1
|
Sheffield Z, Paul P, Krishnakumar S, Pan D. Current Strategies and Future Directions of Wearable Biosensors for Measuring Stress Biochemical Markers for Neuropsychiatric Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411339. [PMID: 39688117 DOI: 10.1002/advs.202411339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/21/2024] [Indexed: 12/18/2024]
Abstract
Most wearable biosensors aimed at capturing psychological state target stress biomarkers in the form of physical symptoms that can correlate with dysfunction in the central nervous system (CNS). However, such markers lack the specificity needed for diagnostic or preventative applications. Wearable biochemical sensors (WBSs) have the potential to fill this gap, however, the technology is still in its infancy. Most WBSs proposed thus far target cortisol. Although cortisol detection is demonstrated as a viable method for approximating the extent and severity of psychological stress, the hormone also lacks specificity. Multiplex WBSs that simultaneously target cortisol alongside other viable stress-related biochemical markers (SBMs) can prove to be indispensable for understanding how psychological stress contributes to the pathophysiology of neuropsychiatric illnesses (NPIs) and, thus, lead to the discovery of new biomarkers and more objective clinical tools. However, none target more than one SBM implicated in NPIs. Till this review, cortisol's connection to dysfunctions in the CNS, to other SBMs, and their implication in various NPIs has not been discussed in the context of developing WBS technology. As such, this review is meant to inform the biosensing and neuropsychiatric communities of viable future directions and possible challenges for WBS technology for neuropsychiatric applications.
Collapse
Affiliation(s)
- Zach Sheffield
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
- Department of Nuclear Engineering, The Pennsylvania State University, State College, PA, 16802, USA
- The Center for Advanced Sensing Technology, University of Maryland - Baltimore County, Baltimore, MD, 21250, USA
- Chemical, Biochemical, and Environmental Engineering Department, University of Maryland - Baltimore County, Baltimore, MD, 21250, USA
| | - Priyanka Paul
- Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, MD, 21201, USA
| | - Shraddha Krishnakumar
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
| | - Dipanjan Pan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, 16802, USA
- Department of Nuclear Engineering, The Pennsylvania State University, State College, PA, 16802, USA
| |
Collapse
|
2
|
Li L, Jiang J, Zhong S, Lin J, Yao Y, Kemp GJ, Chen Y, Gong Q. Transdiagnostic depression severity and its relationship to global and prefrontal-amygdala structural properties in people with major depression and post-traumatic stress disorder. Cereb Cortex 2024; 34:bhae381. [PMID: 39315647 PMCID: PMC11420672 DOI: 10.1093/cercor/bhae381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
While some studies have used a transdiagnostic approach to relate depression to metabolic or functional brain alterations, the structural substrate of depression across clinical diagnostic categories is underexplored. In a cross-sectional study of 52 patients with major depressive disorder and 51 with post-traumatic stress disorder, drug-naïve, and spanning mild to severe depression severity, we examined transdiagnostic depressive correlates with regional gray matter volume and the topological properties of gray matter-based networks. Locally, transdiagnostic depression severity correlated positively with gray matter volume in the right middle frontal gyrus and negatively with nodal topological properties of gray matter-based networks in the right amygdala. Globally, transdiagnostic depression severity correlated positively with normalized characteristic path length, a measure implying brain integration ability. Compared with 62 healthy control participants, both major depressive disorder and post-traumatic stress disorder patients showed altered nodal properties in regions of the fronto-limbic-striatal circuit, and global topological organization in major depressive disorder in particular was characterized by decreased integration and segregation. These findings provide evidence for a gray matter-based structural substrate underpinning depression, with the prefrontal-amygdala circuit a potential predictive marker for depressive symptoms across clinical diagnostic categories.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Jing Jiang
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- The Third People’s Hospital, Yangshijie 19#, Qingyang, Chengdu, 610031, China
| | - Shitong Zhong
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Jinping Lin
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Yuhao Yao
- West China School of Medicine, Sichuan University, Renminnanlu 16#, Wuhou, Chengdu, 640041, China
| | - Graham J Kemp
- Liverpool Magnetic Resonance Imaging Centre and Institute of Life Course and Medical Sciences, University of Liverpool, Foundation Building, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
| | - Ying Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital of Sichuan University, Guoxuexiang 37#, Wuhou, Chengdu, 640041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Jinyuanxilu 699#, Jimei, Xiamen, 361022, China
| |
Collapse
|
3
|
Chang CY, Chang HH, Wu CY, Tsai YT, Lu TH, Chang WH, Hsu CF, Chen PS, Tseng HH. Peripheral inflammation is associated with impaired sadness recognition in euthymic bipolar patients. J Psychiatr Res 2024; 173:333-339. [PMID: 38579478 DOI: 10.1016/j.jpsychires.2024.03.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Inflammation impairs cognitive function in healthy individuals and people with psychiatric disorders, such as bipolar disorder (BD). This effect may also impact emotion recognition, a fundamental element of social cognition. Our study aimed to investigate the relationships between pro-inflammatory cytokines and emotion recognition in euthymic BD patients and healthy controls (HCs). METHODS We recruited forty-four euthymic BD patients and forty healthy controls (HCs) and measured their inflammatory markers, including high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and TNF-α. We applied validated cognitive tasks, the Wisconsin Card-Sorting Test (WCST) and Continuous Performance Test (CPT), and a social cognitive task for emotion recognition, Diagnostic Analyses of Nonverbal Accuracy, Taiwanese Version (DANVA-2-TW). We analyzed the relationships between cytokines and cognition and then explored possible predictive factors of sadness recognition accuracy. RESULTS Regarding pro-inflammatory cytokines, TNF-α was elevated in euthymic BD patients relative to HCs. In euthymic BD patients only, higher TNF-α levels were associated with lower accuracy of sadness recognition. Regression analysis revealed that TNF-α was an independent predictive factor of sadness recognition in patients with euthymic BD when neurocognition was controlled for. CONCLUSIONS We demonstrated that enhanced inflammation, indicated by increased TNF-α, was an independent predictive factor of impaired sadness recognition in BD patients but not in HCs. Our findings suggested a direct influence of TNF-α on sadness recognition and indicated vulnerability to depression in euthymic BD patients with chronic inflammation.
Collapse
Affiliation(s)
- Chih-Yu Chang
- Department of Medicine, College of Medicine, National Cheng Kung University, Taiwan
| | - Hui Hua Chang
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng University, Tainan, Taiwan; School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Pharmacy, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Cheng Ying Wu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying Tsung Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsung-Hua Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei Hung Chang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Chia-Fen Hsu
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Crealey GE, Hickey G, McGilloway S. A cost-effectiveness analysis of a universal, preventative-focused, parent and infant programme. BMC Health Serv Res 2024; 24:176. [PMID: 38331766 PMCID: PMC10851506 DOI: 10.1186/s12913-023-10492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND This study assessed whether a relatively newly developed Parent and Infant (PIN) parenting support programme was cost-effective when compared to services as usual (SAU). METHODS The cost-effectiveness of the PIN programme versus SAU was assessed from an Irish health and social care perspective over a 24-month timeframe and within the context of a non-randomised, controlled before-and-after trial. In total, 163 parent-infant dyads were included in the study (86 intervention, 77 control). The primary outcome measure for the economic evaluation was the Parenting Sense of Competence Scale (PSOC). RESULTS The average cost of the PIN programme was €647 per dyad. The mean (SE) cost (including programme costs) was €7,027 (SE €1,345) compared to €4,811 (SE €593) in the control arm, generating a (non-significant) mean cost difference of €2,216 (bootstrap 95% CI -€665 to €5,096; p = 0.14). The mean incremental cost-effectiveness of the PIN service was €614 per PSOC unit gained (bootstrap 95% CI €54 to €1,481). The probability that the PIN programme was cost-effective, was 87% at a willingness-to-pay of €1,000 per one unit change in the PSOC. CONCLUSIONS Our findings suggest that the PIN programme was cost-effective at a relatively low willingness-to-pay threshold when compared to SAU. This study addresses a significant knowledge gap in the field of early intervention by providing important real world evidence on the implementation costs and cost-effectiveness of a universal early years parenting programme. The challenges involved in assessing the cost-effectiveness of preventative interventions for very young children and their parents are also discussed. TRIAL REGISTRATION ISRCTN17488830 (Date of registration: 27/11/15). This trial was retrospectively registered.
Collapse
Affiliation(s)
| | - Gráinne Hickey
- Barnardos Ireland, Christchurch Sq., Dublin 8, Dublin, D08DT63, Ireland
- Centre for Mental Health and Community Research, Maynooth University, Maynooth, W23 F2H6, Co. Kildare, Ireland
| | - Sinead McGilloway
- Centre for Mental Health and Community Research, Maynooth University, Maynooth, W23 F2H6, Co. Kildare, Ireland.
| |
Collapse
|
5
|
Merz EC, Myers B, Hansen M, Simon KR, Strack J, Noble KG. Socioeconomic Disparities in Hypothalamic-Pituitary-Adrenal Axis Regulation and Prefrontal Cortical Structure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:83-96. [PMID: 38090738 PMCID: PMC10714216 DOI: 10.1016/j.bpsgos.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 02/01/2024] Open
Abstract
Socioeconomic disadvantage during childhood predicts an increased risk for mental health problems across the life span. Socioeconomic disadvantage shapes multiple aspects of children's proximal environments and increases exposure to chronic stressors. Drawing from multiple literatures, we propose that childhood socioeconomic disadvantage may lead to adaptive changes in the regulation of stress response systems including the hypothalamic-pituitary-adrenal (HPA) axis. These changes, in turn, affect the development of prefrontal cortical (PFC) circuitry responsible for top-down control over cognitive and emotional processes. Translational findings indicate that chronic stress reduces dendritic complexity and spine density in the medial PFC and anterior cingulate cortex, in part through altered HPA axis regulation. Socioeconomic disadvantage has frequently been associated with reduced gray matter in the dorsolateral and ventrolateral PFC and anterior cingulate cortex and lower fractional anisotropy in the superior longitudinal fasciculus, cingulum bundle, and uncinate fasciculus during middle childhood and adolescence. Evidence of socioeconomic disparities in hair cortisol concentrations in children has accumulated, although null findings have been reported. Coupled with links between cortisol levels and reduced gray matter in the PFC and anterior cingulate cortex, these results support mechanistic roles for the HPA axis and these PFC circuits. Future longitudinal studies should simultaneously consider multiple dimensions of proximal factors, including cognitive stimulation, while focusing on epigenetic processes and genetic moderators to elucidate how socioeconomic context may influence the HPA axis and PFC circuitry involved in cognitive and emotional control. These findings, which point to modifiable factors, can be harnessed to inform policy and more effective prevention strategies.
Collapse
Affiliation(s)
- Emily C. Merz
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Katrina R. Simon
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, Colorado
| | - Kimberly G. Noble
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, New York
| |
Collapse
|
6
|
Curry AR, Ooi L, Matosin N. How spatial omics approaches can be used to map the biological impacts of stress in psychiatric disorders: a perspective, overview and technical guide. Stress 2024; 27:2351394. [PMID: 38752853 DOI: 10.1080/10253890.2024.2351394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Exposure to significant levels of stress and trauma throughout life is a leading risk factor for the development of major psychiatric disorders. Despite this, we do not have a comprehensive understanding of the mechanisms that explain how stress raises psychiatric disorder risk. Stress in humans is complex and produces variable molecular outcomes depending on the stress type, timing, and duration. Deciphering how stress increases disorder risk has consequently been challenging to address with the traditional single-target experimental approaches primarily utilized to date. Importantly, the molecular processes that occur following stress are not fully understood but are needed to find novel treatment targets. Sequencing-based omics technologies, allowing for an unbiased investigation of physiological changes induced by stress, are rapidly accelerating our knowledge of the molecular sequelae of stress at a single-cell resolution. Spatial multi-omics technologies are now also emerging, allowing for simultaneous analysis of functional molecular layers, from epigenome to proteome, with anatomical context. The technology has immense potential to transform our understanding of how disorders develop, which we believe will significantly propel our understanding of how specific risk factors, such as stress, contribute to disease course. Here, we provide our perspective of how we believe these technologies will transform our understanding of the neurobiology of stress, and also provided a technical guide to assist molecular psychiatry and stress researchers who wish to implement spatial omics approaches in their own research. Finally, we identify potential future directions using multi-omics technology in stress research.
Collapse
Affiliation(s)
- Amber R Curry
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Lezanne Ooi
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie Matosin
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Molecular Horizons, School of Chemistry and Molecular Bioscience, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Hurtado H, Hansen M, Strack J, Vainik U, Decker AL, Khundrakpam B, Duncan K, Finn AS, Mabbott DJ, Merz EC. Polygenic risk for depression and anterior and posterior hippocampal volume in children and adolescents. J Affect Disord 2024; 344:619-627. [PMID: 37858734 PMCID: PMC10842073 DOI: 10.1016/j.jad.2023.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Depression has frequently been associated with smaller hippocampal volume. The hippocampus varies in function along its anterior-posterior axis, with the anterior hippocampus more strongly associated with stress and emotion processing. The goals of this study were to examine the associations among parental history of anxiety/depression, polygenic risk scores for depression (PGS-DEP), and anterior and posterior hippocampal volumes in children and adolescents. To examine specificity to PGS-DEP, we examined associations of educational attainment polygenic scores (PGS-EA) with anterior and posterior hippocampal volume. METHODS Participants were 350 3- to 21-year-olds (46 % female). PGS-DEP and PGS-EA were computed based on recent, large-scale genome-wide association studies. High-resolution, T1-weighted magnetic resonance imaging (MRI) data were acquired, and a semi-automated approach was used to segment the hippocampus into anterior and posterior subregions. RESULTS Children and adolescents with higher polygenic risk for depression were more likely to have a parent with a history of anxiety/depression. Higher polygenic risk for depression was significantly associated with smaller anterior but not posterior hippocampal volume. PGS-EA was not associated with anterior or posterior hippocampal volumes. LIMITATIONS Participants in these analyses were all of European ancestry. CONCLUSIONS Polygenic risk for depression may lead to smaller anterior but not posterior hippocampal volume in children and adolescents, and there may be specificity of these effects to PGS-DEP rather than PGS-EA. These findings may inform the earlier identification of those in need of support and the design of more effective, personalized treatment strategies. DECLARATIONS OF INTEREST none. DECLARATIONS OF INTEREST None.
Collapse
Affiliation(s)
- Hailee Hurtado
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Melissa Hansen
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Jordan Strack
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| | - Uku Vainik
- University of Tartu, Tartu, Estonia; Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Alexandra L Decker
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katherine Duncan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Amy S Finn
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Donald J Mabbott
- Department of Psychology, University of Toronto, Toronto, ON, Canada.; Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Emily C Merz
- Department of Psychology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
8
|
Nikolaienko O, Klymenko M, Isaeva E. Consequences of adolescent social isolation on behavior and synaptic plasticity in the dorsal and ventral hippocampus in male Wistar rats. Neurol Res 2023; 45:1152-1160. [PMID: 37698124 DOI: 10.1080/01616412.2023.2257444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/29/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE Social interaction at a young age plays a critical role in the normal maturation of the brain and neuroendocrine system. Deprivation of social contacts has been associated with numerous cognitive and emotional abnormalities. However, neurobiological mechanisms that may underlie these effects remain poorly understood. In the present study, we examined the effect of 4-6-week social isolation during the adolescent period on rat spatial memory and emotional responses and investigated synaptic plasticity in the dorsal (DH) and ventral hippocampus (VH), which are known to be differently involved in these behaviors. METHODS Male Wistar rats were housed individually or in groups of four for 4-6 weeks immediately after weaning. At the end of the isolation period, rats were subjected to behavioral testing or electrophysiological studies. Behavioral tests included behavioral excitability, sucrose preference, open field (OF), elevated plus maze (EPM), Morris water maze (MWM), and Y-maze test. For plasticity experiments, long-term potentiation (LTP) in Schaffer collateral/СA1 synapses was induced using high-frequency stimulation (HFS) on transverse hippocampal slices. RESULTS Social isolation induced hyperexcitability, increased anxiety- and anhedonia-like behaviors, while no significant changes were observed in cognitive tasks. Electrophysiological recordings revealed enhanced short-term potentiation (STP) in the VH and suppressed LTP in the DH of isolated animals compared to group-housed controls. CONCLUSIONS Our findings suggest that adolescent social isolation has distinct effects on synaptic plasticity in the VH and DH and leads to emotional dysregulation rather than impairments in cognitive performance.
Collapse
Affiliation(s)
- Oksana Nikolaienko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Mariia Klymenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Elena Isaeva
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Kraaijenvanger EJ, Banaschewski T, Eickhoff SB, Holz NE. A coordinate-based meta-analysis of human amygdala connectivity alterations related to early life adversities. Sci Rep 2023; 13:16541. [PMID: 37783710 PMCID: PMC10545708 DOI: 10.1038/s41598-023-43057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
By affecting core neurobiological systems early in development, early life adversities (ELAs) might confer latent vulnerability to future psychopathologies. This coordinate-based meta-analysis aims to identify significant convergent alterations in functional connectivity of the amygdala related to ELAs across resting-state and task-based fMRI-studies. Five electronic databases were systematically searched until 22 October 2020, retrieving 49 eligible studies (n = 3162 participants). Convergent alterations in functional connectivity related to ELAs between the amygdala and the anterior cingulate cortex (ACC) and left hippocampus were found. Sub-analyses based on hemisphere and direction showed that connectivity seeded in the right amygdala was affected and, moreover, revealed that connectivity with ACC was decreased. Analyses based on paradigm and age showed that amygdala-ACC coupling was altered during resting state and that amygdala-left hippocampus connectivity was mostly affected during task-based paradigms and in adult participants. While both regions showed altered connectivity during emotion processing and following adverse social postnatal experiences such as maltreatment, amygdala-ACC coupling was mainly affected when ELAs were retrospectively assessed through self-report. We show that ELAs are associated with altered functional connectivity of the amygdala with the ACC and hippocampus. As such, ELAs may embed latent vulnerability to future psychopathologies by systematically affecting important neurocognitive systems.
Collapse
Affiliation(s)
- Eline J Kraaijenvanger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
- Donders Institute, Radboud University, Nijmegen, The Netherlands.
- Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
10
|
Levchuk LA, Roschina OV, Mikhalitskaya EV, Epimakhova EV, Simutkin GG, Bokhan NA, Ivanova SA. Serum Levels of S100B Protein and Myelin Basic Protein as a Potential Biomarkers of Recurrent Depressive Disorders. J Pers Med 2023; 13:1423. [PMID: 37763190 PMCID: PMC10532562 DOI: 10.3390/jpm13091423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Nowadays, nervous tissue damage proteins in serum are considered promising drug targets and biomarkers of Mood Disorders. In a cross-sectional naturalistic study, the S100B, MBP and GFAP levels in the blood serum were compared between two diagnostic groups (patients with Depressive Episode (DE, n = 28) and patients with Recurrent Depressive Disorder (RDD, n = 21)), and healthy controls (n = 25). The diagnostic value of serum markers was assessed by ROC analysis. In the DE group, we did not find changed levels of S100B, MBP and GFAP compared with controls. In the RDD group, we found decreased S100B level (p = 0.011) and increased MBP level (p = 0.015) in comparison to those in healthy controls. Provided ROC analysis indicates that MBP contributes to the development of a DE (AUC = 0.676; 95%Cl 0.525-0.826; p = 0.028), and S100B and MBP have a significant effect on the development of RDD (AUC = 0.732; 95%Cl 0.560-0.903; p = 0.013 and AUC = 0.712; 95%Cl 0.557-0.867; p = 0.015, correspondingly). The study of serum markers of nervous tissue damage in patients with a current DE indicates signs of disintegration of structural and functional relationships, dysfunction of gliotransmission, and impaired secretion of neurospecific proteins. Modified functions of astrocytes and oligodendrocytes are implicated in the pathophysiology of RDD.
Collapse
Affiliation(s)
- Lyudmila A. Levchuk
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Olga V. Roschina
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Ekaterina V. Mikhalitskaya
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Elena V. Epimakhova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - German G. Simutkin
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
| | - Nikolay A. Bokhan
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk 634050, Russia
| | - Svetlana A. Ivanova
- Mental Health Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634014, Russia; (O.V.R.); (E.V.M.); (E.V.E.); (G.G.S.); (N.A.B.)
- Psychiatry, Addictology and Psychotherapy Department, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
11
|
Antonoudiou P, Stone B, Colmers PLW, Evans-Strong A, Walton N, Maguire J. Influence of chronic stress on network states governing valence processing: Potential relevance to the risk for psychiatric illnesses. J Neuroendocrinol 2023; 35:e13274. [PMID: 37186481 PMCID: PMC11025365 DOI: 10.1111/jne.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023]
Abstract
Stress is a major risk factor for psychiatric illnesses and understanding the mechanisms through which stress disrupts behavioral states is imperative to understanding the underlying pathophysiology of mood disorders. Both chronic stress and early life stress alter valence processing, the process of assigning value to sensory inputs and experiences (positive or negative), which determines subsequent behavior and is essential for emotional processing and ultimately survival. Stress disrupts valence processing in both humans and preclinical models, favoring negative valence processing and impairing positive valence processing. Valence assignment involves neural computations performed in emotional processing hubs, including the amygdala, prefrontal cortex, and ventral hippocampus, which can be influenced by neuroendocrine mediators. Oscillations within and between these regions are critical for the neural computations necessary to perform valence processing functions. Major advances in the field have demonstrated a role for oscillatory states in valence processing under physiological conditions and emerging studies are exploring how these network states are altered under pathophysiological conditions and impacted by neuroendocrine factors. The current review highlights what is currently known regarding the impact of stress and the role of neuroendocrine mediators on network states and valence processing. Further, we propose a model in which chronic stress alters information routing through emotional processing hubs, resulting in a facilitation of negative valence processing and a suppression of positive valence processing.
Collapse
Affiliation(s)
| | - Bradly Stone
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | | | | | - Najah Walton
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Jamie Maguire
- Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Fraile E, Gagnepain P, Eustache F, Groussard M, Platel H. Musical experience prior to traumatic exposure as a resilience factor: a conceptual analysis. Front Psychol 2023; 14:1220489. [PMID: 37599747 PMCID: PMC10436084 DOI: 10.3389/fpsyg.2023.1220489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Resilience mechanisms can be dynamically triggered throughout the lifecourse by resilience factors in order to prevent individuals from developing stress-related pathologies such as posttraumatic stress disorder (PTSD). Some interventional studies have suggested that listening to music and musical practice after experiencing a traumatic event decrease the intensity of PTSD, but surprisingly, no study to our knowledge has explored musical experience as a potential resilience factor before the potential occurrence of a traumatic event. In the present conceptual analysis, we sought to summarize what is known about the concept of resilience and how musical experience could trigger two key mechanisms altered in PTSD: emotion regulation and cognitive control. Our hypothesis is that the stimulation of these two mechanisms by musical experience during the pre-traumatic period could help protect against the symptoms of emotional dysregulation and intrusions present in PTSD. We then developed a new framework to guide future research aimed at isolating and investigating the protective role of musical experience regarding the development of PTSD in response to trauma. The clinical application of this type of research could be to develop pre-trauma training that promotes emotional regulation and cognitive control, aimed at populations at risk of developing PTSD such as healthcare workers, police officers, and military staffs.
Collapse
|
13
|
Joyce MKP, Wang J, Barbas H. Subgenual and Hippocampal Pathways in Amygdala Are Set to Balance Affect and Context Processing. J Neurosci 2023; 43:3061-3080. [PMID: 36977583 PMCID: PMC10146557 DOI: 10.1523/jneurosci.2066-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
The amygdala, hippocampus, and subgenual cortex area 25 (A25) are engaged in complex cognitive-emotional processes. Yet pathway interactions from hippocampus and A25 with postsynaptic sites in amygdala remain largely unknown. In rhesus monkeys of both sexes, we studied with neural tracers how pathways from A25 and hippocampus interface with excitatory and inhibitory microcircuits in amygdala at multiple scales. We found that both hippocampus and A25 innervate distinct as well as overlapping sites of the basolateral (BL) amygdalar nucleus. Unique hippocampal pathways heavily innervated the intrinsic paralaminar basolateral nucleus, which is associated with plasticity. In contrast, orbital A25 preferentially innervated another intrinsic network, the intercalated masses, an inhibitory reticulum that gates amygdalar autonomic output and inhibits fear-related behaviors. Finally, using high-resolution confocal and electron microscopy (EM), we found that among inhibitory postsynaptic targets in BL, both hippocampal and A25 pathways preferentially formed synapses with calretinin (CR) neurons, which are known for disinhibition and may enhance excitatory drive in the amygdala. Among other inhibitory postsynaptic sites, A25 pathways innervated the powerful parvalbumin (PV) neurons which may flexibly regulate the gain of neuronal assemblies in the BL that affect the internal state. In contrast, hippocampal pathways innervated calbindin (CB) inhibitory neurons, which modulate specific excitatory inputs for processing context and learning correct associations. Common and unique patterns of innervation in amygdala by hippocampus and A25 have implications for how complex cognitive and emotional processes may be selectively disrupted in psychiatric disorders.SIGNIFICANCE STATEMENT The hippocampus, subgenual A25, and amygdala are associated with learning, memory, and emotions. We found that A25 is poised to affect diverse amygdalar processes, from emotional expression to fear learning by innervating the basal complex and the intrinsic intercalated masses. Hippocampal pathways uniquely interacted with another intrinsic amygdalar nucleus which is associated with plasticity, suggesting flexible processing of signals in context for learning. In the basolateral (BL) amygdala, which has a role in fear learning, both hippocampal and A25 interacted preferentially with disinhibitory neurons, suggesting a boost in excitation. The two pathways diverged in innervating other classes of inhibitory neurons, suggesting circuit specificities that could become perturbed in psychiatric diseases.
Collapse
Affiliation(s)
- Mary Kate P Joyce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02118
| | - Jingyi Wang
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, Massachusetts 022152
- Graduate Program in Neuroscience, Boston University and School of Medicine, Boston, Massachusetts 02118
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
14
|
Matosin N, Arloth J, Czamara D, Edmond KZ, Maitra M, Fröhlich AS, Martinelli S, Kaul D, Bartlett R, Curry AR, Gassen NC, Hafner K, Müller NS, Worf K, Rehawi G, Nagy C, Halldorsdottir T, Cruceanu C, Gagliardi M, Gerstner N, Ködel M, Murek V, Ziller MJ, Scarr E, Tao R, Jaffe AE, Arzberger T, Falkai P, Kleinmann JE, Weinberger DR, Mechawar N, Schmitt A, Dean B, Turecki G, Hyde TM, Binder EB. Associations of psychiatric disease and ageing with FKBP5 expression converge on superficial layer neurons of the neocortex. Acta Neuropathol 2023; 145:439-459. [PMID: 36729133 PMCID: PMC10020280 DOI: 10.1007/s00401-023-02541-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.
Collapse
Affiliation(s)
- Natalie Matosin
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia.
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia.
| | - Janine Arloth
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Katrina Z Edmond
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Malosree Maitra
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Anna S Fröhlich
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Dominic Kaul
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Rachael Bartlett
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Amber R Curry
- Molecular Horizons, School of Chemistry and Molecular Biosciences, Faculty of Science, Medicine and Health, University of Wollongong, Northfields Ave, Wollongong, 2522, Australia
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, 2522, Australia
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Neurohomeostasis Research Group, Institute of Psychiatry, Clinical Centre, University of Bonn, Bonn, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Nikola S Müller
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Karolina Worf
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Ghalia Rehawi
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Cristiana Cruceanu
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Nathalie Gerstner
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, 85764, Neuherberg, Germany
- International Max Planck Research School for Translational Psychiatry, Munich, Germany
| | - Maik Ködel
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Vanessa Murek
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael J Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Elizabeth Scarr
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Ran Tao
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Andrew E Jaffe
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Centre for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Peter Falkai
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
| | - Joel E Kleinmann
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Daniel R Weinberger
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians University Munich, Nussbaumstrasse 7, 80336, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovidio Pires de Campos 785, São Paulo, 05453-010, Brazil
| | - Brian Dean
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Synaptic Neurobiology and Cognition Laboratory, Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Thomas M Hyde
- The Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany.
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA.
| |
Collapse
|
15
|
Shchepina OA, Menshanov PN. Neuron-Glia-Ratio-Like Approach Evidenced for Limited Variability and In-Aggregate Circadian Shifts in Cortical Cell-Specific Transcriptomes. J Mol Neurosci 2023; 73:159-170. [PMID: 36745298 DOI: 10.1007/s12031-023-02103-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023]
Abstract
Regardless of shifts in levels of individual transcripts, it remains elusive whether natural variability in cell-specific transcriptomes within the cerebral cortex is limited in aggregate. It is also unclear whether cortical cell-specific transcriptomes might change dynamically in absence of cell number changes. Total variation in neuron- and glia-specific in-aggregate transcriptomes could be identified in a model-free way via glia-neuron ratio approach, by univariate median-to-median ratios comparing integral levels of cell-specific transcripts within a tissue sample. When deleterious, regenerative or developmental events affecting cortical cell numbers were subtle, median-to-median ratios demonstrated within-group variability not exceeding <20-25% in most cases. These levels of total variability might be explained in part by limited (~5-10%) circadian and stress-induced shifts in cell-specific cortical transcriptomes. Relevant in-aggregate transcriptomic alterations were identified after shifts in cell numbers induced by well-validated deleterious events including ischemia, traumatic injury, microglia's activation/depletion or specific mutations. Cortical median-to-median ratios also follow naturally occurring changes in the numbers of excitatory, inhibitory neurons and glial cells during perinatal brain development. These findings characterize cortical cell-specific transcriptomes as subjects to circadian shifts and lifetime events, urging the importance of reporting full details on an origin of any transcriptomic sample collected in vivo.
Collapse
Affiliation(s)
- Olesya A Shchepina
- Ermine Educational Center, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630117, Russian Federation.,Higher College of Informatics, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630058, Russian Federation
| | - Petr N Menshanov
- Physiology Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation. .,Laser Systems Department, Novosibirsk State Technical University, Novosibirsk, Novosibirsk Region, 630073, Russian Federation. .,AI Tech Department, Novosibirsk State University, Novosibirsk, Novosibirsk Region, 630090, Russian Federation.
| |
Collapse
|
16
|
Tcherni-Buzzeo M. Dietary interventions, the gut microbiome, and aggressive behavior: Review of research evidence and potential next steps. Aggress Behav 2023; 49:15-32. [PMID: 35997420 DOI: 10.1002/ab.22050] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Research in biosocial criminology and other related disciplines has established links between nutrition and aggressive behavior. In addition to observational studies, randomized trials of nutritional supplements like vitamins, omega-3 fatty acids, and folic acid provide evidence of the dietary impact on aggression. However, the exact mechanism of the diet-aggression link is not well understood. The current article proposes that the gut microbiome plays an important role in the process, with the microbiota-gut-brain axis serving as such a mediating mechanism between diet and behavior. Based on animal and human studies, this review synthesizes a wide array of research across several academic fields: from the effects of dietary interventions on aggression, to the results of microbiota transplantation on socioemotional and behavioral outcomes, to the connections between early adversity, stress, microbiome, and aggression. Possibilities for integrating the microbiotic perspective with the more traditional, sociologically oriented theories in criminology are discussed, using social disorganization and self-control theories as examples. To extend the existing lines of research further, the article considers harnessing the experimental potential of noninvasive and low-cost dietary interventions to help establish the causal impact of the gut microbiome on aggressive behavior, while adhering to the high ethical standards and modern research requirements. Implications of this research for criminal justice policy and practice are essential: not only can it help determine whether the improved gut microbiome functioning moderates aggressive and violent behavior but also provide ways to prevent and reduce such behavior, alone or in combination with other crime prevention programs.
Collapse
|
17
|
Chauvière L. Early cognitive comorbidities before disease onset: A common symptom towards prevention of related brain diseases? Heliyon 2022; 8:e12259. [PMID: 36590531 PMCID: PMC9800323 DOI: 10.1016/j.heliyon.2022.e12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Brain diseases are very heterogeneous; however they also display multiple common risk factors and comorbidities. With a paucity of disease-modifying therapies, prevention became a health priority. Towards prevention, one strategy is to focus on similar symptoms of brain diseases occurring before disease onset. Cognitive deficits are a promising candidate as they occur across brain diseases before disease onset. Based on recent research, this review highlights the similarity of brain diseases and discusses how early cognitive deficits can be exploited to tackle disease prevention. After briefly introducing common risk factors, I review common comorbidities across brain diseases, with a focus on cognitive deficits before disease onset, reporting both experimental and clinical findings. Next, I describe network abnormalities associated with early cognitive deficits and discuss how these abnormalities can be targeted to prevent disease onset. A scenario on brain disease etiology with the idea that early cognitive deficits may constitute a common symptom of brain diseases is proposed.
Collapse
|
18
|
Adult stress exposure blunts dopamine system hyperresponsivity in a neurodevelopmental rodent model of schizophrenia. SCHIZOPHRENIA 2022; 8:30. [PMID: 35338155 PMCID: PMC8956652 DOI: 10.1038/s41537-022-00235-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/31/2022] [Indexed: 11/08/2022]
Abstract
Stress is a major risk factor for the development of both schizophrenia and depression, and comorbidity between the two is common in schizoaffective disorders. However, the effects of stress exposure (i.e. chronic mild stress-CMS) on depression-related phenotypes in a neurodevelopmental model relevant to schizophrenia (i.e. methylazoxymethanol acetate—MAM) have yet to be explored and could provide insight into shared mechanisms of disease. To this end, we combined the prenatal MAM model with adult CMS exposure and explored the resultant pathophysiology using the social approach test (SAT), immobility in the forced swim test (FST) and amphetamine-induced hyperlocomotion (AIH) as depression- and schizophrenia-related endophenotypes and performed extracellular recordings of ventral tegmental area (VTA) DA neurons. MAM rats exhibited a reduction in social approach and increased VTA DA neuron activity compared to SAL rats or CMS groups. Separate cohorts of MAM animals were subjected to FST and AIH testing (counterbalanced order) or FST only. CMS groups exhibited increased FST immobility. Post-FST, both MAM groups (MAM-CON, MAM-CMS) exhibited blunted locomotor response to amphetamine compared with their SAL counterparts exposed to the same tests. Post-FST, MAM rats exhibited comparable VTA population activity to SAL rats, and CMS groups exhibited attenuated VTA population activity. Apomorphine administration results were consistent with the model suggesting that reductions in VTA DA neuron activity in MAM rats following FST exposure resulted from over-excitation, or depolarization block. These data suggest stress-induced DA downregulation in MAM rats, as FST exposure was sufficient to block the DA hyperresponsivity phenotype.
Collapse
|
19
|
Caetano I, Ferreira S, Coelho A, Amorim L, Castanho TC, Portugal-Nunes C, Soares JM, Gonçalves N, Sousa R, Reis J, Lima C, Marques P, Moreira PS, Rodrigues AJ, Santos NC, Morgado P, Magalhães R, Picó-Pérez M, Cabral J, Sousa N. Perceived stress modulates the activity between the amygdala and the cortex. Mol Psychiatry 2022; 27:4939-4947. [PMID: 36117211 DOI: 10.1038/s41380-022-01780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/14/2023]
Abstract
The significant link between stress and psychiatric disorders has prompted research on stress's impact on the brain. Interestingly, previous studies on healthy subjects have demonstrated an association between perceived stress and amygdala volume, although the mechanisms by which perceived stress can affect brain function remain unknown. To better understand what this association entails at a functional level, herein, we explore the association of perceived stress, measured by the PSS10 questionnaire, with disseminated functional connectivity between brain areas. Using resting-state fMRI from 252 healthy subjects spanning a broad age range, we performed both a seed-based amygdala connectivity analysis (static connectivity, with spatial resolution but no temporal definition) and a whole-brain data-driven approach to detect altered patterns of phase interactions between brain areas (dynamic connectivity with spatiotemporal information). Results show that increased perceived stress is directly associated with increased amygdala connectivity with frontal cortical regions, which is driven by a reduced occurrence of an activity pattern where the signals in the amygdala and the hippocampus evolve in opposite directions with respect to the rest of the brain. Overall, these results not only reinforce the pathological effect of in-phase synchronicity between subcortical and cortical brain areas but also demonstrate the protective effect of counterbalanced (i.e., phase-shifted) activity between brain subsystems, which are otherwise missed with correlation-based functional connectivity analysis.
Collapse
Affiliation(s)
- Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), 4710-057, Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), 4710-057, Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal.,CECAV-Veterinary and Animal Science Research Centre, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Nuno Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Rui Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal.,Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Tondela-Viseu, 3500-228, Viseu, Portugal
| | - Joana Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Catarina Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's, PT Government Associate Laboratory, 4710-057, Braga/Guimarães, Portugal. .,Clinical Academic Center-Braga (2CA), 4710-243, Braga, Portugal. .,Association P5 Digital Medical Center (ACMP5), 4710-057, Braga, Portugal.
| |
Collapse
|
20
|
Dunn KE, Turner GM, Oswald LM. Effects of Early Life Trauma on Risks for Adult Opioid Use Disorder Are Mediated by Stress and Occur Independent of Depression and Anxiety. J Addict Med 2022; 16:709-715. [PMID: 35914024 PMCID: PMC10834051 DOI: 10.1097/adm.0000000000001011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Adverse childhood experiences, or early life trauma (ELT), may be a potential risk factor for opioid use disorders (OUDs) that could be further influenced by depression, anxiety, and stress. The prevalence and strength of these associations are largely unknown. METHODS This study examined the association between current OUD severity and lifetime history of ELT, and the degree to which current depression, anxiety, and stress influenced this association, in persons (n = 310) with at least 1 lifetime exposure to opioids using an online survey. RESULTS Ninety-three percent of respondents experienced at least 1 trauma in their lifetime, and 65% met the criteria for OUD. Early life trauma was largely unassociated with demographics but demonstrated an almost "dose-dependent" association among all forms of ELT (total, general, physical, emotional, sexual), whereby more ELT was associated with more severe current OUD. A multivariate mediation model found perceived stress to be a robust mediator of this association. Current psychiatric functioning did not significantly moderate the relationship between ELT and OUD, suggesting that ELT may impact OUD severity at varying levels of psychiatric functioning. CONCLUSIONS These data support existing evidence that greater ELT may influence adult OUD severity and identify perceived stress as a potential mechanistic contributor to this association. Results are preliminary in nature but support continued research into mechanisms underlying the association between ELT and OUD, particularly conformational changes in the stress system resultant from ELT, and interventions to mitigate the impact of ELT on OUD development and/or develop trauma-informed OUD treatment approaches.
Collapse
Affiliation(s)
- Kelly E Dunn
- From the Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD (KED, GMT); and Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD (LMO)
| | | | | |
Collapse
|
21
|
Caetano I, Amorim L, Castanho TC, Coelho A, Ferreira S, Portugal-Nunes C, Soares JM, Gonçalves N, Sousa R, Reis J, Lima C, Marques P, Moreira PS, Rodrigues AJ, Santos NC, Morgado P, Esteves M, Magalhães R, Picó-Pérez M, Sousa N. Association of amygdala size with stress perception: Findings of a transversal study across the lifespan. Eur J Neurosci 2022; 56:5287-5298. [PMID: 36017669 DOI: 10.1111/ejn.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/14/2022]
Abstract
Daily routines are getting increasingly stressful. Interestingly, associations between stress perception and amygdala volume, a brain region implicated in emotional behaviour, have been observed in both younger and older adults. Life stress, on the other hand, has become pervasive and is no longer restricted to a specific age group or life stage. As a result, it is vital to consider stress as a continuum across the lifespan. In this study, we investigated the relationship between perceived stress and amygdala size in 272 healthy participants with a broad age range. Participants were submitted to a structural magnetic resonance imaging (MRI) to extract amygdala volume, and the Perceived Stress Scale (PSS) scores were used as the independent variable in volumetric regressions. We found that perceived stress is positively associated with the right amygdala volume throughout life.
Collapse
Affiliation(s)
- Inês Caetano
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Liliana Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Teresa Costa Castanho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Sónia Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Carlos Portugal-Nunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,CECAV-Veterinary and Animal Science Research Centre, Vila Real, Portugal
| | - José Miguel Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Rui Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Tondela-Viseu, Viseu, Portugal
| | - Joana Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Catarina Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Paulo Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nadine Correia Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Ricardo Magalhães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center-Braga (2CA), Braga, Portugal.,Association P5 Digital Medical Center (ACMP5), Braga, Portugal
| |
Collapse
|
22
|
Teixeira AL, Hansen RM, Wozny JS, Schaefer CM, Machado-Vieira R, Shahani L, Lane SD, Soares JC, Krause TM. Incidence rate of psychiatric disorders in 2020: The pivotal role played by SARS-CoV-2 infection. PLoS One 2022; 17:e0274330. [PMID: 36137136 PMCID: PMC9498971 DOI: 10.1371/journal.pone.0274330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022] Open
Abstract
Importance The Coronavirus Disease (COVID-19) pandemic has significantly impacted mental health outcomes. While the frequency of anxiety and depressive symptoms has increased in the whole population, the relationship between COVID-19 and new psychiatric diagnoses remains unclear. Objective To compare the population incidence rate of emergence of de novo psychiatric disorders in 2020 compared to the previous years, and to compare the incidence rate of new psychiatric disorder diagnoses between people with vs without COVID-19. Design, setting, and participants This study utilized administrative claims data from the Clinformatics® Data Mart database, licensed from Optum®. The study is a cross-sectional analysis that compared the incidence rate of new psychiatric disorders in 2020 vs. 2018 and 2019 in the entire insured population database. Subsequently, the incidence of new psychiatric disorders in people with vs. without COVID-19 during 2020 was analyzed. Exposure The exposures included diagnosis and severity of COVID-19 infection. Main outcomes measures The dependent variables of interest were the incidence rates of new psychiatric disorders, specifically schizophrenia spectrum disorders, mood disorders, anxiety disorders, and obsessive-compulsive disorder. Results The population studied included 10,463,672 US adults (mean age 52.83, 52% female) who were unique people for the year of 2020. Incidence of newly diagnosed psychiatric disorders per 1,000 individuals in the 2020 whole population were 28.81 (CI: 28.71, 28.92) for anxiety disorders, 1.04 (CI: 1.02, 1.06) for schizophrenia disorders, 0.42 (CI: 0.41, 0.43) for OCD and 28.85 (CI: 28.75, 28.95) for mood disorders. These rates were not significantly higher than 2018 or 2019. When comparing incidence rates between COVID-19 vs. non-COVID-19 populations in 2020, the rates were significantly higher in the COVID-19 population: 46.89 (CI: 46.24, 47.53) for anxiety, 49.31 (CI: 48.66, 49.97) for mood disorders, 0.57 (CI: 0.50, 0.65) for OCD, and 3.52 (CI: 3.34, 3.70) for schizophrenia. COVID-19 severity was significantly associated with new diagnoses of schizophrenia, anxiety and mood disorders in multivariate analyses. Conclusions Compared to 2018 and 2019, in 2020 there was no increased incidence of new psychiatric disorders in the general population based on insurance claims data. Importantly, people with COVID-19 were more likely to be diagnosed with a new psychiatric disorder, most notably disorders with psychosis, indicating a potential association between COVID-19 and mental/brain health.
Collapse
Affiliation(s)
- Antonio L. Teixeira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
- * E-mail:
| | - Regina M. Hansen
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Joseph S. Wozny
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Caroline M. Schaefer
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Rodrigo Machado-Vieira
- Department of Psychiatry and Behavioral Sciences, McGovern Medical, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Lokesh Shahani
- Department of Psychiatry and Behavioral Sciences, McGovern Medical, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Scott D. Lane
- Department of Psychiatry and Behavioral Sciences, McGovern Medical, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Jair C. Soares
- Department of Psychiatry and Behavioral Sciences, McGovern Medical, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| | - Trudy M. Krause
- School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, United States of America
| |
Collapse
|
23
|
Ringwald KG, Pfarr JK, Schmitt S, Stein F, Brosch K, Meller T, Andrae J, Zech R, Steinsträter O, Meinert S, Waltemate L, Lemke H, Thiel K, Winter A, Opel N, Goltermann J, Jansen A, Dannlowski U, Krug A, Nenadić I, Kircher T. Interaction of recent stressful life events and childhood abuse on orbitofrontal grey matter volume in adults with depression. J Affect Disord 2022; 312:122-127. [PMID: 35753498 DOI: 10.1016/j.jad.2022.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/23/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND The diathesis-stress model of major depressive disorder (MDD) predicts interactions of recent stressful life events (SLEs) in adulthood and early developmental risk factors. We tested, for the first time, the diathesis stress model on brain structure in a large group of MDD patients. METHODS Structural magnetic resonance imaging data of 1465 participants (656 with lifetime diagnosis MDD; 809 healthy controls) were analyzed using voxel-based morphometry to identify clusters associated with recent SLEs (Life Events Questionnaire). Those clusters were then examined for group (healthy/MDD) × early developmental risk (operationalized as childhood abuse [Childhood Trauma Questionnaire] and a major psychiatric disorder [i.e., MDD, bipolar disorder, schizophrenia, and schizoaffective disorder] in a first-degree relative) × recent SLEs three-way interactions on grey matter volume. RESULTS There was a group × childhood abuse × recent SLEs interaction on left medial orbitofrontal cortex grey matter volume. This three-way interaction arose because childhood abuse and recent SLEs interacted in MDD subjects but not in healthy subjects. LIMITATIONS We are not able to draw conclusions about the cause and effect relationship due to our cross-sectional study design. CONCLUSIONS Our data provides evidence for an interplay between orbitofrontal cortex structure, childhood abuse and recent SLEs. These factors have previously been linked to MDD and their complex interaction contributes to the pathogenesis of MDD.
Collapse
Affiliation(s)
- Kai G Ringwald
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany.
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Simon Schmitt
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Jonathan Andrae
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Ronja Zech
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Olaf Steinsträter
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Janik Goltermann
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Department of Psychiatry and Psychotherapy, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany
| |
Collapse
|
24
|
Hersey M, Reneaux M, Berger SN, Mena S, Buchanan AM, Ou Y, Tavakoli N, Reagan LP, Clopath C, Hashemi P. A tale of two transmitters: serotonin and histamine as in vivo biomarkers of chronic stress in mice. J Neuroinflammation 2022; 19:167. [PMID: 35761344 PMCID: PMC9235270 DOI: 10.1186/s12974-022-02508-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Background Stress-induced mental illnesses (mediated by neuroinflammation) pose one of the world’s most urgent public health challenges. A reliable in vivo chemical biomarker of stress would significantly improve the clinical communities’ diagnostic and therapeutic approaches to illnesses, such as depression. Methods Male and female C57BL/6J mice underwent a chronic stress paradigm. We paired innovative in vivo serotonin and histamine voltammetric measurement technologies, behavioral testing, and cutting-edge mathematical methods to correlate chemistry to stress and behavior. Results Inflammation-induced increases in hypothalamic histamine were co-measured with decreased in vivo extracellular hippocampal serotonin in mice that underwent a chronic stress paradigm, regardless of behavioral phenotype. In animals with depression phenotypes, correlations were found between serotonin and the extent of behavioral indices of depression. We created a high accuracy algorithm that could predict whether animals had been exposed to stress or not based solely on the serotonin measurement. We next developed a model of serotonin and histamine modulation, which predicted that stress-induced neuroinflammation increases histaminergic activity, serving to inhibit serotonin. Finally, we created a mathematical index of stress, Si and predicted that during chronic stress, where Si is high, simultaneously increasing serotonin and decreasing histamine is the most effective chemical strategy to restoring serotonin to pre-stress levels. When we pursued this idea pharmacologically, our experiments were nearly identical to the model’s predictions. Conclusions This work shines the light on two biomarkers of chronic stress, histamine and serotonin, and implies that both may be important in our future investigations of the pathology and treatment of inflammation-induced depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02508-9.
Collapse
Affiliation(s)
- Melinda Hersey
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.,Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Melissa Reneaux
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Shane N Berger
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Sergio Mena
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Navid Tavakoli
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Lawrence P Reagan
- Department of Pharmacology, Physiology, & Neuroscience, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.,Columbia VA Health Care Systems, Columbia, SC, 29208, USA
| | - Claudia Clopath
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA. .,Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
25
|
Neurobiological Links between Stress, Brain Injury, and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8111022. [PMID: 35663199 PMCID: PMC9159819 DOI: 10.1155/2022/8111022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Stress, which refers to a combination of physiological, neuroendocrine, behavioral, and emotional responses to novel or threatening stimuli, is essentially a defensive adaptation under physiological conditions. However, strong and long-lasting stress can lead to psychological and pathological damage. Growing evidence suggests that patients suffering from mild and moderate brain injuries and diseases often show severe neurological dysfunction and experience severe and persistent stressful events or environmental stimuli, whether in the acute, subacute, or recovery stage. Previous studies have shown that stress has a remarkable influence on key brain regions and brain diseases. The mechanisms through which stress affects the brain are diverse, including activation of endoplasmic reticulum stress (ERS), apoptosis, oxidative stress, and excitatory/inhibitory neuron imbalance, and may lead to behavioral and cognitive deficits. The impact of stress on brain diseases is complex and involves impediment of recovery, aggravation of cognitive impairment, and neurodegeneration. This review summarizes various stress models and their applications and then discusses the effects and mechanisms of stress on key brain regions—including the hippocampus, hypothalamus, amygdala, and prefrontal cortex—and in brain injuries and diseases—including Alzheimer’s disease, stroke, traumatic brain injury, and epilepsy. Lastly, this review highlights psychological interventions and potential therapeutic targets for patients with brain injuries and diseases who experience severe and persistent stressful events.
Collapse
|
26
|
Hall J, Bray NJ. Schizophrenia Genomics: Convergence on Synaptic Development, Adult Synaptic Plasticity, or Both? Biol Psychiatry 2022; 91:709-717. [PMID: 34974922 PMCID: PMC8929434 DOI: 10.1016/j.biopsych.2021.10.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
Large-scale genomic studies of schizophrenia have identified hundreds of genetic loci conferring risk to the disorder. This progress offers an important route toward defining the biological basis of the condition and potentially developing new treatments. In this review, we discuss insights from recent genome-wide association study, copy number variant, and exome sequencing analyses of schizophrenia, together with functional genomics data from the pre- and postnatal brain, in relation to synaptic development and function. These data provide strong support for the view that synaptic dysfunction within glutamatergic and GABAergic (gamma-aminobutyric acidergic) neurons of the cerebral cortex, hippocampus, and other limbic structures is a central component of schizophrenia pathophysiology. Implicated genes and functional genomic data suggest that disturbances in synaptic connectivity associated with susceptibility to schizophrenia begin in utero but continue throughout development, with some alleles conferring risk to the disorder through direct effects on synaptic function in adulthood. This model implies that novel interventions for schizophrenia could include broad preventive approaches aimed at enhancing synaptic health during development as well as more targeted treatments aimed at correcting synaptic function in affected adults.
Collapse
Affiliation(s)
- Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics & Genomics, Division of Psychological Medicine & Clinical Neurosciences, Cardiff University, Cardiff, United Kingdom; Neuroscience & Mental Health Research Institute, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
27
|
Ringwald KG, Pfarr JK, Stein F, Brosch K, Meller T, Thomas-Odenthal F, Meinert S, Waltemate L, Breuer F, Winter A, Lemke H, Grotegerd D, Thiel K, Bauer J, Hahn T, Jansen A, Dannlowski U, Krug A, Nenadić I, Kircher T. Association between stressful life events and grey matter volume in the medial prefrontal cortex: A 2-year longitudinal study. Hum Brain Mapp 2022; 43:3577-3584. [PMID: 35411559 PMCID: PMC9248310 DOI: 10.1002/hbm.25869] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/16/2022] [Accepted: 03/31/2022] [Indexed: 12/16/2022] Open
Abstract
Stressful life events (SLEs) in adulthood are a risk factor for various disorders such as depression, cancer or infections. Part of this risk is mediated through pathways altering brain physiology and structure. There is a lack of longitudinal studies examining associations between SLEs and brain structural changes. High-resolution structural magnetic resonance imaging data of 212 healthy subjects were acquired at baseline and after 2 years. Voxel-based morphometry was used to identify associations between SLEs using the Life Events Questionnaire and grey matter volume (GMV) changes during the 2-year period in an ROI approach. Furthermore, we assessed adverse childhood experiences as a possible moderator of SLEs-GMV change associations. SLEs were negatively associated with GMV changes in the left medial prefrontal cortex. This association was stronger when subjects had experienced adverse childhood experiences. The medial prefrontal cortex has previously been associated with stress-related disorders. The present findings represent a potential neural basis of the diathesis-stress model of various disorders.
Collapse
Affiliation(s)
- Kai G Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Julia-Katharina Pfarr
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | | | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany.,Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- University Clinic for Radiology, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Core-Facility BrainImaging, Faculty of Medicine, Philipps-Universität Marburg, Münster, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany.,Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.,Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Marburg, Germany
| |
Collapse
|
28
|
Laham BJ, Gould E. How Stress Influences the Dynamic Plasticity of the Brain’s Extracellular Matrix. Front Cell Neurosci 2022; 15:814287. [PMID: 35145379 PMCID: PMC8821883 DOI: 10.3389/fncel.2021.814287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Diffuse and structured extracellular matrix (ECM) comprise ∼20% of the brain’s volume and play important roles in development and adult plasticity. Perineuronal nets (PNNs), specialized ECM structures that surround certain types of neurons in the brain, emerge during the postnatal period, making their development and maintenance potentially sensitive to experience. Recent studies have shown that stress affects diffuse ECM as well as PNNs, and that such effects are dependent on life stage and brain region. Given that the ECM participates in synaptic plasticity, the generation of neuronal oscillations, and synchronous firing across brain regions, all of which have been linked to cognition and emotional regulation, ECM components may be candidate therapeutic targets for stress-induced neuropsychiatric disease. This review considers the influence of stress over diffuse and structured ECM during postnatal life with a focus on functional outcomes and the potential for translational relevance.
Collapse
|
29
|
Phytoestrogen genistein modulates neuron-microglia signaling in a mouse model of chronic social defeat stress. Neuropharmacology 2022; 206:108941. [PMID: 34990615 DOI: 10.1016/j.neuropharm.2021.108941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/20/2023]
Abstract
Microglia, resident immune cells in the brain, are shown to mediate the crosstalk between psychological stress and depression. Interestingly, increasing evidence indicates that sex hormones, particularly estrogen, are involved in the regulation of immune system. In this study, we aimed to understand the potential effects of chronic social defeat stress (CSDS) and genistein (GEN), an estrogenic compound of the plant origin, on neuron-microglia interactions in the mouse hippocampus. The time spent in the avoidance zone in the social interaction test was increased by CSDS 1 day after the exposure, while the avoidance behavior returned to control levels 14 days after the CSDS exposure. Similar results were obtained from the elevated plus-maze test. However, the immobility time in the forced swim test was increased by CSDS 14 days after the exposure, and the depression-related behavior was in part alleviated by GEN. The numerical densities of microglia in the hippocampus were increased by CSDS, and they were decreased by GEN. The voxel densities of synaptic structures and synaptic puncta colocalized with microglia were decreased by CSDS, and they were increased by GEN. Neither CSDS nor GEN affected the gene expressions of major pro-inflammatory cytokines. Conversely, the expression levels of genes related to neurotrophic factors were decreased by CSDS, and they were partially reversed by GEN. These findings show that GEN may in part alleviate stress-related symptoms, and the effects of GEN may be associated with the modulation of neuron-microglia signaling via chemokines and neurotrophic factors in the hippocampus.
Collapse
|
30
|
Rahimian R, Wakid M, O'Leary LA, Mechawar N. The emerging tale of microglia in psychiatric disorders. Neurosci Biobehav Rev 2021; 131:1-29. [PMID: 34536460 DOI: 10.1016/j.neubiorev.2021.09.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/18/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022]
Abstract
As the professional phagocytes of the brain, microglia orchestrate the immunological response and play an increasingly important role in maintaining homeostatic brain functions. Microglia are activated by pathological events or slight alterations in brain homeostasis. This activation is dependent on the context and type of stressor or pathology. Through secretion of cytokines, chemokines and growth factors, microglia can strongly influence the response to a stressor and can, therefore, determine the pathological outcome. Psychopathologies have repeatedly been associated with long-lasting priming and sensitization of cerebral microglia. This review focuses on the diversity of microglial phenotype and function in health and psychiatric disease. We first discuss the diverse homeostatic functions performed by microglia and then elaborate on context-specific spatial and temporal microglial heterogeneity. Subsequently, we summarize microglia involvement in psychopathologies, namely major depressive disorder, schizophrenia and bipolar disorder, with a particular focus on post-mortem studies. Finally, we postulate microglia as a promising novel therapeutic target in psychiatry through antidepressant and antipsychotic treatment.
Collapse
Affiliation(s)
- Reza Rahimian
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Marina Wakid
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Liam Anuj O'Leary
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
31
|
Dionisie V, Ciobanu AM, Toma VA, Manea MC, Baldea I, Olteanu D, Sevastre-Berghian A, Clichici S, Manea M, Riga S, Filip GA. Escitalopram Targets Oxidative Stress, Caspase-3, BDNF and MeCP2 in the Hippocampus and Frontal Cortex of a Rat Model of Depression Induced by Chronic Unpredictable Mild Stress. Int J Mol Sci 2021; 22:ijms22147483. [PMID: 34299103 PMCID: PMC8304451 DOI: 10.3390/ijms22147483] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, escitalopram (ESC) has been suggested to have different mechanisms of action beyond its well known selective serotonin reuptake inhibition. The aim of this study is to investigate the effects of escitalopram on oxidative stress, apoptosis, brain-derived neurotrophic factor (BDNF), Methyl-CpG-binding protein 2 (MeCP2), and oligodendrocytes number in the brain of chronic unpredictable mild stress-induced depressed rats. The animals were randomised in four groups (8 in each group): control, stress, stress + ESC 5 and stress + ESC 5/10. ESC was administered for 42 days in a fixed dose (5 mg/kg b.w.) or in an up-titration regimen (21 days ESC 5 mg/kg b.w. then 21 days ESC 10 mg/kg b.w.). Sucrose preference test (SPT) and elevated plus maze (EPM) were also performed. ESC improved the percentage of sucrose preference, locomotion and anxiety. ESC5/10 reduced the oxidative damage in the hippocampus and improved the antioxidant defence in the hippocampus and frontal lobe. ESC5/10 lowered caspase 3 activity in the hippocampus. Escitalopram had a modulatory effect on BDNF and the number of oligodendrocytes in the hippocampus and frontal lobe and also improved the MeCP2 expressions. The results confirm the multiple pathways implicated in the pathogenesis of depression and suggest that escitalopram exerts an antidepressant effect via different intricate mechanisms.
Collapse
Affiliation(s)
- Vlad Dionisie
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Adela Magdalena Ciobanu
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Neuroscience Department, Discipline of Psychiatry, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400028 Cluj-Napoca, Romania
- Department of Biochemistry and Experimental Biology, Institute of Biological Research, Branch of NIRDBS Bucharest, 400113 Cluj-Napoca, Romania
- Department of Molecular and Biomolecular Physics, NIRD for Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
- Correspondence: (V.A.T.); (M.C.M.)
| | - Mihnea Costin Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Correspondence: (V.A.T.); (M.C.M.)
| | - Ioana Baldea
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Diana Olteanu
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Alexandra Sevastre-Berghian
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Simona Clichici
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| | - Mirela Manea
- Department of Psychiatry and Psychology, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.D.); (M.M.)
- Department of Psychiatry, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Sorin Riga
- Department of Stress Research and Prophylaxis, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Romanian Academy of Medical Sciences, 927180 Bucharest, Romania
| | - Gabriela Adriana Filip
- Department of Physiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (I.B.); (D.O.); (A.S.-B.); (S.C.); (G.A.F.)
| |
Collapse
|