1
|
Subramanian R, Bauman A, Carpenter O, Cho C, Coste G, Dam A, Drake K, Ehnstrom S, Fitzgerald N, Jenkins A, Koolpe H, Liu R, Paserman T, Petersen D, Chavez DS, Rozental S, Thompson H, Tsukuda T, Zweig S, Gall M, Zupan B, Bergstrom H. An infralimbic cortex neuronal ensemble encoded during learning attenuates fear generalization expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.18.608308. [PMID: 39229064 PMCID: PMC11370439 DOI: 10.1101/2024.08.18.608308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Generalization allows previous experience to adaptively guide behavior when conditions change. The infralimbic (IL) subregion of the ventral medial prefrontal cortex plays a known role in generalization processes, although mechanisms remain unclear. A basic physical unit of memory storage and expression in the brain are sparse, distributed groups of neurons known as ensembles (i.e., the engram). Here, we set out to determine whether neuronal ensembles established in the IL during learning contribute to generalized responses. Generalization was tested in male and female mice by presenting a novel, ambiguous, tone generalization stimulus following Pavlovian defensive (fear) conditioning. The first experiment was designed to test a role for IL in generalization using chemogenetic manipulations. Results show IL regulates defensive behavior in response to ambiguous stimuli. IL silencing led to a switch in defensive state, from vigilant scanning to generalized freezing, while IL stimulation reduced freezing in favor of scanning. Leveraging activity-dependent "tagging" technology (ArcCreERT2 × eYFP system), a neuronal ensemble, preferentially located in IL Layer 2/3, was associated with the generalization stimulus. Remarkably, in the identical discrete location, fewer reactivated neurons were associated with the generalization stimulus at the remote timepoint (30 days) following learning. When an IL neuronal ensemble established during learning was selectively chemogenetically silenced, generalization increased. Conversely, IL neuronal ensemble stimulation reduced generalization. Overall, these data identify a crucial role for IL in suppressing generalized responses. Further, an IL neuronal ensemble, formed during learning, functions to later attenuate the expression of generalization in the presence of ambiguous threat stimuli.
Collapse
Affiliation(s)
- Rajani Subramanian
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Avery Bauman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Olivia Carpenter
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Chris Cho
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Gabrielle Coste
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Ahona Dam
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Kasey Drake
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sara Ehnstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Naomi Fitzgerald
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Abigail Jenkins
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Koolpe
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Runqi Liu
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tamar Paserman
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - David Petersen
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Diego Scala Chavez
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Stefano Rozental
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hannah Thompson
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Tyler Tsukuda
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Sasha Zweig
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Megan Gall
- Department of Biology, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Bojana Zupan
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| | - Hadley Bergstrom
- Department of Psychological Science, Program in Neuroscience and Behavior, Vassar College, Poughkeepsie NY 12603 USA
| |
Collapse
|
2
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
3
|
Nieves GM, Rahn RM, Baskoylu SN, Liston CM. Divergent reward cue representations in prefrontal cortex underlie differences in reward motivation between adolescents and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.565069. [PMID: 37986789 PMCID: PMC10659319 DOI: 10.1101/2023.11.07.565069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A prevailing view on postnatal brain development is that brain regions gradually acquire adult functions as they mature. The medial prefrontal cortex (mPFC) regulates reward learning, motivation, and behavioral inhibition, and undergoes a protracted postnatal maturation. During adolescence, reward-seeking behavior is heightened compared to adulthood - a developmental difference that may be driven by a hypoactive mPFC, with decreased top-down control of impulsive reward-seeking. However, this hypothesis has been difficult to test directly, due in part to technical challenges of recording neuronal activity in vivo across this developmental period. Here, using a novel 2-photon imaging-compatible platform for recording mPFC activity during an operant reward conditioning task beginning early in life, we show that the adolescent mPFC is hyper-responsive to reward cues. Distinct populations of mPFC neurons encode reward-predictive cues across development, but representations of no-reward cues and unrewarded outcomes are relatively muted in adolescence. Chemogenetic inhibition of GABAergic neurons decreased motivation in adolescence but not in adulthood. Together, our findings indicate that reward-related activity in the adolescent mPFC does not gradually increase across development. On the contrary, adolescent mPFC neurons are hyper-responsive to reward-related stimuli and encode reward-predictive cues and outcomes through qualitatively different mechanisms relative to the adult mPFC, opening avenues to developing distinct, developmentally informed strategies for modulating reward-seeking behavior in adolescence and adulthood.
Collapse
Affiliation(s)
- Gabriela Manzano Nieves
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel M Rahn
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saba N Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Conor M Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Panzer E, Guimares-Olmo I, Pereira de Vasconcelos A, Stéphan A, Cassel JC. In relentless pursuit of the white whale: A role for the ventral midline thalamus in behavioral flexibility and adaption? Neurosci Biobehav Rev 2024; 163:105762. [PMID: 38857666 DOI: 10.1016/j.neubiorev.2024.105762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
The reuniens (Re) nucleus is located in the ventral midline thalamus. It has fostered increasing interest, not only for its participation in a variety of cognitive functions (e.g., spatial working memory, systemic consolidation, reconsolidation, extinction of fear or generalization), but also for its neuroanatomical positioning as a bidirectional relay between the prefrontal cortex (PFC) and the hippocampus (HIP). In this review we compile and discuss recent studies having tackled a possible implication of the Re nucleus in behavioral flexibility, a major PFC-dependent executive function controlling goal-directed behaviors. Experiments considered explored a possible role for the Re nucleus in perseveration, reversal learning, fear extinction, and set-shifting. They point to a contribution of this nucleus to behavioral flexibility, mainly by its connections with the PFC, but possibly also by those with the hippocampus, and even with the amygdala, at least for fear-related behavior. As such, the Re nucleus could be a crucial crossroad supporting a PFC-orchestrated ability to cope with new, potentially unpredictable environmental contingencies, and thus behavioral flexibility and adaption.
Collapse
Affiliation(s)
- Elodie Panzer
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Isabella Guimares-Olmo
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Aline Stéphan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France
| | - Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, Strasbourg F-67000, France; LNCA, UMR 7364 - CNRS, Strasbourg F-67000, France.
| |
Collapse
|
5
|
Broomer MC, Bouton ME. Infralimbic cortex plays a similar role in the punishment and extinction of instrumental behavior. Neurobiol Learn Mem 2024; 211:107926. [PMID: 38579897 PMCID: PMC11078610 DOI: 10.1016/j.nlm.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Learning to stop responding is a fundamental process in instrumental learning. Animals may learn to stop responding under a variety of conditions that include punishment-where the response earns an aversive stimulus in addition to a reinforcer-and extinction-where a reinforced response now earns nothing at all. Recent research suggests that punishment and extinction may be related manifestations of a common retroactive interference process. In both paradigms, animals learn to stop performing a specific response in a specific context, suggesting direct inhibition of the response by the context. This process may depend on the infralimbic cortex (IL), which has been implicated in a variety of interference-based learning paradigms including extinction and habit learning. Despite the behavioral parallels between extinction and punishment, a corresponding role for IL in punishment has not been identified. Here we report that, in a simple arrangement where either punishment or extinction was conducted in a context that differed from the context in which the behavior was first acquired, IL inactivation reduced response suppression in the inhibitory context, but not responding when it "renewed" in the original context. In a more complex arrangement in which two responses were first trained in different contexts and then extinguished or punished in the opposite one, IL inactivation had no effect. The results advance our understanding of the effects of IL in retroactive interference and the behavioral mechanisms that can produce suppression of a response.
Collapse
|
6
|
Adeyelu T, Vaughn T, Ogundele OM. VTA Excitatory Neurons Control Reward-driven Behavior by Modulating Infralimbic Cortical Firing. Neuroscience 2024; 548:50-68. [PMID: 38513762 DOI: 10.1016/j.neuroscience.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
The functional dichotomy of anatomical regions of the medial prefrontal cortex (mPFC) has been tested with greater certainty in punishment-driven tasks, and less so in reward-oriented paradigms. In the infralimbic cortex (IL), known for behavioral suppression (STOP), tasks linked with reward or punishment are encoded through firing rate decrease or increase, respectively. Although the ventral tegmental area (VTA) is the brain region governing reward/aversion learning, the link between its excitatory neuron population and IL encoding of reward-linked behavioral expression is unclear. Here, we present evidence that IL ensembles use a population-based mechanism involving broad inhibition of principal cells at intervals when reward is presented or expected. The IL encoding mechanism was consistent across multiple sessions with randomized rewarded target sites. Most IL neurons exhibit FR (Firing Rate) suppression during reward acquisition intervals (T1), and subsequent exploration of previously rewarded targets when the reward is omitted (T2). Furthermore, FR suppression in putative IL ensembles persisted for intervals that followed reward-linked target events. Pairing VTA glutamate inhibition with reward acquisition events reduced the weight of reward-target association expressed as a lower affinity for previously rewarded targets. For these intervals, fewer IL neurons per mouse trial showed FR decrease and were accompanied by an increase in the percentage of units with no change in FR. Together, we conclude that VTA glutamate neurons are likely involved in establishing IL inhibition states that encode reward acquisition, and subsequent reward-target association.
Collapse
Affiliation(s)
- Tolulope Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States
| | - Tashonda Vaughn
- Department of Environmental Toxicology, College of Agriculture, Southern University A&M College, Baton Rouge, LA 70813, United States
| | - Olalekan M Ogundele
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA 70803, United States.
| |
Collapse
|
7
|
Clare K, Park K, Pan Y, Lejuez CW, Volkow ND, Du C. Neurovascular effects of cocaine: relevance to addiction. Front Pharmacol 2024; 15:1357422. [PMID: 38455961 PMCID: PMC10917943 DOI: 10.3389/fphar.2024.1357422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cocaine is a highly addictive drug, and its use is associated with adverse medical consequences such as cerebrovascular accidents that result in debilitating neurological complications. Indeed, brain imaging studies have reported severe reductions in cerebral blood flow (CBF) in cocaine misusers when compared to the brains of healthy non-drug using controls. Such CBF deficits are likely to disrupt neuro-vascular interaction and contribute to changes in brain function. This review aims to provide an overview of cocaine-induced CBF changes and its implication to brain function and to cocaine addiction, including its effects on tissue metabolism and neuronal activity. Finally, we discuss implications for future research, including targeted pharmacological interventions and neuromodulation to limit cocaine use and mitigate the negative impacts.
Collapse
Affiliation(s)
- Kevin Clare
- New York Medical College, Valhalla, NY, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Carl W. Lejuez
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
8
|
VonDoepp S, Mohammed Z, Dougherty R, Hilton-Vanosdall E, Charette S, Kraus A, Van Horn S, Quirk A, Toufexis D. Levonorgestrel maintains goal-directed behavior in habit-trained intact female rats. Horm Behav 2024; 158:105468. [PMID: 38101144 DOI: 10.1016/j.yhbeh.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
Hormonal contraceptives are utilized by millions of women worldwide. However, it remains unclear if these powerful endocrine modulators may alter cognitive function. Habit formation involves the progression of instrumental learning as it goes from being a conscious goal-directed process to a cue-driven automatic habitual motor response. Dysregulated goal and/or habit is implicated in numerous psychopathologies, underscoring the relevance of examining the effect of hormonal contraceptives on goal-directed and habitual behavior. This study examined the effect of levonorgestrel (LNG), a widely used progestin-type contraceptive, on the development of habit in intact female rats. Rats were implanted with subcutaneous capsules that slowly released LNG over the course of the experiment or cholesterol-filled capsules. All female rats underwent operant training followed by reward devaluation to test for habit. One group of females was trained at a level that is sub-threshold to habit, while another group of females was trained to a level well over the habit threshold observed in intact females. The results reveal that all sub-threshold trained rats remained goal-directed irrespective of LGN treatment, suggesting LNG is not advancing habit formation in female rats at this level of reinforcement. However, in rats that were overtrained well above the threshold, cholesterol females showed habitual behavior, thus replicating a portion of our original studies. In contrast, LNG-treated habit-trained rats remained goal-directed, indicating that LNG impedes the development and/or expression of habit following this level of supra-threshold to habit training. Thus, LNG may offset habit formation by sustaining attentional or motivational processes during learning in intact female rats. These results may be clinically relevant to women using this type of hormonal contraceptive as well as in other progestin-based hormone therapies.
Collapse
Affiliation(s)
- Sarah VonDoepp
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Zaidan Mohammed
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Russell Dougherty
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Ella Hilton-Vanosdall
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Sam Charette
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Adina Kraus
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Sarah Van Horn
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Adrianna Quirk
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America
| | - Donna Toufexis
- The Department of Psychological Science, The University of Vermont, Burlington, VT, United States of America.
| |
Collapse
|
9
|
Sartori SB, Keil TMV, Kummer KK, Murphy CP, Gunduz-Cinar O, Kress M, Ebner K, Holmes A, Singewald N. Fear extinction rescuing effects of dopamine and L-DOPA in the ventromedial prefrontal cortex. Transl Psychiatry 2024; 14:11. [PMID: 38191458 PMCID: PMC10774374 DOI: 10.1038/s41398-023-02708-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The ventromedial prefrontal cortex (vmPFC; rodent infralimbic cortex (IL)), is posited to be an important locus of fear extinction-facilitating effects of the dopamine (DA) bio-precursor, L-DOPA, but this hypothesis remains to be formally tested. Here, in a model of impaired fear extinction (the 129S1/SvImJ inbred mouse strain; S1), we monitored extracellular DA dynamics via in vivo microdialysis in IL during fear extinction and following L-DOPA administration. Systemic L-DOPA caused sustained elevation of extracellular DA levels in IL and increased neuronal activation in a subpopulation of IL neurons. Systemic L-DOPA enabled extinction learning and promoted extinction retention at one but not ten days after training. Conversely, direct microinfusion of DA into IL produced long-term fear extinction (an effect that was insensitive to ɑ-/ß-adrenoreceptor antagonism). However, intra-IL delivery of a D1-like or D2 receptor agonist did not facilitate extinction. Using ex vivo multi-electrode array IL neuronal recordings, along with ex vivo quantification of immediate early genes and DA receptor signalling markers in mPFC, we found evidence of reduced DA-evoked mPFC network responses in S1 as compared with extinction-competent C57BL/6J mice that were partially driven by D1 receptor activation. Together, our data demonstrate that locally increasing DA in IL is sufficient to produce lasting rescue of impaired extinction. The finding that systemic L-DOPA increased IL DA levels, but had only transient effects on extinction, suggests L-DOPA failed to reach a threshold level of IL DA or produced opposing behavioural effects in other brain regions. Collectively, our findings provide further insight into the neural basis of the extinction-promoting effects of DA and L-DOPA in a clinically relevant animal model, with possible implications for therapeutically targeting the DA system in anxiety and trauma-related disorders.
Collapse
Affiliation(s)
- Simone B Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas M V Keil
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kai K Kummer
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Conor P Murphy
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Michaela Kress
- Institute of Physiology, Department of Physiology and Medical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIH/NIAAA, Rockville, MD, USA
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Cui LL, Wang XX, Liu H, Luo F, Li CH. Projections from infralimbic medial prefrontal cortex glutamatergic outputs to amygdala mediates opioid induced hyperalgesia in male rats. Mol Pain 2024; 20:17448069241226960. [PMID: 38172075 PMCID: PMC10851759 DOI: 10.1177/17448069241226960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/13/2013] [Accepted: 12/29/2023] [Indexed: 01/05/2024] Open
Abstract
Repeated use of opioid analgesics may cause a paradoxically exacerbated pain known as opioid-induced hyperalgesia (OIH), which hinders effective clinical intervention for severe pain. Currently, little is known about the neural circuits underlying OIH modulation. Previous studies suggest that laterocapsular division of the central nucleus of amygdala (CeLC) is critically involved in the regulation of OIH. Our purpose is to clarify the role of the projections from infralimbic medial prefrontal cortex (IL) to CeLC in OIH. We first produced an OIH model by repeated fentanyl subcutaneous injection in male rats. Immunofluorescence staining revealed that c-Fos-positive neurons were significantly increased in the right CeLC in OIH rats than the saline controls. Then, we used calcium/calmodulin-dependent protein kinase IIα (CaMKIIα) labeling and the patch-clamp recordings with ex vivo optogenetics to detect the functional projections from glutamate pyramidal neurons in IL to the CeLC. The synaptic transmission from IL to CeLC, shown in the excitatory postsynaptic currents (eEPSCs), inhibitory postsynaptic currents (eIPSCs) and paired-pulse ratio (PPR), was observably enhanced after fentanyl administration. Moreover, optogenetic activation of this IL-CeLC pathway decreased c-Fos expression in CeLC and ameliorated mechanical and thermal pain in OIH. On the contrary, silencing this pathway by chemogenetics exacerbated OIH by activating the CeLC. Combined with the electrophysiology results, the enhanced synaptic transmission from IL to CeLC might be a cortical gain of IL to relieve OIH rather than a reason for OIH generation. Scaling up IL outputs to CeLC may be an effective neuromodulation strategy to treat OIH.
Collapse
Affiliation(s)
- Ling-Ling Cui
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi-Xi Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Liu
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| | - Fang Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen-Hong Li
- The Laboratory of Membrane Ion Channels and Medicine, Key Laboratory of Cognitive Science, State Ethnic Affairs Commission, College of Biomedical Engineering, South-Central University for Nationalities, Wuhan, China
| |
Collapse
|
11
|
Ng K, Pollock M, Escobedo A, Bachman B, Miyazaki N, Bartlett EL, Sangha S. Suppressing fear in the presence of a safety cue requires infralimbic cortical signaling to central amygdala. Neuropsychopharmacology 2024; 49:359-367. [PMID: 37188848 PMCID: PMC10724163 DOI: 10.1038/s41386-023-01598-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
Stressful events can have lasting and impactful effects on behavior, especially by disrupting normal regulation of fear and reward processing. Accurate discrimination among environmental cues predicting threat, safety or reward adaptively guides behavior. Post-traumatic stress disorder (PTSD) represents a condition in which maladaptive fear persists in response to explicit safety-predictive cues that coincide with previously learned threat cues, but without threat being present. Since both the infralimbic cortex (IL) and amygdala have each been shown to be important for fear regulation to safety cues, we tested the necessity of specific IL projections to the basolateral amygdala (BLA) or central amygdala (CeA) during safety recall. Male Long Evans rats were used since prior work showed female Long Evans rats did not acquire the safety discrimination task used in this study. Here, we show the infralimbic projection to the central amygdala was necessary for suppressing fear cue-induced freezing in the presence of a learned safety cue, and the projection to the basolateral amygdala was not. The loss of discriminative fear regulation seen specifically during IL->CeA inhibition is similar to the behavioral disruption seen in PTSD individuals that fail to regulate fear in the presence of a safety cue.
Collapse
Affiliation(s)
- Ka Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Pollock
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Abraham Escobedo
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Brent Bachman
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nanami Miyazaki
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Edward L Bartlett
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Susan Sangha
- Department of Psychological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
12
|
Wingert JC, Anguiano JN, Ramos JD, Blacktop JM, Gonzalez AE, Churchill L, Sorg BA. Enhanced expression of parvalbumin and perineuronal nets in the medial prefrontal cortex after extended-access cocaine self-administration in rats. Addict Biol 2023; 28:e13334. [PMID: 37855072 DOI: 10.1111/adb.13334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023]
Abstract
The medial prefrontal cortex (mPFC) drives cocaine-seeking behaviour in rodent models of cocaine use disorder. Parvalbumin (PV)-containing GABAergic interneurons powerfully control the output of the mPFC, yet few studies have focused on how these neurons modulate cocaine-seeking behaviour. Most PV neurons are surrounded by perineuronal nets (PNNs), which regulate the firing of PV neurons. We examined staining intensity and number of PV and PNNs after long-access (6 h/day) cocaine self-administration in rats followed by either 8-10 days extinction ± cue-induced reinstatement or short-term (1-2 days) or long-term (30-31 days) abstinence ± cue-induced reinstatement. The intensity of PNNs was increased in the prelimbic and infralimbic PFC after long-term abstinence in the absence of cue reinstatement and after cue reinstatement following both daily extinction sessions and after a 30-day abstinence period. PV intensity was increased after 30 days of abstinence in the prelimbic but not infralimbic PFC. Enzymatic removal of PNNs with chondroitinase ABC (ABC) in the prelimbic PFC did not prevent incubation of cue-induced reinstatement but decreased cocaine-seeking behaviour at both 2 and 31 days of abstinence, and this decrease at 31 days was accompanied by reduced c-Fos levels in the prelimbic PFC. Increases in PNN intensity have generally been associated with the loss of plasticity, suggesting that the persistent and chronic nature of cocaine use disorder may in part be attributed to long-lasting increases in PNN intensity that reduce the ability of stimuli to alter synaptic input to underlying PV neurons.
Collapse
Affiliation(s)
- Jereme C Wingert
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jonathan N Anguiano
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jonathan D Ramos
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Jordan M Blacktop
- Neuroscience, Washington State University, Vancouver, Washington, USA
| | - Angela E Gonzalez
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| | - Lynn Churchill
- Neuroscience, Washington State University, Pullman, Washington, USA
| | - Barbara A Sorg
- Neuroscience, Washington State University, Vancouver, Washington, USA
- R.S. Dow Neurobiology, Legacy Research Institute, Portland, Oregon, USA
| |
Collapse
|
13
|
Barber KR, Vizcarra VS, Zilch A, Majuta L, Diezel CC, Culver OP, Hughes BW, Taniguchi M, Streicher JM, Vanderah TW, Riegel AC. The Role of Ryanodine Receptor 2 in Drug-Associated Learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560743. [PMID: 37873212 PMCID: PMC10592901 DOI: 10.1101/2023.10.03.560743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Type-2 ryanodine receptor (RyR2) ion channels facilitate the release of Ca 2+ from stores and serve an important function in neuroplasticity. The role for RyR2 in hippocampal-dependent learning and memory is well established and chronic hyperphosphorylation of RyR2 (RyR2P) is associated with pathological calcium leakage and cognitive disorders, including Alzheimer's disease. By comparison, little is known about the role of RyR2 in the ventral medial prefrontal cortex (vmPFC) circuitry important for working memory, decision making, and reward seeking. Here, we evaluated the basal expression and localization of RyR2 and RyR2P in the vmPFC. Next, we employed an operant model of sucrose, cocaine, or morphine self-administration (SA) followed by a (reward-free) recall test, to reengage vmPFC neurons and reactivate reward-seeking and re-evaluated the expression and localization of RyR2 and RyR2P in vmPFC. Under basal conditions, RyR2 was expressed in pyramidal cells but not regularly detected in PV/SST interneurons. On the contrary, RyR2P was rarely observed in PFC somata and was restricted to a different subcompartment of the same neuron - the apical dendrites of layer-5 pyramidal cells. Chronic SA of drug (cocaine or morphine) and nondrug (sucrose) rewards produced comparable increases in RyR2 protein expression. However, recalling either drug reward impaired the usual localization of RyR2P in dendrites and markedly increased its expression in somata immunoreactive for Fos, a marker of highly activated neurons. These effects could not be explained by chronic stress or drug withdrawal and instead appeared to require a recall experience associated with prior drug SA. In addition to showing the differential distribution of RyR2/RyR2P and affirming the general role of vmPFC in reward learning, this study provides information on the propensity of addictive drugs to redistribute RyR2P ion channels in a neuronal population engaged in drug-seeking. Hence, focusing on the early impact of addictive drugs on RyR2 function may serve as a promising approach to finding a treatment for substance use disorders.
Collapse
|
14
|
Ross RA, Kim A, Das P, Li Y, Choi YK, Thompson AT, Douglas E, Subramanian S, Ramos K, Callahan K, Bolshakov VY, Ressler KJ. Prefrontal cortex melanocortin 4 receptors (MC4R) mediate food intake behavior in male mice. Physiol Behav 2023; 269:114280. [PMID: 37369302 PMCID: PMC10528493 DOI: 10.1016/j.physbeh.2023.114280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023]
Abstract
BACKGROUND Melanocortin 4 receptor (MC4R) activity in the hypothalamus is crucial for regulation of metabolism and food intake. The peptide ligands for the MC4R are associated with feeding, energy expenditure, and also with complex behaviors that orchestrate energy intake and expenditure, but the downstream neuroanatomical and neurochemical targets associated with these behaviors are elusive. In addition to strong expression in the hypothalamus, the MC4R is highly expressed in the medial prefrontal cortex, a region involved in executive function and decision-making. METHODS Using viral techniques in genetically modified male mice combined with molecular techniques, we identify and define the effects on feeding behavior of a novel population of MC4R expressing neurons in the infralimbic (IL) region of the cortex. RESULTS Here, we describe a novel population of MC4R-expressing neurons in the IL of the mouse prefrontal cortex that are glutamatergic, receive input from melanocortinergic neurons, and project to multiple regions that coordinate appetitive responses to food-related stimuli. The neurons are stimulated by application of MC4R-specific peptidergic agonist, THIQ. Deletion of MC4R from the IL neurons causes increased food intake and body weight gain and impaired executive function in simple food-related behavior tasks. CONCLUSION Together, these data suggest that MC4R neurons of the IL play a critical role in the regulation of food intake in male mice.
Collapse
Affiliation(s)
- Rachel A Ross
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry, McLean Hospital, Boston, MA, USA.
| | - Angela Kim
- Department of Endocrinology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Priyanka Das
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yan Li
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Kat Ramos
- Northeastern University, Boston, MA, USA
| | - Kathryn Callahan
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Peeters LD, Wills LJ, Cuozzo AM, Ivanich KL, Brown RW. Reinstatement of nicotine conditioned place preference in a transgenerational model of drug abuse vulnerability in psychosis: Impact of BDNF on the saliency of drug associations. Psychopharmacology (Berl) 2023; 240:1453-1464. [PMID: 37160431 PMCID: PMC10330905 DOI: 10.1007/s00213-023-06379-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
RATIONALE Psychotic disorders such as schizophrenia are often accompanied by high rates of cigarette smoking, reduced quit success, and high relapse rates, negatively affecting patient outcomes. However, the mechanisms underlying altered relapse-like behaviors in psychosis are poorly understood. OBJECTIVES The present study analyzed changes in extinction and reinstatement of nicotine conditioned place preference (CPP) and resulting changes in brain-derived neurotrophic factor (BDNF) in a novel heritable rodent model of psychosis, demonstrating increased dopamine D2 receptor sensitivity, to explore mechanisms contributing to changes in relapse-like behaviors. METHODS Male and female offspring of two neonatal quinpirole-treated (1 mg/kg quinpirole from postnatal day (P)1-21; QQ) and two neonatal saline-treated (SS) Sprague-Dawley rats (F1 generation) were tested on an extended CPP paradigm to analyze extinction and nicotine-primed reinstatement. Brain tissue was analyzed 60 min after the last nicotine injection for BDNF response in the ventral tegmental area (VTA), the infralimbic (IfL) and prelimbic (PrL) cortices. RESULTS F1 generation QQ offspring demonstrated delayed extinction and more robust reinstatement compared to SS control animals. In addition, QQ animals demonstrated an enhanced BDNF response to nicotine in the VTA, IfL and Prl cortices compared to SS offspring. CONCLUSIONS This study is the first to demonstrate altered relapse-like behavior in a heritable rodent model with relevance to comorbid drug abuse and psychosis. This altered pattern of behavior is hypothesized to be related to elevated activity-dependent BDNF in brain areas associated with drug reinforcement during conditioning that persists through the extinction phase, rendering aberrantly salient drug associations resistant to extinction and enhancing relapse vulnerability.
Collapse
Affiliation(s)
- Loren D Peeters
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Liza J Wills
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Anthony M Cuozzo
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Kira L Ivanich
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
16
|
Ng KH, Sangha S. Encoding of conditioned inhibitors of fear in the infralimbic cortex. Cereb Cortex 2023; 33:5658-5670. [PMID: 36411540 PMCID: PMC10152082 DOI: 10.1093/cercor/bhac450] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/23/2022] Open
Abstract
Cues in the environment signaling the absence of threat, i.e. safety, can influence both fear and reward-seeking behaviors. Heightened and maladaptive fear is associated with reduced activity in the medial prefrontal cortex. We have previously shown in male rats that the infralimbic (IL) prefrontal cortex is necessary for suppressing fear during a safety cue. The objective of the present study was to determine if there was safety cue-specific neural activity within the IL using a Pavlovian conditioning paradigm, where a fear cue was paired with shock, a safety cue was paired with no shock, and a reward cue was paired with sucrose. To investigate how safety cues can suppress fear, the fear and safety cues were presented together as a compound fear + safety cue. Single-unit activity showed a large proportion of neurons with excitatory responses to the fear + safety cue specifically, a separate group of neurons with excitatory responses to both the reward and fear + safety cues, and bidirectional neurons with excitation to the fear + safety cue and inhibition to the fear cue. Neural activity was also found to be negatively correlated with freezing during the fear + safety cue. Together, these data implicate the IL in encoding specific aspects of conditioned inhibitors when fear is being actively suppressed.
Collapse
Affiliation(s)
- Ka H Ng
- Department of Psychological Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - Susan Sangha
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, United States
| |
Collapse
|
17
|
Hanganu-Opatz IL, Klausberger T, Sigurdsson T, Nieder A, Jacob SN, Bartos M, Sauer JF, Durstewitz D, Leibold C, Diester I. Resolving the prefrontal mechanisms of adaptive cognitive behaviors: A cross-species perspective. Neuron 2023; 111:1020-1036. [PMID: 37023708 DOI: 10.1016/j.neuron.2023.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/15/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
The prefrontal cortex (PFC) enables a staggering variety of complex behaviors, such as planning actions, solving problems, and adapting to new situations according to external information and internal states. These higher-order abilities, collectively defined as adaptive cognitive behavior, require cellular ensembles that coordinate the tradeoff between the stability and flexibility of neural representations. While the mechanisms underlying the function of cellular ensembles are still unclear, recent experimental and theoretical studies suggest that temporal coordination dynamically binds prefrontal neurons into functional ensembles. A so far largely separate stream of research has investigated the prefrontal efferent and afferent connectivity. These two research streams have recently converged on the hypothesis that prefrontal connectivity patterns influence ensemble formation and the function of neurons within ensembles. Here, we propose a unitary concept that, leveraging a cross-species definition of prefrontal regions, explains how prefrontal ensembles adaptively regulate and efficiently coordinate multiple processes in distinct cognitive behaviors.
Collapse
Affiliation(s)
- Ileana L Hanganu-Opatz
- Institute of Developmental Neurophysiology, Center for Molecular Neurobiology, Hamburg Center of Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Thomas Klausberger
- Center for Brain Research, Division of Cognitive Neurobiology, Medical University of Vienna, Vienna, Austria
| | - Torfi Sigurdsson
- Institute of Neurophysiology, Goethe University, Frankfurt, Germany
| | - Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, 72076 Tübingen, Germany
| | - Simon N Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marlene Bartos
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonas-Frederic Sauer
- Institute for Physiology I, Medical Faculty, University of Freiburg, Freiburg im Breisgau, Germany
| | - Daniel Durstewitz
- Department of Theoretical Neuroscience, Central Institute of Mental Health & Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Christian Leibold
- Faculty of Biology, Bernstein Center Freiburg, BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ilka Diester
- Optophysiology - Optogenetics and Neurophysiology, IMBIT // BrainLinks-BrainTools, University of Freiburg, Freiburg im Breisgau, Germany.
| |
Collapse
|
18
|
Ahmed N, Paré D. The Basolateral Amygdala Sends a Mixed (GABAergic and Glutamatergic) Projection to the Mediodorsal Thalamic Nucleus. J Neurosci 2023; 43:2104-2115. [PMID: 36788026 PMCID: PMC10039751 DOI: 10.1523/jneurosci.1924-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 02/16/2023] Open
Abstract
The medial prefrontal cortex receives converging inputs from the mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA). Although many studies reported that the BLA also projects to MD, there is conflicting evidence regarding this projection, with some data suggesting that it originates from GABAergic or glutamatergic neurons. Therefore, the present study aimed to determine the neurotransmitter used by MD-projecting BLA cells in male and female rats. We first examined whether BLA cells retrogradely labeled by Fast Blue infusions in MD are immunopositive for multiple established markers of BLA interneurons. A minority of MD-projecting BLA cells expressed somatostatin (∼22%) or calretinin (∼11%) but not other interneuronal markers, suggesting that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Second, we examined the responses of MD cells to optogenetic activation of BLA axons using whole-cell recordings in vitro Consistent with our immunohistochemical findings, among responsive MD cells, light stimuli typically elicited isolated EPSPs (73%) or IPSPs (27%) as well as coincident EPSPs and IPSPs (11%). Indicating that these IPSPs were monosynaptic, light-evoked EPSPs and IPSPs had the same latency and the IPSPs persisted in the presence of ionotropic glutamate receptor antagonists. Overall, our results indicate that the BLA sends a mixed, glutamatergic-GABAergic projection to MD, which likely influences coordination of activity between BLA, MD, and medial prefrontal cortex. An important challenge for future studies will be to examine the connections formed by MD-projecting glutamatergic and GABAergic BLA cells with each other and other populations of BLA cells.SIGNIFICANCE STATEMENT The mediodorsal thalamic nucleus (MD) and basolateral amygdala (BLA) send convergent projections to the medial prefrontal cortex. Although many studies reported that the BLA also projects to MD, there is conflicting evidence as to whether this projection is glutamatergic or GABAergic. By combining tract tracing, immunohistochemistry, optogenetics, and patch clamp recordings in vitro, we found that BLA neurons projecting to MD not only include glutamatergic cells, but also long-range GABAergic neurons. Differential recruitment of these two contingents of cells likely influences coordination of activity between the BLA, MD, and medial prefrontal cortex.
Collapse
Affiliation(s)
- Nowrin Ahmed
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Denis Paré
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
19
|
Chang VN, Peters J. Neural circuits controlling choice behavior in opioid addiction. Neuropharmacology 2023; 226:109407. [PMID: 36592884 PMCID: PMC9898219 DOI: 10.1016/j.neuropharm.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
As the opioid epidemic presents an ever-expanding public health threat, there is a growing need to identify effective new treatments for opioid use disorder (OUD). OUD is characterized by a behavioral misallocation in choice behavior between opioids and other rewards, as opioid use leads to negative consequences, such as job loss, family neglect, and potential overdose. Preclinical models of addiction that incorporate choice behavior, as opposed to self-administration of a single drug reward, are needed to understand the neural circuits governing opioid choice. These choice models recapitulate scenarios that humans suffering from OUD encounter in their daily lives. Indeed, patients with substance use disorders (SUDs) exhibit a propensity to choose drug under certain conditions. While most preclinical addiction models have focused on relapse as the outcome measure, our data suggest that choice is an independent metric of addiction severity, perhaps relating to loss of cognitive control over choice, as opposed to excessive motivational drive to seek drugs during relapse. In this review, we examine both preclinical and clinical literature on choice behavior for drugs, with a focus on opioids, and the neural circuits that mediate drug choice versus relapse. We argue that preclinical models of opioid choice are needed to identify promising new avenues for OUD therapy that are translationally relevant. Both forward and reverse translation will be necessary to identify novel treatment interventions. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Victoria N Chang
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
20
|
Moorman DE, Aston-Jones G. Prelimbic and infralimbic medial prefrontal cortex neuron activity signals cocaine seeking variables across multiple timescales. Psychopharmacology (Berl) 2023; 240:575-594. [PMID: 36464693 PMCID: PMC10406502 DOI: 10.1007/s00213-022-06287-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
RATIONALE AND OBJECTIVES The prefrontal cortex is critical for execution and inhibition of reward seeking. Neural manipulation of rodent medial prefrontal cortex (mPFC) subregions differentially impacts execution and inhibition of cocaine seeking. Dorsal, or prelimbic (PL), and ventral, or infralimbic (IL) mPFC are implicated in cocaine seeking or extinction of cocaine seeking, respectively. This differentiation is not seen across all studies, indicating that further research is needed to understand specific mPFC contributions to drug seeking. METHODS We recorded neuronal activity in mPFC subregions during cocaine self-administration, extinction, and cue- and cocaine-induced reinstatement of cocaine seeking. RESULTS Both PL and IL neurons were phasically responsive around lever presses during cocaine self-administration, and activity in both areas was reduced during extinction. During both cue- and, to a greater extent, cocaine-induced reinstatement, PL neurons exhibited significantly elevated responses, in line with previous studies demonstrating a role for the region in relapse. The enhanced PL signaling in cocaine-induced reinstatement was driven by strong excitation and inhibition in different groups of neurons. Both of these response types were stronger in PL vs. IL neurons. Finally, we observed tonic changes in activity in all tasks phases, reflecting both session-long contextual modulation as well as minute-to-minute activity changes that were highly correlated with brain cocaine levels and motivation associated with cocaine seeking. CONCLUSIONS Although some differences were observed between PL and IL neuron activity across sessions, we found no evidence of a go/stop dichotomy in PL/IL function. Instead, our results demonstrate temporally heterogeneous prefrontal signaling during cocaine seeking and extinction in both PL and IL, revealing novel and complex functions for both regions during these behaviors. This combination of findings argues that mPFC neurons, in both PL and IL, provide multifaceted contributions to the regulation of drug seeking and addiction.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University and Rutgers Biomedical and Health Sciences, Piscataway, NJ, 08854, USA
| |
Collapse
|
21
|
Nett KE, Zimbelman AR, McGregor MS, Alizo Vera V, Harris MR, LaLumiere RT. Infralimbic Projections to the Nucleus Accumbens Shell and Amygdala Regulate the Encoding of Cocaine Extinction Learning. J Neurosci 2023; 43:1348-1359. [PMID: 36657972 PMCID: PMC9987566 DOI: 10.1523/jneurosci.2023-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/21/2022] [Accepted: 12/30/2022] [Indexed: 01/20/2023] Open
Abstract
Prior evidence indicates that the infralimbic cortex (IL) mediates the ongoing inhibition of cocaine seeking following self-administration and extinction training in rats, specifically through projections to the nucleus accumbens shell (NAshell). Our own data indicate that IL activity immediately following an unreinforced lever press is critical for encoding the extinction contingencies in such procedures. Whether extinction encoding requires activity in the IL exclusively or also activity in its outputs, such as those to the NAshell and amygdala, is unknown. To address this issue, we used a closed-loop optogenetic approach in female and male Sprague Dawley rats to silence IL-NAshell or IL-amygdala activity following an unreinforced lever press during extinction training. Optical illumination (20 s) was given either immediately after a lever press or following a 20 s delay. IL-NAshell inhibition immediately following an unreinforced lever press increased lever pressing during extinction training and impaired retention of extinction learning, as assessed during subsequent extinction sessions without optical inhibition. Likewise, IL-amygdala inhibition given in the same manner impaired extinction retention during sessions without inhibition. Control experiments indicate that critical encoding of extinction learning does not require activity in these pathways beyond the initial 20 s post-lever press period, as delayed IL-NAshell and IL-amygdala inhibition had no effect on extinction learning. These results suggest that a larger network extending from the IL to the NAshell and amygdala is involved in encoding extinction contingencies following cocaine self-administration.SIGNIFICANCE STATEMENT Infralimbic cortex (IL) activity following an unreinforced lever press during extinction learning encodes the extinction of cocaine-seeking behavior. However, the larger circuitry controlling such encoding has not been investigated. Using closed-loop optogenetic pathway targeting, we found that inhibition of IL projections to the nucleus accumbens shell and to the amygdala impaired the extinction of cocaine seeking. Importantly, these effects were only observed when activity was disrupted during the first 20 s post-lever press and not when given following a 20 s delay. These findings suggest that successful cocaine extinction encoding requires activity across a larger circuit beyond simply inputs to the IL.
Collapse
Affiliation(s)
- Kelle E Nett
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Alexa R Zimbelman
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Matthew S McGregor
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
| | - Vanessa Alizo Vera
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Molly R Harris
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Ryan T LaLumiere
- Interdisciplinary Neuroscience Program, University of Iowa, Iowa City, Iowa 52242
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242
| |
Collapse
|
22
|
Lind EB, Sweis BM, Asp AJ, Esguerra M, Silvis KA, David Redish A, Thomas MJ. A quadruple dissociation of reward-related behaviour in mice across excitatory inputs to the nucleus accumbens shell. Commun Biol 2023; 6:119. [PMID: 36717646 PMCID: PMC9886947 DOI: 10.1038/s42003-023-04429-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 01/05/2023] [Indexed: 02/01/2023] Open
Abstract
The nucleus accumbens shell (NAcSh) is critically important for reward valuations, yet it remains unclear how valuation information is integrated in this region to drive behaviour during reinforcement learning. Using an optogenetic spatial self-stimulation task in mice, here we show that contingent activation of different excitatory inputs to the NAcSh change expression of different reward-related behaviours. Our data indicate that medial prefrontal inputs support place preference via repeated actions, ventral hippocampal inputs consistently promote place preferences, basolateral amygdala inputs produce modest place preferences but as a byproduct of increased sensitivity to time investments, and paraventricular inputs reduce place preferences yet do not produce full avoidance behaviour. These findings suggest that each excitatory input provides distinct information to the NAcSh, and we propose that this reflects the reinforcement of different credit assignment functions. Our finding of a quadruple dissociation of NAcSh input-specific behaviours provides insights into how types of information carried by distinct inputs to the NAcSh could be integrated to help drive reinforcement learning and situationally appropriate behavioural responses.
Collapse
Affiliation(s)
- Erin B Lind
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Brian M Sweis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Anders J Asp
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Rehabilitation Medicine Research Center, Department of Physical Medicine and Rehabilitation, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Manuel Esguerra
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Keelia A Silvis
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA
| | - Mark J Thomas
- Department of Neuroscience, University of Minnesota, 6-145 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA.
- Medical Discovery Team on Addiction, University of Minnesota, 3-432 McGuire Translational Research Facility, 2001 6th St SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
23
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2022:S0168-0102(22)00304-2. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Mesa JR, Wesson DW, Schwendt M, Knackstedt LA. The roles of rat medial prefrontal and orbitofrontal cortices in relapse to cocaine-seeking: A comparison across methods for identifying neurocircuits. ADDICTION NEUROSCIENCE 2022; 4:100031. [PMID: 36277334 PMCID: PMC9583858 DOI: 10.1016/j.addicn.2022.100031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A large body of research supports the notion that regions of the rodent frontal cortex regulate reinstatement of cocaine seeking after cessation of intravenous cocaine self-administration. However, earlier studies identifying the roles of medial (mPFC) and orbital prefrontal cortices (OFC) in reinstatement relied on pharmacological inactivation methods, which indiscriminately inhibited cells within a target region. Here, we first review the anatomical borders and pathways of the rat mPFC and OFC. Next, we compare and contrast findings from more recent cocaine seeking and reinstatement studies that used chemogenetics, optogenetics, or advanced tracing to manipulate specific local cell types or input/output projections of the mPFC and OFC subregions. We found that these studies largely corroborated the roles for mPFC subregions as ascribed by pharmacological inactivation studies. Namely, the prelimbic cortex generally drives cocaine seeking behaviors while the infralimbic cortex is recruited to inhibit cocaine seeking by extinction training but may contribute to seeking after prolonged abstinence. While the OFC remains understudied, we suggest it should not be overlooked, and, as with prelimbic and infralimbic cortices, we identify specific pathways of interest for future studies.
Collapse
Affiliation(s)
- Javier R. Mesa
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA,Corresponding author at: Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA. (J.R. Mesa)
| | - Daniel W. Wesson
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Marek Schwendt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Lori A. Knackstedt
- Department of Psychology, University of Florida, 114 Psychology, 945 Center Dr., Gainesville, FL 32611, USA,Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Jakovljevic A, Agatonovic G, Aleksic D, Aksic M, Reiss G, Förster E, Stamatakis A, Jakovcevski I, Poleksic J. The impact of early life maternal deprivation on the perineuronal nets in the prefrontal cortex and hippocampus of young adult rats. Front Cell Dev Biol 2022; 10. [PMID: 36518543 PMCID: PMC9742529 DOI: 10.3389/fcell.2022.982663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2024] Open
Abstract
Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol. We show that maternal deprivation in the medial prefrontal cortex of adult rats caused a decrease in density of overall PNNs and PNNs that enwrap PV+ interneurons in the rostral cingulate cortex. Furthermore, a staining intensity decrease of overall PNNs and PNN+/PV+ cells was found in the prelimbic cortex. Finally, a decrease in both intensity and density of overall PNNs and PNNs surrounding PV+ cells was observed in the infralimbic cortex, together with increase in the intensity of VGAT inhibitory puncta. Surprisingly, maternal deprivation did not cause any changes in the density of PV+ interneurons in the mPFC, neither had it affected PNNs and PV+ interneurons in the hippocampus. Taken together, our findings indicate that PNNs, specifically the ones enwrapping PV+ interneurons in the medial prefrontal cortex, are affected by early life stress.
Collapse
|