia but it is unclear if BDNF and its receptor, tropomyosin receptor kinase B (TrkB), are involved in PPI regulation in this model. Pregnant Long Evans rats were treated with the viral mimetic, polyinosinic-polycytidylic acid (poly I:C; 4 mg/kg i.v.), and nine male offspring from these dams were compared in adulthood to 11 male Long Evans controls. Offspring underwent PPI testing following injection with the TrkB agonist, 7,8-dihydroxyflavone (7,8-DHF) (10 mg/kg i.p.), with or without the dopamine receptor agonist, apomorphine (APO; 1 mg/kg s.c.), or the dopamine releasing drug, methamphetamine (METH; 2 mg/kg s.c.). Acute administration of APO and METH caused the expected significant reduction of PPI. Acute administration of 7,8-DHF did not alter PPI on its own; however, it significantly reversed the effect of APO on PPI in poly I:C rats, but not in controls. A similar trend was observed in combination with METH. Western blot analysis of frontal cortex revealed significantly increased levels of BDNF protein, but not TrkB or phosphorylated TrkB/TrkB levels, in poly I:C rats. These findings suggest that, selectively in MIA offspring, 7,8-DHF has the ability to reverse PPI deficits caused by dopaminergic stimulation. This effect could be associated with increased BDNF expression in the frontal cortex. These data suggest that targeting BDNF signalling may have therapeutic potential for the treatment of certain symptoms of schizophrenia.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
| | - Elaine Mei San Chong
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
| | - Alyssa Sbisa
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
- Florey Institute of Neuroscience and Mental Health, University of Melbourne
| | - Brendan Gillespie
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University
| | - Andrea Gogos
- Florey Institute of Neuroscience and Mental Health, University of Melbourne
| | - Maarten van den Buuse
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University
- Department of Pharmacology, University of Melbourne, Melbourne
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| |
Collapse
|
23
|
Harb M, Jagusch J, Durairaja A, Endres T, Leßmann V, Fendt M. BDNF haploinsufficiency induces behavioral endophenotypes of schizophrenia in male mice that are rescued by enriched environment. Transl Psychiatry 2021; 11:233. [PMID: 33888685 PMCID: PMC8062437 DOI: 10.1038/s41398-021-01365-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 02/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF's role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/-) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/- mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/- mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/- mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.
Collapse
Affiliation(s)
- Mahmoud Harb
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Justina Jagusch
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Archana Durairaja
- grid.5807.a0000 0001 1018 4307Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Thomas Endres
- grid.5807.a0000 0001 1018 4307Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Volkmar Leßmann
- Institute of Physiology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany. .,Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
24
|
Xu H, Wang J, Zhou Y, Chen D, Xiu M, Wang L, Zhang X. BDNF affects the mediating effect of negative symptoms on the relationship between age of onset and cognition in patients with chronic schizophrenia. Psychoneuroendocrinology 2021; 125:105121. [PMID: 33387927 DOI: 10.1016/j.psyneuen.2020.105121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022]
Abstract
The age of onset of schizophrenia is related to variability in cognitive function and clinical characters, and negative symptoms and cognitive function share similar features that could be closely connected. Alterations in brain-derived neurotrophic factor (BDNF) expression and the Val66Met (rs6562) polymorphism are involved in the pathogenesis of the disease, but few studies have explored its influence on the associations of age of onset, cognitive function and clinical symptoms in schizophrenia. The clinical symptoms of a total of 573 patients with chronic schizophrenia were assessed by using the Positive and Negative Syndrome Scale (PANSS). Cognitive performance was assessed by the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). The serum BDNF level and Val66Met polymorphism were measured after the assessment. Our results showed the following: (1) patients with an earlier age of onset exhibited more negative symptoms and cognitive deficits, as well as lower levels of serum BDNF; (2) negative symptoms and cognitive function showed negative and positive correlations with age of onset, respectively, and worse cognitive function was associated with a high level of negative symptoms and a low level of serum BDNF; and (3) the moderated mediation analyses indicated that negative symptoms partially mediated the relationship between age of onset and cognitive deficits, which was moderated by serum BDNF. The mediating effect of negative symptoms exhibited a Met allele dose-dependent tendency. These results indicate that age of onset, cognitive function, and clinical symptoms of schizophrenia exhibit different relationships under different serum BDNF levels and BDNF Val66met polymorphisms.
Collapse
Affiliation(s)
- Hang Xu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China
| | - Yongjie Zhou
- Department of Psychiatric Rehabilitation, Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Dachun Chen
- Beijing HuiLongGuan Hospital, Peking University, China
| | - Meihong Xiu
- Beijing HuiLongGuan Hospital, Peking University, China
| | - Li Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Paredes DA, Jalloh A, Catlow BJ, Jaishankar A, Seo S, Jimenez DV, Martinowich K, Diaz-Bustamante M, Hoeppner DJ, McKay RDG. Bdnf deficiency in the neonatal hippocampus contributes to global dna hypomethylation and adult behavioral changes. Brain Res 2021; 1754:147254. [PMID: 33422542 DOI: 10.1016/j.brainres.2020.147254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Schizophrenia is a neurodevelopmental psychiatric disorder, encompassing genetic and environmental risk factors. For several decades, investigators have been implementing the use of lesions of the neonatal rodent hippocampus to model schizophrenia, resulting in a broad spectrum of adult schizophrenia-related behavioral changes. Despite the extensive use of these proposed animal models of schizophrenia, the mechanisms by which these lesions result in schizophrenia-like behavioral alterations remain unclear. Here we provide in vivo evidence that transient pharmacological inactivation of the hippocampus via tetrodotoxin microinjections or a genetic reduction in brain derived neurotrophic factor (BDNF) protein levels (BDNF+/- rats) lead to global DNA hypomethylation, disrupted maturation of the neuronal nucleus and aberrant acoustic startle response in the adult rat. The similarity between the effects of the two treatments strongly indicate that BDNF signaling is involved in effects obtained after the TTX microinjections. These findings may shed light on the cellular mechanisms underlying the phenotypical features of neonatal transient inhibition of the hippocampus as a preclinical model of schizophrenia and suggest that BDNF signaling represents a target pathway for development of novel treatment therapies.
Collapse
Affiliation(s)
- Daniel A Paredes
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Ahmad Jalloh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Briony J Catlow
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA; Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Amritha Jaishankar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Seungmae Seo
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Pediatrics, Columbia University, New York, NY, USA
| | - Dennisse V Jimenez
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Marcelo Diaz-Bustamante
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA; Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | - Daniel J Hoeppner
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Ronald D G McKay
- Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA
| |
Collapse
|
26
|
Marchese MJ, Li S, Liu B, Zhang JJ, Feng L. Perfluoroalkyl Substance Exposure and the BDNF Pathway in the Placental Trophoblast. Front Endocrinol (Lausanne) 2021; 12:694885. [PMID: 34394001 PMCID: PMC8357370 DOI: 10.3389/fendo.2021.694885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/12/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants that have become globally ubiquitous in humans and the environment. In utero PFAS exposure is associated with neurodevelopmental effects; however, the mechanism is poorly understood. Brain-derived neurotrophic factor (BDNF) signaling is critical to fetal neurodevelopment during pregnancy and maintains important regulatory roles later in life. This study aims to characterize placental BDNF signaling and investigate whether PFAS exposure disrupts the signaling pathway in placental trophoblast cells. METHODS The expression and localization of BDNF receptors-p75NTR and TrkB-in first trimester and term human placentas and trophoblast cells were investigated by immunofluorescence staining. To assess the effects of PFAS exposure on the BDNF pathway, BeWo cells were treated with PFAS mixtures that mimicked blood levels in a highly exposed population and major PFAS compounds in the mixture at 0.01, 0.1, 1, and 10 µM concentrations. Changes in pro-BDNF levels and phosphorylation of TrkB receptors were examined by Western blot. RESULTS In first trimester human placentas, TrkB and p75NTR receptors were primarily localized to syncytiotrophoblast and cytotrophoblast cells. At term, TrkB and p75NTR receptors were primarily observed in the placental villous stroma. TrkB receptor staining in trophoblasts was reduced at term, while p75NTR receptor staining was negative. TrkB receptors were confined to the nuclear and perinuclear spaces, and phosphorylation occurred at the Tyr816 residue in BeWo cells. Exposure to PFOS, PFOA, PFBS, and the six-PFAS mixture did not significantly affect BDNF levels or activation (phosphorylation) of TrkB. Treating cells with 1 μM and 10 μM of PFNA resulted in increased TrkB phosphorylation compared to unexposed controls, but BDNF levels were unchanged. CONCLUSIONS BDNF receptors are present in different regions of human placental villi, indicating diverse functions of BDNF signaling in placental development. Our findings suggest that the BDNF pathway in placental trophoblast cells is not disrupted by exposures to PFOS, PFOA, PFBS, and a PFAS mixture, but may be affected by PFNA exposures. Further investigation is needed on how PFAS affects other critical signaling pathways during fetal neurodevelopment.
Collapse
Affiliation(s)
- Melissa J. Marchese
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
| | - Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jun J. Zhang
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Liping Feng, ; Jun J. Zhang,
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University, Durham, NC, United States
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
- *Correspondence: Liping Feng, ; Jun J. Zhang,
| |
Collapse
|
27
|
De Sousa A, Shah B, Shrivastava A. Suicide and Schizophrenia: an Interplay of Factors. Curr Psychiatry Rep 2020; 22:65. [PMID: 33063224 DOI: 10.1007/s11920-020-01188-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The main purpose of this review is to elucidate the interplay of various factors in the relationship between suicide and schizophrenia. Suicide and schizophrenia have been interlinked as a symptom, factor in recovery and prognosis, outcome measure and response to psychotic symptoms in patients with schizophrenia. Many biomarkers have been identified in relation to the two phenomena. RECENT FINDINGS The analysis of the papers of the last 5 years (2015-2019) and till date has revealed studies looking at outcomes in relation to suicide, biological markers to determine the protection from and occurrence of suicide in schizophrenia and demographic factors that play a role in the occurrence of suicide in patients with schizophrenia. Suicide is a common occurrence in patients with schizophrenia and must be studied further in diverse populations of the disorder to help determine exact relationships between these two variables that will aid in clinical recovery, better outcome and improve prognosis.
Collapse
Affiliation(s)
| | | | - Amresh Shrivastava
- Lawson Health Research Institute and Professor Emeritus, Schulich Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
28
|
Notaras M, van den Buuse M. Neurobiology of BDNF in fear memory, sensitivity to stress, and stress-related disorders. Mol Psychiatry 2020; 25:2251-2274. [PMID: 31900428 DOI: 10.1038/s41380-019-0639-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 12/01/2019] [Accepted: 12/12/2019] [Indexed: 01/17/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted for its involvement in resilience and antidepressant drug action, is a common genetic locus of risk for mental illnesses, and remains one of the most prominently studied molecules within psychiatry. Stress, which arguably remains the "lowest common denominator" risk factor for several mental illnesses, targets BDNF in disease-implicated brain regions and circuits. Altered stress-related responses have also been observed in animal models of BDNF deficiency in vivo, and BDNF is a common downstream intermediary for environmental factors that potentiate anxiety- and depressive-like behavior. However, BDNF's broad functionality has manifested a heterogeneous literature; likely reflecting that BDNF plays a hitherto under-recognized multifactorial role as both a regulator and target of stress hormone signaling within the brain. The role of BDNF in vulnerability to stress and stress-related disorders, such as posttraumatic stress disorder (PTSD), is a prominent example where inconsistent effects have emerged across numerous models, labs, and disciplines. In the current review we provide a contemporary update on the neurobiology of BDNF including new data from the behavioral neuroscience and neuropsychiatry literature on fear memory consolidation and extinction, stress, and PTSD. First we present an overview of recent advances in knowledge on the role of BDNF within the fear circuitry, as well as address mounting evidence whereby stress hormones interact with endogenous BDNF-TrkB signaling to alter brain homeostasis. Glucocorticoid signaling also acutely recruits BDNF to enhance the expression of fear memory. We then include observations that the functional common BDNF Val66Met polymorphism modulates stress susceptibility as well as stress-related and stress-inducible neuropsychiatric endophenotypes in both man and mouse. We conclude by proposing a BDNF stress-sensitivity hypothesis, which posits that disruption of endogenous BDNF activity by common factors (such as the BDNF Val66Met variant) potentiates sensitivity to stress and, by extension, vulnerability to stress-inducible illnesses. Thus, BDNF may induce plasticity to deleteriously promote the encoding of fear and trauma but, conversely, also enable adaptive plasticity during extinction learning to suppress PTSD-like fear responses. Ergo regulators of BDNF availability, such as the Val66Met polymorphism, may orchestrate sensitivity to stress, trauma, and risk of stress-induced disorders such as PTSD. Given an increasing interest in personalized psychiatry and clinically complex cases, this model provides a framework from which to experimentally disentangle the causal actions of BDNF in stress responses, which likely interact to potentiate, produce, and impair treatment of, stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Michael Notaras
- Center for Neurogenetics, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia. .,College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia. .,Department of Pharmacology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
29
|
Xie S, Yu L, Zhou M, Liu L, Lei D, Han C. Association between BDNF rs6265 polymorphisms and postoperative cognitive dysfunction in Chinese Han Population. Brain Behav 2020; 10:e01800. [PMID: 33405375 PMCID: PMC7559622 DOI: 10.1002/brb3.1800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Brain-derived neurotrophic factor (BDNF) plays a critical role in the pathogenesis of postoperative cognitive dysfunction (POCD). In present study, we aimed to assess the possible association between POCD and BDNF rs6265 polymorphisms. METHODS 124 patients aged 60 years or older scheduled for elective surgery under general anesthesia and 25 age- and gender-matched healthy volunteers were recruited. POCD was identified using a neuropsychological test battery administered preoperatively, 7 days, and 3 months after surgery. Genotyping of rs6265 was performed using polymerase chain reaction amplification and restriction fragment length polymorphism analysis. RESULTS 99 patients and 25 healthy controls were finally enrolled in the analysis. 29(29.3%) and 18(18.2%) of 99 patients had POCD at 7 days and 3 months after surgery, respectively. The patients carrying a G allele at the rs6265 locus showed a lower risk for POCD than an A allele carriers on postoperative 7 days, but not 3 months after surgery (OR = 0.67; 95% CI: 0.47-0.96; p = .017; OR = 0.69; 95% CI: 0.42-1.13; p = .14, respectively). The risk of POCD at 7 days following surgery was significantly lower in additive model (OR = 0.41; 95% CI: 0.2-0.84; p = .015) and dominant model (OR = 0.35; 95% CI: 0.13-0.96; p = .042). CONCLUSION We tentatively demonstrate that BDNF rs6265 polymorphisms might be associated with occurrence of POCD at 7 days after surgery and the A > G mutant at the rs6265 locus be likely a protective factor for early POCD in Chinese Han population.
Collapse
Affiliation(s)
- Songhui Xie
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lu Yu
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Yixing Clinical College, Medical College of Yangzhou University, Yixing, China
| | - Mingming Zhou
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Yixing Clinical College, Medical College of Yangzhou University, Yixing, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Yixing Clinical College, Medical College of Yangzhou University, Yixing, China
| | - Daoyun Lei
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Chao Han
- Department of Anesthesiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.,Yixing Clinical College, Medical College of Yangzhou University, Yixing, China
| |
Collapse
|
30
|
Hill RA, Grech AM, Notaras MJ, Sepulveda M, van den Buuse M. Brain-Derived Neurotrophic Factor Val66Met polymorphism interacts with adolescent stress to alter hippocampal interneuron density and dendritic morphology in mice. Neurobiol Stress 2020; 13:100253. [PMID: 33344708 PMCID: PMC7739172 DOI: 10.1016/j.ynstr.2020.100253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/03/2020] [Accepted: 09/26/2020] [Indexed: 01/06/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays essential roles in GABAergic interneuron development. The common BDNF val66met polymorphism, leads to decreased activity-dependent release of BDNF. The current study used a humanized mouse model of the BDNF val66met polymorphism to determine how reduced activity-dependent release of BDNF, both on its own, and in combination with chronic adolescent stress hormone, impact hippocampal GABAergic interneuron cell density and dendrite morphology. Male and female Val/Val and Met/Met mice were exposed to corticosterone (CORT) or placebo in their drinking water from weeks 6-8, before brains were perfuse-fixed at 15 weeks. Cell density and dendrite morphology of immunofluorescent labelled inhibitory interneurons; somatostatin, parvalbumin and calretinin in the CA1, and 3 and dentate gyrus (DG) across the dorsal (DHP) and ventral hippocampus (VHP) were assessed by confocal z-stack imaging, and IMARIS dendritic mapping software. Mice with the Met/Met genotype showed significantly lower somatostatin cell density compared to Val/Val controls in the DHP, and altered somatostatin interneuron dendrite morphology including branch depth, and spine density. Parvalbumin-positive interneurons were unchanged between genotype groups, however BDNF val66met genotype influenced the dendritic volume, branch level and spine density of parvalbumin interneurons differentially across hippocampal subregions. Contrary to this, no such effects were observed for calretinin-positive interneurons. Adolescent exposure to CORT treatment also significantly altered somatostatin and parvalbumin dendrite branch level and the combined effect of Met/Met genotype and CORT treatment significantly reduced somatostatin and parvalbumin dendrite spine density. In sum, the BDNFVal66Met polymorphism significantly alters somatostatin and parvalbumin-positive interneuron cell development and dendrite morphology. Additionally, we also report a compounding effect of the Met/Met genotype and chronic adolescent CORT treatment on dendrite spine density, indicating that adolescence is a sensitive period of risk for Val66Met polymorphism carriers.
Collapse
Affiliation(s)
- Rachel Anne Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Corresponding author. Department of Psychiatry, School of Clinical Sciences at Monash Health, Monash University Level 3, Monash Medical Centre 27Wright St Clayton VIC 3168 Australia, .
| | - Adrienne Mary Grech
- Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Clayton, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael J. Notaras
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- Weill Cornell Medical College of Cornell University, Centre for Neurogenetics, Brain & Mind Research Institute, New York City, New York, USA
| | - Mauricio Sepulveda
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
| | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia
- Department of Pharmacology, University of Melbourne, VIC, Australia
- The College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
31
|
Kumar PK, Mitra P, Ghosh R, Sharma S, Nebhinani N, Sharma P. Association of circulating BDNF levels with BDNF rs6265 polymorphism in schizophrenia. Behav Brain Res 2020; 394:112832. [PMID: 32726665 DOI: 10.1016/j.bbr.2020.112832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 01/26/2023]
Abstract
Schizophrenia is a severe neuropsychiatric disorder affecting 1% of the world population. Disturbances in neuronal development and synaptic connections are important factors in the pathogenesis of schizophrenia. Brain derived neurotrophic factor (BDNF), a member of the neurotrophin family, plays a critical role in the development of neurons. Among several polymorphisms reported in BDNF, the rs6265 polymorphism is known to be associated with many neuropsychiatric diseases. This study was aimed to determine the effect of BDNF rs6265 functional polymorphism on serum BDNF concentration in patients with schizophrenia. In total, 50 schizophrenia patients and 50 controls were recruited after obtaining written informed consent. Serum BDNF levels were estimated using the ELISA method and BDNF rs6265 polymorphism was genotyped using T-ARMS PCR. Serum BDNF levels were decreased significantly in schizophrenia patients when compared to the healthy controls (p < 0.0001). Further, the rs6265 polymorphism was also not associated with the schizophrenia (p = 0.41). Intragroup analysis between different genotypes revealed no association between the serum BDNF levels and rs6265 polymorphism. Our results suggest that the functional polymorphism rs6265 is not associated with serum BDNF levels, which is in line with previous findings, which indicates that serum BDNF levels depend more on diagnostic effect than genetic effect. Replication studies on a larger study population are needed.
Collapse
Affiliation(s)
- Pvsn Kiran Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Raghumoy Ghosh
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Shailja Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India
| | - Naresh Nebhinani
- Department of Psychiatry, All India Institute of Medical Sciences, Jodhpur, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, India.
| |
Collapse
|
32
|
Pujol N, Mané A, Bergé D, Mezquida G, Amoretti S, Pérez L, González-Pinto A, Barcones F, Cuesta MJ, Sánchez-Tomico G, Vieta E, Castro-Fornieles J, Bernardo M, Parellada M. Influence of BDNF and MTHFR polymorphisms on hippocampal volume in first-episode psychosis. Schizophr Res 2020; 223:345-352. [PMID: 32988741 DOI: 10.1016/j.schres.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 04/26/2020] [Accepted: 08/04/2020] [Indexed: 01/10/2023]
Abstract
BACKGROUND The BDNF and MTHFR genes are independently linked to the pathogenesis of schizophrenia and its neuroimaging correlates. The aim of this study was to explore, for the first time, the individual and interactional effects of the Val66Met and C677T polymorphisms on hippocampal atrophy in first-episode psychosis (FEP). METHOD Multi-site case-control study based on clinical, genetic (rs 6265, rs 1801133) and structural magnetic resonance imaging data from 98 non-affective FEP patients and 117 matched healthy controls (HC). Hippocampal volume was estimated using FreeSurfer software and this volume was compared between diagnostic (FEP vs HC) and genotype (Val66Met, C677T) groups. The BDNF Val66Met x MTHFR C677T effect on hippocampal volume was further evaluated through stratified analyses. RESULTS After applying Bonferroni correction, diagnosis showed a significant effect for adjusted left and right hippocampal volume (FEP < HC). Stratified analyses showed that the interactive effect contributed to adjusted hippocampal size in both the HC (left and right hippocampus) and FEP groups (right hippocampus); among BDNF Met carriers, those with the CT-TT genotype exhibited decreased hippocampal volume compared to individuals with the homozygous normal CC genotype. CONCLUSIONS Our results provide preliminary evidence indicating that the Val66Met x C677T interaction may be a potential genetic risk factor for reduced hippocampal size in both healthy controls and in patients with FEP. Further research in independent samples including different ethnic groups is warranted to confirm this new finding.
Collapse
Affiliation(s)
- Nuria Pujol
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.
| | - Anna Mané
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Daniel Bergé
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain
| | - Gisela Mezquida
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Lucía Pérez
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Ana González-Pinto
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Servicio de Psiquiatría, Hospital Santiago, OSI Araba, Vitoria-Gasteiz, Spain
| | - Fe Barcones
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Department of Family Medicine, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Manuel J Cuesta
- Department of Psychiatry, Complejo Hospitalario de Navarra, IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Georgina Sánchez-Tomico
- Institute of Neuropsychiatry and Addiction of the Barcelona MAR Health Park, Barcelona, Spain; Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Eduard Vieta
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Bipolar Disorder Unit, Institute of Neurosciences, August Pi I Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic of Barcelona, University of Barcelona, Barcelona, Spain
| | - Josefina Castro-Fornieles
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry and Psychology Department, 2017SGR881, Institute of Neurosciences, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute; August Pi I Sunyer Biomedical Research Institute (IDIBAPS); University of Barcelona, Barcelona, Spain
| | - Mara Parellada
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Spain; Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, Madrid, Spain
| | | |
Collapse
|
33
|
Wang YM, Zhang YJ, Cai XL, Yang HX, Shan HD, Cheung EFC, Chan RCK. Altered grey matter volume and white matter integrity in individuals with high schizo-obsessive traits, high schizotypal traits and obsessive-compulsive symptoms. Asian J Psychiatr 2020; 52:102096. [PMID: 32315977 DOI: 10.1016/j.ajp.2020.102096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/22/2022]
Abstract
Altered brain structures have been found in patients with schizo-obsessive disorder, schizophrenia and obsessive-compulsive disorder in previous studies. However, it is unclear whether similar brain changes are also found in individuals with high schizo-obsessive traits (SOT), high schizotypal traits (SCT) and obsessive-compulsive symptoms (OCS). We examined grey matter volume (GMV) and white matter integrity (WMI, including fractional anisotropy, mean diffusivity, axial diffusivity and radial diffusivity) in 26 individuals with high SOT, 30 individuals with high SCT, 25 individuals with OCS and 30 individuals with low trait scores (LT) in this study. Correlation analysis between GMV, WMI, Schizotypal Personality Questionnaire (SPQ) scores and Obsessive-Compulsive Inventory-Revised (OCI-R) scores in the subclinical groups was also carried out. We found that the SOT group exhibited increased GMV at the right superior occipital gyrus and the left postcentral gyrus compared with the LT group. The SCT group exhibited increased GMV at the right precentral gyrus and the bilateral cuneus compared with the LT group, and decreased fractional anisotropy at the anterior corona radiata compared with the other three groups. The OCS group exhibited increased GMV at the left superior temporal gyrus and decreased GMV at the left pre-supplementary motor area compared with the LT group. These findings highlight specific brain changes in individuals with high SOT, high SCT and OCS, and may thus provide new insights into the neurobiological changes that occur in sub-clinical populations of these disorders.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, PR China; Sino-Danish Center for Education and Research, Beijing, 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yi-Jing Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, PR China; Sino-Danish Center for Education and Research, Beijing, 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Xue Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Hai-di Shan
- Translational Neuropsychology and Applied Cognitive Neuroscience Laboratory, Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100190, PR China; Sino-Danish Center for Education and Research, Beijing, 100190, PR China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
34
|
Hoffman KW, Lee JJ, Corcoran CM, Kimhy D, Kranz TM, Malaspina D. Considering the Microbiome in Stress-Related and Neurodevelopmental Trajectories to Schizophrenia. Front Psychiatry 2020; 11:629. [PMID: 32719625 PMCID: PMC7350783 DOI: 10.3389/fpsyt.2020.00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Early life adversity and prenatal stress are consistently associated with an increased risk for schizophrenia, although the exact pathogenic mechanisms linking the exposures with the disease remain elusive. Our previous view of the HPA stress axis as an elegant but simple negative feedback loop, orchestrating adaptation to stressors among the hypothalamus, pituitary, and adrenal glands, needs to be updated. Research in the last two decades shows that important bidirectional signaling between the HPA axis and intestinal mucosa modulates brain function and neurochemistry, including effects on glucocorticoid hormones and brain-derived neurotrophic factor (BDNF). The intestinal microbiome in earliest life, which is seeded by the vaginal microbiome during delivery, programs the development of the HPA axis in a critical developmental window, determining stress sensitivity and HPA function as well as immune system development. The crosstalk between the HPA and the Microbiome Gut Brain Axis (MGBA) is particularly high in the hippocampus, the most consistently disrupted neural region in persons with schizophrenia. Animal models suggest that the MGBA remains influential on behavior and physiology across developmental stages, including the perinatal window, early childhood, adolescence, and young adulthood. Understanding the role of the microbiome on critical risk related stressors may enhance or transform of understanding of the origins of schizophrenia and offer new approaches to increase resilience against stress effects for preventing and treating schizophrenia.
Collapse
Affiliation(s)
- Kevin W. Hoffman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jakleen J. Lee
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheryl M. Corcoran
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Centers (MIRECC), New York, NY, United States
| | - David Kimhy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- James J. Peters VA Medical Center, Mental Illness Research, Education and Clinical Centers (MIRECC), New York, NY, United States
| | - Thorsten M. Kranz
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Dolores Malaspina
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
35
|
Watt T, Ceballos N, Kim S, Pan X, Sharma S. The Unique Nature of Depression and Anxiety among College Students with Adverse Childhood Experiences. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2020; 13:163-172. [PMID: 32549928 PMCID: PMC7289944 DOI: 10.1007/s40653-019-00270-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is well established that adverse childhood experiences (ACEs) contribute to the development of mental disorders in adulthood. However, less is known about how childhood trauma impacts the mind and the body, whether the resulting mental disorders have different characteristics than those occurring without these antecedent conditions, and if treatment modalities need to reflect the unique nature of mental disorders rooted in trauma. Survey and biomarker data were gathered from a sample of college students (n = 93) to explore the relationship between childhood trauma and mental health. We examine how neuroimmune systems (inflammation and neuroplasticity) relate to depression and anxiety and whether these associations vary for those with and without a history of childhood trauma. Findings reveal that students with 4 or more ACEs are more likely to have depression and anxiety than students without these experiences. In addition, we find that inflammation (CRP) and neuronal health (BDNF) are associated with mental health disorders among students with four or more ACEs, but not for students without this history. These findings suggest that mental disorders associated with four or more ACEs may be uniquely tied to physiological processes, and consequently, warrant tailored treatments. The implications for mental health intervention include, 1) screening for childhood trauma, inflammation, and neuronal health and 2) referral to treatments which are theoretically and empirically tied to the root causes of mental disorders rather than those designed merely to suppress their symptoms.
Collapse
Affiliation(s)
- Toni Watt
- Department of Sociology, Texas State University, 601 University Drive, San Marcos, TX 78666 USA
| | - Natalie Ceballos
- Department of Sociology, Texas State University, 601 University Drive, San Marcos, TX 78666 USA
| | - Seoyoun Kim
- Department of Sociology, Texas State University, 601 University Drive, San Marcos, TX 78666 USA
| | - Xi Pan
- Department of Sociology, Texas State University, 601 University Drive, San Marcos, TX 78666 USA
| | - Shobhit Sharma
- Department of Sociology, Texas State University, 601 University Drive, San Marcos, TX 78666 USA
| |
Collapse
|
36
|
Lin CC, Huang TL. Brain-derived neurotrophic factor and mental disorders. Biomed J 2020; 43:134-142. [PMID: 32386841 PMCID: PMC7283564 DOI: 10.1016/j.bj.2020.01.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that modulates neuroplasticity in the brain, and is one of the most widely investigated molecule in psychiatric disorders. The researches of BDNF emcompassed the advance of investigative techniques of past decades. BDNF researches ranged from protein quantilization, to RNA expression measurements, to DNA sequencing, and lately but not lastly, epigenetic studies. In this review, we will briefly address findings on BDNF protein levels, mRNA expression, Val66Met polymorphism, and epigenetic modifications, in schizophrenia, major depressive disorder (MDD), and bipolar disorder.
Collapse
Affiliation(s)
- Chin-Chuen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tiao-Lai Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Genomic and Proteomic Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
37
|
Mezquida G, Penadés R, Cabrera B, Savulich G, Lobo A, González-Pinto A, Penzol M, Corripio I, Fernandez-Egea E, Gassó P, Cuesta M, Bernardo M. Association of the brain-derived neurotrophic factor Val66Met polymorphism with negative symptoms severity, but not cognitive function, in first-episode schizophrenia spectrum disorders. Eur Psychiatry 2020; 38:61-69. [DOI: 10.1016/j.eurpsy.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/18/2016] [Accepted: 04/24/2016] [Indexed: 12/12/2022] Open
Abstract
AbstractObjectiveA functional polymorphism of the brain-derived neurotrophic factor gene (BDNF) Val66Met has been associated with cognitive function and symptom severity in patients with schizophrenia. It has been suggested that the Val66Met polymorphism has a role as a modulator in a range of clinical features of the illness, including symptoms severity, therapeutic responsiveness, age of onset, brain morphology and cognitive function. However, little work has been done in first-episode schizophrenia (FES) spectrum disorders. The objective of this study is to investigate the association of the BDNF Val66Met polymorphism on cognitive function and clinical symptomatology in FES patients.MethodsUsing a cross-sectional design in a cohort of 204 patients with FES or a schizophrenia spectrum disorder and 204 healthy matched controls, we performed BDNF Val66Met genotyping and tested its relationship with cognitive testing (attention, working memory, learning/verbal memory and reasoning/problem-solving) and assessment of clinical symptom severity.ResultsThere was no significant influence of the BDNF allele frequency on cognitive factor scores in either patients or controls. An augmented severity of negative symptoms was found in FES patients that carried the Met allele.ConclusionsThe results of this study suggest that in patients with a first-episode of schizophrenia or a schizophrenia spectrum disorder, the BDNF Val66Met polymorphism does not exert an influence on cognitive functioning, but is associated with negative symptoms severity. BDNF may serve as suitable marker of negative symptomatology severity in FES patients within the schizophrenia spectrum.
Collapse
|
38
|
Abstract
The brain-derived neurotrophic factor (BDNF) is a secretory growth factor that promotes neuronal proliferation and survival, synaptic plasticity and long-term potentiation in the central nervous system. Brain-derived neurotrophic factor biosynthesis and secretion are chrono-topically regulated processes at the cellular level, accounting for specific localizations and functions. Given its role in regulating brain development and activity, BDNF represents a potentially relevant gene for schizophrenia, and indeed BDNF and its non-synonymous functional variant, rs6265 (C → T, Val → Met) have been widely studied in psychiatric genetics. Human and animal studies have indicated that brain-derived neurotrophic factor is relevant for schizophrenia-related phenotypes, and that: (1) fine-tuned regulation of brain-derived neurotrophic factor secretion and activity is necessary to guarantee brain optimal development and functioning; (2) the Val → Met substitution is associated with impaired activity-dependent secretion of brain-derived neurotrophic factor; (3) disruption of brain-derived neurotrophic factor signaling is associated with altered synaptic plasticity and neurodevelopment. However, genome-wide association studies failed to associate the BDNF locus with schizophrenia, even though a sub-threshold association exists. Here, we will review studies focused on the relationship between the genetic variation of BDNF and schizophrenia, trying to fill the gap between genetic risk per se and insights from molecular biology. A deeper understanding of brain-derived neurotrophic factor biology and of the epigenetic regulation of brain-derived neurotrophic factor and its interactome during development may help clarifying the potential role of this gene in schizophrenia, thus informing development of brain-derived neurotrophic factor-based strategies of prevention and treatment of this disorder.
Collapse
|
39
|
Wang YM, Yang ZY, Cai XL, Zhou HY, Zhang RT, Yang HX, Liang YS, Zhu XZ, Madsen KH, Sørensen TA, Møller A, Wang Z, Cheung EFC, Chan RCK. Identifying Schizo-Obsessive Comorbidity by Tract-Based Spatial Statistics and Probabilistic Tractography. Schizophr Bull 2020; 46:442-453. [PMID: 31355879 PMCID: PMC7442329 DOI: 10.1093/schbul/sbz073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A phenomenon in schizophrenia patients that deserves attention is the high comorbidity rate with obsessive-compulsive disorder (OCD). Little is known about the neurobiological basis of schizo-obsessive comorbidity (SOC). We aimed to investigate whether specific changes in white matter exist in patients with SOC and the relationship between such abnormalities and clinical parameters. Twenty-eight patients with SOC, 28 schizophrenia patients, 30 OCD patients, and 30 demographically matched healthy controls were recruited. Using Tract-based Spatial Statistics and Probabilistic Tractography, we examined the pattern of white matter abnormalities in these participants. We also used ANOVA and Support Vector Classification of various white matter indices and structural connection probability to further examine white matter changes among the 4 groups. We found that patients with SOC had decreased fractional anisotropy (FA) and increased radial diffusivity in the right sagittal stratum and the left crescent of the fornix/stria terminalis compared with healthy controls. We also found changed connection probability in the Default Mode Network, the Subcortical Network, the Attention Network, the Task Control Network, the Visual Network, the Somatosensory Network, and the cerebellum in the SOC group compared with the other 3 groups. The classification results further revealed that FA features could differentiate the SOC group from the other 3 groups with an accuracy of .78. These findings highlight the specific white matter abnormalities found in patients with SOC.
Collapse
Affiliation(s)
- Yong-Ming Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhuo-Ya Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin-Lu Cai
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Yu Zhou
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Rui-Ting Zhang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Han-Xue Yang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yun-Si Liang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China
| | - Xiong-Zhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China,Medical Psychological Institute of Central South University, Changsha, Hunan, PR China
| | - Kristoffer Hougaard Madsen
- Sino-Danish Center for Education and Research, Beijing, PR China,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Thomas Alrik Sørensen
- Sino-Danish Center for Education and Research, Beijing, PR China,Centre for Cognitive Neuroscience, Department of Communication and Psychology, Aalborg University, Aalborg, Denmark
| | - Arne Møller
- Sino-Danish Center for Education and Research, Beijing, PR China,Department of Nuclear Medicine and PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Zhen Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administrative Region, PR China
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, PR China,Sino-Danish College, University of Chinese Academy of Sciences, Beijing, PR China,Sino-Danish Center for Education and Research, Beijing, PR China,Department of Psychology, University of Chinese Academy of Sciences, Beijing, PR China,To whom correspondence should be addressed: Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Beijing 100101, PR China; tel: 86-(0)10-64836274, fax: 86-(0)10-64836274, e-mail:
| |
Collapse
|
40
|
Hasbi A, Madras BK, Bergman J, Kohut S, Lin Z, Withey SL, George SR. Δ-Tetrahydrocannabinol Increases Dopamine D1-D2 Receptor Heteromer and Elicits Phenotypic Reprogramming in Adult Primate Striatal Neurons. iScience 2020; 23:100794. [PMID: 31972514 PMCID: PMC6971351 DOI: 10.1016/j.isci.2019.100794] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 11/01/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
Long-term cannabis users manifest deficits in dopaminergic functions, reflecting Δ9-tetrahydrocannabinol (THC)-induced neuroadaptive dysfunctional dopamine signaling, similar to those observed upon dopamine D1-D2 heteromer activation. The molecular mechanisms remain largely unknown. We show evolutionary and regional differences in D1-D2 heteromer abundance in mammalian striatum. Importantly, chronic THC increased the number of D1-D2 heteromer-expressing neurons, and the number of heteromers within individual neurons in adult monkey striatum. The majority of these neurons displayed a phenotype co-expressing the characteristic markers of both striatonigral and striatopallidal neurons. Furthermore, THC increased D1-D2-linked calcium signaling markers (pCaMKIIα, pThr75-DARPP-32, BDNF/pTrkB) and inhibited cyclic AMP signaling (pThr34-DARPP-32, pERK1/2, pS845-GluA1, pGSK3). Cannabidiol attenuated most but not all of these THC-induced neuroadaptations. Targeted pathway analyses linked these changes to neurological and psychological disorders. These data underline the importance of the D1-D2 receptor heteromer in cannabis use-related disorders, with THC-induced changes likely responsible for the reported adverse effects observed in heavy long-term users.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Bertha K Madras
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Stephen Kohut
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Zhicheng Lin
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Sarah L Withey
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; McLean Hospital, Belmont, USA
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada; Department of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
41
|
Laidi C, Levenes C, Suarez-Perez A, Février C, Durand F, Bouaziz N, Januel D. Cognitive Impact of Cerebellar Non-invasive Stimulation in a Patient With Schizophrenia. Front Psychiatry 2020; 11:174. [PMID: 32256404 PMCID: PMC7090138 DOI: 10.3389/fpsyt.2020.00174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 02/24/2020] [Indexed: 12/25/2022] Open
Abstract
Cerebellum plays a role in the regulation of cognitive processes. Cerebellar alterations could explain cognitive impairments in schizophrenia. We describe the case of a 50 years old patient with schizophrenia whom underwent cerebellar transcranial direct current stimulation (tDCS). In order to study the effect of cerebellar stimulation on cognitive functions, the patient underwent a neuropsychological assessment and an eyeblink conditioning (EBC) protocol. Although the effect of brain stimulation cannot be only assessed in a single-case study, our results suggest that cerebellar stimulation may have an effect on a broad range of cognitive functions typically impaired in patients with schizophrenia, including verbal episodic, short term, and working memory. In addition to neuropsychological tests, we evaluated the cerebellar function by performing EBC before and after tDCS. Our data suggest that tDCS can improve EBC. Further clinical trials are required for better understanding of how cerebellar stimulation can modulate cognitive processes in patients with schizophrenia and healthy controls.
Collapse
Affiliation(s)
- Charles Laidi
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche Biomédicale, Psychiatrie Translationnelle, Créteil, France.,UNIACT, Psychiatry Team, Neurospin Neuroimaging Platform, CEA Saclay, Gif-sur-Yvette, France.,Fondation Fondamental, Créteil, France
| | - Carole Levenes
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Alex Suarez-Perez
- Integrative Neuroscience and Cognition Center (INCC UMR8002), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, University of Paris, Paris, France
| | - Caroline Février
- Pôle de Psychiatrie, Assistance Publique-Hôpitaux de Paris (AP-HP), Faculté de Médecine de Créteil, DMU IMPACT, Hôpitaux Universitaires Mondor, Créteil, France
| | - Florence Durand
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Noomane Bouaziz
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| | - Dominique Januel
- Hôpital de Ville Evrard, Unité de Recherche Clinique, Neuilly-sur-Marne, France
| |
Collapse
|
42
|
Fu X, Wang J, Du J, Sun J, Baranova A, Zhang F. BDNF Gene's Role in Schizophrenia: From Risk Allele to Methylation Implications. Front Psychiatry 2020; 11:564277. [PMID: 33384622 PMCID: PMC7769935 DOI: 10.3389/fpsyt.2020.564277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/25/2020] [Indexed: 11/24/2022] Open
Abstract
Background: Schizophrenia (SZ) is a severe chronic mental disorder with complex genetic mechanisms. Brain-derived neurotrophic factor (BDNF) is one of promising candidate genes for SZ, and rs6265 is a non-synonymous single nucleotide polymorphism (SNP) in BDNF. Methods: In this study, we performed a case-control association study of rs6265 in a cohort of Han Chinese population from eastern China, including 1,407 SZ patients and 1,136 healthy controls; and carried out a cis-mQTL (Methylation Quantitative Trait Loci) analysis for BDNF rs6265. Results: We found a positive association of rs6265 with SZ (P = 0.037), with the minor allele (A) of rs6265 conferring a protecting effect for SZ (OR = 0.89). Furthermore, cis-mQTL analysis indicates that rs6265 is associated with several methylation loci surrounding BDNF. Conclusions: Together, our findings provide further evidence to support the involvement of BDNF gene in the genesis of SZ.
Collapse
Affiliation(s)
- Xiaoqian Fu
- Department of Clinical Psychology, Suzhou Guangji Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Jun Wang
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jianbin Du
- Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Jing Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA, United States.,Research Centre for Medical Genetics, Moscow, Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Bawari S, Tewari D, Argüelles S, Sah AN, Nabavi SF, Xu S, Vacca RA, Nabavi SM, Shirooie S. Targeting BDNF signaling by natural products: Novel synaptic repair therapeutics for neurodegeneration and behavior disorders. Pharmacol Res 2019; 148:104458. [DOI: 10.1016/j.phrs.2019.104458] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/13/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
44
|
Kim S, Watt T, Ceballos N, Sharma S. Adverse childhood experiences and neuroinflammatory biomarkers-The role of sex. Stress Health 2019; 35:432-440. [PMID: 31099473 DOI: 10.1002/smi.2871] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022]
Abstract
Despite the growing interest in adverse childhood experiences and biomarkers, less attention has been paid to multiple biomarkers as representing interrelated systems among college students. Guided by the neuroinflammatory pathway hypothesis, the current project takes the initial step in examining the link between three types of childhood adversity and biomarkers of neuroplasticity (brain-derived neurotropic factor [BDNF]) and low-grade inflammation (C-reactive protein [CRP]) in an overarching model and whether this link may differ in men and women. Undergraduate students (n = 85) were recruited through multiple departments from a state university. The participants responded to the detailed online survey questionnaire on childhood adversity and provided one blood sample via venous blood draw. Given that CRP and BDNF represent two interrelated systems, structural equation models were considered the most suitable for the analyses. The findings partially support neural and inflammatory pathways, such that childhood adversity and particularly family dysfunction have a significant positive effect on BDNF (b = 30.41, p < .01). The link between family dysfunction and CRP was stronger in female students (b = 0.57, p < .05). Results suggest that interventions for college students with family dysfunctions may need to target different physiological and behavioral outcomes for male and female students.
Collapse
Affiliation(s)
- Seoyoun Kim
- Department of Sociology, Texas State University, San Marcos, Texas
| | - Toni Watt
- Department of Sociology, Texas State University, San Marcos, Texas
| | - Natalie Ceballos
- Department of Psychology, Texas State University, San Marcos, Texas
| | - Shobhit Sharma
- Department of Biology, Texas State University, San Marcos, Texas
| |
Collapse
|
45
|
Jones R, Craig G, Bhattacharya J. Brain-Derived Neurotrophic Factor Val66Met Polymorphism Is Associated With a Reduced ERP Component Indexing Emotional Recollection. Front Psychol 2019; 10:1922. [PMID: 31496979 PMCID: PMC6712090 DOI: 10.3389/fpsyg.2019.01922] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/05/2019] [Indexed: 12/17/2022] Open
Abstract
The Met allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is associated with reduced functioning of the amygdala and hippocampus. It has been linked to major psychiatric conditions, including depression and post-traumatic stress disorder, and is associated with deficits in episodic memory. The precise mechanisms of the BDNF gene’s influence on emotional memory are not well characterized, especially its impact on recognition. Two electrophysiological experiments of emotional memory were run on two independent samples genotyped for BDNF Val66Met. Event-related potentials (ERPs) corresponding to the recognition of negative and neutral words (Experiment 1, N = 37) and negative and positive words (Experiment 2, N = 23) were recorded, and the late parietal component (LPC), typically associated with conscious recollection, was analyzed. In Experiment 1, a reduced LPC was observed in Met carriers (N = 12) compared to Val homozygotes (N = 25) in the negative condition, but the group difference was not present in the neutral condition. In Experiment 2, the reduced LPC was seen in Met carriers (N = 12) compared to Val homozygotes (N = 11) across both conditions. This study provides the first evidence of an association between the BDNF Val66Met genotype and the late parietal electrophysiological component, suggesting that the conscious experience of emotional recollection may differ according to BDNF Val66Met genotype. Further, these results suggest that this effect is likely due to emotional arousal rather than valence polarity. Results were discussed with reference to the possible mechanisms by which emotional recollection deficits may contribute to psychopathology.
Collapse
Affiliation(s)
- Rhiannon Jones
- Department of Psychology, University of Winchester, Winchester, United Kingdom.,Department of Psychology, University of Westminster, London, United Kingdom
| | - Gavin Craig
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Joydeep Bhattacharya
- Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| |
Collapse
|
46
|
Golimbet VE, Kaleda VG, Korovaitseva GI, Lezheiko TV, Kasparov SV, Krikova EV, Tikhonov DV. [Genetic variations associated with premorbid personality in patients with schizophrenia]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:55-59. [PMID: 31089096 DOI: 10.17116/jnevro201911903155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To search for genetic variants associated with premorbid personality in patients with schizophrenia. MATERIAL AND METHODS The sample included 272 men diagnosed with schizophrenia or schizoaffective disorder. Patients were divided into 3 groups based on premorbid personality difficulties: mild (group 1, n=110), moderate (group 2, n=113), marked (group 3, n=49). The following polymorphisms were genotyped: 5-HTR2A (T102C), 5-HTTLPR, BDNF (Val66Met), CRP (-717A>G). RESULTS A significant increase in the frequency of the CC (5-HTR2A T102C), LL (5-HTTLPR) and Met/Met (BDNF Val66Met) genotypes was identified in group 3 compared to group 1. Frequencies of CC and LL genotypes were significantly higher in group 2 compared to group 1 as well. The differences between group 2 and group 3 were found only for the Met/Met genotype. There were no between-group differences in the frequencies of CRP (-717A>G) genotypes. CONCLUSION 5-HTR2A (T102C), 5-HTTLPR, BDNF (Val66Met) polymorphisms previously reported to modify schizophrenia course are also associated with premorbid personality in schizophrenic patients.
Collapse
Affiliation(s)
| | - V G Kaleda
- Mental Health Research Center, Moscow, Russia
| | | | | | | | - E V Krikova
- Mental Health Research Center, Moscow, Russia
| | | |
Collapse
|
47
|
Kirli U, Binbay T, Drukker M, Elbi H, Kayahan B, Gökçelli DK, Özkınay F, Onay H, Alptekin K, van Os J. Is BDNF-Val66Met polymorphism associated with psychotic experiences and psychotic disorder outcome? Evidence from a 6 years prospective population-based cohort study. Am J Med Genet B Neuropsychiatr Genet 2019; 180:113-121. [PMID: 29785763 DOI: 10.1002/ajmg.b.32641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/05/2018] [Accepted: 04/23/2018] [Indexed: 12/19/2022]
Abstract
There is little research on genetic risk for the extended psychosis phenotype ranging from psychotic experiences (PEs) to psychotic disorders (PDs). In this general population-based prospective cohort study, the longitudinal associations between BDNF-Val66Met polymorphism and the different levels of the extended psychosis phenotype were investigated. Addresses were contacted in a multistage clustered probability sampling frame covering 11 districts and 302 neighborhoods at baseline (n = 4011). A nested case-control study (n = 366) recruited individuals with PEs and PDs as well as individuals with no psychotic symptoms. In this subgroup, blood sampling for genetic analysis and assessment of environmental exposures were carried out, followed by clinical re-appraisal at follow-up 6 years later (n = 254). The BDNF-Val66Met polymorphism was significantly associated with the extended psychosis phenotype. The pattern of the association was that the BDNF-Val66Met polymorphism impacted in a dose-response but extra-linear fashion, with stronger impact at the PD end of the extended psychosis phenotype. Associations were still significant after adjusting for sociodemographic factors and environmental exposures including life events, childhood adversity, socioeconomic status, urbanicity, and cannabis use. The BDNF-Val66Met polymorphism may index susceptibility to expression of psychosis along a spectrum.
Collapse
Affiliation(s)
- Umut Kirli
- Department of Psychiatry, Van Education and Research Hospital, Van, Turkey.,School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Tolga Binbay
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Marjan Drukker
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hayriye Elbi
- Faculty of Medicine, Department of Psychiatry, Ege University, Izmir, Turkey
| | - Bülent Kayahan
- Faculty of Medicine, Department of Psychiatry, Ege University, Izmir, Turkey
| | | | - Ferda Özkınay
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Hüseyin Onay
- Faculty of Medicine, Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Köksal Alptekin
- Faculty of Medicine, Department of Psychiatry, Dokuz Eylül University, Izmir, Turkey
| | - Jim van Os
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Psychology, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Psychosis Studies, Institute of Psychiatry, King's College, King's Health Partners, London, United Kingdom.,Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
48
|
Schweiger JI, Bilek E, Schäfer A, Braun U, Moessnang C, Harneit A, Post P, Otto K, Romanczuk-Seiferth N, Erk S, Wackerhagen C, Mattheisen M, Mühleisen TW, Cichon S, Nöthen MM, Frank J, Witt SH, Rietschel M, Heinz A, Walter H, Meyer-Lindenberg A, Tost H. Effects of BDNF Val 66Met genotype and schizophrenia familial risk on a neural functional network for cognitive control in humans. Neuropsychopharmacology 2019; 44:590-597. [PMID: 30375508 PMCID: PMC6333795 DOI: 10.1038/s41386-018-0248-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 10/16/2018] [Indexed: 12/16/2022]
Abstract
Cognitive control represents an essential neuropsychological characteristic that allows for the rapid adaption of a changing environment by constant re-allocation of cognitive resources. This finely tuned mechanism is impaired in psychiatric disorders such as schizophrenia and contributes to cognitive deficits. Neuroimaging has highlighted the contribution of the anterior cingulate cortex (ACC) and prefrontal regions (PFC) on cognitive control and demonstrated the impact of genetic variation, as well as genetic liability for schizophrenia. In this study, we aimed to examine the influence of the functional single-nucleotide polymorphism (SNP) rs6265 of a plasticity-related neurotrophic factor gene, BDNF (Val66Met), on cognitive control. Strong evidence implicates BDNF Val66Met in neural plasticity in humans. Furthermore, several studies suggest that although the variant is not convincingly associated with schizophrenia risk, it seems to be a modifier of the clinical presentation and course of the disease. In order to clarify the underlying mechanisms using functional magnetic resonance imaging (fMRI), we studied the effects of this SNP on ACC and PFC activation, and the connectivity between these regions in a discovery sample of 85 healthy individuals and sought to replicate this effect in an independent sample of 253 individuals. Additionally, we tested the identified imaging phenotype in relation to schizophrenia familial risk in a sample of 58 unaffected first-degree relatives of schizophrenia patients. We found a significant increase in interregional connectivity between ACC and PFC in the risk-associated BDNF 66Met allele carriers. Furthermore, we replicated this effect in an independent sample and demonstrated its independence of structural confounds, as well as task specificity. A similar coupling increase was detectable in individuals with increased familial risk for schizophrenia. Our results show that a key neural circuit for cognitive control is influenced by a plasticity-related genetic variant, which may render this circuit particular susceptible to genetic and environmental risk factors for schizophrenia.
Collapse
Affiliation(s)
- J. I. Schweiger
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - E. Bilek
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Schäfer
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - U. Braun
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - C. Moessnang
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Harneit
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - P. Post
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - K. Otto
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - N. Romanczuk-Seiferth
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - S. Erk
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - C. Wackerhagen
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - M. Mattheisen
- 0000 0001 1956 2722grid.7048.bDepartment of Biomedicine and Centre for Integrative Sequencing, iSEQ Aarhus University, Aarhus, Denmark ,grid.452548.a0000 0000 9817 5300The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus and Copenhagen, Denmark
| | - T. W. Mühleisen
- 0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany ,0000 0004 1937 0642grid.6612.3Department of Biomedicine, University of Basel, Basel, Switzerland
| | - S. Cichon
- 0000 0001 2297 375Xgrid.8385.6Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany ,grid.410567.1Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - M. M. Nöthen
- 0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127 Germany ,0000 0001 2240 3300grid.10388.32Department of Genomics, Life & Brain Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, 53127 Germany
| | - J. Frank
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - S. H. Witt
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - M. Rietschel
- 0000 0001 2190 4373grid.7700.0Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - A. Heinz
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - H. Walter
- 0000 0001 2218 4662grid.6363.0Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Campus Mitte, Berlin, Germany
| | - A. Meyer-Lindenberg
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - H. Tost
- 0000 0001 2190 4373grid.7700.0Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
49
|
Kırlı U, Binbay T, Elbi H, Drukker M, Kayahan B, Özkınay F, Onay H, Alptekin K, van Os J. Izmir Mental Health Cohort for Gene-Environment Interaction in Psychosis (TürkSch): Assessment of the Extended and Transdiagnostic Psychosis Phenotype and Analysis of Attrition in a 6-Year Follow-Up of a Community-Based Sample. Front Psychiatry 2019; 10:554. [PMID: 31447712 PMCID: PMC6692632 DOI: 10.3389/fpsyt.2019.00554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: TürkSch is a prospective, longitudinal study in a representative community sample (İzmir, Turkey), consisting of several data collection stages, to screen and follow-up mental health outcomes, with a special focus on the extended and transdiagnostic psychosis phenotype. The aim of the present paper is to describe the research methodology, data collection results, and associations with noncontact and refusal in the longitudinal arm. Methods: Households were contacted in a multistage clustered probability sampling frame, covering 11 districts and 302 neighborhoods at baseline (n = 4,011) and at 6-year follow-up (n = 2,185). Both at baseline and at follow-up, participants were interviewed with the Composite International Diagnostic Interview. Participants with probable psychotic disorder were reinterviewed with the Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (SCID)-I either at the hospital or at the participant's residence. Relevant neighborhood-level measures were assessed in a separate sample (n = 5,124) in addition to individual-level measures. Candidate gene-by-environment interactions were investigated using two nested case-control studies. Results: Individuals with a mental health problem had lower refusal rates. Older and lower educated individuals had a lower probability of noncontact. Discussion: The TürkSch study has an advanced design to meet the challenges of evaluating the multidimensional etiological and phenomenological nature of the extended and transdiagnostic psychosis phenotype.
Collapse
Affiliation(s)
- Umut Kırlı
- Department of Psychiatry, Faculty of Medicine, Yuzuncu Yil University, Van, Turkey.,Maastricht University Medical Centre, School of Mental Health and Neuroscience, Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, Maastricht, Netherlands
| | - Tolga Binbay
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hayriye Elbi
- Department of Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Marjan Drukker
- Maastricht University Medical Centre, School of Mental Health and Neuroscience, Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, Maastricht, Netherlands
| | - Bülent Kayahan
- Department of Psychiatry, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ferda Özkınay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Hüseyin Onay
- Department of Medical Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Köksal Alptekin
- Department of Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Jim van Os
- Maastricht University Medical Centre, School of Mental Health and Neuroscience, Department of Psychiatry and Psychology, South Limburg Mental Health Research and Teaching Network, Maastricht, Netherlands.,Department of Psychosis Studies, Institute of Psychiatry, King's College, King's Health Partners, London, United Kingdom.,Department of Psychiatry, Brain Centre Rudolf Magnus, Utrecht University Medical Centre, Utrecht, Netherlands
| |
Collapse
|
50
|
Nedic Erjavec G, Svob Strac D, Tudor L, Konjevod M, Sagud M, Pivac N. Genetic Markers in Psychiatry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:53-93. [PMID: 31705490 DOI: 10.1007/978-981-32-9721-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Psychiatric disorders such as addiction (substance use and addictive disorders), depression, eating disorders, schizophrenia, and post-traumatic stress disorder (PTSD) are severe, complex, multifactorial mental disorders that carry a high social impact, enormous public health costs, and various comorbidities as well as premature morbidity. Their neurobiological foundation is still not clear. Therefore, it is difficult to uncover new set of genes and possible genetic markers of these disorders since the understanding of the molecular imbalance leading to these disorders is not complete. The integrative approach is needed which will combine genomics and epigenomics; evaluate epigenetic influence on genes and their influence on neuropeptides, neurotransmitters, and hormones; examine gene × gene and gene × environment interplay; and identify abnormalities contributing to development of these disorders. Therefore, novel genetic approaches based on systems biology focused on improvement of the identification of the biological underpinnings might offer genetic markers of addiction, depression, eating disorders, schizophrenia, and PTSD. These markers might be used for early prediction, detection of the risk to develop these disorders, novel subtypes of the diseases and tailored, personalized approach to therapy.
Collapse
Affiliation(s)
- Gordana Nedic Erjavec
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Dubravka Svob Strac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Lucija Tudor
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marcela Konjevod
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia
| | - Marina Sagud
- School of Medicine, University of Zagreb, Salata 2, HR-10000, Zagreb, Croatia
- Department of Psychiatry, University Hospital Centre Zagreb, Kispaticeva 12, HR-10000, Zagreb, Croatia
| | - Nela Pivac
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, HR-10000, Zagreb, Croatia.
| |
Collapse
|