1
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Myers T, Birmingham EA, Rhoads BT, McGrath AG, Miles NA, Schuldt CB, Briand LA. Post-weaning social isolation alters sociability in a sex-specific manner. Front Behav Neurosci 2024; 18:1444596. [PMID: 39267986 PMCID: PMC11390411 DOI: 10.3389/fnbeh.2024.1444596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Adolescence is a critical period for brain development in humans and stress exposure during this time can have lasting effects on behavior and brain development. Social isolation and loneliness are particularly salient stressors that lead to detrimental mental health outcomes particularly in females, although most of the preclinical work on social isolation has been done in male animals. Our lab has developed a model of post-weaning adolescent social isolation that leads to increased drug reward sensitivity and altered neuronal structure in limbic brain regions. The current study utilized this model to determine the impact of adolescent social isolation on a three-chamber social interaction task both during adolescence and adulthood. We found that while post-weaning isolation does not alter social interaction during adolescence (PND45), it has sex-specific effects on social interaction in young adulthood (PND60), potentiating social interaction in male mice and decreasing it in female mice. As early life stress can activate microglia leading to alterations in neuronal pruning, we next examined the impact of inhibiting microglial activation with daily minocycline administration during the first 3 weeks of social isolation on these changes in social interaction. During adolescence, minocycline dampened social interaction in male mice, while having no effect in females. In contrast, during young adulthood, minocycline did not alter the impact of adolescent social isolation in males, with socially isolated males exhibiting higher levels of social interaction compared to their group housed counterparts. In females, adolescent minocycline treatment reversed the effect of social isolation leading to increased social interaction in the social isolation group, mimicking what is seen in naïve males. Taken together, adolescent social isolation leads to sex-specific effects on social interaction in young adulthood and adolescent minocycline treatment alters the effects of social isolation in females, but not males.
Collapse
Affiliation(s)
- Teneisha Myers
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Elizabeth A. Birmingham
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Brigham T. Rhoads
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Anna G. McGrath
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Nylah A. Miles
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| | - Carmen B. Schuldt
- Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Lisa A. Briand
- Neuroscience Program, Temple University, Philadelphia, PA, United States
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA, United States
| |
Collapse
|
3
|
Myers T, Birmingham EA, Rhoads BT, McGrath AG, Miles NA, Schuldt CB, Briand LA. Post-weaning social isolation alters sociability in a sex-specific manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603129. [PMID: 39026733 PMCID: PMC11257562 DOI: 10.1101/2024.07.11.603129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Adolescence is a critical period for brain development in humans and stress exposure during this time can have lasting effects on behavior and brain development. Social isolation and loneliness are particularly salient stressors that lead to detrimental mental health outcomes particularly in females, although most of the preclinical work on social isolation has been done in male animals. Our lab has developed a model of post-weaning adolescent social isolation that leads to increased drug reward sensitivity and altered neuronal structure in limbic brain regions. The current study utilized this model to determine the impact of adolescent social isolation on a three-chamber social interaction task both during adolescence and adulthood. We found that while post-weaning isolation does not alter social interaction during adolescence (PND45), it has sex-specific effects on social interaction in adulthood (PND60), potentiating social interaction in male mice and decreasing it in female mice. As early life stress can activate microglia leading to alterations in neuronal pruning, we next examined the impact of inhibiting microglial activation with daily minocycline administration during the first three weeks of social isolation on these changes in social interaction. During adolescence, minocycline dampened social interaction in male mice, while having no effect in females. In contrast, during adulthood, minocycline did not alter the impact of adolescent social isolation in males, with socially isolated males exhibiting higher levels of social interaction compared to their group housed counterparts. In females, adolescent minocycline treatment reversed the effect of social isolation leading to increased social interaction in the social isolation group, mimicking what is seen in naïve males. Taken together, adolescent social isolation leads to sex-specific effects on social interaction in adulthood and adolescent minocycline treatment alters the effects of social isolation in females, but not males.
Collapse
|
4
|
Vivarelli F, Morosini C, Rullo L, Losapio LM, Lacorte A, Sangiorgi S, Ghini S, Fagiolino I, Franchi P, Lucarini M, Candeletti S, Canistro D, Romualdi P, Paolini M. Effects of unburned tobacco smoke on inflammatory and oxidative mediators in the rat prefrontal cortex. Front Pharmacol 2024; 15:1328917. [PMID: 38333013 PMCID: PMC10851081 DOI: 10.3389/fphar.2024.1328917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Although the Food and Drug Administration has authorized the marketing of "heat-not-burn" (HnB) electronic cigarettes as a modified risk tobacco product (MRTP), toxicological effects of HnB smoke exposure on the brain are still unexplored. Here, paramagnetic resonance of the prefrontal cortex (PFC) of HnB-exposed rats shows a dramatic increase in reactive radical species (RRS) yield coupled with an inflammatory response mediated by NF-κB-target genes including TNF-α, IL-1β, and IL-6 and the downregulation of peroxisome proliferator-activated receptor (PPAR) alpha and gamma expression. The PFC shows higher levels of 8-hydroxyguanosine, a marker of DNA oxidative damage, along with the activation of antioxidant machinery and DNA repair systems, including xeroderma pigmentosum group C (XPC) protein complex and 8-oxoguanine DNA glycosylase 1. HnB also induces the expression of drug-metabolizing enzymes such as CYP1A1, CYP2A6, CYP2B6, and CYP2E, particularly involved in the biotransformation of nicotine and several carcinogenic agents such as aldehydes and polycyclic aromatic hydrocarbons here recorded in the HnB stick smoke. Taken together, these effects, from disruption of redox homeostasis, inflammation, PPAR manipulation along with enhanced bioactivation of neurotoxicants, and upregulation of cMYC protooncogene to impairment of primary cellular defense mechanisms, suggest a possible increased risk of brain cancer. Although the HnB device reduces the emission of tobacco toxicants, our findings indicate that its consumption may carry a risk of potential adverse health effects, especially in non-smokers so far. Further studies are needed to fully understand the long-term effects of these devices.
Collapse
Affiliation(s)
- Fabio Vivarelli
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Camilla Morosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Loredana Maria Losapio
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Antonio Lacorte
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Severino Ghini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | | | - Paola Franchi
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Marco Lucarini
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Donatella Canistro
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Moreno Paolini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Reverte I, Marchetti C, Pezza S, Zenoni SF, Scaringi G, Ferrucci L, D'Ottavio G, Pignataro A, Andolina D, Raspa M, Scavizzi F, Venniro M, Ramsey LA, Gross C, Caprioli D, Ragozzino D. Microglia-mediated calcium-permeable AMPAR accumulation in the nucleus accumbens drives hyperlocomotion during cocaine withdrawal. Brain Behav Immun 2024; 115:535-542. [PMID: 37967660 PMCID: PMC10915906 DOI: 10.1016/j.bbi.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/19/2023] [Accepted: 11/11/2023] [Indexed: 11/17/2023] Open
Abstract
During withdrawal from cocaine, calcium permeable-AMPA receptors (CP-AMPAR) progressively accumulate in nucleus accumbens (NAc) synapses, a phenomenon linked to behavioral sensitization and drug-seeking. Recently, it has been suggested that neuroimmune alterations might promote aberrant changes in synaptic plasticity, thus contributing to substance abuse-related behaviors. Here, we investigated the role of microglia in NAc neuroadaptations after withdrawal from cocaine-induced conditioned place preference (CPP). We depleted microglia using PLX5622-supplemented diet during cocaine withdrawal, and after the place preference test, we measured dendritic spine density and the presence of CP-AMPAR in the NAc shell. Microglia depletion prevented cocaine-induced changes in dendritic spines and CP-AMPAR accumulation. Furthermore, microglia depletion prevented conditioned hyperlocomotion without affecting drug-context associative memory. Microglia displayed fewer number of branches, resulting in a reduced arborization area and microglia control domain at late withdrawal. Our results suggest that microglia are necessary for the synaptic adaptations in NAc synapses during cocaine withdrawal and therefore represent a promising therapeutic target for relapse prevention.
Collapse
Affiliation(s)
- Ingrid Reverte
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudia Marchetti
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Pezza
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Soami F Zenoni
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giorgia Scaringi
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Laura Ferrucci
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Ginevra D'Ottavio
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Annabella Pignataro
- IRCCS Santa Lucia Foundation, Rome, Italy; Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Diego Andolina
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Marcello Raspa
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus "A. Buzzati-Traverso", Monterotondo (Rome), Italy
| | - Ferdinando Scavizzi
- National Research Council, Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), International Campus "A. Buzzati-Traverso", Monterotondo (Rome), Italy
| | - Marco Venniro
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, USA
| | - Leslie A Ramsey
- Behavioral Neuroscience Research Branch, Intramural Research Program, Baltimore NIDA, NIH, USA
| | - Cornelius Gross
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Monterotondo, Italy
| | - Daniele Caprioli
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | - Davide Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, Laboratory affiliated to Institute Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
6
|
Newton K, De Biase L. Substance Use and Addiction. ADVANCES IN NEUROBIOLOGY 2024; 37:343-355. [PMID: 39207701 DOI: 10.1007/978-3-031-55529-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Efforts to reveal the molecular, cellular, and circuit mechanisms of addiction have largely focused on neurons. Yet accumulating data regarding the ability of glial cells to impact synaptic function, circuit activity, and behavior demands that we explore how these nonneuronal cells contribute to substance use disorders and addiction. Important work has shown that glial cells, including microglia, exhibit changes in phenotype following exposure to drugs of abuse and that modification of glial responses can impact behaviors related to drug seeking and drug taking. While these are critical first steps to understanding how microglia can impact addiction, there are still substantial gaps in knowledge that need to be addressed. This chapter reviews some of the key studies that have shown how microglia are affected by and can contribute to addiction. It also discusses areas where more knowledge is urgently needed to reveal new therapeutic and preventative approaches.
Collapse
Affiliation(s)
- Keionna Newton
- Neuroscience Interdepartmental Graduate Program, University of California, Los Angeles, CA, USA
| | - Lindsay De Biase
- Department of Physiology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Kalivas PW, Gourley SL, Paulus MP. Intrusive thinking: Circuit and synaptic mechanisms of a transdiagnostic psychiatric symptom. Neurosci Biobehav Rev 2023; 150:105196. [PMID: 37094741 PMCID: PMC10249786 DOI: 10.1016/j.neubiorev.2023.105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Spontaneous thought is an adaptive cognitive process that can produce novel and insightful thought sequences useful in guiding future behavior. In many psychiatric disorders, spontaneous thinking becomes intrusive and uncontrolled, and can trigger symptoms such as craving, repetitive negative thinking and trauma-related memories. We link studies using clinical imaging and rodent modeling towards understanding the neurocircuitry and neuroplasticity of intrusive thinking. We propose a framework in which drugs or stress change the homeostatic set point of brain reward circuitry, which then impacts subsequent plasticity induced by drug/stress conditioned cues (metaplastic allostasis). We further argue for the importance of examining not only the canonical pre- and postsynapse, but also the adjacent astroglial protrusions and extracellular matrix that together form the tetrapartite synapse and that plasticity throughout the tetrapartite synapse is necessary for cue-induced drug or stress behaviors. This analysis reveals that drug use or trauma cause long-lasting allostatic brain plasticity that sets the stage for subsequent drug/trauma-associated cues to induce transient plasticity that can lead to intrusive thinking.
Collapse
Affiliation(s)
- Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| | - Shannon L Gourley
- Emory National Primate Research Center, Emory University, Department of Pediatrics and Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA; Emory National Primate Research Center, Emory University, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
8
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
9
|
Guo ML, Roodsari SK, Cheng Y, Dempsey RE, Hu W. Microglia NLRP3 Inflammasome and Neuroimmune Signaling in Substance Use Disorders. Biomolecules 2023; 13:922. [PMID: 37371502 DOI: 10.3390/biom13060922] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
During the last decade, substance use disorders (SUDs) have been increasingly recognized as neuroinflammation-related brain diseases. Various types of abused drugs (cocaine, methamphetamine, alcohol, opiate-like drugs, marijuana, etc.) can modulate the activation status of microglia and neuroinflammation levels which are involved in the pathogenesis of SUDs. Several neuroimmune signaling pathways, including TLR/NF-кB, reactive oxygen species, mitochondria dysfunction, as well as autophagy defection, etc., have been implicated in promoting SUDs. Recently, inflammasome-mediated signaling has been identified as playing critical roles in the microglia activation induced by abused drugs. Among the family of inflammasomes, NOD-, LRR-, and pyrin-domain-containing protein 3 (NLRP3) serves the primary research target due to its abundant expression in microglia. NLRP3 has the capability of integrating multiple external and internal inputs and coordinately determining the intensity of microglia activation under various pathological conditions. Here, we summarize the effects of abused drugs on NLRP3 inflammasomes, as well as others, if any. The research on this topic is still at an infant stage; however, the readily available findings suggest that NLRP3 inflammasome could be a common downstream effector stimulated by various types of abused drugs and play critical roles in determining abused-drug-mediated biological effects through enhancing glia-neuron communications. NLRP3 inflammasome might serve as a novel target for ameliorating the development of SUDs.
Collapse
Affiliation(s)
- Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Mawson ER, Morris BJ. A consideration of the increased risk of schizophrenia due to prenatal maternal stress, and the possible role of microglia. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110773. [PMID: 37116354 DOI: 10.1016/j.pnpbp.2023.110773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Schizophrenia is caused by interaction of a combination of genetic and environmental factors. Of the latter, prenatal exposure to maternal stress is reportedly associated with elevated disease risk. The main orchestrators of inflammatory processes within the brain are microglia, and aberrant microglial activation/function has been proposed to contribute to the aetiology of schizophrenia. Here, we evaluate the epidemiological and preclinical evidence connecting prenatal stress to schizophrenia risk, and consider the possible mediating role of microglia in the prenatal stress-schizophrenia relationship. Epidemiological findings are rather consistent in supporting the association, albeit they are mitigated by effects of sex and gestational timing, while the evidence for microglial activation is more variable. Rodent models of prenatal stress generally report lasting effects on offspring neurobiology. However, many uncertainties remain as to the mechanisms underlying the influence of maternal stress on the developing foetal brain. Future studies should aim to characterise the exact processes mediating this aspect of schizophrenia risk, as well as focussing on how prenatal stress may interact with other risk factors.
Collapse
Affiliation(s)
- Eleanor R Mawson
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
11
|
Nikbakhtzadeh M, Ranjbar H, Moradbeygi K, Zahedi E, Bayat M, Soti M, Shabani M. Cross-talk between the HPA axis and addiction-related regions in stressful situations. Heliyon 2023; 9:e15525. [PMID: 37151697 PMCID: PMC10161713 DOI: 10.1016/j.heliyon.2023.e15525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Addiction is a worldwide problem that has a negative impact on society by imposing significant costs on health care, public security, and the deactivation of the community economic cycle. Stress is an important risk factor in the development of addiction and relapse vulnerability. Here we review studies that have demonstrated the diverse roles of stress in addiction. Term searches were conducted manually in important reference journals as well as in the Google Scholar and PubMed databases, between 2010 and 2022. In each section of this narrative review, an effort has been made to use pertinent sources. First, we will provide an overview of changes in the Hypothalamus-Pituitary-Adrenal (HPA) axis component following stress, which impact reward-related regions including the ventral tegmental area (VTA) and nucleus accumbens (NAc). Then we will focus on internal factors altered by stress and their effects on drug addiction vulnerability. We conclude that alterations in neuro-inflammatory, neurotrophic, and neurotransmitter factors following stress pathways can impact related mechanisms on craving and relapse susceptibility.
Collapse
Affiliation(s)
- Marjan Nikbakhtzadeh
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Hoda Ranjbar
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
| | | | - Elham Zahedi
- Department of Physiology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monavareh Soti
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| | - Mohammad Shabani
- Neuroscience Research Center of Kerman, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran
- Corresponding author. Neuroscience Research Center, Neuropharmacology institute, Kerman University of Medical Sciences, Kerman, Postal Code: 76198-13159, Iran.
| |
Collapse
|
12
|
Sleep Deprivation Induces Dopamine System Maladaptation and Escalated Corticotrophin-Releasing Factor Signaling in Adolescent Mice. Mol Neurobiol 2023; 60:3190-3209. [PMID: 36813955 DOI: 10.1007/s12035-023-03258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
Sleep disruption is highly associated with the pathogenesis and progression of a wild range of psychiatric disorders. Furthermore, appreciable evidence shows that experimental sleep deprivation (SD) on humans and rodents evokes anomalies in the dopaminergic (DA) signaling, which are also implicated in the development of psychiatric illnesses such as schizophrenia or substance abuse. Since adolescence is a vital period for the maturation of the DA system as well as the occurrence of mental disorders, the present studies aimed to investigate the impacts of SD on the DA system of adolescent mice. We found that 72 h SD elicited a hyperdopaminergic status, with increased sensitivity to the novel environment and amphetamine (Amph) challenge. Also, altered neuronal activity and expression of striatal DA receptors were noticed in the SD mice. Moreover, 72 h SD influenced the immune status in the striatum, with reduced microglial phagocytic capacity, primed microglial activation, and neuroinflammation. The abnormal neuronal and microglial activity were putatively provoked by the enhanced corticotrophin-releasing factor (CRF) signaling and sensitivity during the SD period. Together, our findings demonstrated the consequences of SD in adolescents including aberrant neuroendocrine, DA system, and inflammatory status. Sleep insufficiency is a risk factor for the aberration and neuropathology of psychiatric disorders.
Collapse
|
13
|
Smiley CE, Wood SK. Stress- and drug-induced neuroimmune signaling as a therapeutic target for comorbid anxiety and substance use disorders. Pharmacol Ther 2022; 239:108212. [PMID: 35580690 DOI: 10.1016/j.pharmthera.2022.108212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/10/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Stress and substance use disorders remain two of the most highly prevalent psychiatric conditions and are often comorbid. While individually these conditions have a debilitating impact on the patient and a high cost to society, the symptomology and treatment outcomes are further exacerbated when they occur together. As such, there are few effective treatment options for these patients, and recent investigation has sought to determine the neural processes underlying the co-occurrence of these disorders to identify novel treatment targets. One such mechanism that has been linked to stress- and addiction-related conditions is neuroimmune signaling. Increases in inflammatory factors across the brain have been heavily implicated in the etiology of these disorders, and this review seeks to determine the nature of this relationship. According to the "dual-hit" hypothesis, also referred to as neuroimmune priming, prior exposure to either stress or drugs of abuse can sensitize the neuroimmune system to be hyperresponsive when exposed to these insults in the future. This review completes an examination of the literature surrounding stress-induced increases in inflammation across clinical and preclinical studies along with a summarization of the evidence regarding drug-induced alterations in inflammatory factors. These changes in neuroimmune profiles are also discussed within the context of their impact on the neural circuitry responsible for stress responsiveness and addictive behaviors. Further, this review explores the connection between neuroimmune signaling and susceptibility to these conditions and highlights the anti-inflammatory pharmacotherapies that may be used for the treatment of stress and substance use disorders.
Collapse
Affiliation(s)
- Cora E Smiley
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience; University of South Carolina School of Medicine, Columbia, SC 29209, United States of America; WJB Dorn Veterans Administration Medical Center, Columbia, SC 29209, United States of America.
| |
Collapse
|
14
|
Webb SM, Sacramento AD, McCloskey MA, Wroten MG, Ploense KL, Kippin TE, Ben-Shahar O, Szumlinski KK. The incubation of cocaine craving is dissociated from changes in glial cell markers within prefrontal cortex and nucleus accumbens of rats. ADDICTION NEUROSCIENCE 2022; 3:100030. [PMID: 36034166 PMCID: PMC9410194 DOI: 10.1016/j.addicn.2022.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Sierra M. Webb
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Arianne D. Sacramento
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Megan A. McCloskey
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Melissa G. Wroten
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Kyle L. Ploense
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Tod E. Kippin
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | - Osnat Ben-Shahar
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106-9660, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
15
|
Avalos MP, Guzman AS, Garcia-Keller C, Mongi-Bragato B, Esparza MA, Rigoni D, Sanchez MA, Calfa GD, Bollati FA, Cancela LM. Impairment of glutamate homeostasis in the nucleus accumbens core underpins cross-sensitization to cocaine following chronic restraint stress. Front Physiol 2022; 13:896268. [PMID: 36091376 PMCID: PMC9462460 DOI: 10.3389/fphys.2022.896268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Though the facilitating influence of stress on drug abuse is well documented, the mechanisms underlying this interaction have yet to be fully elucidated. The present study explores the neurobiological mechanisms underpinning the sensitized response to the psychomotor-stimulating effects of cocaine following chronic restraint stress (CRS), emphasizing the differential contribution of both subcompartments of the nucleus accumbens (NA), the core (NAcore) and shell (NAshell), to this phenomenon. Adult male Wistar rats were restrained for 2 h/day for 7 days and, 2 weeks after the last stress exposure (day 21), all animals were randomly assigned to behavioral, biochemical or neurochemical tests. Our results demonstrated that the enduring CRS-induced increase in psychostimulant response to cocaine was paralleled by an increase of extracellular dopamine levels in the NAcore, but not the NAshell, greater than that observed in the non-stress group. Furthermore, we found that CRS induced an impairment of glutamate homeostasis in the NAcore, but not the NAshell. Its hallmarks were increased basal extracellular glutamate concentrations driven by a CRS-induced downregulation of GLT-1, blunted glutamate levels in response to cocaine and postsynaptic structural remodeling in pre-stressed animals. In addition, ceftriaxone, a known GLT-1 enhancer, prevented the CRS-induced GLT-1 downregulation, increased basal extracellular glutamate concentrations and changes in structural plasticity in the NAcore as well as behavioral cross-sensitization to cocaine, emphasizing the biological importance of GLT-1 in the comorbidity between chronic stress exposure and drug abuse. A future perspective concerning the paramount relevance of the stress-induced disruption of glutamate homeostasis as a vulnerability factor to the development of stress and substance use disorders during early life or adulthood of descendants is provided.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Flavia A. Bollati
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Liliana M. Cancela
- Departamento de Farmacología Otto Orsingher, Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
16
|
Jiang YL, Wang XS, Li XB, Liu A, Fan QY, Yang L, Feng B, Zhang K, Lu L, Qi JY, Yang F, Song DK, Wu YM, Zhao MG, Liu SB. Tanshinone IIA improves contextual fear- and anxiety-like behaviors in mice via the CREB/BDNF/TrkB signaling pathway. Phytother Res 2022; 36:3932-3948. [PMID: 35801985 DOI: 10.1002/ptr.7540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 05/27/2022] [Accepted: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) is one of the most common psychiatric diseases, which is characterized by the typical symptoms such as re-experience, avoidance, and hyperarousal. However, there are few drugs for PTSD treatment. In this study, conditioned fear and single-prolonged stress were employed to establish PTSD mouse model, and we investigated the effects of Tanshinone IIA (TanIIA), a natural product isolated from traditional Chinese herbal Salvia miltiorrhiza, as well as the underlying mechanisms in mice. The results showed that the double stress exposure induced obvious PTSD-like symptoms, and TanIIA administration significantly decreased freezing time in contextual fear test and relieved anxiety-like behavior in open field and elevated plus maze tests. Moreover, TanIIA increased the spine density and upregulated synaptic plasticity-related proteins as well as activated CREB/BDNF/TrkB signaling pathway in the hippocampus. Blockage of CREB remarkably abolished the effects of TanIIA in PTSD model mice and reversed the upregulations of p-CREB, BDNF, TrkB, and synaptic plasticity-related protein induced by TanIIA. The molecular docking simulation indicated that TanIIA could interact with the CREB-binding protein. These findings indicate that TanIIA ameliorates PTSD-like behaviors in mice by activating the CREB/BDNF/TrkB pathway, which provides a basis for PTSD treatment.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Xu-Bo Li
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - An Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qing-Yu Fan
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Le Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ban Feng
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Liang Lu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Jing-Yu Qi
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Fan Yang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Da-Ke Song
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Yu-Mei Wu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Ming-Gao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Shui-Bing Liu
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
17
|
Ortinski PI, Reissner KJ, Turner J, Anderson TA, Scimemi A. Control of complex behavior by astrocytes and microglia. Neurosci Biobehav Rev 2022; 137:104651. [PMID: 35367512 PMCID: PMC9119927 DOI: 10.1016/j.neubiorev.2022.104651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/28/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Evidence that glial cells influence behavior has been gaining a steady foothold in scientific literature. Out of the five main subtypes of glial cells in the brain, astrocytes and microglia have received an outsized share of attention with regard to shaping a wide spectrum of behavioral phenomena and there is growing appreciation that the signals intrinsic to these cells as well as their interactions with surrounding neurons reflect behavioral history in a brain region-specific manner. Considerable regional diversity of glial cell phenotypes is beginning to be recognized and may contribute to behavioral outcomes arising from circuit-specific computations within and across discrete brain nuclei. Here, we summarize current knowledge on the impact of astrocyte and microglia activity on behavioral outcomes, with a specific focus on brain areas relevant to higher cognitive control, reward-seeking, and circadian regulation.
Collapse
Affiliation(s)
- P I Ortinski
- Department of Neuroscience, University of Kentucky, USA
| | - K J Reissner
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill, USA
| | - J Turner
- Department of Pharmaceutical Sciences, University of Kentucky, USA
| | - T A Anderson
- Department of Neuroscience, University of Kentucky, USA
| | - A Scimemi
- Department of Biology, State University of New York at Albany, USA
| |
Collapse
|
18
|
Wiss DA, Brewerton TD, Tomiyama AJ. Limitations of the protective measure theory in explaining the role of childhood sexual abuse in eating disorders, addictions, and obesity: an updated model with emphasis on biological embedding. Eat Weight Disord 2022; 27:1249-1267. [PMID: 34476763 DOI: 10.1007/s40519-021-01293-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022] Open
Abstract
In addition to its immediate negative consequences, childhood sexual abuse is associated with lifelong deleterious mental and physical health outcomes. This review employs a biopsychosocial perspective to better understand pathways from childhood sexual abuse to eating disorders, food and drug addictions, and obesity across the life course. Guided by an updated conceptual model, this review delineates how the biological embedding of childhood sexual abuse triggers a cascade of interrelated conditions that often result in failed attempts at weight suppression and eventually obesity. Such biological embedding involves pathways such as inflammation, allostatic load, reward sensitivity, activation of the hypothalamic-pituitary-adrenal axis, epigenetics, and structural and functional changes in the brain. These pathways are in turn theorized to lead to food addiction, substance use disorder, and eating disorders-each with potential pathways toward obesity over time. Predisposing factors to childhood sexual abuse including gender, culture, and age are discussed. This model calls into question the longstanding "protective measure" theory that purports individuals exposed to sexual abuse will deliberately or subconsciously gain weight in attempt to prevent future victimization. A more comprehensive understanding of the mechanisms by which childhood sexual abuse becomes biologically embedded may help clinicians and survivors normalize and/or address disordered eating and weight-related outcomes, as well as identify intervention strategies.Level of evidence: Level V: opinions of respected authorities, based on descriptive studies, narrative reviews, clinical experience, or reports of expert committees.
Collapse
Affiliation(s)
- David A Wiss
- Community Health Sciences Department, Fielding School of Public Health, University of California Los Angeles, 650 Young Drive South, Los Angeles, CA, 90095, USA.
| | - Timothy D Brewerton
- Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - A Janet Tomiyama
- Department of Psychology, University of California, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Avalos MP, Guzman AS, Rigoni D, Gorostiza EA, Sanchez MA, Mongi-Bragato B, Garcia-Keller C, Perassi EM, Virgolini MB, Peralta Ramos JM, Iribarren P, Calfa GD, Bollati FA, Cancela LM. Minocycline prevents chronic restraint stress-induced vulnerability to developing cocaine self-administration and associated glutamatergic mechanisms: a potential role of microglia. Brain Behav Immun 2022; 101:359-376. [PMID: 35065197 DOI: 10.1016/j.bbi.2022.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/24/2021] [Accepted: 01/16/2022] [Indexed: 12/14/2022] Open
Abstract
Stressful experience-induced cocaine-related behaviors are associated with a significant impairment of glutamatergic mechanisms in the Nucleus Accumbens core (NAcore). The hallmarks of disrupted glutamate homeostasis following restraint stress are the enduring imbalance of glutamate efflux after a cocaine stimulus and increased basal concentrations of extracellular glutamate attributed to GLT-1 downregulation in the NAcore. Glutamate transmission is tightly linked to microglia functioning. However, the role of microglia in the biological basis of stress-induced addictive behaviors is still unknown. By using minocycline, a potent inhibitor of microglia activation with anti-inflammatory properties, we determined whether microglia could aid chronic restraint stress (CRS)-induced glutamate homeostasis disruption in the NAcore, underpinning stress-induced cocaine self-administration. In this study, adult male rats were restrained for 2 h/day for seven days (day 1-7). From day 16 until completing the experimental protocol, animals received a vehicle or minocycline treatment (30 mg/Kg/12h i.p.). On day 21, animals were assigned to microscopic, biochemical, neurochemical or behavioral studies. We confirm that the CRS-induced facilitation of cocaine self-administration is associated with enduring GLT-1 downregulation, an increase of basal extracellular glutamate and postsynaptic structural plasticity in the NAcore. These alterations were strongly related to the CRS-induced reactive microglia and increased TNF-α mRNA and protein expression, since by administering minocycline, the impaired glutamate homeostasis and the facilitation of cocaine self-administration were prevented. Our findings are the first to demonstrate that minocycline suppresses the CRS-induced facilitation of cocaine self-administration and glutamate homeostasis disruption in the NAcore. A role of microglia is proposed for the development of glutamatergic mechanisms underpinning stress-induced vulnerability to cocaine addiction.
Collapse
Affiliation(s)
- María Paula Avalos
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Andrea Susana Guzman
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Daiana Rigoni
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Ezequiel Axel Gorostiza
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Marianela Adela Sanchez
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Bethania Mongi-Bragato
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Constanza Garcia-Keller
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Eduardo Marcelo Perassi
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC-CONICET), Departamento de Química Teórica y Computacional, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Miriam Beatriz Virgolini
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Javier María Peralta Ramos
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Pablo Iribarren
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Gastón Diego Calfa
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Flavia Andrea Bollati
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| | - Liliana Marina Cancela
- Instituto de Farmacología Experimental de Córdoba (IFEC-CONICET), Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| |
Collapse
|
20
|
Nigatu YT, Elton-Marshall T, Mann RE, Hamilton HA. Associations of cannabis use, opioid use, and their combination with serious psychological distress among Ontario adults. Stress Health 2022; 38:38-46. [PMID: 34038026 DOI: 10.1002/smi.3071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 11/08/2022]
Abstract
Considering the widespread use of cannabis and opioids, examining the use of cannabis, opioids and their combination with serious psychological distress (SPD) is important. A total of N = 12,358 adults participating in the Monitor surveillance study between 2014 and 2019 were included. Cannabis and opioid use reflected any use of the substances in the past 12 months. SPD was defined as having a score of 13 or more on the Kessler-6 questionnaire, a 6-item scale that includes feeling nervous, hopeless, restless or fidgety, sad or depressed. Odds ratios (ORs) were estimated from logistic regression models accounting for complex survey design and sociodemographic factors. Overall, 12.8% of the sample reported cannabis use only, 18% reported opioid use only, and 4.9% reported both cannabis and opioid use. Use of both cannabis and opioids was significantly associated with SPD in both women (OR = 4.24; 95% CI, 2.34 to 7.69), and in men (OR = 2.99; 95% CI, 1.56 to 5.73) compared to use of neither. The joint association of cannabis and opioids with SPD was additive. Addressing those who use both cannabis and opioids may help reduce the burden of SPD among adults in Ontario.
Collapse
Affiliation(s)
- Yeshambel T Nigatu
- Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tara Elton-Marshall
- Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, Ontario, London, Canada
| | - Robert E Mann
- Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hayley A Hamilton
- Institute for Mental Health Policy and Research, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Fonseca F, Mestre-Pinto JI, Rodríguez-Minguela R, Papaseit E, Pérez-Mañá C, Langohr K, Barbuti M, Farré M, Torrens M. BDNF and Cortisol in the Diagnosis of Cocaine-Induced Depression. Front Psychiatry 2022; 13:836771. [PMID: 35370811 PMCID: PMC8964529 DOI: 10.3389/fpsyt.2022.836771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Major depressive disorder (MDD) and cocaine use disorder (CUD) are related with disability and high mortality rates. The assessment and treatment of psychiatric comorbidity is challenging due to its high prevalence and its clinical severity, mostly due to suicide rates and the presence of medical comorbidities. The aim of this study is to investigate differences in brain derived neurotrophic factor (BDNF) and cortisol plasmatic levels in patients diagnosed with CUD-primary-MDD and CUD-induced-MDD and also to compare them to a sample of MDD patients (without cocaine use), a sample of CUD (without MDD), and a group of healthy controls (HC) after a stress challenge. METHODS A total of 46 subjects were included: MDD (n = 6), CUD (n = 15), CUD-primary-MDD (n = 16), CUD-induced-MDD (n = 9), and 21 HC. Psychiatric comorbidity was assessed with the Spanish version of the Psychiatric Research Interview for Substance and Mental Disorders IV (PRISM-IV), and depression severity was measured with the Hamilton Depression Rating Scale (HDRS). Patients were administered the Trier Social Stress Test (TSST) before and after the biological measures, including BDNF, and cortisol levels were obtained. RESULTS After the TSST, Cohen's d values between CUD-primary-MDD and CUD-induced-MDD increased in each assessment from 0.19 post-TSST to 2.04 post-90-TSST. Pairwise differences among CUD-induced-MDD and both MDD and HC groups had also a large effect size value in post-30-TSST and post-90-TSST. In the case of the BDNF concentrations, CUD-primary-MDD and CUD-induced-MDD in post-90-TSST (12,627.27 ± 5488.09 vs.17,144.84 ± 6581.06, respectively) had a large effect size (0.77). CONCLUSION Results suggest a different pathogenesis for CUD-induced-MDD with higher levels of cortisol and BDNF compared with CUD-primary-MDD. Such variations should imply different approaches in treatment.
Collapse
Affiliation(s)
- Francina Fonseca
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Joan Ignasi Mestre-Pinto
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Rocío Rodríguez-Minguela
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Esther Papaseit
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Clara Pérez-Mañá
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Klaus Langohr
- Department of Statistics and Operations Research, Universitat Politècnica de Catalunya - BarcelonaTech, Barcelona, Spain.,Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Research Programme, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Margherita Barbuti
- Psychiatry 2 Unit, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Magí Farré
- Clinical Pharmacology Department, Hospital Universitari Germans Trias i Pujol (IGTP), Badalona, Spain.,Department of Pharmacology, Therapeutics and Toxicology, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | - Marta Torrens
- Addiction Research Group (GRAd), Neuroscience Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institut de Neuropsiquiatria i Addiccions, Hospital del Mar, Barcelona, Spain.,Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, Spain
| | | |
Collapse
|
22
|
Landfield Q, Saito M, Hashim A, Canals-Baker S, Sershen H, Levy E, Saito M. Cocaine Induces Sex-Associated Changes in Lipid Profiles of Brain Extracellular Vesicles. Neurochem Res 2021; 46:2909-2922. [PMID: 34245421 PMCID: PMC8490334 DOI: 10.1007/s11064-021-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 11/27/2022]
Abstract
Cocaine is a highly addictive stimulant with diverse effects on physiology. Recent studies indicate the involvement of extracellular vesicles (EVs) secreted by neural cells in the cocaine addiction process. It is hypothesized that cocaine affects secretion levels of EVs and their cargos, resulting in modulation of synaptic transmission and plasticity related to addiction physiology and pathology. Lipids present in EVs are important for EV formation and for intercellular lipid exchange that may trigger physiological and pathological responses, including neuroplasticity, neurotoxicity, and neuroinflammation. Specific lipids are highly enriched in EVs compared to parent cells, and recent studies suggest the involvement of various lipids in drug-induced synaptic plasticity during the development and maintenance of addiction processes. Therefore, we examined interstitial small EVs isolated from the brain of mice treated with either saline or cocaine, focusing on the effects of cocaine on the lipid composition of EVs. We demonstrate that 12 days of noncontingent repeated cocaine (10 mg/kg) injections to mice, which induce locomotor sensitization, cause lipid composition changes in brain EVs of male mice as compared with saline-injected controls. The most prominent change is the elevation of GD1a ganglioside in brain EVs of males. However, cocaine does not affect the EV lipid profiles of the brain in female mice. Understanding the relationship between lipid composition in EVs and vulnerability to cocaine addiction may provide insight into novel targets for therapies for addiction.
Collapse
Affiliation(s)
- Qwynn Landfield
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Mitsuo Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Audrey Hashim
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Stefanie Canals-Baker
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
| | - Henry Sershen
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Efrat Levy
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- NYU Neuroscience Institute, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry & Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Mariko Saito
- Division of Neurochemistry, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY, 10962, USA.
- Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
23
|
Nall RW, Heinsbroek JA, Nentwig TB, Kalivas PW, Bobadilla AC. Circuit selectivity in drug versus natural reward seeking behaviors. J Neurochem 2021; 157:1450-1472. [PMID: 33420731 PMCID: PMC8178159 DOI: 10.1111/jnc.15297] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/23/2022]
Abstract
Substance use disorder (SUD) is characterized, in part by behavior biased toward drug use and away from natural sources of reward (e.g., social interaction, food, sex). The neurobiological underpinnings of SUDs reveal distinct brain regions where neuronal activity is necessary for the manifestation of SUD-characteristic behaviors. Studies that specifically examine how these regions are involved in behaviors motivated by drug versus natural reward allow determinations of which regions are necessary for regulating seeking of both reward types, and appraisals of novel SUD therapies for off-target effects on behaviors motivated by natural reward. Here, we evaluate studies directly comparing regulatory roles for specific brain regions in drug versus natural reward. While it is clear that many regions drive behaviors motivated by all reward types, based on the literature reviewed we propose a set of interconnected regions that become necessary for behaviors motivated by drug, but not natural rewards. The circuitry is selectively necessary for drug seeking includes an Action/Reward subcircuit, comprising nucleus accumbens, ventral pallidum, and ventral tegmental area, a Prefrontal subcircuit comprising prelimbic, infralimbic, and insular cortices, a Stress subcircuit comprising the central nucleus of the amygdala and the bed nucleus of the stria terminalis, and a Diencephalon circuit including lateral hypothalamus. Evidence was mixed for nucleus accumbens shell, insular cortex, and ventral pallidum. Studies for all other brain nuclei reviewed supported a necessary role in regulating both drug and natural reward seeking. Finally, we discuss emerging strategies to further disambiguate the necessity of brain regions in drug- versus natural reward-associated behaviors.
Collapse
Affiliation(s)
- Rusty W. Nall
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - Todd B. Nentwig
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W. Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- These authors share senior authorship
| | - Ana-Clara Bobadilla
- School of Pharmacy, University of Wyoming, Laramie, WY, USA
- These authors share senior authorship
| |
Collapse
|
24
|
Piggott VM, Lloyd SC, Matchynski JI, Perrine SA, Conti AC. Traumatic Stress, Chronic Ethanol Exposure, or the Combination, Alter Cannabinoid System Components in Reward and Limbic Regions of the Mouse Brain. Molecules 2021; 26:2086. [PMID: 33917316 PMCID: PMC8038692 DOI: 10.3390/molecules26072086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/17/2022] Open
Abstract
The cannabinoid system is independently affected by stress and chronic ethanol exposure. However, the extent to which co-occurrence of traumatic stress and chronic ethanol exposure modulates the cannabinoid system remains unclear. We examined levels of cannabinoid system components, anandamide, 2-arachidonoylglycerol, fatty acid amide hydrolase, and monoacylglycerol lipase after mouse single-prolonged stress (mSPS) or non-mSPS (Control) exposure, with chronic intermittent ethanol (CIE) vapor or without CIE vapor (Air) across several brain regions using ultra-high-performance liquid chromatography tandem mass spectrometry or immunoblotting. Compared to mSPS-Air mice, anandamide and 2-arachidonoylglycerol levels in the anterior striatum were increased in mSPS-CIE mice. In the dorsal hippocampus, anandamide content was increased in Control-CIE mice compared to Control-Air, mSPS-Air, or mSPS-CIE mice. Finally, amygdalar anandamide content was increased in Control-CIE mice compared to Control-Air, or mSPS-CIE mice, but the anandamide content was decreased in mSPS-CIE compared to mSPS-Air mice. Based on these data we conclude that the effects of combined traumatic stress and chronic ethanol exposure on the cannabinoid system in reward pathway regions are driven by CIE exposure and that traumatic stress affects the cannabinoid components in limbic regions, warranting future investigation of neurotherapeutic treatment to attenuate these effects.
Collapse
Affiliation(s)
- Veronica M. Piggott
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Scott C. Lloyd
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James I. Matchynski
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Shane A. Perrine
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Alana C. Conti
- Research & Development Service, John D. Dingell VA Medical Center, Detroit, MI 48201, USA; (V.M.P.); (S.C.L.); (J.I.M.); (S.A.P.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Translational Neuroscience Program, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
25
|
Alvarez Cooper I, Beecher K, Chehrehasa F, Belmer A, Bartlett SE. Tumour Necrosis Factor in Neuroplasticity, Neurogenesis and Alcohol Use Disorder. Brain Plast 2020; 6:47-66. [PMID: 33680846 PMCID: PMC7903009 DOI: 10.3233/bpl-190095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alcohol use disorder is a pervasive and detrimental condition that involves changes in neuroplasticity and neurogenesis. Alcohol activates the neuroimmune system and alters the inflammatory status of the brain. Tumour necrosis factor (TNF) is a well characterised neuroimmune signal but its involvement in alcohol use disorder is unknown. In this review, we discuss the variable findings of TNF's effect on neuroplasticity and neurogenesis. Acute ethanol exposure reduces TNF release while chronic alcohol intake generally increases TNF levels. Evidence suggests TNF potentiates excitatory transmission, promotes anxiety during alcohol withdrawal and is involved in drug use in rodents. An association between craving for alcohol and TNF is apparent during withdrawal in humans. While anti-inflammatory therapies show efficacy in reversing neurogenic deficit after alcohol exposure, there is no evidence for TNF's essential involvement in alcohol's effect on neurogenesis. Overall, defining TNF's role in alcohol use disorder is complicated by poor understanding of its variable effects on synaptic transmission and neurogenesis. While TNF may be of relevance during withdrawal, the neuroimmune system likely acts through a larger group of inflammatory cytokines to alter neuroplasticity and neurogenesis. Understanding the individual relevance of TNF in alcohol use disorder awaits a more comprehensive understanding of TNF's effects within the brain.
Collapse
Affiliation(s)
- Ignatius Alvarez Cooper
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Kate Beecher
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
| | - Arnauld Belmer
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Selena E. Bartlett
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
26
|
Peng S, Peng Z, Qin M, Huang L, Zhao B, Wei L, Ning J, Tuo QH, Yuan TF, Shi Z, Liao DF. Targeting neuroinflammation: The therapeutic potential of ω-3 PUFAs in substance abuse. Nutrition 2020; 83:111058. [PMID: 33360033 DOI: 10.1016/j.nut.2020.111058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/23/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022]
Abstract
Substance abuse is a chronic relapsing disorder that results in serious health and socioeconomic issues worldwide. Addictive drugs induce long-lasting morphologic and functional changes in brain circuits and account for the formation of compulsive drug-seeking and drug-taking behaviors. Yet, there remains a lack of reliable therapy. In recent years, accumulating evidence indicated that neuroinflammation was implicated in the development of drug addiction. Findings from both our and other laboratories suggest that ω-3 polyunsaturated fatty acids (PUFAs) are effective in treating neuroinflammation-related mental diseases, and indicate that they could exert positive effects in treating drug addiction. Thus, in the present review, we summarized and evaluated recently published articles reporting the neuroinflammation mechanism in drug addiction and the immune regulatory ability of ω-3 PUFAs. We also sought to identify some of the challenges ahead in the translation of ω-3 PUFAs into addiction treatment.
Collapse
Affiliation(s)
- Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Jie Ning
- Department of Metabolic Endocrinology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China
| | - Ti-Fei Yuan
- Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Zhe Shi
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Hunan, China.
| |
Collapse
|
27
|
Zhang H, Bramham CR. Bidirectional Dysregulation of AMPA Receptor-Mediated Synaptic Transmission and Plasticity in Brain Disorders. Front Synaptic Neurosci 2020; 12:26. [PMID: 32754026 PMCID: PMC7366028 DOI: 10.3389/fnsyn.2020.00026] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
AMPA receptors (AMPARs) are glutamate-gated ion channels that mediate the majority of fast excitatory synaptic transmission throughout the brain. Changes in the properties and postsynaptic abundance of AMPARs are pivotal mechanisms in synaptic plasticity, such as long-term potentiation (LTP) and long-term depression (LTD) of synaptic transmission. A wide range of neurodegenerative, neurodevelopmental and neuropsychiatric disorders, despite their extremely diverse etiology, pathogenesis and symptoms, exhibit brain region-specific and AMPAR subunit-specific aberrations in synaptic transmission or plasticity. These include abnormally enhanced or reduced AMPAR-mediated synaptic transmission or plasticity. Bidirectional reversal of these changes by targeting AMPAR subunits or trafficking ameliorates drug-seeking behavior, chronic pain, epileptic seizures, or cognitive deficits. This indicates that bidirectional dysregulation of AMPAR-mediated synaptic transmission or plasticity may contribute to the expression of many brain disorders and therefore serve as a therapeutic target. Here, we provide a synopsis of bidirectional AMPAR dysregulation in animal models of brain disorders and review the preclinical evidence on the therapeutic targeting of AMPARs.
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|