1
|
Elansary M, Brochier A, Urbina-Johanson S, Wexler MG, Messmer E, Pierce LJ, McCoy DC. A Qualitative Study of Maternal Perceptions of Stress and Parenting During Early Childhood. Acad Pediatr 2024; 24:1068-1075. [PMID: 38278480 DOI: 10.1016/j.acap.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/07/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
OBJECTIVE Exposure to maternal stress in early childhood can increase risk for learning and behavior challenges. We sought to gain in-depth understanding of how mothers perceive stressors to impact child wellbeing and identify mothers' strategies for navigating stressors with their young children. METHODS We recruited English- and Spanish-speaking mothers from a primary care clinic serving predominantly publicly insured children. Twenty-one mothers (aged >18 years) of children (aged 6-29 months) participated in in-depth, semi-structured interviews to discuss their experiences and beliefs regarding stress and parenting. Interviews were recorded, transcribed verbatim, and analyzed using the constant comparative method associated with a grounded theory approach. RESULTS We developed the following hypothesized explanatory model based on our key thematic findings: Mothers described a dyadic model of stress, whereby both their children's and their own experiences of and responses to stressors are interdependent. Mothers use preventive and responsive buffering to mitigate the impact of stress on their children; however, their access to resources, including social and financial support, shapes their capacity for implementing such strategies. Affection and other forms of relational support may function to protect against the negative impacts of stress. CONCLUSION In the setting of poverty-related chronic stressors, mothers play an active role in mitigating the impact of stress on their children's wellbeing through responsive caregiving. Policies aimed at reducing poverty-related stress exposures and experiences among low-income families may be key interventions for promoting responsive caregiving during a critical time in child development.
Collapse
Affiliation(s)
- Mei Elansary
- Department of Pediatrics (M Elansary), Boston University School of Medicine and Boston Medical Center, Boston, Mass.
| | - Annelise Brochier
- Department of Pediatrics (A Brochier), Boston Medical Center, Boston, Mass
| | - Saul Urbina-Johanson
- Division of Developmental Medicine (S Urbina-Johanson and LJ Pierce), Boston Children's Hospital, Boston, Mass; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health (S Urbina-Johanson), Boston, Mass
| | - Mikayla G Wexler
- Department of Medical Education, Icahn School of Medicine at Mount Sinai (MG Wexler), New York, NY
| | - Emily Messmer
- Quality and Patient Experience (E Messmer), Mass General Brigham, Somerville, Mass
| | - Lara J Pierce
- Division of Developmental Medicine (S Urbina-Johanson and LJ Pierce), Boston Children's Hospital, Boston, Mass; Department of Psychology (LJ Pierce), York University, Toronto, Ontario, Canada
| | - Dana C McCoy
- Harvard Graduate School of Education (DC McCoy), Cambridge, Mass
| |
Collapse
|
2
|
Vancamp P, Frapin M, Parnet P, Amarger V. Unraveling the Molecular Mechanisms of the Neurodevelopmental Consequences of Fetal Protein Deficiency: Insights From Rodent Models and Public Health Implications. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100339. [PMID: 39040432 PMCID: PMC11262180 DOI: 10.1016/j.bpsgos.2024.100339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Fetal brain development requires increased maternal protein intake to ensure that offspring reach their optimal cognitive potential in infancy and adulthood. While protein deficiency remains a prevalent issue in developing countries, it is also reemerging in Western societies due to the growing adoption of plant-based diets, some of which are monotonous and may fail to provide sufficient amino acids crucial for the brain's critical developmental phase. Confounding variables in human nutritional research have impeded our understanding of the precise impact of protein deficiency on fetal neurodevelopment, as well as its implications for childhood neurocognitive performance. Moreover, it remains unclear whether such deficiency could predispose to mental health problems in adulthood, mirroring observations in individuals exposed to prenatal famine. In this review, we sought to evaluate mechanistic data derived from rodent models, placing special emphasis on the involvement of neuroendocrine axes, the influence of sex and timing, epigenetic modifications, and cellular metabolism. Despite notable progress, critical knowledge gaps remain, including understanding the long-term reversibility of effects due to fetal protein restriction and the interplay between genetic predisposition and environmental factors. Enhancing our understanding of the precise mechanisms that connect prenatal nutrition to brain development in future research endeavors can be significantly advanced by integrating multiomics approaches and utilizing additional alternative models such as nonhuman primates. Furthermore, it is crucial to investigate potential interventions aimed at alleviating adverse outcomes. Ultimately, this research has profound implications for guiding public health strategies aimed at raising awareness about the crucial role of optimal maternal nutrition in supporting fetal neurodevelopment.
Collapse
Affiliation(s)
- Pieter Vancamp
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Morgane Frapin
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Patricia Parnet
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Valérie Amarger
- Nantes Université, Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environnement, UMR1280, Physiopathologie des Adaptations Nutritionnelles, l'Institut des Maladies de l'Appareil Digestif, Nantes, France
| |
Collapse
|
3
|
Watanabe M, Sinha AS, Shinmyo Y, Fukuda A. Early establishment of chloride homeostasis in CRH neurons is altered by prenatal stress leading to fetal HPA axis dysregulation. Front Mol Neurosci 2024; 17:1373337. [PMID: 38577026 PMCID: PMC10994000 DOI: 10.3389/fnmol.2024.1373337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
Corticotropin-releasing hormone (CRH) neurons play an important role in the regulation of neuroendocrine responses to stress. The excitability of CRH neurons is regulated by inhibitory GABAergic inputs. However, it is unclear when GABAergic regulation of CRH neurons is established during fetal brain development. Furthermore, the exact progression of the developmental shift of GABA action from depolarization to hyperpolarization remains unelucidated. Considering the importance of CRH neuron function in subsequent hypothalamic-pituitary-adrenal (HPA) axis regulation during this critical phase of development, we investigated the ontogeny of GABAergic inputs to CRH neurons and consequent development of chloride homeostasis. Both CRH neuron soma in the paraventricular nucleus (PVN) and axons projecting to the median eminence could be identified at embryonic day 15 (E15). Using acute slices containing the PVN of CRF-VenusΔNeo mice, gramicidin perforated-patch clamp-recordings of CRH neurons at E15, postnatal day 0 (P0), and P7 were performed to evaluate the developmental shift of GABA action. The equilibrium potential of GABA (EGABA) was similar between E15 and P0 and showed a further hyperpolarizing shift between P0 and P7 that was comparable to EGABA values in adult CRH neurons. GABA primarily acted as an inhibitory signal at E15 and KCC2 expression was detected in CRH neurons at this age. Activation of the HPA axis has been proposed as the primary mechanism through which prenatal maternal stress shapes fetal development and subsequent long-term disease risk. We therefore examined the impact of maternal food restriction stress on the development of chloride homeostasis in CRH neurons. We observed a depolarization shift of EGABA in CRH neurons of pups exposed to maternal food restriction stress. These results suggest that Cl- homeostasis in early developmental CRH neurons attains mature intracellular Cl- levels, GABA acts primarily as inhibitory, and CRH neurons mature and function early compared with neurons in other brain regions, such as the cortex and hippocampus. Maternal food restriction stress alters chloride homeostasis in CRH neurons of pups, reducing their inhibitory control by GABA. This may contribute to increased CRH neuron activity and cause activation of the HPA axis in pups.
Collapse
Affiliation(s)
| | | | - Yohei Shinmyo
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Miles TK, Allensworth-James ML, Odle AK, Silva Moreira AR, Haney AC, LaGasse AN, Gies AJ, Byrum SD, Riojas AM, MacNicol MC, MacNicol AM, Childs GV. Maternal undernutrition results in transcript changes in male offspring that may promote resistance to high fat diet induced weight gain. Front Endocrinol (Lausanne) 2024; 14:1332959. [PMID: 38720938 PMCID: PMC11077627 DOI: 10.3389/fendo.2023.1332959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 05/12/2024] Open
Abstract
Maternal nutrition during embryonic development and lactation influences multiple aspects of offspring health. Using mice, this study investigates the effects of maternal caloric restriction (CR) during mid-gestation and lactation on offspring neonatal development and on adult metabolic function when challenged by a high fat diet (HFD). The CR maternal model produced male and female offspring that were significantly smaller, in terms of weight and length, and females had delayed puberty. Adult offspring born to CR dams had a sexually dimorphic response to the high fat diet. Compared to offspring of maternal control dams, adult female, but not male, CR offspring gained more weight in response to high fat diet at 10 weeks. In adipose tissue of male HFD offspring, maternal undernutrition resulted in blunted expression of genes associated with weight gain and increased expression of genes that protect against weight gain. Regardless of maternal nutrition status, HFD male offspring showed increased expression of genes associated with progression toward nonalcoholic fatty liver disease (NAFLD). Furthermore, we observed significant, sexually dimorphic differences in serum TSH. These data reveal tissue- and sex-specific changes in gene and hormone regulation following mild maternal undernutrition, which may offer protection against diet induced weight gain in adult male offspring.
Collapse
Affiliation(s)
- Tiffany K. Miles
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Melody L. Allensworth-James
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angela K. Odle
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Ana Rita Silva Moreira
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Anessa C. Haney
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alex N. LaGasse
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Allen J. Gies
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Stephanie D. Byrum
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angelica M. Riojas
- Department of Radiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Melanie C. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Angus M. MacNicol
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Gwen V. Childs
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
5
|
Zeng R, Chen J, Peng Y, Xu W, Tao Y, Li M, Zhang R, Meng J, Li Z, Zeng L, Huang J. Microglia are necessary for probiotics supplementation to improve impaired fear extinction caused by pregnancy stress in adult offspring of rats. Neurobiol Stress 2024; 28:100591. [PMID: 38075026 PMCID: PMC10709091 DOI: 10.1016/j.ynstr.2023.100591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/04/2023] [Accepted: 11/12/2023] [Indexed: 10/19/2024] Open
Abstract
The prevention and treatment of fear-related disorders in offspring affected by pregnancy stress remains challenging at clinic. Here, we examined the effects of gut microbiota of stressed pregnant rats on the fear extinction of their offsprings, and the potential mechanisms. We found that gut microbiota transplantation from rats with pregnancy stress to normal pregnant rats impaired fear extinction, induced microglial activation and synaptic phagocytosis, increased synapse loss in offsprings. Probiotics supplement during pregnancy stress partly normalized pregnancy stress-induced gut microbiota dysbiosis of pregnant rats, and promoted fear memory extinction, inhibited fear memory reappearance, and limited microglial activation and synaptic phagocytosis in offsprings. These data revealed that gut microbiota of stressed pregnant mother improved the development of fear-related disorders of offspring, which may be associated with microglial synaptic pruning.
Collapse
Affiliation(s)
- Ru Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
- Center for Experimental Medicine, Third Xiangya Hospital, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yihan Peng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Weiye Xu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Yuanyuan Tao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Min Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Ruqi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jingzhuo Meng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Zhiyuan Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Leping Zeng
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, 138th Tongzipo Road, Changsha, Hunan, 410013, China
| |
Collapse
|
6
|
Dósa Z, Nieto-Gonzalez JL, Elfving B, Hougaard KS, Holm MM, Wegener G, Jensen K. Reduction in hippocampal GABAergic transmission in a low birth weight rat model of depression. Acta Neuropsychiatr 2023; 35:315-327. [PMID: 36896595 DOI: 10.1017/neu.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Prenatal stress is believed to increase the risk of developing neuropsychiatric disorders, including major depression. Adverse genetic and environmental impacts during early development, such as glucocorticoid hyper-exposure, can lead to changes in the foetal brain, linked to mental illnesses developed in later life. Dysfunction in the GABAergic inhibitory system is associated with depressive disorders. However, the pathophysiology of GABAergic signalling is poorly understood in mood disorders. Here, we investigated GABAergic neurotransmission in the low birth weight (LBW) rat model of depression. Pregnant rats, exposed to dexamethasone, a synthetic glucocorticoid, during the last week of gestation, yielded LBW offspring showing anxiety- and depressive-like behaviour in adulthood. Patch-clamp recordings from dentate gyrus granule cells in brain slices were used to examine phasic and tonic GABAA receptor-mediated currents. The transcriptional levels of selected genes associated with synaptic vesicle proteins and GABAergic neurotransmission were investigated. The frequency of spontaneous inhibitory postsynaptic currents (sIPSC) was similar in control and LBW rats. Using a paired-pulse protocol to stimulate GABAergic fibres impinging onto granule cells, we found indications of decreased probability of GABA release in LBW rats. However, tonic GABAergic currents and miniature IPSCs, reflecting quantal vesicle release, appeared normal. Additionally, we found elevated expression levels of two presynaptic proteins, Snap-25 and Scamp2, components of the vesicle release machinery. The results suggest that altered GABA release may be an essential feature in the depressive-like phenotype of LBW rats.
Collapse
Affiliation(s)
- Zita Dósa
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Betina Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Mai Marie Holm
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Pharmaceutical Research Center of Excellence, North-West University, Potchefstroom, South Africa
| | - Kimmo Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
7
|
Peña-Villalobos I, Otarola FA, Arancibia D, Sabat P, Palma V. Prenatal caloric restriction adjusts the energy homeostasis and behavior in response to acute and chronic variations in food availability in adulthood. J Comp Physiol B 2023; 193:677-688. [PMID: 37831173 DOI: 10.1007/s00360-023-01520-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023]
Abstract
Fetal metabolic programming produced by unfavorable prenatal nutritional conditions leads to the development of a disorder called "thrifty phenotype", which is associated with pathologies such as diabetes and obesity in adulthood. However, from an ecophysiological approach, few studies have addressed the development of thrifty phenotypes in terms of energy. This might represent an adaptive advantage against caloric deficiency conditions extending into adulthood. The objective of this study is to investigate the potential adaptive value of the thrifty phenotype expression through prenatal programming in a rodent model experiencing varying dietary conditions in different temporal contexts. To fill this gap, adult males of Mus musculus (BALB/C) from two maternal pregnancy groups were analyzed: control (ad libitum feeding) and caloric restriction from day 10 of gestation (70% restriction). Adult offspring of these groups were split further for two experiments: acute food deprivation and chronic caloric restriction at 60%. The acute food deprivation was performed for 24, 48 or 72 h while the caloric restriction regime was sustained for 20 days. For each experiment, morphological variables, such as body and organ mass, and gene expression related to lipid and carbohydrate metabolism from the liver and brain, were evaluated. In chronic caloric restriction, behavioral tests (open-field test and home-cage behavior) were performed. Our results indicate that under acute deprivation, the liver mass and triglyceride content remained unchanged in individuals subjected to prenatal restriction, in contrast to the reduction experienced by the control group. The latter is associated with the expression of the key genes involved in energy homeostasis (Pepck, Pparα/Pparγ), indicating a differential use of nutritional resources. In addition, thrifty animals, subjected to chronic caloric restriction, showed a severe reduction in locomotor and gluconeogenic activity, which is consistent with the regulatory role of Sirt1 and its downstream targets Mao and Pepck. Our results reveal that prenatal caloric restriction translates into a sparing metabolism in response to acute and chronic lack of food in adulthood.
Collapse
Affiliation(s)
- Isaac Peña-Villalobos
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Fabiola A Otarola
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - David Arancibia
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Sabat
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Verónica Palma
- Laboratorio de Células troncales y Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
8
|
de Souza MLM, Borçoi AR, Dutra BAB, Dos Santos Vieira T, Mendes SO, Nascimento IAA, Quaioto BR, Olinda AS, Cunha ER, Freitas FV, Pinheiro JA, Dos Santos JG, Sorroche BP, Arantes LMRB, Sartório CL, da Silva AMA. Lifestyle and NR3C1 exon 1F gene methylation is associated with changes in glucose levels and insulin resistance. Life Sci 2022; 309:120940. [PMID: 36108769 DOI: 10.1016/j.lfs.2022.120940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
AIMS the present study aimed to investigate how glucose and insulin levels may be associated with changes in NR3C1 gene methylation levels in adults. MAIN METHODS 375 volunteers users of the Brazilian Public Unified Health System (SUS) were recruited to assess socioeconomic status, lifestyle, anthropometric data, blood glucose and serum cortisol levels, insulin resistance, and NR3C1 gene methylation assessment. Factors associated with glucose levels and insulin resistance were investigated using multivariate analysis GLzM at 5 % significance (p < 0.05). KEY FINDINGS our results verified that glucose levels and insulin resistance were directly related to NR3C1 gene methylation and age, while not being overweight and obese and no tobacco consumption were indirectly related to glucose levels and insulin resistance. SIGNIFICANCE habits and lifestyle may influence NR3C1 gene regulation, revealing the complexity of environmental impacts on NR3C1 methylation. Furthermore, associated risk factors must be taken into account in epigenetic studies as they directly interfere with blood glucose levels and insulin resistance.
Collapse
Affiliation(s)
| | - Aline Ribeiro Borçoi
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Tamires Dos Santos Vieira
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | | | - Barbara Risse Quaioto
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Amanda Sgrancio Olinda
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Ester Ribeiro Cunha
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Flávia Vitorino Freitas
- Department of Pharmacy and Nutrition, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Julia Assis Pinheiro
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | | - Bruna Pereira Sorroche
- Molecular Oncology Research Center, Hospital do Câncer de Barretos, Barretos, São Paulo, Brazil
| | | | - Carmem Luíza Sartório
- Biotechnology/Renorbio Postgraduate Program, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | | |
Collapse
|
9
|
Tyborowska A, Gruber K, Beijers R, Kühn S, Roelofs K, de Weerth C. No evidence for association between late pregnancy maternal cortisol and gray matter volume in a healthy community sample of young adolescents. Front Neurosci 2022; 16:893847. [PMID: 36117621 PMCID: PMC9470950 DOI: 10.3389/fnins.2022.893847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
A compelling amount of animal and human research has shown that perceived maternal stress during pregnancy can affect the neurodevelopment of the offspring. Prenatal maternal cortisol is frequently proposed as the biological key mechanism underlying this link; however, literature that investigates the effects of prenatal cortisol on subsequent neurodevelopment in humans is scarce. By using longitudinal data from a relatively large community sample of mother-child dyads (N = 73), this pre-registered study prospectively examined the role of maternal prenatal cortisol concentrations on subsequent individual differences in gray matter volume (GMV) and hippocampal subfield volumes at the onset of puberty of the offspring (12 years of age). Two markers of cortisol, that is, evening cortisol and circadian decline over the day, were used as indicators of maternal physiological stress during the last trimester of pregnancy. The results indicate that prenatal maternal cortisol levels were not associated with GMV or hippocampal subfield volumes of the children. These findings suggest that late pregnancy maternal cortisol may not be related to the structural development of the offspring's brain, at least not in healthy community samples and at the onset of puberty. When examining the influence of prenatal stress on offspring neurodevelopment, future investigations should delineate gestational timing effects of the cortisol exposure, cortisol assessment method, and impact of additional biomarkers, as these were not investigated in this study.
Collapse
Affiliation(s)
- Anna Tyborowska
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Katharina Gruber
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Roseriet Beijers
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Clinic and Policlinic for Psychiatry and Psychotherapy, University Clinic Hamburg-Eppendorf, Hamburg, Germany
| | - Karin Roelofs
- Behavioural Science Institute, Radboud University, Nijmegen, Netherlands
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Carolina de Weerth
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Associations of gestational age with gyrification and neurocognition in healthy adults. Eur Arch Psychiatry Clin Neurosci 2022; 273:467-479. [PMID: 35904633 PMCID: PMC10070217 DOI: 10.1007/s00406-022-01454-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Epidemiological studies have shown that gestational age and birth weight are linked to cognitive performance in adults. On a neurobiological level, this effect is hypothesized to be related to cortical gyrification, which is determined primarily during fetal development. The relationships between gestational age, gyrification and specific cognitive abilities in adults are still poorly understood. In 542 healthy participants, gyrification indices were calculated from structural magnetic resonance imaging T1 data at 3 T using CAT12. After applying a battery of neuropsychological tests, neuropsychological factors were extracted with a factor analysis. We conducted regressions to test associations between gyrification and gestational age as well as birth weight. Moderation analyses explored the relationships between gestational age, gyrification and neuropsychological factors. Gestational age is significantly positively associated with cortical folding in the left supramarginal, bilaterally in the superior frontal and the lingual cortex. We extracted two neuropsychological factors that describe language abilities and working memory/attention. The association between gyrification in the left superior frontal gyrus and working memory/attention was moderated by gestational age. Further, the association between gyrification in the left supramarginal cortex and both, working memory/attention as well as language, were moderated by gestational age. Gyrification is associated with gestational age and related to specific neuropsychological outcomes in healthy adulthood. Implications from these findings for the cortical neurodevelopment of cognitive domains and mental health are discussed.
Collapse
|
11
|
Rakers F, Schleußner E, Muth I, Hoyer D, Rupprecht S, Schiecke K, Groten T, Dreiling M, Kozik V, Schwab M, Hoyer H, Ligges C. Association between antenatal glucocorticoid exposure and the activity of the stress system, cognition, and behavior in 8- to 9-year-old children: A prospective observational study. Acta Obstet Gynecol Scand 2022; 101:996-1006. [PMID: 35652410 DOI: 10.1111/aogs.14386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Glucocorticoid (GC) -induced fetal programming of the activity of the hypothalamus-pituitary-adrenal axis (HPAA) and its associated cognitive and behavioral consequences in later life have been well characterized in several animal species. However, information on humans is scarce. In this study, we examined HPAA activity markers and associated outcomes at 8 to 9 years of age among children prenatally exposed to GC for suspected preterm birth. Our hypothesis was that antenatal exposure to the betamethasone (BM) is associated with exacerbation of HPAA activity in childhood. MATERIAL AND METHODS Prospective observational study in 31 children whose mothers received single (n = 19) or multiple (n = 12) courses of BM for threatened preterm birth but born with normal weight appropriate for the gestational age (median 37+6 weeks of gestation) compared with 38 non-exposed, age-matched children. Primary end point was the activity of the HPAA in response to the Trier Social Stress Test. Secondary end points were changes in autonomic nervous system (ANS) activity, cognitive performance (IQ), attention-deficit/hyperactivity disorder (ADHD) symptoms, and electrocortical activity (EEG). RESULTS There was no statistically significant difference in HPAA activity markers between antenatal BM exposed and unexposed groups. ANS activity in BM-exposed children shifted towards a higher parasympathetic tone reflected by a higher overall high-frequency band power of heart rate variability. IQ scores were within normal limits for both groups; however, BM-exposed children had lower IQ scores than the unexposed group. BM-exposed group had marginally more ADHD core symptoms and increased electrocortical activity in the occipital brain region compared with controls. A monotonic dose-response relationship between BM exposure and activity of the ANS and IQ was estimated in post-hoc analyses. CONCLUSIONS Antenatal exposure to BM in the context of threatened preterm birth was not associated with changes in HPAA activity in childhood. However, BM exposure may be associated with changes in ANS activity. Antenatal GC prophylaxis is a valuable and often life-saving therapy, but its prescription may warrant a well-balanced risk-benefit assessment.
Collapse
Affiliation(s)
- Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Isabel Muth
- Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Dirk Hoyer
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Karin Schiecke
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Tanja Groten
- Department of Obstetrics, Jena University Hospital, Jena, Germany
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Valeska Kozik
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Heike Hoyer
- Institute of Medical Statistics, Computer and Data Sciences, Jena University Hospital, Jena, Germany
| | - Carolin Ligges
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany
| |
Collapse
|
12
|
Spry EA, Letcher P, Patton GC, Sanson AV, Olsson CA. The developmental origins of stress reactivity: an intergenerational life-course perspective. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Backhouse EV, Shenkin SD, McIntosh AM, Bastin ME, Whalley HC, Valdez Hernandez M, Muñoz Maniega S, Harris MA, Stolicyn A, Campbell A, Steele D, Waiter GD, Sandu AL, Waymont JMJ, Murray AD, Cox SR, de Rooij SR, Roseboom TJ, Wardlaw JM. Early life predictors of late life cerebral small vessel disease in four prospective cohort studies. Brain 2021; 144:3769-3778. [PMID: 34581779 PMCID: PMC8719837 DOI: 10.1093/brain/awab331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/12/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022] Open
Abstract
Development of cerebral small vessel disease, a major cause of stroke and dementia, may be influenced by early life factors. It is unclear whether these relationships are independent of each other, of adult socio-economic status or of vascular risk factor exposures. We examined associations between factors from birth (ponderal index, birth weight), childhood (IQ, education, socio-economic status), adult small vessel disease, and brain volumes, using data from four prospective cohort studies: STratifying Resilience And Depression Longitudinally (STRADL) (n = 1080; mean age = 59 years); the Dutch Famine Birth Cohort (n = 118; mean age = 68 years); the Lothian Birth Cohort 1936 (LBC1936; n = 617; mean age = 73 years), and the Simpson's cohort (n = 110; mean age = 78 years). We analysed each small vessel disease feature individually and summed to give a total small vessel disease score (range 1-4) in each cohort separately, then in meta-analysis, adjusted for vascular risk factors and adult socio-economic status. Higher birth weight was associated with fewer lacunes [odds ratio (OR) per 100 g = 0.93, 95% confidence interval (CI) = 0.88 to 0.99], fewer infarcts (OR = 0.94, 95% CI = 0.89 to 0.99), and fewer perivascular spaces (OR = 0.95, 95% CI = 0.91 to 0.99). Higher childhood IQ was associated with lower white matter hyperintensity burden (OR per IQ point = 0.99, 95% CI 0.98 to 0.998), fewer infarcts (OR = 0.98, 95% CI = 0.97 to 0.998), fewer lacunes (OR = 0.98, 95% CI = 0.97 to 0.999), and lower total small vessel disease burden (OR = 0.98, 95% CI = 0.96 to 0.999). Low education was associated with more microbleeds (OR = 1.90, 95% CI = 1.33 to 2.72) and lower total brain volume (mean difference = -178.86 cm3, 95% CI = -325.07 to -32.66). Low childhood socio-economic status was associated with fewer lacunes (OR = 0.62, 95% CI = 0.40 to 0.95). Early life factors are associated with worse small vessel disease in later life, independent of each other, vascular risk factors and adult socio-economic status. Risk for small vessel disease may originate in early life and provide a mechanistic link between early life factors and risk of stroke and dementia. Policies investing in early child development may improve lifelong brain health and contribute to the prevention of dementia and stroke in older age.
Collapse
Affiliation(s)
- Ellen V Backhouse
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MRC UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Susan D Shenkin
- Geriatric Medicine, Usher Institute, The University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Institute of Neuroscience and Psychology, Glasgow G12 8QB, UK
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Heather C Whalley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Maria Valdez Hernandez
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Institute of Neuroscience and Psychology, Glasgow G12 8QB, UK
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Susana Muñoz Maniega
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Institute of Neuroscience and Psychology, Glasgow G12 8QB, UK
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Mathew A Harris
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Archie Campbell
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Douglas Steele
- Division of Imaging Sciences and Technology, Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Jennifer M J Waymont
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Institute of Neuroscience and Psychology, Glasgow G12 8QB, UK
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Simon R Cox
- Lothian Birth Cohorts Group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam University, Medical Centres, University of Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Epidemiology and Data Science, Amsterdam University, Medical Centres, University of Amsterdam, The Netherlands
| | - Joanna M Wardlaw
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- MRC UK Dementia Research Institute at the University of Edinburgh, Edinburgh, EH16 4SB, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE), Institute of Neuroscience and Psychology, Glasgow G12 8QB, UK
- Brain Research Imaging Centre, Division of Neuroimaging Sciences, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| |
Collapse
|
14
|
Cortés-Albornoz MC, García-Guáqueta DP, Velez-van-Meerbeke A, Talero-Gutiérrez C. Maternal Nutrition and Neurodevelopment: A Scoping Review. Nutrients 2021; 13:3530. [PMID: 34684531 PMCID: PMC8538181 DOI: 10.3390/nu13103530] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/09/2021] [Accepted: 08/15/2021] [Indexed: 01/31/2023] Open
Abstract
In this scoping review, we examined the association between maternal nutrition during pregnancy and neurodevelopment in offspring. We searched the Pubmed and ScienceDirect databases for articles published from 2000 to 2020 on inadequate intake of vitamins (B12, folate, vitamin D, vitamin A, vitamin E, vitamin K), micronutrients (cooper, iron, creatine, choline, zinc, iodine), macronutrients (fatty acids, proteins), high fat diets, ketogenic diets, hypercaloric diets, and maternal undernutrition. Some older relevant articles were included. The search produced a total of 3590 articles, and 84 studies were included in the qualitative synthesis. Data were extracted and analyzed using charts and the frequency of terms used. We concluded that inadequate nutrient intake during pregnancy was associated with brain defects (diminished cerebral volume, spina bifida, alteration of hypothalamic and hippocampal pathways), an increased risk of abnormal behavior, neuropsychiatric disorders (ASD, ADHD, schizophrenia, anxiety, depression), altered cognition, visual impairment, and motor deficits. Future studies should establish and quantify the benefits of maternal nutrition during pregnancy on neurodevelopment and recommend adequate supplementation.
Collapse
Affiliation(s)
| | | | | | - Claudia Talero-Gutiérrez
- Neuroscience Research Group (NEUROS), Centro Neurovitae, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá 111221, Colombia; (M.C.C.-A.); (D.P.G.-G.); (A.V.-v.-M.)
| |
Collapse
|
15
|
Maternal infection in gestation increases the risk of non-affective psychosis in offspring: a meta-analysis. J Psychiatr Res 2021; 139:125-131. [PMID: 34058651 DOI: 10.1016/j.jpsychires.2021.05.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/25/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023]
Abstract
Maternal infection is thought to increase the risk of non-affective psychosis including schizophrenia. However, observational studies have produced conflicting results and little is known about the importance of timing of infection in mediating subsequent risk. In this study, we carried out a meta-analysis of observational studies to investigate the risk of maternal infection and subsequent risk of non-affective psychosis. Using seven cohort studies, we found that maternal infection during gestation increased the risk of non-affective psychosis [relative risk (RR): 1.28 (95% CI:1.05-1.57, p = 0.02, I2 = 36%)]. A subgroup analysis identified that there was greater risk for schizophrenia alone [RR: 1.65 (95% CI:1.23-2.22, p = 0.0008, I2 = 0%)]. In addition, infection during the second trimester resulted in increased risk [RR: 1.63 (95% CI:1.07-2.48, p = 0.02, I2 = 7%)], whilst risk during the first and third trimesters did not meet statistical significance. This study highlights maternal infection in gestation as an important environmental risk factor for non-affective psychosis and our findings carry important implications for future disease prevention strategies.
Collapse
|
16
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
17
|
Bátiz LF, Palmeiro-Silva YK, Rice GE, Monteiro LJ, Galaburda AM, Romero R, Choolani MA, Wyneken U, Orellana P, Illanes SE. Maternal exposure to a high-magnitude earthquake during pregnancy influences pre-reading skills in early childhood. Sci Rep 2021; 11:9244. [PMID: 33927303 PMCID: PMC8084950 DOI: 10.1038/s41598-021-88767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/08/2021] [Indexed: 11/30/2022] Open
Abstract
Exposure to an adverse prenatal environment can influence fetal development and result in long-lasting changes in the offspring. However, the association between maternal exposure to stressful events during pregnancy and the achievement of pre-reading skills in the offspring is unknown. Here we examined the association between prenatal exposure to the Chilean high-magnitude earthquake that occurred on February 27th, 2010 and the development of early reading precursors skills (listening comprehension, print knowledge, alphabet knowledge, vocabulary, and phonological awareness) in children at kindergarten age. This multilevel retrospective cohort study including 3280 children, of whom 2415 were unexposed and 865 were prenatally exposed to the earthquake shows substantial evidence that maternal exposure to an unambiguously stressful event resulted in impaired pre-reading skills and that a higher detrimental effect was observed in those children who had been exposed to the earthquake during the first trimester of gestation. In addition, females were more significantly affected by the exposure to the earthquake than their male peers in alphabet knowledge; contrarily, males were more affected than females in print knowledge skills. These findings suggest that early intervention programs for pregnant women and/or children exposed to prenatal stress may be effective strategies to overcome impaired pre-reading skills in children.
Collapse
Affiliation(s)
- Luis Federico Bátiz
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Program in Neuroscience, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Yasna K Palmeiro-Silva
- Institute for Global Health, University College London, London, UK
- School of Nursing, Universidad de los Andes, Santiago, Chile
| | - Gregory E Rice
- Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Lara J Monteiro
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Program in Biology of Reproduction, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | | | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, 48824, USA
- Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, 48201, USA
- Detroit Medical Center, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, 33199, USA
| | - Mahesh A Choolani
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ursula Wyneken
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Program in Neuroscience, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile
| | - Pelusa Orellana
- School of Education, Universidad de los Andes, Santiago, Chile.
| | - Sebastián E Illanes
- School of Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
- Program in Biology of Reproduction, Centro de Investigación e Innovación Biomédica (CiiB), Universidad de los Andes, Santiago, Chile.
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile.
| |
Collapse
|
18
|
Theoharides TC. Effect of Stress on Neuroimmune Processes. Clin Ther 2020; 42:1007-1014. [PMID: 32451121 DOI: 10.1016/j.clinthera.2020.05.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/12/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Psychological stress worsens many diseases, especially those with inflammatory components, such as atopic dermatitis (AD) and autism spectrum disorder (ASD), conditions that are significantly correlated in large epidemiologic studies. However, how stress contributes to these conditions is still poorly understood. This narrative review of the relevant literature advances the premise that stress affects inflammatory processes in AD and ASD via stimulation of mast cells (MCs). METHODS MEDLINE was searched between 1980 and 2019 using the terms allergies, atopic dermatitis, autism spectrum disorder, brain, corticotropin-releasing hormone, inflammation, hypothalamic-pituitary-adrenal axis, mast cells, neuropeptides, stress, neurotensin, and substance P. FINDINGS Exposure to psychological stress is associated with onset and/or exacerbation of AD and ASD. This association could be attributable to activation of MCs, which are ubiquitous in the body, including the brain, and could contribute to inflammation. IMPLICATIONS Understanding and addressing the connection between stress and MCs is important in clarifying the pathogenesis and developing effective treatments for diseases that worsen with stress and involve inflammation, such as AD and ASD.
Collapse
Affiliation(s)
- Theoharis C Theoharides
- Molecular Immunopharmacology and Drug Discovery Laboratory, Department of Immunology, Tufts University School of Medicine, Boston, MA, USA; Sackler School of Graduate Biomedical Sciences, Program in Pharmacology and Experimental Therapeutics, Tufts University, Boston, MA, USA; Department of Internal Medicine, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA; Department of Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, MA, USA.
| |
Collapse
|