1
|
Lancaster MA. Unraveling mechanisms of human brain evolution. Cell 2024; 187:5838-5857. [PMID: 39423803 PMCID: PMC7617105 DOI: 10.1016/j.cell.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 08/28/2024] [Indexed: 10/21/2024]
Abstract
Evolutionary changes in human brain structure and function have enabled our specialized cognitive abilities. How these changes have come about genetically and functionally has remained an open question. However, new methods are providing a wealth of information about the genetic, epigenetic, and transcriptomic differences that set the human brain apart. Combined with in vitro models that allow access to developing brain tissue and the cells of our closest living relatives, the puzzle pieces are now coming together to yield a much more complete picture of what is actually unique about the human brain. The challenge now will be linking these observations and making the jump from correlation to causation. However, elegant genetic manipulations are now possible and, when combined with model systems such as organoids, will uncover a mechanistic understanding of how evolutionary changes at the genetic level have led to key differences in development and function that enable human cognition.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge, UK; Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
2
|
Ruiz-Tagle A, Caetano G, Fouto A, Esteves I, Cabaço I, Da Silva N, Vilela P, Alves PN, Martins IP, Gouveia RG, Figueiredo P. Preserved working memory performance along with subcortical modulation during peri-ictal phases in spontaneous migraine attacks. Headache 2024. [PMID: 39397349 DOI: 10.1111/head.14850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
OBJECTIVE To analyze cognitive performance and brain activation during a working memory task in patients with migraine during various phases of the migraine cycle and compare to healthy participants. BACKGROUND Cognitive difficulties reported during migraine attacks remain poorly understood, despite evidence that the lateral frontoparietal network undergoes reversible disturbances and decreased activation during attacks. Recent findings in resting state functional magnetic resonance imaging suggest that brain areas involved in this network interact with subcortical regions during spontaneous migraine attacks. METHODS In this prospective, within-subject study, 10 patients with diagnosed menstrual-related episodic migraine without aura underwent 3T functional magnetic resonance imaging assessments while performing a working memory task across four phases of the natural migraine cycle: peri-ictal (preictal, ictal, postictal) phases and interictally (between attacks). Migraine prophylaxis was an exclusion criterion. Fourteen healthy controls were assessed during the corresponding phases of their menstrual cycles. RESULTS The protocol was completed by 24 female participants aged 21 to 47 years: 10 with migraine (four sessions each) and 14 healthy controls (two sessions each) yielding a total of 68 analyzed datasets. Patients and controls showed similar performance on the working memory task and displayed increased brain activity in regions linked to this function, namely the middle frontal gyrus, inferior parietal lobe, and anterior cingulate cortex, during all phases of the migraine/menstrual cycle. Patients with migraine (N = 10) exhibited a significant decrease in hypothalamic activity (p = 0.007) as measured by the percent signal change (PSC) during the postictal phase compared to perimenstrual controls (N = 14), with -2 (16) and 31 (35) PSC, respectively. Comparing across the migraine cycle, the change in hypothalamic activity relative to controls in the postictal phase -0.33 (0.2) ΔPSC was significantly different from the ones in the interictal (0.006 [0.5] ΔPSC; p = 0.002) and preictal (-0.08 [0.4] ΔPSC; p = 0.034) phases. CONCLUSION During a working memory task, cognition-related brain activation was present across all phases of the migraine cycle similarly to healthy control participants. Patients with migraine, however, displayed lower neural activity at the subcortical level in the postictal phase. Nonetheless, the sample size is a limitation for the generalization of our results. More research is needed to fully understand how the brain copes with cognitive demands during spontaneous migraine attacks.
Collapse
Affiliation(s)
- Amparo Ruiz-Tagle
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Gina Caetano
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Fouto
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Esteves
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Inês Cabaço
- Faculty of Health Sciences and Nursing, Catholic University of Portugal, Lisbon, Portugal
| | | | - Pedro Vilela
- Serviço de Neurradiologia, Hospital da Luz, Lisbon, Portugal
| | - Pedro Nascimento Alves
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa and Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Isabel Pavão Martins
- Centro de Estudos Egas Moniz, Faculty of Medicine, Universidade de Lisboa and Hospital de Santa Maria, CHULN, Lisbon, Portugal
| | - Raquel Gil Gouveia
- Headache Center, Serviço de Neurologia, Hospital da Luz, Lisbon, Portugal
- Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Patrícia Figueiredo
- ISR-Lisboa/LARSyS, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Prasad R, Tarai S, Bit A. Emotional reactivity and its impact on neural circuitry for attention-emotion interaction through regression-based machine learning model. Cogn Neurodyn 2024; 18:2551-2573. [PMID: 39555289 PMCID: PMC11564434 DOI: 10.1007/s11571-024-10106-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 02/09/2024] [Accepted: 03/14/2024] [Indexed: 11/19/2024] Open
Abstract
Attentional paradigm can have a significant influence on the processing and experience of positive and negative emotions. Attentional mechanism refers to the tendency to selectively attend to a particular stimulus while ignoring others. In the context of emotions, individuals may exhibit attentional biases towards either positive or negative emotional stimuli. By directing attention towards a specific stimulus, individuals can modulate their emotional responses. When attention is directed towards negative or threatening stimuli, it can intensify negative emotions such as fear, sadness, anger and anxiety. Conversely, directing attention away from negative stimuli can reduce emotional reactivity and promote emotional regulation. Similarly, paying attention to positive stimuli can amplify positive emotions and facilitate positive emotional experiences. Attentional paradigms are also responsible for cognitive appraisal of emotional stimuli. The allocation of attention can shape how emotional stimuli are evaluated and categorized, influencing the subsequent emotional response. Since the relationship between attention and emotions is complex and can vary across individuals and contexts, it is important to understand the underlying cognitive neural dynamics of the same. Custom rank allocation model (CRAM) was used to decode the underlying neural dynamics of cognitive and emotional resource sharing through the non-significant EEG channels. During the main effect of global-local (GL), CRAM ranks and scores indicated that the EEG channels C4, PZ, OZ, and P4 were found to be the most non-significant channels. Similarly, CRAM ranks and scores of the interaction effects between global-local and positive emotion-negative emotion and the interaction effects between global-local and frequent-deviant-equal indicated midline central EEG channels CZ, PZ, FZ and OZ to be the main contributor of the cognitive and emotional resources to others. Understanding the dynamics of attention-emotion conflicts with reference to significant and non-significant channels is important to gain insights into the complex computational interplay between attention and emotion, leading to a deeper understanding of human cognition and emotion regulation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-024-10106-z.
Collapse
Affiliation(s)
| | - Shashikanta Tarai
- Department of Humanities and Social Sciences, NIT Raipur, Raipur, India
| | - Arindam Bit
- Department of Biomedical Engineering, NIT Raipur, Raipur, India
| |
Collapse
|
4
|
Ping A, Wang J, García-Cabezas MÁ, Li L, Zhang J, Gothard KM, Zhu J, Roe AW. Brainwide mesoscale functional networks revealed by focal infrared neural stimulation of the amygdala. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580397. [PMID: 38464165 PMCID: PMC10925104 DOI: 10.1101/2024.02.14.580397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The primate amygdala serves to evaluate emotional content of sensory inputs and modulate emotional and social behaviors; it modulates cognitive, multisensory and autonomic circuits predominantly via the basal (BA), lateral (LA), and central (CeA) nuclei, respectively. Based on recent electrophysiological evidence suggesting mesoscale (millimeters-scale) nature of intra-amygdala functional organization, we have investigated the connectivity of these nuclei using Infrared Neural Stimulation of single mesoscale sites coupled with mapping in ultrahigh field 7T functional Magnetic Resonance Imaging (INS-fMRI). Stimulation of multiple sites within amygdala of single individuals evoked 'mesoscale functional connectivity maps', allowing comparison of BA, LA and CeA connected brainwide networks. This revealed a mesoscale nature of connected sites, complementary spatial patterns of functional connectivity, and topographic relationships of nucleus-specific connections. Our data reveal a functional architecture of systematically organized brainwide networks mediating sensory, cognitive, and autonomic influences from the amygdala.
Collapse
Affiliation(s)
- An Ping
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianbao Wang
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology, and Neuroscience, School of Medicine, Autónoma University of Madrid, Madrid, Spain
| | - Lihui Li
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Katalin M. Gothard
- Departments of Physiology and Neuroscience, University of Arizona, Tucson, USA
| | - Junming Zhu
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital and Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Prasad R, Tarai S, Bit A. Hybrid computational model depicts the contribution of non-significant lobes of human brain during the perception of emotional stimuli. Comput Methods Biomech Biomed Engin 2024:1-27. [PMID: 38328832 DOI: 10.1080/10255842.2024.2311876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 02/09/2024]
Abstract
Emotions are synchronizing responses of human brain while executing cognitive tasks. Earlier studies had revealed strong correlation between specific lobes of the brain to different types of emotional valence. In the current study, a comprehensive three-dimensional mapping of human brain for executing emotion specific tasks had been formulated. A hybrid computational machine learning model customized from Custom Weight Allocation Model (CWAM) and defined as Custom Rank Allocation Model (CRAM). This regression-based hybrid computational model computes the allocated tasks to different lobes of the brain during their respective executive stage. Event Related Potentials (ERP) were obtained with significant effect at P1, P2, P3, N170, N2, and N4. These ERPs were configured at Pz, Cz, F3, and T8 regions of the brain with maximal responses; while regions like Cz, C4 and F4 were also found to make effective contributions to elevate the responses of the brain, and thus these regions were configured as augmented source regions of the brain. In another circumstance of frequent -deviant - equal (FDE) presentation of the emotional stimuli, it was observed that the brain channels C3, C4, P3, P4, O1, O2, and Oz were contributing their emotional quotient to the overall response of the brain regions; whereas, the interaction effect was found presentable at O2, Oz, P3, P4, T8 and C3 regions of brain. The proposed computational model had identified the potential neural pathways during the execution of emotional task.
Collapse
Affiliation(s)
| | | | - Arindam Bit
- Department of Biomedical Engineering, NIT Raipur
| |
Collapse
|
6
|
Pessoa L. Noncortical cognition: integration of information for close-proximity behavioral problem-solving. Curr Opin Behav Sci 2024; 55:101329. [PMID: 38655379 PMCID: PMC11034795 DOI: 10.1016/j.cobeha.2023.101329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Animals face behavioral problems that can be conceptualized in terms of a gradient of spatial and temporal proximity. I propose that solving close-proximity behavioral problems involves integrating disparate types of information in complex and flexible ways. In this framework, the midbrain periaqueductal gray (PAG) is understood as a key region involved in close-proximity motivated cognition. Anatomically, the PAG has access to signals across the neuroaxis via extensive connectivity with cortex, subcortex, and brainstem. However, the flow of signals is not unidirectional, as the PAG projects to the cortex directly, and further ascending signal flow is attained via the midline thalamus. Overall, the anatomical organization of the PAG allows is to be a critical hub engaged in cognition "here and now".
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, Department of Electrical and Computer Engineering, Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Luu P, Tucker DM, Friston K. From active affordance to active inference: vertical integration of cognition in the cerebral cortex through dual subcortical control systems. Cereb Cortex 2024; 34:bhad458. [PMID: 38044461 DOI: 10.1093/cercor/bhad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
In previous papers, we proposed that the dorsal attention system's top-down control is regulated by the dorsal division of the limbic system, providing a feedforward or impulsive form of control generating expectancies during active inference. In contrast, we proposed that the ventral attention system is regulated by the ventral limbic division, regulating feedback constraints and error-correction for active inference within the neocortical hierarchy. Here, we propose that these forms of cognitive control reflect vertical integration of subcortical arousal control systems that evolved for specific forms of behavior control. The feedforward impetus to action is regulated by phasic arousal, mediated by lemnothalamic projections from the reticular activating system of the lower brainstem, and then elaborated by the hippocampus and dorsal limbic division. In contrast, feedback constraint-based on environmental requirements-is regulated by the tonic activation furnished by collothalamic projections from the midbrain arousal control centers, and then sustained and elaborated by the amygdala, basal ganglia, and ventral limbic division. In an evolutionary-developmental analysis, understanding these differing forms of active affordance-for arousal and motor control within the subcortical vertebrate neuraxis-may help explain the evolution of active inference regulating the cognition of expectancy and error-correction within the mammalian 6-layered neocortex.
Collapse
Affiliation(s)
- Phan Luu
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Riverfront Research Park, 1776 Millrace Dr., Eugene, OR 97403, United States
- Department of Psychology, University of Oregon, Eugene, OR 97403, United States
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London WC1N 3AR, United Kingdom
- VERSES AI Research Lab, Los Angeles, CA 90016, USA
| |
Collapse
|
8
|
Tarchi L, Stanghellini G, Ricca V, Castellini G. The primacy of ocular perception: a narrative review on the role of gender identity in eating disorders. Eat Weight Disord 2024; 29:8. [PMID: 38217553 PMCID: PMC10787908 DOI: 10.1007/s40519-023-01632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/29/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Phenomenological research has enriched the scientific and clinical understanding of Eating Disorders (ED), describing the significant role played by disorders of embodiment in shaping the lived experience of patients with ED. According to the phenomenological perspective, disorders of embodiment in ED are associated with feelings of alienation from one's own body, determining an excessive concern for external appearance as a form of dysfunctional coping. The purpose of the present narrative review is to address the role of gender identity as a risk factor for EDs in the light of phenomenological approaches. METHODS Narrative review. RESULTS The current study discusses the interplay between perception, gender identity, and embodiment, all posited to influence eating psychopathology. Internalized concerns for body appearance are described as potentially associated with self-objectification. Furthermore, concerns on body appearance are discussed in relation to gendered social expectations. The current review also explores how societal norms and gender stereotypes can contribute to dysfunctional self-identification with external appearances, particularly through an excessive focus on the optical dimension. The socio-cultural perspective on gender identity was considered as a further explanation of the lived experience of individuals with ED. CONCLUSIONS By acknowledging the interplay between these factors, clinicians and researchers can gain a deeper understanding of these disorders and develop more effective interventions for affected individuals. LEVEL OF EVIDENCE Level V narrative review.
Collapse
Affiliation(s)
- Livio Tarchi
- Department of Health Sciences, University of Florence, AOU Careggi, Viale della maternità Padiglione 8B, 50126, Firenze, FI, Italy
| | - Giovanni Stanghellini
- Department of Health Sciences, University of Florence, AOU Careggi, Viale della maternità Padiglione 8B, 50126, Firenze, FI, Italy
- Centro de Estudios de Fenomenologia y Psiquiatria, Universidad 'Diego Portales', Santiago, Chile
| | - Valdo Ricca
- Department of Health Sciences, University of Florence, AOU Careggi, Viale della maternità Padiglione 8B, 50126, Firenze, FI, Italy
| | - Giovanni Castellini
- Department of Health Sciences, University of Florence, AOU Careggi, Viale della maternità Padiglione 8B, 50126, Firenze, FI, Italy.
| |
Collapse
|
9
|
Zacks O, Jablonka E. The evolutionary origins of the Global Neuronal Workspace in vertebrates. Neurosci Conscious 2023; 2023:niad020. [PMID: 37711313 PMCID: PMC10499063 DOI: 10.1093/nc/niad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023] Open
Abstract
The Global Neuronal Workspace theory of consciousness offers an explicit functional architecture that relates consciousness to cognitive abilities such as perception, attention, memory, and evaluation. We show that the functional architecture of the Global Neuronal Workspace, which is based mainly on human studies, corresponds to the cognitive-affective architecture proposed by the Unlimited Associative Learning theory that describes minimal consciousness. However, we suggest that when applied to basal vertebrates, both models require important modifications to accommodate what has been learned about the evolution of the vertebrate brain. Most importantly, comparative studies suggest that in basal vertebrates, the Global Neuronal Workspace is instantiated by the event memory system found in the hippocampal homolog. This proposal has testable predictions and implications for understanding hippocampal and cortical functions, the evolutionary relations between memory and consciousness, and the evolution of unified perception.
Collapse
Affiliation(s)
- Oryan Zacks
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
| | - Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Ramat Aviv 6934525, Israel
- CPNSS, London School of Economics, Houghton St., London WC2A 2AE, United Kingdom
| |
Collapse
|
10
|
Fujita T, Aoki N, Mori C, Homma KJ, Yamaguchi S. Molecular biology of serotonergic systems in avian brains. Front Mol Neurosci 2023; 16:1226645. [PMID: 37538316 PMCID: PMC10394247 DOI: 10.3389/fnmol.2023.1226645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is a phylogenetically conserved neurotransmitter and modulator. Neurons utilizing serotonin have been identified in the central nervous systems of all vertebrates. In the central serotonergic system of vertebrate species examined so far, serotonergic neurons have been confirmed to exist in clusters in the brainstem. Although many serotonin-regulated cognitive, behavioral, and emotional functions have been elucidated in mammals, equivalents remain poorly understood in non-mammalian vertebrates. The purpose of this review is to summarize current knowledge of the anatomical organization and molecular features of the avian central serotonergic system. In addition, selected key functions of serotonin are briefly reviewed. Gene association studies between serotonergic system related genes and behaviors in birds have elucidated that the serotonergic system is involved in the regulation of behavior in birds similar to that observed in mammals. The widespread distribution of serotonergic modulation in the central nervous system and the evolutionary conservation of the serotonergic system provide a strong foundation for understanding and comparing the evolutionary continuity of neural circuits controlling corresponding brain functions within vertebrates. The main focus of this review is the chicken brain, with this type of poultry used as a model bird. The chicken is widely used not only as a model for answering questions in developmental biology and as a model for agriculturally useful breeding, but also in research relating to cognitive, behavioral, and emotional processes. In addition to a wealth of prior research on the projection relationships of avian brain regions, detailed subdivision similarities between avian and mammalian brains have recently been identified. Therefore, identifying the neural circuits modulated by the serotonergic system in avian brains may provide an interesting opportunity for detailed comparative studies of the function of serotonergic systems in mammals.
Collapse
Affiliation(s)
- Toshiyuki Fujita
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Naoya Aoki
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Chihiro Mori
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Koichi J. Homma
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| | - Shinji Yamaguchi
- Department of Biological Sciences, Faculty of Pharmaceutical Sciences, Teikyo University, Tokyo, Japan
| |
Collapse
|
11
|
Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci 2023; 17:1057622. [PMID: 37265513 PMCID: PMC10230067 DOI: 10.3389/fnint.2023.1057622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 04/18/2023] [Indexed: 06/03/2023] Open
Abstract
Significant efforts have been made in the past decades to understand how mental and cognitive processes are underpinned by neural mechanisms in the brain. This paper argues that a promising way forward in understanding the nature of human cognition is to zoom out from the prevailing picture focusing on its neural basis. It considers instead how neurons work in tandem with other type of cells (e.g., immune) to subserve biological self-organization and adaptive behavior of the human organism as a whole. We focus specifically on the immune cellular processing as key actor in complementing neuronal processing in achieving successful self-organization and adaptation of the human body in an ever-changing environment. We overview theoretical work and empirical evidence on "basal cognition" challenging the idea that only the neuronal cells in the brain have the exclusive ability to "learn" or "cognize." The focus on cellular rather than neural, brain processing underscores the idea that flexible responses to fluctuations in the environment require a carefully crafted orchestration of multiple cellular and bodily systems at multiple organizational levels of the biological organism. Hence cognition can be seen as a multiscale web of dynamic information processing distributed across a vast array of complex cellular (e.g., neuronal, immune, and others) and network systems, operating across the entire body, and not just in the brain. Ultimately, this paper builds up toward the radical claim that cognition should not be confined to one system alone, namely, the neural system in the brain, no matter how sophisticated the latter notoriously is.
Collapse
Affiliation(s)
- Anna Ciaunica
- Centre for Philosophy of Science, Faculty of Science, University of Lisbon, Lisbon, Portugal
- Faculty of Brain Sciences, Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Evgeniya V. Shmeleva
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, United States
- Allen Discovery Center, Tufts University, Medford, MA, United States
| |
Collapse
|
12
|
Patterning the cerebral cortex into distinct functional domains during development. Curr Opin Neurobiol 2023; 80:102698. [PMID: 36893490 DOI: 10.1016/j.conb.2023.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/05/2023] [Indexed: 03/11/2023]
Abstract
The cerebral cortex is compartmentalized into multiple regions, including the newly evolved neocortex and evolutionarily older paleocortex and archicortex. These broad cortical regions can be further subdivided into different functional domains, each with its own unique cytoarchitecture and distinct set of input and output projections to perform specific functions. While many excitatory projection neurons show region-specific gene expression profiles, the cells are derived from the seemingly uniform progenitors in the dorsal telencephalon. Much progress has been made in defining the genetic mechanisms involved in generating the morphological and functional diversity of the central nervous system. In this review, we summarize the current knowledge of mouse corticogenesis and discuss key events involved in cortical patterning during early developmental stages.
Collapse
|
13
|
Krochmal AR, Roth TC. The case for investigating the cognitive map in nonavian reptiles. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
14
|
Pessoa L. How many brain regions are needed to elucidate the neural bases of fear and anxiety? Neurosci Biobehav Rev 2023; 146:105039. [PMID: 36634832 PMCID: PMC11019846 DOI: 10.1016/j.neubiorev.2023.105039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023]
Abstract
We suggest that to understand complex behaviors associated with fear and anxiety, we need to understand brain processes at the collective, network level. But what should be the type and spatial scale of the targeted circuits/networks? Not only are multi-region interactions essential-including complex reciprocal interactions, loops, and other types of arrangement-but it is profitable to characterize circuits spanning the entire neuroaxis. In particular, it is productive to conceptualize the circuits contributing to fear/anxiety as embedded into large-scale connectional systems. We discuss circuits involving the basolateral amygdala that contribute to aversive conditioning and fear extinction. In addition, we highlight the importance of the extended amygdala (central nucleus of the amygdala and bed nucleus of the stria terminalis) cortical-subcortical loop, which allows large swaths of cortex and subcortex to influence fear and anxiety. In this manner, fear/anxiety can be understood not only based on traditional "descending" mechanisms involving the hypothalamus and brainstem, but in terms of a considerably broader reentrant organization.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, Department of Electrical and Computer Engineering, Maryland Neuroimaging Center, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
15
|
Molecular and cellular evolution of the amygdala across species analyzed by single-nucleus transcriptome profiling. Cell Discov 2023; 9:19. [PMID: 36788214 PMCID: PMC9929086 DOI: 10.1038/s41421-022-00506-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/24/2022] [Indexed: 02/16/2023] Open
Abstract
The amygdala, or an amygdala-like structure, is found in the brains of all vertebrates and plays a critical role in survival and reproduction. However, the cellular architecture of the amygdala and how it has evolved remain elusive. Here, we generated single-nucleus RNA-sequencing data for more than 200,000 cells in the amygdala of humans, macaques, mice, and chickens. Abundant neuronal cell types from different amygdala subnuclei were identified in all datasets. Cross-species analysis revealed that inhibitory neurons and inhibitory neuron-enriched subnuclei of the amygdala were well-conserved in cellular composition and marker gene expression, whereas excitatory neuron-enriched subnuclei were relatively divergent. Furthermore, LAMP5+ interneurons were much more abundant in primates, while DRD2+ inhibitory neurons and LAMP5+SATB2+ excitatory neurons were dominant in the human central amygdalar nucleus (CEA) and basolateral amygdalar complex (BLA), respectively. We also identified CEA-like neurons and their species-specific distribution patterns in chickens. This study highlights the extreme cell-type diversity in the amygdala and reveals the conservation and divergence of cell types and gene expression patterns across species that may contribute to species-specific adaptations.
Collapse
|
16
|
Earl B. Humans, fish, spiders and bees inherited working memory and attention from their last common ancestor. Front Psychol 2023; 13:937712. [PMID: 36814887 PMCID: PMC9939904 DOI: 10.3389/fpsyg.2022.937712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/11/2022] [Indexed: 02/08/2023] Open
Abstract
All brain processes that generate behaviour, apart from reflexes, operate with information that is in an "activated" state. This activated information, which is known as working memory (WM), is generated by the effect of attentional processes on incoming information or information previously stored in short-term or long-term memory (STM or LTM). Information in WM tends to remain the focus of attention; and WM, attention and STM together enable information to be available to mental processes and the behaviours that follow on from them. WM and attention underpin all flexible mental processes, such as solving problems, making choices, preparing for opportunities or threats that could be nearby, or simply finding the way home. Neither WM nor attention are necessarily conscious, and both may have evolved long before consciousness. WM and attention, with similar properties, are possessed by humans, archerfish, and other vertebrates; jumping spiders, honey bees, and other arthropods; and members of other clades, whose last common ancestor (LCA) is believed to have lived more than 600 million years ago. It has been reported that very similar genes control the development of vertebrate and arthropod brains, and were likely inherited from their LCA. Genes that control brain development are conserved because brains generate adaptive behaviour. However, the neural processes that generate behaviour operate with the activated information in WM, so WM and attention must have existed prior to the evolution of brains. It is proposed that WM and attention are widespread amongst animal species because they are phylogenetically conserved mechanisms that are essential to all mental processing, and were inherited from the LCA of vertebrates, arthropods, and some other animal clades.
Collapse
|
17
|
Graham DJ. Nine insights from internet engineering that help us understand brain network communication. FRONTIERS IN COMPUTER SCIENCE 2023. [DOI: 10.3389/fcomp.2022.976801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Philosophers have long recognized the value of metaphor as a tool that opens new avenues of investigation. By seeing brains as having the goal of representation, the computer metaphor in its various guises has helped systems neuroscience approach a wide array of neuronal behaviors at small and large scales. Here I advocate a complementary metaphor, the internet. Adopting this metaphor shifts our focus from computing to communication, and from seeing neuronal signals as localized representational elements to seeing neuronal signals as traveling messages. In doing so, we can take advantage of a comparison with the internet's robust and efficient routing strategies to understand how the brain might meet the challenges of network communication. I lay out nine engineering strategies that help the internet solve routing challenges similar to those faced by brain networks. The internet metaphor helps us by reframing neuronal activity across the brain as, in part, a manifestation of routing, which may, in different parts of the system, resemble the internet more, less, or not at all. I describe suggestive evidence consistent with the brain's use of internet-like routing strategies and conclude that, even if empirical data do not directly implicate internet-like routing, the metaphor is valuable as a reference point for those investigating the difficult problem of network communication in the brain and in particular the problem of routing.
Collapse
|
18
|
Giarrocco F, Averbeck BB. Anatomical organization of forebrain circuits in the primate. Brain Struct Funct 2023; 228:393-411. [PMID: 36271258 PMCID: PMC9944689 DOI: 10.1007/s00429-022-02586-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022]
Abstract
The primate forebrain is a complex structure. Thousands of connections have been identified between cortical areas, and between cortical and sub-cortical areas. Previous work, however, has suggested that a number of principles can be used to reduce this complexity. Here, we integrate four principles that have been put forth previously, including a nested model of neocortical connectivity, gradients of connectivity between frontal cortical areas and the striatum and thalamus, shared patterns of sub-cortical connectivity between connected posterior and frontal cortical areas, and topographic organization of cortical-striatal-pallidal-thalamocortical circuits. We integrate these principles into a single model that accounts for a substantial amount of connectivity in the forebrain. We then suggest that studies in evolution and development can account for these four principles, by assuming that the ancestral vertebrate pallium was dominated by medial, hippocampal and ventral-lateral, pyriform areas, and at most a small dorsal pallium. The small dorsal pallium expanded massively in the lineage leading to primates. During this expansion, topological, adjacency relationships were maintained between pallial and sub-pallial areas. This maintained topology led to the connectivity gradients seen between cortex, striatum, pallidum, and thalamus.
Collapse
Affiliation(s)
- Franco Giarrocco
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA
| | - Bruno B Averbeck
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Building 49 Room 1B80, 49 Convent Drive MSC 4415, Bethesda, MD, 20892-4415, USA.
| |
Collapse
|
19
|
Christensen AJ, Ott T, Kepecs A. Cognition and the single neuron: How cell types construct the dynamic computations of frontal cortex. Curr Opin Neurobiol 2022; 77:102630. [PMID: 36209695 PMCID: PMC10375540 DOI: 10.1016/j.conb.2022.102630] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 01/10/2023]
Abstract
Frontal cortex is thought to underlie many advanced cognitive capacities, from self-control to long term planning. Reflecting these diverse demands, frontal neural activity is notoriously idiosyncratic, with tuning properties that are correlated with endless numbers of behavioral and task features. This menagerie of tuning has made it difficult to extract organizing principles that govern frontal neural activity. Here, we contrast two successful yet seemingly incompatible approaches that have begun to address this challenge. Inspired by the indecipherability of single-neuron tuning, the first approach casts frontal computations as dynamical trajectories traversed by arbitrary mixtures of neurons. The second approach, by contrast, attempts to explain the functional diversity of frontal activity with the biological diversity of cortical cell-types. Motivated by the recent discovery of functional clusters in frontal neurons, we propose a consilience between these population and cell-type-specific approaches to neural computations, advancing the conjecture that evolutionarily inherited cell-type constraints create the scaffold within which frontal population dynamics must operate.
Collapse
Affiliation(s)
- Amelia J Christensen
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Torben Ott
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA; Bernstein Center for Computational Neuroscience Berlin, Humboldt University of Berlin, Berlin, Germany.
| | - Adam Kepecs
- Department of Neuroscience and Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
García-Cabezas MÁ, Hacker JL, Zikopoulos B. Homology of neocortical areas in rats and primates based on cortical type analysis: an update of the Hypothesis on the Dual Origin of the Neocortex. Brain Struct Funct 2022:10.1007/s00429-022-02548-0. [PMID: 35962240 PMCID: PMC9922339 DOI: 10.1007/s00429-022-02548-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
Sixty years ago, Friedrich Sanides traced the origin of the tangential expansion of the primate neocortex to two ancestral anlagen in the allocortex of reptiles and mammals, and proposed the Hypothesis on the Dual Origin of the Neocortex. According to Sanides, paraolfactory and parahippocampal gradients of laminar elaboration expanded in evolution by addition of successive concentric rings of gradually different cortical types inside the allocortical ring. Rodents had fewer rings and primates had more rings in the inner part of the cortex. In the present article, we perform cortical type analysis of the neocortex of adult rats, Rhesus macaques, and humans to propose hypotheses on homology of cortical areas applying the principles of the Hypothesis on the Dual Origin of the Neocortex. We show that areas in the outer rings of the neocortex have comparable laminar elaboration in rats and primates, while most 6-layer eulaminate areas in the innermost rings of primate neocortex lack homologous counterparts in rats. We also represent the topological distribution of cortical types in simplified flat maps of the cerebral cortex of monotremes, rats, and primates. Finally, we propose an elaboration of the Hypothesis on the Dual Origin of the Neocortex in the context of modern studies of pallial patterning that integrates the specification of pallial sectors in development of vertebrate embryos. The updated version of the hypothesis of Sanides provides explanation for the emergence of cortical hierarchies in mammals and will guide future research in the phylogenetic origin of neocortical areas.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Julia Liao Hacker
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA 02215, USA,Present Address: Department of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
21
|
Perry EW, Osborne MC, Lee N, Kinnish K, Self-Brown SR. Posttraumatic Cognitions and Posttraumatic Stress Symptoms Among Young People Who Have Experienced Commercial Sexual Exploitation and Trafficking. Public Health Rep 2022; 137:91S-101S. [PMID: 35775917 DOI: 10.1177/00333549211041552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES The impact of posttraumatic cognitions on the development and maintenance of posttraumatic stress symptoms (PTSS) is understudied among children and adolescents who have experienced commercial sexual exploitation/trafficking (CSE/T). The objectives of this study were to (1) explore posttraumatic cognitions among help-seeking young people aged 11-19 who have experienced CSE/T; (2) determine whether experiencing direct violence, witnessing violence, polyvictimization (ie, multiple exposures to different categories of potentially traumatic events), or demographic characteristics differentially affect whether these young people meet clinical criteria for posttraumatic cognitions using established cutoffs; and (3) explore associations between posttraumatic cognitions and PTSS among young people who have experienced CSE/T. METHODS This study is a secondary analysis of a baseline cross-sectional survey of 110 young people with substantiated CSE/T experiences who started trauma-focused cognitive behavioral therapy (mean [SD] age = 15.8 [1.5]) from August 1, 2013, through March 31, 2020, in a southeastern US state. We used descriptive statistics, adjusted modified Poisson regression, and adjusted linear regression to test study objectives. RESULTS Fifty-seven of 110 (51.8%) young people aged 11-19 met clinical criteria for posttraumatic cognitions. Increased age and a greater number of trauma categories experienced were significantly associated with meeting clinical criteria for posttraumatic cognitions. On average, higher posttraumatic cognition scores were associated with higher PTSS scores, controlling for demographic characteristics (β = 0.95; 95% CI, 0.64-1.26). CONCLUSIONS These findings underscore the importance of assessing comprehensive trauma history and PTSS of young people who have experienced CSE/T, with added usefulness of measuring cognitive appraisals to inform a therapeutic treatment plan. Measuring cognitive appraisals that may influence PTSS and therapeutic success can ensure an effective public health response for this population.
Collapse
Affiliation(s)
- Elizabeth W Perry
- 1373 School of Public Health, Georgia State University, Atlanta, GA, USA.,1373 Mark Chaffin Center for Healthy Development, Georgia State University, Atlanta, GA, USA.,1373 Center for Research on Interpersonal Violence, Georgia State University, Atlanta, GA, USA
| | - Melissa C Osborne
- 1373 Center for Research on Interpersonal Violence, Georgia State University, Atlanta, GA, USA.,1373 Byrdine F. Lewis College of Nursing and Health Professions, Georgia State University, Atlanta, GA, USA
| | - NaeHyung Lee
- 1373 School of Public Health, Georgia State University, Atlanta, GA, USA.,1373 Mark Chaffin Center for Healthy Development, Georgia State University, Atlanta, GA, USA.,1373 Center for Research on Interpersonal Violence, Georgia State University, Atlanta, GA, USA
| | | | - Shannon R Self-Brown
- 1373 School of Public Health, Georgia State University, Atlanta, GA, USA.,1373 Mark Chaffin Center for Healthy Development, Georgia State University, Atlanta, GA, USA.,1373 Center for Research on Interpersonal Violence, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
22
|
Gee DG, Hanson C, Caglar LR, Fareri DS, Gabard-Durnam LJ, Mills-Finnerty C, Goff B, Caldera CJ, Lumian DS, Flannery J, Hanson SJ, Tottenham N. Experimental evidence for a child-to-adolescent switch in human amygdala-prefrontal cortex communication: A cross-sectional pilot study. Dev Sci 2022; 25:e13238. [PMID: 35080089 PMCID: PMC9232876 DOI: 10.1111/desc.13238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 11/30/2022]
Abstract
Interactions between the amygdala and prefrontal cortex are fundamental to human emotion. Despite the central role of frontoamygdala communication in adult emotional learning and regulation, little is known about how top-down control emerges during human development. In the present cross-sectional pilot study, we experimentally manipulated prefrontal engagement to test its effects on the amygdala during development. Inducing dorsal anterior cingulate cortex (dACC) activation resulted in developmentally-opposite effects on amygdala reactivity during childhood versus adolescence, such that dACC activation was followed by increased amygdala reactivity in childhood but reduced amygdala reactivity in adolescence. Bayesian network analyses revealed an age-related switch between childhood and adolescence in the nature of amygdala connectivity with the dACC and ventromedial PFC (vmPFC). Whereas adolescence was marked by information flow from dACC and vmPFC to amygdala (consistent with that observed in adults), the reverse information flow, from the amygdala to dACC and vmPFC, was dominant in childhood. The age-related switch in information flow suggests a potential shift from bottom-up co-excitatory to top-down regulatory frontoamygdala connectivity and may indicate a profound change in the circuitry supporting maturation of emotional behavior. These findings provide novel insight into the developmental construction of amygdala-cortical connections and implications for the ways in which childhood experiences may influence subsequent prefrontal function.
Collapse
Affiliation(s)
- Dylan G. Gee
- Yale University, Department of Psychology, 2 Hillhouse Avenue, New Haven, CT 06511
- To whom correspondence should be addressed: ,
| | - Catherine Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Leyla Roksan Caglar
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Dominic S. Fareri
- Adelphi University, Department of Psychology, Blodgett Hall, Garden City, NY 11530
| | | | | | - Bonnie Goff
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Christina J. Caldera
- University of California, Los Angeles, Department of Psychology, 1285 Franz Hall, Los Angeles, CA 90095
| | - Daniel S. Lumian
- University of Denver, Department of Psychology, 2155 S. Race Street, Denver, CO 80210
| | - Jessica Flannery
- University of North Carolina, Chapel Hill, Department of Psychology, 235 E. Cameron Ave, Chapel Hill, NC 27599
| | - Stephen J. Hanson
- Rutgers University, Department of Psychology, 101 Warren Street, Newark, NJ 07102
| | - Nim Tottenham
- Columbia University, Department of Psychology, 406 Schermerhorn Hall, 1190 Amsterdam Avenue, New York, NY 10027
| |
Collapse
|
23
|
Mueller T. The Everted Amygdala of Ray-Finned Fish: Zebrafish Makes a Case. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:321-335. [PMID: 35760049 DOI: 10.1159/000525669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The amygdala, a complex array of nuclei in the forebrain, controls emotions and emotion-related behaviors in vertebrates. Current research aims to understand the amygdala's evolution in ray-finned fish such as zebrafish because of the region's relevance for social behavior and human psychiatric disorders. Clear-cut molecular definitions of the amygdala and its evolutionary-developmental relationship to the one of mammals are critical for zebrafish models of affective disorders and autism. In this review, I argue that the prosomeric model and a focus on the olfactory system's organization provide ideal tools for discovering deep ancestral relationships between the emotional systems of zebrafish and mammals. The review's focus is on the "extended amygdala," which refers to subpallial amygdaloid territories including the central (autonomic) and the medial (olfactory) amygdala required for reproductive and social behaviors. Amphibians, sauropsids, and lungfish share many characteristics with the basic amygdala ground plan of mammals, as molecular and hodological studies have shown. Further exploration of the evolution of the amygdala in basally derived fish vertebrates requires researchers to test these "tetrapod-based" concepts. Historically, this has been a daunting task because the forebrains of basally derived fish vertebrates look very different from those of more familiar tetrapod ones. An extreme case are ray-finned fish (Actinopterygii) like zebrafish because their telencephalon develops through a distinct outward-growing process called eversion. To this day, scientists have struggled to determine how the everted telencephalon compares to non-actinopterygian vertebrates. Using the teleost zebrafish as a genetic model, comparative neurologists began to establish quantifiable molecular definitions that allow direct comparisons between ray-finned fish and tetrapods. In this review, I discuss how the most recent discovery of the zebrafish amygdala ground plan offers an opportunity to identify the developmental constraints of amygdala evolution and function. In addition, I explain how the zebrafish prethalamic eminence (PThE) topologically relates to the medial amygdala proper and the nucleus of the lateral olfactory tract (nLOT). In fact, I consider these previously misinterpreted olfactory structures the most critical missing evolutionary links between actinopterygian and tetrapod amygdalae. In this context, I will also explain why recognizing both the PThE and the nLOT is crucial to understanding the telencephalon eversion. Recognizing these anatomical hallmarks allows direct comparisons of the amygdalae of zebrafish and mammals. Ultimately, the new concepts of the zebrafish amygdala will overcome current dogmas and reach a holistic understanding of amygdala circuits of cognition and emotion in actinopterygians.
Collapse
Affiliation(s)
- Thomas Mueller
- Division of Biology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
24
|
Riters LV, Polzin BJ, Maksimoski AN, Stevenson SA, Alger SJ. Birdsong and the Neural Regulation of Positive Emotion. Front Psychol 2022; 13:903857. [PMID: 35814050 PMCID: PMC9258629 DOI: 10.3389/fpsyg.2022.903857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Birds are not commonly admired for emotional expression, and when they are, the focus is typically on negative states; yet vocal behavior is considered a direct reflection of an individual's emotional state. Given that over 4000 species of songbird produce learned, complex, context-specific vocalizations, we make the case that songbirds are conspicuously broadcasting distinct positive emotional states and that hearing songs can also induce positive states in other birds. Studies are reviewed that demonstrate that that the production of sexually motivated song reflects an emotional state of anticipatory reward-seeking (i.e., mate-seeking), while outside the mating context song in gregarious flocks reflects a state of intrinsic reward. Studies are also reviewed that demonstrate that hearing song induces states of positive anticipation and reward. This review brings together numerous studies that highlight a potentially important role for the songbird nucleus accumbens, a region nearly synonymous with reward in mammals, in positive emotional states that underlie singing behavior and responses to song. It is proposed that the nucleus accumbens is part of an evolutionarily conserved circuitry that contributes context-dependently to positive emotional states that motivate and reward singing behavior and responses to song. Neural mechanisms that underlie basic emotions appear to be conserved and similar across vertebrates. Thus, these findings in songbirds have the potential to provide insights into interventions that can restore positive social interactions disrupted by mental health disorders in humans.
Collapse
Affiliation(s)
- Lauren V. Riters
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Brandon J. Polzin
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Alyse N. Maksimoski
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sharon A. Stevenson
- Department of Integrative Biology, University of Wisconsin—Madison, Madison, WI, United States
| | - Sarah J. Alger
- Department of Biology, University of Wisconsin—Stevens Point, Stevens Point, WI, United States
| |
Collapse
|
25
|
Pichová K, Kubíková Ľ, Košťál Ľ. The Acute Pharmacological Manipulation of Dopamine Receptors Modulates Judgment Bias in Japanese Quail. Front Physiol 2022; 13:883021. [PMID: 35634149 PMCID: PMC9130459 DOI: 10.3389/fphys.2022.883021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
We have studied the effects of dopamine antagonists and agonists on Japanese quail behavior in the spatial judgment task. Twenty-four Japanese quail hens were trained in the spatial discrimination task to approach the feeder placed in the rewarded location (Go response, feeder containing mealworms) and to not approach the punished location (No-Go response, empty feeder plus aversive sound). In a subsequent spatial judgment task, the proportion of Go responses as well as approach latencies to rewarded, punished, and three ambiguous locations (near-positive, middle, near-negative, all neither rewarded nor punished) were assessed in 20 quail hens that successfully mastered the discrimination task. In Experiment 1, each bird received five treatments (0.1 and 1.0 mg/kg of dopamine D1 receptor antagonist SCH 23390, 0.05 and 0.5 mg/kg of dopamine D2 receptor antagonist haloperidol, and saline control) in a different order, according to a Latin square design. All drugs were administered intramuscularly 15 min before the spatial judgment test, with 2 days break between the treatments. Both antagonists caused a significant dose-dependent increase in the approach latencies as well as a decrease in the proportion of Go responses. In Experiment 2, with the design analogous to Experiment 1, the hens received again five treatments (1.0 and 10.0 mg/kg of dopamine D1 receptor agonist SKF 38393, 1.0 and 10.0 mg/kg of dopamine D2 receptor agonist bromocriptine, and saline control), applied intramuscularly 2 h before the test. The agonists did not have any significant effect on approach latencies and the proportion of Go responses in the spatial judgment task, as compared to the saline control, except for 10.0 mg/kg SKF 38393, which caused a decrease in the proportion of Go responses. The approach latency and the proportion of Go responses were affected by the cue location in both experiments. Our data suggest that the dopamine D1 and D2 receptor blockade leads to a decrease in the reward expectation and the negative judgment of stimuli. The effect of dopamine receptor activation is less clear. The results reveal that dopamine receptor manipulation alters the evaluation of the reward and punishment in the spatial judgment task.
Collapse
|
26
|
Cisek P. Evolution of behavioural control from chordates to primates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200522. [PMID: 34957850 PMCID: PMC8710891 DOI: 10.1098/rstb.2020.0522] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022] Open
Abstract
This article outlines a hypothetical sequence of evolutionary innovations, along the lineage that produced humans, which extended behavioural control from simple feedback loops to sophisticated control of diverse species-typical actions. I begin with basic feedback mechanisms of ancient mobile animals and follow the major niche transitions from aquatic to terrestrial life, the retreat into nocturnality in early mammals, the transition to arboreal life and the return to diurnality. Along the way, I propose a sequence of elaboration and diversification of the behavioural repertoire and associated neuroanatomical substrates. This includes midbrain control of approach versus escape actions, telencephalic control of local versus long-range foraging, detection of affordances by the dorsal pallium, diversified control of nocturnal foraging in the mammalian neocortex and expansion of primate frontal, temporal and parietal cortex to support a wide variety of primate-specific behavioural strategies. The result is a proposed functional architecture consisting of parallel control systems, each dedicated to specifying the affordances for guiding particular species-typical actions, which compete against each other through a hierarchy of selection mechanisms. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montreal CP 6123 Succursale Centre-ville, Montréal, Québec, Canada H3C 3J7
| |
Collapse
|
27
|
Pessoa L, Medina L, Desfilis E. Refocusing neuroscience: moving away from mental categories and towards complex behaviours. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200534. [PMID: 34957851 PMCID: PMC8710886 DOI: 10.1098/rstb.2020.0534] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022] Open
Abstract
Mental terms-such as perception, cognition, action, emotion, as well as attention, memory, decision-making-are epistemically sterile. We support our thesis based on extensive comparative neuroanatomy knowledge of the organization of the vertebrate brain. Evolutionary pressures have moulded the central nervous system to promote survival. Careful characterization of the vertebrate brain shows that its architecture supports an enormous amount of communication and integration of signals, especially in birds and mammals. The general architecture supports a degree of 'computational flexibility' that enables animals to cope successfully with complex and ever-changing environments. Here, we suggest that the vertebrate neuroarchitecture does not respect the boundaries of standard mental terms, and propose that neuroscience should aim to unravel the dynamic coupling between large-scale brain circuits and complex, naturalistic behaviours. This article is part of the theme issue 'Systems neuroscience through the lens of evolutionary theory'.
Collapse
Affiliation(s)
- Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD 20742, USA
| | - Loreta Medina
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| | - Ester Desfilis
- Department of Experimental Medicine, Institut de Recerca Biomèdica de Lleida Fundació Dr. Pifarré (IRBLleida), University of Lleida, 25198 Lleida, Spain
| |
Collapse
|
28
|
Barkana BD, Ozkan Y, Badara JA. Analysis of working memory from EEG signals under different emotional states. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Smulders TV. Telencephalic regulation of the HPA axis in birds. Neurobiol Stress 2021; 15:100351. [PMID: 34189191 PMCID: PMC8220096 DOI: 10.1016/j.ynstr.2021.100351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis is one of the major output systems of the vertebrate stress response. It controls the release of cortisol or corticosterone from the adrenal gland. These hormones regulate a range of processes throughout the brain and body, with the main function of mobilizing energy reserves to improve coping with a stressful situation. This axis is regulated in response to both physical (e.g., osmotic) and psychological (e.g., social) stressors. In mammals, the telencephalon plays an important role in the regulation of the HPA axis response in particular to psychological stressors, with the amygdala and part of prefrontal cortex stimulating the stress response, and the hippocampus and another part of prefrontal cortex inhibiting the response to return it to baseline. Birds also mount HPA axis responses to psychological stressors, but much less is known about the telencephalic areas that control this response. This review summarizes which telencephalic areas in birds are connected to the HPA axis and are known to respond to stressful situations. The conclusion is that the telencephalic control of the HPA axis is probably an ancient system that dates from before the split between sauropsid and synapsid reptiles, but more research is needed into the functional relationships between the brain areas reviewed in birds if we want to understand the level of this conservation.
Collapse
Affiliation(s)
- Tom V. Smulders
- Centre for Behaviour & Evolution, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| |
Collapse
|
30
|
McMorris T. The acute exercise-cognition interaction: From the catecholamines hypothesis to an interoception model. Int J Psychophysiol 2021; 170:75-88. [PMID: 34666105 DOI: 10.1016/j.ijpsycho.2021.10.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/06/2021] [Accepted: 10/11/2021] [Indexed: 02/08/2023]
Abstract
An interoception model for the acute exercise-cognition interaction is presented. During exercise following the norepinephrine threshold, interoceptive feedback induces increased tonic release of extracellular catecholamines, facilitating phasic release hence better cognitive performance of executive functions. When exercise intensity increases to maximum, the nature of task-induced norepinephrine release from the locus coeruleus is dependent on interaction between motivation, perceived effort costs and perceived availability of resources. This is controlled by interaction between the rostral and dorsolateral prefrontal cortices, orbitofrontal cortex, anterior cingulate cortex and anterior insula cortex. If perceived available resources are sufficient to meet predicted effort costs and reward value is high, tonic release from the locus coeruleus is attenuated thus facilitating phasic release, therefore cognition is not inhibited. However, if perceived available resources are insufficient to meet predicted effort costs or reward value is low, tonic release from the locus coeruleus is induced, attenuating phasic release. As a result, cognition is inhibited, although long-term memory and tasks that require switching to new stimuli-response couplings are probably facilitated.
Collapse
Affiliation(s)
- Terry McMorris
- Institute of Sport, University of Chichester, College Lane, Chichester, West Sussex PO19 6PE, United Kingdom; Department of Sport and Exercise Science, Faculty of Science, University of Portsmouth, Guildhall Walk, Portsmouth PO1 2ER, United Kingdom.
| |
Collapse
|
31
|
Lane RD, Smith R. Levels of Emotional Awareness: Theory and Measurement of a Socio-Emotional Skill. J Intell 2021; 9:42. [PMID: 34449662 PMCID: PMC8395748 DOI: 10.3390/jintelligence9030042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Emotional awareness is the ability to conceptualize and describe one's own emotions and those of others. Over thirty years ago, a cognitive-developmental theory of emotional awareness patterned after Piaget's theory of cognitive development was created as well as a performance measure of this ability called the Levels of Emotional Awareness Scale (LEAS). Since then, a large number of studies have been completed in healthy volunteers and clinical populations including those with mental health or systemic medical disorders. Along the way, there have also been further refinements and adaptations of the LEAS such as the creation of a digital version in addition to further advances in the theory itself. This review aims to provide a comprehensive summary of the evolving theoretical background, measurement methods, and empirical findings with the LEAS. The LEAS is a reliable and valid measure of emotional awareness. Evidence suggests that emotional awareness facilitates better emotion self-regulation, better ability to navigate complex social situations and enjoy relationships, and better physical and mental health. This is a relatively new but promising area of research in the domain of socio-emotional skills. The paper concludes with some recommendations for future research.
Collapse
Affiliation(s)
- Richard D. Lane
- Department of Psychiatry, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | - Ryan Smith
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK 74136, USA;
| |
Collapse
|
32
|
Tsikandilakis M, Bali P, Yu Z, Madan C, Derrfuss J, Chapman P, Groeger J. Individual conscious and unconscious perception of emotion: Theory, methodology and applications. Conscious Cogn 2021; 94:103172. [PMID: 34332204 DOI: 10.1016/j.concog.2021.103172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/16/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022]
Abstract
In this manuscript we review a seminal debate related to subliminality and concerning the relationship of consciousness, unconsciousness, and perception. We present the methodological implementations that contemporary psychology introduced to explore this relationship, such as the application of unbiased self-report metrics and Bayesian analyses for assessing detection and discrimination. We present evidence concerning an unaddressed issue, namely, that different participants and stimulus types require different thresholds for subliminal presentation. We proceed to a step-by-step experimental illustration of a method involving individual thresholds for the presentation of masked emotional faces. We show that individual thresholds provide Bayesian evidence for null responses to the presented faces. Conversely, we show in the same database that when applying established but biased non-individual criteria for subliminality physiological changes occur and relate - correctly, and most importantly incorrectly - to perception concerning the emotional type, and the valence and intensity of a presented masked emotional face.
Collapse
Affiliation(s)
- Myron Tsikandilakis
- School of Psychology, University of Nottingham, United Kingdom; Medical School, Faculty of Medicine and Health Sciences, University of Nottingham, United Kingdom.
| | - Persefoni Bali
- School of Psychology, University of Nottingham, United Kingdom
| | - Zhaoliang Yu
- Department of Psychology, Wuhan University, China
| | | | - Jan Derrfuss
- School of Psychology, University of Nottingham, United Kingdom
| | - Peter Chapman
- School of Psychology, University of Nottingham, United Kingdom
| | - John Groeger
- School of Social Sciences, Nottingham Trent University, United Kingdom
| |
Collapse
|
33
|
Perez-Martinez CA, Leal M. Lizards as models to explore the ecological and neuroanatomical correlates of miniaturization. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Extreme body size reductions bring about unorthodox anatomical arrangements and novel ways in which animals interact with the environment. Drawing from studies of vertebrates and invertebrates, we provide a theoretical framework for miniaturization to inform hypotheses using lizards as a study system. Through this approach, we demonstrate the repeated evolution of miniaturization across 11 families and a tendency for miniaturized species to occupy terrestrial microhabitats, possibly driven by physiological constraints. Differences in gross brain morphology between two gecko species demonstrate a proportionally larger telencephalon and smaller olfactory bulbs in the miniaturized species, though more data are needed to generalize this trend. Our study brings into light the potential contributions of miniaturized lizards to explain patterns of body size evolution and its impact on ecology and neuroanatomy. In addition, our findings reveal the need to study the natural history of miniaturized species, particularly in relation to their sensory and physiological ecology.
Collapse
Affiliation(s)
| | - Manuel Leal
- Division of Biological Sciences, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
34
|
Yao Z, van Velthoven CTJ, Nguyen TN, Goldy J, Sedeno-Cortes AE, Baftizadeh F, Bertagnolli D, Casper T, Chiang M, Crichton K, Ding SL, Fong O, Garren E, Glandon A, Gouwens NW, Gray J, Graybuck LT, Hawrylycz MJ, Hirschstein D, Kroll M, Lathia K, Lee C, Levi B, McMillen D, Mok S, Pham T, Ren Q, Rimorin C, Shapovalova N, Sulc J, Sunkin SM, Tieu M, Torkelson A, Tung H, Ward K, Dee N, Smith KA, Tasic B, Zeng H. A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell 2021; 184:3222-3241.e26. [PMID: 34004146 PMCID: PMC8195859 DOI: 10.1016/j.cell.2021.04.021] [Citation(s) in RCA: 496] [Impact Index Per Article: 124.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 02/09/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022]
Abstract
The isocortex and hippocampal formation (HPF) in the mammalian brain play critical roles in perception, cognition, emotion, and learning. We profiled ∼1.3 million cells covering the entire adult mouse isocortex and HPF and derived a transcriptomic cell-type taxonomy revealing a comprehensive repertoire of glutamatergic and GABAergic neuron types. Contrary to the traditional view of HPF as having a simpler cellular organization, we discover a complete set of glutamatergic types in HPF homologous to all major subclasses found in the six-layered isocortex, suggesting that HPF and the isocortex share a common circuit organization. We also identify large-scale continuous and graded variations of cell types along isocortical depth, across the isocortical sheet, and in multiple dimensions in hippocampus and subiculum. Overall, our study establishes a molecular architecture of the mammalian isocortex and hippocampal formation and begins to shed light on its underlying relationship with the development, evolution, connectivity, and function of these two brain structures.
Collapse
Affiliation(s)
- Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Megan Chiang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - James Gray
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Matthew Kroll
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kanan Lathia
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Stephanie Mok
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Thanh Pham
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Qingzhong Ren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Josef Sulc
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Amy Torkelson
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Herman Tung
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Katelyn Ward
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Šimić G, Tkalčić M, Vukić V, Mulc D, Španić E, Šagud M, Olucha-Bordonau FE, Vukšić M, R. Hof P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021; 11:biom11060823. [PMID: 34072960 PMCID: PMC8228195 DOI: 10.3390/biom11060823] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 12/11/2022] Open
Abstract
Emotions arise from activations of specialized neuronal populations in several parts of the cerebral cortex, notably the anterior cingulate, insula, ventromedial prefrontal, and subcortical structures, such as the amygdala, ventral striatum, putamen, caudate nucleus, and ventral tegmental area. Feelings are conscious, emotional experiences of these activations that contribute to neuronal networks mediating thoughts, language, and behavior, thus enhancing the ability to predict, learn, and reappraise stimuli and situations in the environment based on previous experiences. Contemporary theories of emotion converge around the key role of the amygdala as the central subcortical emotional brain structure that constantly evaluates and integrates a variety of sensory information from the surroundings and assigns them appropriate values of emotional dimensions, such as valence, intensity, and approachability. The amygdala participates in the regulation of autonomic and endocrine functions, decision-making and adaptations of instinctive and motivational behaviors to changes in the environment through implicit associative learning, changes in short- and long-term synaptic plasticity, and activation of the fight-or-flight response via efferent projections from its central nucleus to cortical and subcortical structures.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
- Correspondence:
| | - Mladenka Tkalčić
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka, 51000 Rijeka, Croatia;
| | - Vana Vukić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Damir Mulc
- University Psychiatric Hospital Vrapče, 10090 Zagreb, Croatia;
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Marina Šagud
- Department of Psychiatry, Clinical Hospital Center Zagreb and University of Zagreb School of Medicine, 10000 Zagreb, Croatia;
| | | | - Mario Vukšić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia; (V.V.); (E.Š.); (M.V.)
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 07305, USA;
| |
Collapse
|
36
|
The adhesio interthalamica as a neuroanatomical marker of structural differences in healthy adult population. Brain Struct Funct 2021; 226:1871-1878. [PMID: 34014400 DOI: 10.1007/s00429-021-02297-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
The adhesio interthalamica (AI) is a small midline brain structure that connects the left and right thalamus. According to in vivo data, between 2.3 and 22.3% of the general population lack the AI, and the question of whether this absence is more prevalent in males than in females is a matter of debate. Despite the existence of these demographic figures, it remains unclear how this distinctive feature affects healthy people, or what specific anatomic profile is related to the presence or absence of the AI. The aim of this study was to investigate whole-brain gray matter (GM) volumetric differences depending on the presence or absence of the AI. A total of 240 healthy adult volunteers completed one MRI scanning session. After the AI assessment, the data from 110 participants were included in the final sample, of which 12.9% of the participants (n = 31) presented complete AI absence vs. 32.9% of participants (n = 79) who presented complete AI presence. Then, whole-brain group comparison analysis revealed that the absent AI brain, compared to the present AI brain, was associated with lower GM volume in the premotor cortex, inferior frontal gyrus, and anterior temporal cortex. Interestingly, neuroscience research has linked emotional and cognitive control brain processing to the latter two regions. The importance of these findings lies in providing a neuroanatomical profile for the absent AI brain in healthy human adults.
Collapse
|
37
|
Al-Amer RM, Malak MZ, Aburumman G, Darwish M, Nassar MS, Darwish M, Randall S. Prevalence and predictors of depression, anxiety, and stress among Jordanian nurses during the coronavirus disease 2019 pandemic. INTERNATIONAL JOURNAL OF MENTAL HEALTH 2021. [DOI: 10.1080/00207411.2021.1916701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Malakeh Z. Malak
- Faculty of Nursing, Community Health Nursing, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ghaida Aburumman
- Faculty of Engineering, Health Geography, Isra University, Amman, Jordan
| | - Motasem Darwish
- Faculty of Engineering, Health Geography, Middle East University, Amman, Jordan
| | | | | | - Sue Randall
- Susan Wakil School of Nursing and Midwifery, The University of Sydney, Sydney, Australia
| |
Collapse
|
38
|
Morales L, Castro-Robles B, Abellán A, Desfilis E, Medina L. A novel telencephalon-opto-hypothalamic morphogenetic domain coexpressing Foxg1 and Otp produces most of the glutamatergic neurons of the medial extended amygdala. J Comp Neurol 2021; 529:2418-2449. [PMID: 33386618 DOI: 10.1002/cne.25103] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022]
Abstract
Deficits in social cognition and behavior are a hallmark of many psychiatric disorders. The medial extended amygdala, including the medial amygdala and the medial bed nucleus of the stria terminalis, is a key component of functional networks involved in sociality. However, this nuclear complex is highly heterogeneous and contains numerous GABAergic and glutamatergic neuron subpopulations. Deciphering the connections of different neurons is essential in order to understand how this structure regulates different aspects of sociality, and it is necessary to evaluate their differential implication in distinct mental disorders. Developmental studies in different vertebrates are offering new venues to understand neuronal diversity of the medial extended amygdala and are helping to establish a relation between the embryonic origin and molecular signature of distinct neurons with the functional subcircuits in which they are engaged. These studies have provided many details on the distinct GABAergic neurons of the medial extended amygdala, but information on the glutamatergic neurons is still scarce. Using an Otp-eGFP transgenic mouse and multiple fluorescent labeling, we show that most glutamatergic neurons of the medial extended amygdala originate in a distinct telencephalon-opto-hypothalamic embryonic domain (TOH), located at the transition between telencephalon and hypothalamus, which produces Otp-lineage neurons expressing the telencephalic marker Foxg1 but not Nkx2.1 during development. These glutamatergic cells include a subpopulation of projection neurons of the medial amygdala, which activation has been previously shown to promote autistic-like behavior. Our data open new venues for studying the implication of this neuron subtype in neurodevelopmental disorders producing social deficits.
Collapse
Affiliation(s)
- Lorena Morales
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Beatriz Castro-Robles
- Laboratory of Cerebrovascular, Neurodegenerative and Neuro-oncology Diseases, Research Unit, Complejo Hospitalario Universitario de Albacete, Castilla-La Mancha, Spain
| | - Antonio Abellán
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Ester Desfilis
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| | - Loreta Medina
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida's Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Catalonia, Spain
| |
Collapse
|
39
|
Kryklywy JH, Ehlers MR, Anderson AK, Todd RM. From Architecture to Evolution: Multisensory Evidence of Decentralized Emotion. Trends Cogn Sci 2020; 24:916-929. [DOI: 10.1016/j.tics.2020.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022]
|
40
|
Iwashita M, Nomura T, Suetsugu T, Matsuzaki F, Kojima S, Kosodo Y. Comparative Analysis of Brain Stiffness Among Amniotes Using Glyoxal Fixation and Atomic Force Microscopy. Front Cell Dev Biol 2020; 8:574619. [PMID: 33043008 PMCID: PMC7517470 DOI: 10.3389/fcell.2020.574619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/21/2020] [Indexed: 12/17/2022] Open
Abstract
Brain structures are diverse among species despite the essential molecular machinery of neurogenesis being common. Recent studies have indicated that differences in the mechanical properties of tissue may result in the dynamic deformation of brain structure, such as folding. However, little is known about the correlation between mechanical properties and species-specific brain structures. To address this point, a comparative analysis of mechanical properties using several animals is required. For a systematic measurement of the brain stiffness of remotely maintained animals, we developed a novel strategy of tissue-stiffness measurement using glyoxal as a fixative combined with atomic force microscopy. A comparison of embryonic and juvenile mouse and songbird brain tissue revealed that glyoxal fixation can maintain brain structure as well as paraformaldehyde (PFA) fixation. Notably, brain tissue fixed by glyoxal remained much softer than PFA-fixed brains, and it can maintain the relative stiffness profiles of various brain regions. Based on this method, we found that the homologous brain regions between mice and songbirds exhibited different stiffness patterns. We also measured brain stiffness in other amniotes (chick, turtle, and ferret) following glyoxal fixation. We found stage-dependent and species-specific stiffness in pallia among amniotes. The embryonic chick and matured turtle pallia showed gradually increasing stiffness along the apico-basal tissue axis, the lowest region at the most apical region, while the ferret pallium exhibited a catenary pattern, that is, higher in the ventricular zone, the inner subventricular zone, and the cortical plate and the lowest in the outer subventricular zone. These results indicate that species-specific microenvironments with distinct mechanical properties emerging during development might contribute to the formation of brain structures with unique morphology.
Collapse
Affiliation(s)
| | - Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taeko Suetsugu
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | | | | | | |
Collapse
|
41
|
Morrow JK, Cohen MX, Gothard KM. Mesoscopic-scale functional networks in the primate amygdala. eLife 2020; 9:57341. [PMID: 32876047 PMCID: PMC7490012 DOI: 10.7554/elife.57341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
The primate amygdala performs multiple functions that may be related to the anatomical heterogeneity of its nuclei. Individual neurons with stimulus- and task-specific responses are not clustered in any of the nuclei, suggesting that single-units may be too-fine grained to shed light on the mesoscale organization of the amygdala. We have extracted from local field potentials recorded simultaneously from multiple locations within the primate (Macaca mulatta) amygdala spatially defined and statistically separable responses to visual, tactile, and auditory stimuli. A generalized eigendecomposition-based method of source separation isolated coactivity patterns, or components, that in neurophysiological terms correspond to putative subnetworks. Some component spatial patterns mapped onto the anatomical organization of the amygdala, while other components reflected integration across nuclei. These components differentiated between visual, tactile, and auditory stimuli suggesting the presence of functionally distinct parallel subnetworks.
Collapse
Affiliation(s)
- Jeremiah K Morrow
- Department of Physiology, University of Arizona, Tucson, United States.,Department of Behavioral Neuroscience, Oregon Health and Sciences University, Portland, United States
| | - Michael X Cohen
- Radboud University Medical Center, Nijmegen, Netherlands.,Donders Center for Neuroscience, Nijmegen, Netherlands
| | - Katalin M Gothard
- Department of Physiology, University of Arizona, Tucson, United States
| |
Collapse
|
42
|
Abstract
Brain-wide circuits that coordinate affective and social behaviours intersect in the amygdala. Consequently, amygdala lesions cause a heterogeneous array of social and non-social deficits. Social behaviours are not localized to subdivisions of the amygdala even though the inputs and outputs that carry social signals are anatomically restricted to distinct subnuclear regions. This observation may be explained by the multidimensional response properties of the component neurons. Indeed, the multitudes of circuits that converge in the amygdala enlist the same subset of neurons into different ensembles that combine social and non-social elements into high-dimensional representations. These representations may enable flexible, context-dependent social decisions. As such, multidimensional processing may operate in parallel with subcircuits of genetically identical neurons that serve specialized and functionally dissociable functions. When combined, the activity of specialized circuits may grant specificity to social behaviours, whereas multidimensional processing facilitates the flexibility and nuance needed for complex social behaviour.
Collapse
|
43
|
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Struct Funct 2020; 225:2239-2269. [PMID: 32743670 DOI: 10.1007/s00429-020-02123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
The organization of the pallial derivatives across vertebrates follows a comparable elementary arrangement, although not all of them possess a layered cortical structure as sophisticated as the cerebral cortex of mammals. However, its expansion along evolution has only been possible by the development and coevolution of the cellular networks formed by excitatory neurons and inhibitory interneurons. Thus, the comparative analysis of interneuron types in vertebrate models of key evolutionary significance will provide important information, due to the extraordinary anatomical sophistication of their interneuron systems with simpler behavioral implications. Particularly in mammals, the main consensus for classifying interneuron types is based on non-overlapping markers, which do not form a single population, but consist of several distinct classes of inhibitory cells showing co-expression of other markers. In our study, we analyzed immunohistochemically the expression of the main markers like somatostatin (SOM), parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY) and/or nitric oxide synthase (NOS) at the pallial regions of three different models of Osteichthyes. First, we selected two tetrapods, one amniote from the genus Pseudemys belonging to the order Testudine, at the base of the amniote diversification and with a three-layered simple cortex, and the Anuran Xenopus laevis, an anamniote tetrapod with a non-layered evaginated pallium, and finally the order Polypteriform, a small fish group at the base of the actinopterygian diversification with an everted telencephalon. SOM was the most conserved interneuron type in terms of its distribution and co-expression with other markers such as CR, in contrast to PV, which showed a different pattern between the models analyzed. In addition, the SOM expression supports a homological relationship between the medial pallial derivatives in all the models. CR and CB expressions in the tetrapods were observed, particularly, CR expressing cells were detected in the medial and the dorsal pallial derivatives, in contrast to CB, which appeared only in discrete scattered populations. However, the pallium of Polypteriforms fishes was almost devoid of CR cells, in contrast to the important number of CB cells observed in all the pallial regions. The NPY immunoreactivity was detected in all the pallial domains of all the models, as well as cells coexpressing CR. Finally, the pallial nitrergic expression was also conserved, which allows to postulate the homological relationships between the ventropallial and the amygdaloid derivatives. In summary, even in basal pallial models the neurochemically characterized interneurons indicate that their first appearance took place before the common ancestor of amniotes. Thus, our results suggest a shared pattern of interneuron types in the pallium of all Osteichthyes.
Collapse
|
44
|
Charvet CJ. Closing the gap from transcription to the structural connectome enhances the study of connections in the human brain. Dev Dyn 2020; 249:1047-1061. [PMID: 32562584 DOI: 10.1002/dvdy.218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
The brain is composed of a complex web of networks but we have yet to map the structural connections of the human brain in detail. Diffusion MR imaging is a high-throughput method that relies on the principle of diffusion to reconstruct tracts (ie, pathways) across the brain. Although diffusion MR tractography is an exciting method to explore the structural connectivity of the brain in development and across species, the tractography has at times led to questionable interpretations. There are at present few if any alternative methods to trace structural pathways in the human brain. Given these limitations and the potential of diffusion MR imaging to map the human connectome, it is imperative that we develop new approaches to validate neuroimaging techniques. I discuss our recent studies integrating neuroimaging with transcriptional and anatomical variation across humans and other species over the course of development and in adulthood. Developing a novel framework to harness the potential of diffusion MR tractography provides new and exciting opportunities to study the evolution of developmental mechanisms generating variation in connections and bridge the gap between model systems to humans.
Collapse
|
45
|
McNaughton N. Personality neuroscience and psychopathology: should we start with biology and look for neural-level factors? PERSONALITY NEUROSCIENCE 2020; 3:e4. [PMID: 32524065 PMCID: PMC7253689 DOI: 10.1017/pen.2020.5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
"Personality is an abstraction used to explain consistency and coherency in an individual's pattern of affects, cognitions, desires and behaviors [ABCDs]" (Revelle, 2007, p. 37). But personality research currently provides more a taxonomy of patterns than theories of fundamental causes. Psychiatric disorders can be viewed as involving extremes of personality but are diagnosed via symptom patterns not biological causes. Such surface-level taxonomic description is necessary for science, but consistent predictive explanation requires causal theory. Personality constructs, and especially their clinical extremes, should predict variation in ABCD patterns, with parsimony requiring the lowest effective causal level of explanation. But, even biologically inspired personality theories currently use an intuitive language-based approach for scale development that lacks biological anchors. I argue that teleonomic "purpose" explains the organisation and outputs of conserved brain emotion systems, where high activation is adaptive in specific situations but is otherwise maladaptive. Simple modulators of whole-system sensitivity evolved because the requisite adaptive level can vary across people and time. Sensitivity to a modulator is an abstract predictive personality factor that operates at the neural level but provides a causal explanation of both coherence and occasional apparent incoherence in ABCD variation. Neuromodulators impact all levels of the "personality hierarchy" from metatraits to aspects: stability appears altered by serotonergic drugs, neuroticism by ketamine and trait anxiety by simple anxiolytic drugs. Here, the tools of psychiatry transfer to personality research and imply both interaction between levels and oblique factor mappings to ABCD. On this view, much psychopathology reflects extremes of neural-level personality factors, and we can view much pharmacotherapy as temporarily altering personality. So, particularly for personality factors linked to basic emotions and their disorders, I think we should start with evolutionary biology and look directly at conserved neural-level modulators for our explanatory personality constructs and only invoke higher order, emergent, explanations when neural-level explanation fails.
Collapse
Affiliation(s)
- Neil McNaughton
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|