1
|
Zouridis IS, Schmors L, Fischer KM, Berens P, Preston-Ferrer P, Burgalossi A. Juxtacellular recordings from identified neurons in the mouse locus coeruleus. Eur J Neurosci 2024; 60:3659-3676. [PMID: 38872397 DOI: 10.1111/ejn.16368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/15/2024] [Accepted: 04/11/2024] [Indexed: 06/15/2024]
Abstract
The locus coeruleus (LC) is the primary source of noradrenergic transmission in the mammalian central nervous system. This small pontine nucleus consists of a densely packed nuclear core-which contains the highest density of noradrenergic neurons-embedded within a heterogeneous surround of non-noradrenergic cells. This local heterogeneity, together with the small size of the LC, has made it particularly difficult to infer noradrenergic cell identity based on extracellular sampling of in vivo spiking activity. Moreover, the relatively high cell density, background activity and synchronicity of LC neurons have made spike identification and unit isolation notoriously challenging. In this study, we aimed at bridging these gaps by performing juxtacellular recordings from single identified neurons within the mouse LC complex. We found that noradrenergic neurons (identified by tyrosine hydroxylase, TH, expression; TH-positive) and intermingled putatively non-noradrenergic (TH-negative) cells displayed similar morphologies and responded to foot shock stimuli with excitatory responses; however, on average, TH-positive neurons exhibited more prominent foot shock responses and post-activation firing suppression. The two cell classes also displayed different spontaneous firing rates, spike waveforms and temporal spiking properties. A logistic regression classifier trained on spontaneous electrophysiological features could separate the two cell classes with 76% accuracy. Altogether, our results reveal in vivo electrophysiological correlates of TH-positive neurons, which can be useful for refining current approaches for the classification of LC unit activity.
Collapse
Affiliation(s)
- Ioannis S Zouridis
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Lisa Schmors
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
| | - Kathrin Maite Fischer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Graduate Training Centre of Neuroscience, International Max-Planck Research School (IMPRS), Tübingen, Germany
| | - Philipp Berens
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
- Hertie Institute for AI in Brain Health, University of Tübingen, Tübingen, Germany
- Tübingen AI Center, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Eberhard Karls University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen, Germany
| |
Collapse
|
2
|
Abela L, Gianfrancesco L, Tagliatti E, Rossignoli G, Barwick K, Zourray C, Reid KM, Budinger D, Ng J, Counsell J, Simpson A, Pearson TS, Edvardson S, Elpeleg O, Brodsky FM, Lignani G, Barral S, Kurian MA. Neurodevelopmental and synaptic defects in DNAJC6 parkinsonism, amenable to gene therapy. Brain 2024; 147:2023-2037. [PMID: 38242634 PMCID: PMC11146427 DOI: 10.1093/brain/awae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 12/16/2023] [Indexed: 01/21/2024] Open
Abstract
DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harbouring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. To explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.
Collapse
Affiliation(s)
- Lucia Abela
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Lorita Gianfrancesco
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Erica Tagliatti
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
- Laboratory of Pharmacology and Brain Pathology, Humanitas Clinical and Research Center, 20089 Milano, Italy
| | - Giada Rossignoli
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Katy Barwick
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Clara Zourray
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Kimberley M Reid
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Dimitri Budinger
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Joanne Ng
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Genetic Therapy Accelerator Centre, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - John Counsell
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Arlo Simpson
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Toni S Pearson
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032-3784, USA
- Department of Pediatrics, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43210, USA
- Department of Neurology, Nationwide Children’s Hospital, Ohio State University, Columbus, OH 43210, USA
| | - Simon Edvardson
- Department of Genetics, Hadassah, Hebrew University Medical Center, 9574869 Jerusalem, Israel
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, 9574869 Jerusalem, Israel
| | - Frances M Brodsky
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Gabriele Lignani
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Serena Barral
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
| | - Manju A Kurian
- Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, WC1N 1DZ, UK
- Department of Neurology, Great Ormond Street Hospital, London, WC1N 3JH, UK
| |
Collapse
|
3
|
Veshchitskii AA, Kirik OV, Korzhevskii DE, Merkulyeva N. Development of neurochemical labeling in the intermediolateral nucleus of cats' spinal cord. Anat Rec (Hoboken) 2023; 306:2400-2410. [PMID: 35500068 DOI: 10.1002/ar.24943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 04/15/2022] [Indexed: 08/11/2023]
Abstract
NeuN is a neuron-specific nuclear protein expressed in most mature neuronal cell types, with some exceptions. These exceptions are known mainly for the brain but not for the spinal cord or the spinal visceral networks for which only scarce information is available. One of the most defined visceral structures in the spinal cord is the sympathetic intermediolateral nucleus located within the thoracolumbar segments. We investigated the NeuN staining in the intermediolateral nucleus and compared it with the staining for two neurochemical markers of visceral neurons: nitric oxide synthase and calcium-binding protein calretinin in adult cats and in kittens aged 0, 14, and 35 days. A clear NeuN-immunonegativity was obtained for intermediolateral neurons labeled for nitric oxide synthase for both adult cats and kittens. In contrast, a matched immunopositivity for the NeuN and calretinin was obtained, showing an age-dependent degree of this colocalization, which was high in newborn kittens, decreased on postnatal 14 and 35 days and persisted at a moderate level up to adulthood. Perhaps our data displayed a heterogeneity of the intermediolateral neurons.
Collapse
Affiliation(s)
| | - Olga V Kirik
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Dmitriy E Korzhevskii
- Laboratory of Functional Morphology of Central and Peripheral Nervous System, Institute of Experimental Medicine RAS, Saint-Petersburg, Russia
| | - Natalia Merkulyeva
- Laboratory of Neuromorphology, Pavlov Institute of Physiology RAS, Saint-Petersburg, Russia
| |
Collapse
|
4
|
Makrygianni EA, Chrousos GP. Neural Progenitor Cells and the Hypothalamus. Cells 2023; 12:1822. [PMID: 37508487 PMCID: PMC10378393 DOI: 10.3390/cells12141822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 07/30/2023] Open
Abstract
Neural progenitor cells (NPCs) are multipotent neural stem cells (NSCs) capable of self-renewing and differentiating into neurons, astrocytes and oligodendrocytes. In the postnatal/adult brain, NPCs are primarily located in the subventricular zone (SVZ) of the lateral ventricles (LVs) and subgranular zone (SGZ) of the hippocampal dentate gyrus (DG). There is evidence that NPCs are also present in the postnatal/adult hypothalamus, a highly conserved brain region involved in the regulation of core homeostatic processes, such as feeding, metabolism, reproduction, neuroendocrine integration and autonomic output. In the rodent postnatal/adult hypothalamus, NPCs mainly comprise different subtypes of tanycytes lining the wall of the 3rd ventricle. In the postnatal/adult human hypothalamus, the neurogenic niche is constituted by tanycytes at the floor of the 3rd ventricle, ependymal cells and ribbon cells (showing a gap-and-ribbon organization similar to that in the SVZ), as well as suprachiasmatic cells. We speculate that in the postnatal/adult human hypothalamus, neurogenesis occurs in a highly complex, exquisitely sophisticated neurogenic niche consisting of at least four subniches; this structure has a key role in the regulation of extrahypothalamic neurogenesis, and hypothalamic and extrahypothalamic neural circuits, partly through the release of neurotransmitters, neuropeptides, extracellular vesicles (EVs) and non-coding RNAs (ncRNAs).
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
5
|
Babkina AS, Yadgarov MY, Lyubomudrov MA, Ostrova IV, Volkov AV, Kuzovlev AN, Grechko AV, Golubev AM. Morphologic Findings in the Cerebral Cortex in COVID-19: Association of Microglial Changes with Clinical and Demographic Variables. Biomedicines 2023; 11:biomedicines11051407. [PMID: 37239078 DOI: 10.3390/biomedicines11051407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Despite the enormous interest in COVID-19, there is no clear understanding of the mechanisms underlying the neurological symptoms in COVID-19. Microglia have been hypothesized to be a potential mediator of the neurological manifestations associated with COVID-19. In most existing studies to date, morphological changes in internal organs, including the brain, are considered in isolation from clinical data and defined as a consequence of COVID-19. We performed histological immunohistochemical (IHC) studies of brain autopsy materials of 18 patients who had died from COVID-19. We evaluated the relationship of microglial changes with the clinical and demographic characteristics of the patients. The results revealed neuronal alterations and circulatory disturbances. We found an inverse correlation between the integral density Iba-1 (microglia/macrophage-specific marker) IHC staining and the duration of the disease (R = -0.81, p = 0.001), which may indicate a reduced activity of microglia and do not exclude their damage in the long-term course of COVID-19. The integral density of Iba-1 IHC staining was not associated with other clinical and demographic factors. We observed a significantly higher number of microglial cells in close contact with neurons in female patients, which confirms gender differences in the course of the disease, indicating the need to study the disease from the standpoint of personalized medicine.
Collapse
Affiliation(s)
- Anastasiya S Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Mikhail Ya Yadgarov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Maxim A Lyubomudrov
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Irina V Ostrova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Alexey V Volkov
- Department of Pathological Anatomy, Institute of Medicine, Peoples' Friendship University of Russia, Moscow 117198, Russia
| | - Artem N Kuzovlev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Andrey V Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| | - Arkady M Golubev
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia
| |
Collapse
|
6
|
Perez-Rodriguez D, Kalyva M, Santucci C, Proukakis C. Somatic CNV Detection by Single-Cell Whole-Genome Sequencing in Postmortem Human Brain. Methods Mol Biol 2023; 2561:205-230. [PMID: 36399272 DOI: 10.1007/978-1-0716-2655-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The evidence for a role of somatic mutations, including copy-number variants (CNVs), in neurodegeneration has increased in the last decade. However, the understanding of the types and origins of these mutations, and their exact contributions to disease onset and progression, is still in its infancy. The use of single-cell (or nuclear) whole-genome sequencing (scWGS) has emerged as a powerful tool to answer these questions. In the present chapter, we provide laboratory and bioinformatic protocols used successfully in our lab to detect megabase-scale CNVs in single cells from multiple system atrophy (MSA) human postmortem brains, using immunolabeling prior to selection of nuclei for whole-genome amplification (WGA). We also present an unpublished comparison of scWGS generated from the same control substantia nigra (SN) sample, using the latest versions of popular WGA chemistries, MDA and PicoPLEX. We have used this protocol to focus on brain cell types most relevant to synucleinopathies (dopaminergic [DA] neurons in Parkinson's disease [PD] and oligodendrocytes in MSA), but it can be applied to any tissue and/or cell type with appropriate markers.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Catherine Santucci
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
7
|
Adekeye AO, Fafure AA, Ogunsemowo AE, Enye LA, Saka OS, Ogedengbe OO. Naringin ameliorates motor dysfunction and exerts neuroprotective role against vanadium-induced neurotoxicity. AIMS Neurosci 2022; 9:536-550. [PMID: 36660080 PMCID: PMC9826750 DOI: 10.3934/neuroscience.2022031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
Exposure to vanadium has been known to lead to a progressive neurodegenerative disorder like Parkinson's disease. Naringin is a known flavonoid glycoside that is mostly seen in the flesh of grapefruit and orange and is believed to have protective effects for the treatment of neurodegenerative disorders. This study sought to investigate the role of Naringin in the treatment of vanadium-induced neurotoxicity. Vanadium (10 mg/kg BW) was injected intraperitoneally to induce motor dysfunction, followed by treatment with Naringin (30 mg/kg BW) intraperitoneally for 14 days. Oxidative stress imbalance was monitored by checking Glutathione Peroxidase (GPX) and Catalase levels. Histological and immunohistochemical alterations were observed using RBFOX3 polyclonal antibody to determine neuronal cell distribution and NLRP3 inflammasome antibody as a marker of inflammation. Exposure to vanadium induces neurotoxicity by significantly increasing the Catalase and Glutathione Peroxidase (GPX) levels. Vanadium administration also led to increased inflammatory cells and a significant reduction of the viable neuronal cells in the SNc and CPu. Treatment with Naringin showed a neuroprotective role by dependently restoring the Catalase and Glutathione Peroxidase (GPX) levels, inflammasome activation, and neuronal damage in the SNc and CPu. Naringin demonstrated anti-oxidative, and anti-inflammatory responses by inhibiting oxidative stress, and inflammation and exerts neuroprotective effects by inhibiting apoptosis following vanadium-induced neurotoxicity in adult Wistar rats.
Collapse
Affiliation(s)
- Adeshina O. Adekeye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Adedamola A. Fafure
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria,* Correspondence: ; Tel: +2348069501996
| | - Ayoola E. Ogunsemowo
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus A. Enye
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Olusola S. Saka
- Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oluwatosin O. Ogedengbe
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University Oye-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
8
|
Mohr MA, Michael NS, DonCarlos LL, Sisk CL. Sex differences in proliferation and attrition of pubertally born cells in the rat posterior dorsal medial amygdala. Dev Cogn Neurosci 2022; 57:101141. [PMID: 35933923 PMCID: PMC9357828 DOI: 10.1016/j.dcn.2022.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/08/2022] [Accepted: 07/21/2022] [Indexed: 11/26/2022] Open
Abstract
The rodent posterodorsal medial amygdala (MePD) evaluates and assigns valence to social sensory stimuli. The perception of social stimuli evolves during puberty, when the focus of social interactions shifts from kin to peers. Using the cell birthdate marker bromo-deoxyuridine (BrdU), we previously discovered that more pubertally born cells are added to the rat MePD in males than females. Here we addressed several questions that remained unanswered by our previous work. First, to determine whether there are sex differences in cell proliferation within the MePD, we examined BrdU-immunoreactive (-ir) cells at 2 and 4 h following BrdU administration on postnatal day 30 (P30). The density of BrdU-ir cells was greater in males than in females, indicating greater proliferation in males. Proliferation was substantiated by double-label immunohistochemistry showing that MePD BrdU-ir cells colocalize proliferating cell nuclear antigen, but not the cell death marker Caspase3. We next studied longer time points (2-21 days) following BrdU administration on P30 and found that the rate of cell attrition is higher in males. Finally, triple-label immunohistochemistry of P30-born MePD cells revealed that some of these cells differentiate into neurons or astrocytes within three weeks of cell birth, with no discernable sex differences. The demonstration of pubertal neuro- and glio-genesis in the MePD of male and female rats adds a new dimension to developmental plasticity of the MePD that may contribute to pubertal changes in the perception of social stimuli in both sexes.
Collapse
Affiliation(s)
- Margaret A Mohr
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | | | - Lydia L DonCarlos
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, Maywood, IL 60153, USA
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
9
|
Bakina O, Kettenmann H, Nolte C. Microglia form satellites with different neuronal subtypes in the adult murine central nervous system. J Neurosci Res 2022; 100:1105-1122. [PMID: 35213755 DOI: 10.1002/jnr.25026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/12/2022]
Abstract
Microglia are the innate immune cells of the central nervous system (CNS). In the adult uncompromised CNS, they have a highly ramified morphology and continuously extend and retract their processes. A subpopulation of microglial cells forms close soma-to-soma contacts with neurons and have been termed satellite microglia, yet the role of such interaction is largely unknown. Here, we analyzed the distribution of satellite microglia in different areas of the CNS of adult male mice applying transgenic- and immunolabeling of neuronal subtypes and microglia followed by three-dimensional imaging analysis. We quantified satellite microglia associated with GABAergic and glutamatergic neurons in the somatosensory cortex, striatum, and thalamus; with dopaminergic and serotonergic neurons in the basal forebrain and raphe nucleus, respectively; and with cerebellar Purkinje cell neurons. Satellite microglia in the retina were assessed qualitatively. Microglia form satellites with all neuronal subtypes studied, whereas a preference for a specific neuron subtype was not found. The occurrence and frequency of satellite microglia is determined by the histo-architectural organization of the brain area and the densities of neuronal somata therein.
Collapse
Affiliation(s)
- Olga Bakina
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Helmut Kettenmann
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Christiane Nolte
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
10
|
An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Mol Psychiatry 2022; 27:377-382. [PMID: 34667259 PMCID: PMC8967762 DOI: 10.1038/s41380-021-01314-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
In sub-mammalian vertebrates like fishes, amphibians, and reptiles, new neurons are produced during the entire lifespan. This capacity diminishes considerably in birds and even more in mammals where it persists only in the olfactory system and hippocampal dentate gyrus. Adult neurogenesis declines even more drastically in nonhuman primates and recent evidence shows that this is basically extinct in humans. Why should such seemingly useful capacity diminish during primate evolution? It has been proposed that this occurs because of the need to retain acquired complex knowledge in stable populations of neurons and their synaptic connections during many decades of human life. In this review, we will assess critically the claim of significant adult neurogenesis in humans and show how current evidence strongly indicates that humans lack this trait. In addition, we will discuss the allegation of many rodent studies that adult neurogenesis is involved in psychiatric diseases and that it is a potential mechanism for human neuron replacement and regeneration. We argue that these reports, which usually neglect significant structural and functional species-specific differences, mislead the general population into believing that there might be a cure for a variety of neuropsychiatric diseases as well as stroke and brain trauma by genesis of new neurons and their incorporation into existing synaptic circuitry.
Collapse
|
11
|
Milde S, van Tartwijk FW, Vilalta A, Hornik TC, Dundee JM, Puigdellívol M, Brown GC. Inflammatory neuronal loss in the substantia nigra induced by systemic lipopolysaccharide is prevented by knockout of the P2Y 6 receptor in mice. J Neuroinflammation 2021; 18:225. [PMID: 34635136 PMCID: PMC8504061 DOI: 10.1186/s12974-021-02280-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation may contribute to multiple brain pathologies. One cause of inflammation is lipopolysaccharide/endotoxin (LPS), the levels of which are elevated in blood and/or brain during bacterial infections, gut dysfunction and neurodegenerative diseases, such as Parkinson’s disease. How inflammation causes neuronal loss is unclear, but one potential mechanism is microglial phagocytosis of neurons, which is dependent on the microglial P2Y6 receptor. We investigated here whether the P2Y6 receptor was required for inflammatory neuronal loss. Intraperitoneal injection of LPS on 4 successive days resulted in specific loss of dopaminergic neurons (measured as cells staining with tyrosine hydroxylase or NeuN) in the substantia nigra of wild-type mice, but no neuronal loss in cortex or hippocampus. This supports the hypothesis that neuronal loss in Parkinson’s disease may be driven by peripheral LPS. By contrast, there was no LPS-induced neuronal loss in P2Y6 receptor knockout mice. In vitro, LPS-induced microglial phagocytosis of cells was prevented by inhibition of the P2Y6 receptor, and LPS-induced neuronal loss was reduced in mixed glial–neuronal cultures from P2Y6 receptor knockout mice. This supports the hypothesis that microglial phagocytosis contributes to inflammatory neuronal loss, and can be prevented by blocking the P2Y6 receptor, suggesting that P2Y6 receptor antagonists might be used to prevent inflammatory neuronal loss in Parkinson’s disease and other brain pathologies involving inflammatory neuronal loss.
Collapse
Affiliation(s)
- Stefan Milde
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Anna Vilalta
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tamara C Hornik
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Jacob M Dundee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mar Puigdellívol
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Guy C Brown
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Buck SA, De Miranda BR, Logan RW, Fish KN, Greenamyre JT, Freyberg Z. VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. J Neurosci 2021; 41:4937-4947. [PMID: 33893220 PMCID: PMC8260163 DOI: 10.1523/jneurosci.2770-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Briana R De Miranda
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, 04609
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
13
|
Sorrells SF, Paredes MF, Zhang Z, Kang G, Pastor-Alonso O, Biagiotti S, Page CE, Sandoval K, Knox A, Connolly A, Huang EJ, Garcia-Verdugo JM, Oldham MC, Yang Z, Alvarez-Buylla A. Positive Controls in Adults and Children Support That Very Few, If Any, New Neurons Are Born in the Adult Human Hippocampus. J Neurosci 2021; 41:2554-2565. [PMID: 33762407 PMCID: PMC8018729 DOI: 10.1523/jneurosci.0676-20.2020] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Adult hippocampal neurogenesis was originally discovered in rodents. Subsequent studies identified the adult neural stem cells and found important links between adult neurogenesis and plasticity, behavior, and disease. However, whether new neurons are produced in the human dentate gyrus (DG) during healthy aging is still debated. We and others readily observe proliferating neural progenitors in the infant hippocampus near immature cells expressing doublecortin (DCX), but the number of such cells decreases in children and few, if any, are present in adults. Recent investigations using dual antigen retrieval find many cells stained by DCX antibodies in adult human DG. This has been interpreted as evidence for high rates of adult neurogenesis, even at older ages. However, most of these DCX-labeled cells have mature morphology. Furthermore, studies in the adult human DG have not found a germinal region containing dividing progenitor cells. In this Dual Perspectives article, we show that dual antigen retrieval is not required for the detection of DCX in multiple human brain regions of infants or adults. We review prior studies and present new data showing that DCX is not uniquely expressed by newly born neurons: DCX is present in adult amygdala, entorhinal and parahippocampal cortex neurons despite being absent in the neighboring DG. Analysis of available RNA-sequencing datasets supports the view that DG neurogenesis is rare or absent in the adult human brain. To resolve the conflicting interpretations in humans, it is necessary to identify and visualize dividing neuronal precursors or develop new methods to evaluate the age of a neuron at the single-cell level.
Collapse
Affiliation(s)
- Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Mercedes F Paredes
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Zhuangzhi Zhang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Gugene Kang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Oier Pastor-Alonso
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Sean Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Kadellyn Sandoval
- Department of Neurology, University of California San Francisco, San Francisco, California 94143
| | - Anthony Knox
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Andrew Connolly
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, San Francisco, California 94143
| | - Jose Manuel Garcia-Verdugo
- Laboratorio de Neurobiología Comparada, Instituto Cavanilles, Universidad de Valencia, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Valencia 46980, Spain
| | - Michael C Oldham
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Zhengang Yang
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, Shanghai, P.R. 200032 China
| | - Arturo Alvarez-Buylla
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California 94143
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
14
|
PC12 Cell Line: Cell Types, Coating of Culture Vessels, Differentiation and Other Culture Conditions. Cells 2020; 9:cells9040958. [PMID: 32295099 PMCID: PMC7227003 DOI: 10.3390/cells9040958] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/27/2022] Open
Abstract
The PC12 cell line is one of the most commonly used in neuroscience research, including studies on neurotoxicity, neuroprotection, neurosecretion, neuroinflammation, and synaptogenesis. Two types of this line are available in the ATCC collection: traditional PC12 cells grown in suspension and well-attached adherent phenotype. PC12 cells grown in suspension tend to aggregate and adhere poorly to non-coated surfaces. Therefore, it is necessary to modify the surface of culture vessels. This paper aims to characterise the use of two distinct variants of PC12 cells as well as describe their differentiation and neuronal outgrowth with diverse NGF concentrations (rat or human origin) on various surfaces. In our study, we evaluated cell morphology, neurite length, density and outgrowth (measured spectrofluorimetrically), and expression of neuronal biomarkers (doublecortin and NeuN). We found that the collagen coating was the most versatile method of surface modification for both cell lines. For adherent cells, the coating was definitely less important, and the poly-d-lysine surface was as good as collagen. We also demonstrated that the concentration of NGF is of great importance for the degree of differentiation of cells. For suspension cells, we achieved the best neuronal characteristics (length and density of neurites) after 14 days of incubation with 100 ng/mL NGF (change every 48 h), while for adherent cells after 3-5 days, after which they began to proliferate. In the PC12 cell line, doublecortin (DCX) expression in the cytoplasm and NeuN in the cell nucleus were found. In turn, in the PC12 Adh line, DCX was not expressed, and NeuN expression was located in the entire cell (both in the nucleus and cytoplasm). Only the traditional PC12 line grown in suspension after differentiation with NGF should be used for neurobiological studies, especially until the role of the NeuN protein, whose expression has also been noted in the cytoplasm of adherent cells, is well understood.
Collapse
|
15
|
Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice. Cell 2020; 181:590-603.e16. [PMID: 32272060 DOI: 10.1016/j.cell.2020.03.024] [Citation(s) in RCA: 277] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.
Collapse
|
16
|
Perez-Rodriguez D, Kalyva M, Leija-Salazar M, Lashley T, Tarabichi M, Chelban V, Gentleman S, Schottlaender L, Franklin H, Vasmatzis G, Houlden H, Schapira AHV, Warner TT, Holton JL, Jaunmuktane Z, Proukakis C. Investigation of somatic CNVs in brains of synucleinopathy cases using targeted SNCA analysis and single cell sequencing. Acta Neuropathol Commun 2019; 7:219. [PMID: 31870437 PMCID: PMC6929293 DOI: 10.1186/s40478-019-0873-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Synucleinopathies are mostly sporadic neurodegenerative disorders of partly unexplained aetiology, and include Parkinson's disease (PD) and multiple system atrophy (MSA). We have further investigated our recent finding of somatic SNCA (α-synuclein) copy number variants (CNVs, specifically gains) in synucleinopathies, using Fluorescent in-situ Hybridisation for SNCA, and single-cell whole genome sequencing for the first time in a synucleinopathy. In the cingulate cortex, mosaicism levels for SNCA gains were higher in MSA and PD than controls in neurons (> 2% in both diseases), and for MSA also in non-neurons. In MSA substantia nigra (SN), we noted SNCA gains in > 3% of dopaminergic (DA) neurons (identified by neuromelanin) and neuromelanin-negative cells, including olig2-positive oligodendroglia. Cells with CNVs were more likely to have α-synuclein inclusions, in a pattern corresponding to cell categories mostly relevant to the disease: DA neurons in Lewy-body cases, and other cells in the striatonigral degeneration-dominant MSA variant (MSA-SND). Higher mosaicism levels in SN neuromelanin-negative cells may correlate with younger onset in typical MSA-SND, and in cingulate neurons with younger death in PD. Larger sample sizes will, however, be required to confirm these putative findings. We obtained genome-wide somatic CNV profiles from 169 cells from the substantia nigra of two MSA cases, and pons and putamen of one. These showed somatic CNVs in ~ 30% of cells, with clonality and origins in segmental duplications for some. CNVs had distinct profiles based on cell type, with neurons having a mix of gains and losses, and other cells having almost exclusively gains, although control data sets will be required to determine possible disease relevance. We propose that somatic SNCA CNVs may contribute to the aetiology and pathogenesis of synucleinopathies, and that genome-wide somatic CNVs in MSA brain merit further study.
Collapse
Affiliation(s)
- Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Maria Kalyva
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Melissa Leija-Salazar
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, Midland Road 1, London, NW1 1AT, UK
| | - Viorica Chelban
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | | | - Lucia Schottlaender
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Hannah Franklin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - George Vasmatzis
- Center for Individualized Medicine, Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Janice L Holton
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological disorders, UCL Queen Square Institute of Neurology, 1 Wakefield street, London, WC1N 1PJ, UK
- National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
17
|
Hernandez ML, Chatlos T, Gorse KM, Lafrenaye AD. Neuronal Membrane Disruption Occurs Late Following Diffuse Brain Trauma in Rats and Involves a Subpopulation of NeuN Negative Cortical Neurons. Front Neurol 2019; 10:1238. [PMID: 31824411 PMCID: PMC6883004 DOI: 10.3389/fneur.2019.01238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/07/2019] [Indexed: 01/20/2023] Open
Abstract
The repercussions of traumatic brain injury (TBI) endure years following the initial insult and involve chronic impairments/disabilities. Studies indicate that these morbidities stem from diffuse pathologies, however, knowledge regarding TBI-mediated diffuse pathologies, and in particular, diffuse neuronal membrane disruption, is limited. Membrane disruption has been shown to occur acutely following injury, primarily within neurons, however, the progression of TBI-induced membrane disruption remains undefined. Therefore, the current study investigated this pathology over a longer temporal profile from 6 h to 4 w following diffuse TBI induced using the central fluid percussion injury (CFPI) model in rats. To visualize membrane disruption, animals received an intracerebroventricular infusion of tagged cell-impermeable dextran 2 h prior to experimental endpoints at 6 h, 1 d, 3 d, 1 w, 2 w, or 4 w post-CFPI. The percentage of total neurons demonstrating dextran uptake, indicative of membrane disruption, was quantified within the lateral neocortex layers V and VI from 6 h to 4 w post-injury. We found that membrane disruption displayed a biphasic pattern, where nearly half of the neurons were membrane disrupted sub-acutely, from 6 h to 3 d post-TBI. At 1 w the membrane disrupted population was dramatically reduced to levels indistinguishable from sham controls. However, by 2 and 4 w following CFPI, approximately half of the neurons analyzed displayed membrane disruption. Moreover, our data revealed that a subset of these late membrane disrupted neurons were NeuN negative (NeuN-). Correlative western blot analyses, however, revealed no difference in NeuN protein expression in the lateral neocortex at any time following injury. Furthermore, the NeuN- membrane disrupted neurons did not co-label with traditional markers of astrocytes, microglia, oligodendrocytes, or NG2 cells. Immunohistochemistry against NeuN, paired with a hematoxylin and eosin counter-stain, was performed to quantify the possibility of overall NeuN+ neuronal loss following CFPI. A NeuN- population was observed consistently in both sham and injured animals regardless of time post-injury. These data suggest that there is a consistent subpopulation of NeuN- neurons within the lateral neocortex regardless of injury and that these NeuN- neurons are potentially more vulnerable to late membrane disruption. Better understanding of membrane disruption could provide insight into the mechanisms of diffuse pathology and lead to the discovery of novel treatments for TBI.
Collapse
Affiliation(s)
- Martina L. Hernandez
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Todd Chatlos
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Karen M. Gorse
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Audrey D. Lafrenaye
- Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
18
|
Effects of neonatal ethanol on cerebral cortex development through adolescence. Brain Struct Funct 2019; 224:1871-1884. [PMID: 31049690 DOI: 10.1007/s00429-019-01881-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 04/19/2019] [Indexed: 02/03/2023]
Abstract
Neonatal brain lesions cause deficits in structure and function of the cerebral cortex that sometimes are not fully expressed until adolescence. To better understand the onset and persistence of changes caused by postnatal day 7 (P7) ethanol treatment, we examined neocortical cell numbers, volume, surface area and thickness from neonatal to post-adolescent ages. In control mice, total neuron number decreased from P8 to reach approximately stable levels at about P30, as expected from normal programmed cell death. Cortical thickness reached adult levels by P14, but cortical volume and surface area continued to increase from juvenile (P20-30) to post-adolescent (P54-93) ages. P7 ethanol caused a reduction of total neurons by P14, but this deficit was transient, with later ages having only small and non-significant reductions. Previous studies also reported transient neuron loss after neonatal lesions that might be partially explained by an acute acceleration of normally occurring programmed cell death. GABAergic neurons expressing parvalbumin, calretinin, or somatostatin were reduced by P14, but unlike total neurons the reductions persisted or increased in later ages. Cortical volume, surface area and thickness were also reduced by P7 ethanol. Cortical volume showed evidence of a transient reduction at P14, and then was reduced again in post-adolescent ages. The results show a developmental sequence of neonatal ethanol effects. By juvenile ages the cortex overcomes the P14 deficit of total neurons, whereas P14 GABA cell deficits persist. Cortical volume reductions were present at P14, and again in post-adolescent ages.
Collapse
|
19
|
Ferrando S, Amaroli A, Gallus L, Di Blasi D, Carlig E, Rottigni M, Vacchi M, Parker SJ, Ghigliotti L. Olfaction in the Antarctic toothfish Dissostichus mawsoni: clues from the morphology and histology of the olfactory rosette and bulb. Polar Biol 2019. [DOI: 10.1007/s00300-019-02496-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
El-Abhar H, Abd El Fattah MA, Wadie W, El-Tanbouly DM. Cilostazol disrupts TLR-4, Akt/GSK-3β/CREB, and IL-6/JAK-2/STAT-3/SOCS-3 crosstalk in a rat model of Huntington's disease. PLoS One 2018; 13:e0203837. [PMID: 30260985 PMCID: PMC6160003 DOI: 10.1371/journal.pone.0203837] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
Countless neurodegenerative diseases are associated with perverse multiple targets of cyclic nucleotide signalling, hastening neuronal death. Cilostazol, a phosphodiesterase-III inhibitor, exerts neuroprotective effects against sundry models of neurotoxicity, however, its role against Huntington's disease (HD) has not yet been tackled. Hence, its modulatory effect on several signalling pathways using the 3-nitropropionic acid (3-NP) model was conducted. Animals were injected with 3-NP (10 mg/kg/day, i.p) for two successive weeks with or without the administration of cilostazol (100 mg/kg/day, p.o.). Contrary to the 3-NP effects, cilostazol largely preserved striatal dopaminergic neurons, improved motor coordination, and enhanced the immunohistochemical reaction of tyrosine hydroxylase enzyme. The anti-inflammatory effect of cilostazol was documented by the pronounced reduction of the toll like receptor-4 (TLR-4) protein expression and the inflammatory cytokine IL-6, but with a marked elevation in IL-10 striatal contents. As a consequence, cilostazol reduced IL-6 downstream signal, where it promoted the level of suppressor of cytokine signalling 3 (SOCS3), while abated the phosphorylation of Janus Kinase 2 (JAK-2) and Signal transducers and activators of transcription 3 (STAT-3). Phosphorylation of the protein kinase B/glycogen synthase kinase-3β/cAMP response element binding protein (Akt/GSK-3β/CREB) cue is another signalling pathway that was modulated by cilostazol to further signify its anti-inflammatory and antiapoptotic capacities. The latter was associated with a reduction in the caspase-3 expression assessed by immunohistochemical assay. In conclusion the present study provided a new insight into the possible mechanisms by which cilostazol possesses neuroprotective properties. These intersecting mechanisms involve the interference between TLR-4, IL-6-IL-10/JAK-2/STAT-3/SOCS-3, and Akt/GSK-3β/CREB signalling pathways.
Collapse
Affiliation(s)
- Hanan El-Abhar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- * E-mail:
| | - Mai A. Abd El Fattah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Walaa Wadie
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalia M. El-Tanbouly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Carter DA. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis. J Chem Neuroanat 2017; 82:29-38. [DOI: 10.1016/j.jchemneu.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 01/18/2023]
|
22
|
Richie CT, Whitaker LR, Whitaker KW, Necarsulmer J, Baldwin HA, Zhang Y, Fortuno L, Hinkle JJ, Koivula P, Henderson MJ, Sun W, Wang K, Smith JC, Pickel J, Ji N, Hope BT, Harvey BK. Near-infrared fluorescent protein iRFP713 as a reporter protein for optogenetic vectors, a transgenic Cre-reporter rat, and other neuronal studies. J Neurosci Methods 2017; 284:1-14. [PMID: 28380331 PMCID: PMC5501963 DOI: 10.1016/j.jneumeth.2017.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND The use of genetically-encoded fluorescent reporters is essential for the identification and observation of cells that express transgenic modulatory proteins. Near-infrared (NIR) fluorescent proteins have superior light penetration through biological tissue, but are not yet widely adopted. NEW METHOD Using the near-infrared fluorescent protein, iRFP713, improves the imaging resolution in thick tissue sections or the intact brain due to the reduced light-scattering at the longer, NIR wavelengths used to image the protein. Additionally, iRFP713 can be used to identify transgenic cells without photobleaching other fluorescent reporters or affecting opsin function. We have generated a set of adeno-associated vectors in which iRFP713 has been fused to optogenetic channels, and can be expressed constitutively or Cre-dependently. RESULTS iRFP713 is detectable when expressed in neurons both in vitro and in vivo without exogenously supplied chromophore biliverdin. Neuronally-expressed iRFP713 has similar properties to GFP-like fluorescent proteins, including the ability to be translationally fused to channelrhodopsin or halorhodopsin, however, it shows superior photostability compared to EYFP. Furthermore, electrophysiological recordings from iRFP713-labeled cells compared to cells labeled with mCherry suggest that iRFP713 cells are healthier and therefore more stable and reliable in an ex vivo preparation. Lastly, we have generated a transgenic rat that expresses iRFP713 in a Cre-dependent manner. CONCLUSIONS Overall, we have demonstrated that iRFP713 can be used as a reporter in neurons without the use of exogenous biliverdin, with minimal impact on viability and function thereby making it feasible to extend the capabilities for imaging genetically-tagged neurons in slices and in vivo.
Collapse
Affiliation(s)
- Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Leslie R Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Keith W Whitaker
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; US Army Research Laboratory, Aberdeen Proving Ground, MD 21005, United States
| | - Julie Necarsulmer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Heather A Baldwin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Yajun Zhang
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States; Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852, United States
| | - Lowella Fortuno
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Josh J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Pyry Koivula
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Mark J Henderson
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Wenzhi Sun
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Kai Wang
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Jeffrey C Smith
- Intramural Research Program, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, United States
| | - Jim Pickel
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, United States
| | - Na Ji
- Janelia Research Campus,Howard Hughes Medical Institute, Ashburn, VA 20147, United States
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224, United States.
| |
Collapse
|
23
|
Jeffries AR, Mill J. Profiling Regulatory Variation in the Brain: Methods for Exploring the Neuronal Epigenome. Biol Psychiatry 2017; 81:90-91. [PMID: 27938879 DOI: 10.1016/j.biopsych.2016.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/20/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Aaron R Jeffries
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jonathan Mill
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
24
|
García-Cabezas MÁ, John YJ, Barbas H, Zikopoulos B. Distinction of Neurons, Glia and Endothelial Cells in the Cerebral Cortex: An Algorithm Based on Cytological Features. Front Neuroanat 2016; 10:107. [PMID: 27847469 PMCID: PMC5088408 DOI: 10.3389/fnana.2016.00107] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/20/2016] [Indexed: 11/13/2022] Open
Abstract
The estimation of the number or density of neurons and types of glial cells and their relative proportions in different brain areas are at the core of rigorous quantitative neuroanatomical studies. Unfortunately, the lack of detailed, updated, systematic and well-illustrated descriptions of the cytology of neurons and glial cell types, especially in the primate brain, makes such studies especially demanding, often limiting their scope and broad use. Here, following an extensive analysis of histological materials and the review of current and classical literature, we compile a list of precise morphological criteria that can facilitate and standardize identification of cells in stained sections examined under the microscope. We describe systematically and in detail the cytological features of neurons and glial cell types in the cerebral cortex of the macaque monkey and the human using semithin and thick sections stained for Nissl. We used this classical staining technique because it labels all cells in the brain in distinct ways. In addition, we corroborate key distinguishing characteristics of different cell types in sections immunolabeled for specific markers counterstained for Nissl and in ultrathin sections processed for electron microscopy. Finally, we summarize the core features that distinguish each cell type in easy-to-use tables and sketches, and structure these key features in an algorithm that can be used to systematically distinguish cellular types in the cerebral cortex. Moreover, we report high inter-observer algorithm reliability, which is a crucial test for obtaining consistent and reproducible cell counts in unbiased stereological studies. This protocol establishes a consistent framework that can be used to reliably identify and quantify cells in the cerebral cortex of primates as well as other mammalian species in health and disease.
Collapse
Affiliation(s)
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University Boston, MA, USA
| |
Collapse
|
25
|
Mao S, Xiong G, Zhang L, Dong H, Liu B, Cohen NA, Cohen AS. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein. Front Neuroanat 2016; 10:54. [PMID: 27242450 PMCID: PMC4865646 DOI: 10.3389/fnana.2016.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60.
Collapse
Affiliation(s)
- Shanping Mao
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Guoxiang Xiong
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennslyvania Philadelphia, PA, USA
| | - Lei Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennslyvania Philadelphia, PA, USA
| | - Huimin Dong
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Baohui Liu
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Noam A Cohen
- Philadelphia Veterans Affairs Medical Center, University of PennslyvaniaPhiladelphia, PA, USA; Departments of Otorhinolaryngology-Head and Neck Surgery, University of PennslyvaniaPhiladelphia, PA, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of PennslyvaniaPhiladelphia, PA, USA; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of PennslyvaniaPhiladelphia, PA, USA
| |
Collapse
|
26
|
Nouraei N, Zarger L, Weilnau JN, Han J, Mason DM, Leak RK. Investigation of the therapeutic potential of N-acetyl cysteine and the tools used to define nigrostriatal degeneration in vivo. Toxicol Appl Pharmacol 2016; 296:19-30. [PMID: 26879220 DOI: 10.1016/j.taap.2016.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/02/2016] [Accepted: 02/10/2016] [Indexed: 12/22/2022]
Abstract
The glutathione precursor N-acetyl-L-cysteine (NAC) is currently being tested on Parkinson's patients for its neuroprotective properties. Our studies have shown that NAC can elicit protection in glutathione-independent manners in vitro. Thus, the goal of the present study was to establish an animal model of NAC-mediated protection in which to dissect the underlying mechanism. Mice were infused intrastriatally with the oxidative neurotoxicant 6-hydroxydopamine (6-OHDA; 4 μg) and administered NAC intraperitoneally (100mg/kg). NAC-treated animals exhibited higher levels of the dopaminergic terminal marker tyrosine hydroxylase (TH) in the striatum 10d after 6-OHDA. As TH expression is subject to stress-induced modulation, we infused the tracer FluoroGold into the striatum to retrogradely label nigrostriatal projection neurons. As expected, nigral FluoroGold staining and cell counts of FluoroGold(+) profiles were both more sensitive measures of nigrostriatal degeneration than measurements relying on TH alone. However, NAC failed to protect dopaminergic neurons 3 weeks following 6-OHDA, an effect verified by four measures: striatal TH levels, nigral TH levels, nigral TH(+) cell counts, and nigral FluoroGold levels. Some degree of mild toxicity of FluoroGold and NAC was evident, suggesting that caution must be exercised when relying on FluoroGold as a neuron-counting tool and when designing experiments with long-term delivery of NAC--such as clinical trials on patients with chronic disorders. Finally, the strengths and limitations of the tools used to define nigrostriatal degeneration are discussed.
Collapse
Affiliation(s)
- Negin Nouraei
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Lauren Zarger
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Justin N Weilnau
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Jimin Han
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Daniel M Mason
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Rehana K Leak
- Division of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, United States.
| |
Collapse
|
27
|
Alekseeva OS, Gusel’nikova VV, Beznin GV, Korzhevskii DE. Prospects for the application of neun nuclear protein as a marker of the functional state of nerve cells in vertebrates. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015050014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Differentiation and Cell–Cell Interactions of Neural Progenitor Cells Transplanted into Intact Adult Brain. Bull Exp Biol Med 2015; 160:115-22. [DOI: 10.1007/s10517-015-3111-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 01/03/2023]
|
29
|
Liechti R, Ducray AD, Jensen P, Di Santo S, Seiler S, Jensen CH, Meyer M, Widmer HR. Characterization of fetal antigen 1/delta-like 1 homologue expressing cells in the rat nigrostriatal system: effects of a unilateral 6-hydroxydopamine lesion. PLoS One 2015; 10:e0116088. [PMID: 25723595 PMCID: PMC4344227 DOI: 10.1371/journal.pone.0116088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
Fetal antigen 1/delta-like 1 homologue (FA1/dlk1) belongs to the epidermal growth factor superfamily and is considered to be a non-canonical ligand for the Notch receptor. Interactions between Notch and its ligands are crucial for the development of various tissues. Moreover, FA1/dlk1 has been suggested as a potential supplementary marker of dopaminergic neurons. The present study aimed at investigating the distribution of FA1/dlk1-immunoreactive (-ir) cells in the early postnatal and adult midbrain as well as in the nigrostriatal system of 6-hydroxydopamine (6-OHDA)-lesioned hemiparkinsonian adult rats. FA1/dlk1-ir cells were predominantly distributed in the substantia nigra (SN) pars compacta (SNc) and in the ventral tegmental area. Interestingly, the expression of FA1/dlk1 significantly increased in tyrosine hydroxylase (TH)-ir cells during early postnatal development. Co-localization and tracing studies demonstrated that FA1/dlk1-ir cells in the SNc were nigrostriatal dopaminergic neurons, and unilateral 6-OHDA lesions resulted in loss of both FA1/dlk1-ir and TH-ir cells in the SNc. Surprisingly, increased numbers of FA1/dlk1-ir cells (by 70%) were detected in dopamine-depleted striata as compared to unlesioned controls. The higher number of FA1/dlk1-ir cells was likely not due to neurogenesis as colocalization studies for proliferation markers were negative. This suggests that FA1/dlk1 was up-regulated in intrinsic cells in response to the 6-OHDA-mediated loss of FA1/dlk1-expressing SNc dopaminergic neurons and/or due to the stab wound. Our findings hint to a significant role of FA1/dlk1 in the SNc during early postnatal development. The differential expression of FA1/dlk1 in the SNc and the striatum of dopamine-depleted rats could indicate a potential involvement of FA1/dlk1 in the cellular response to the degenerative processes.
Collapse
Affiliation(s)
- Rémy Liechti
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster University of Bern, Inselspital, CH-3010 Berne, Switzerland
| | - Angélique D. Ducray
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster University of Bern, Inselspital, CH-3010 Berne, Switzerland
| | - Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark
| | - Stefano Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster University of Bern, Inselspital, CH-3010 Berne, Switzerland
| | - Stefanie Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster University of Bern, Inselspital, CH-3010 Berne, Switzerland
| | - Charlotte H. Jensen
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Sdr. Boulevard 29, DK-5000, Odense C, Denmark
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Winsløwparken 21, DK-5000 Odense C, Denmark
| | - Hans Rudolf Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster University of Bern, Inselspital, CH-3010 Berne, Switzerland
- * E-mail:
| |
Collapse
|
30
|
Duan W, Zhang YP, Hou Z, Huang C, Zhu H, Zhang CQ, Yin Q. Novel Insights into NeuN: from Neuronal Marker to Splicing Regulator. Mol Neurobiol 2015; 53:1637-1647. [PMID: 25680637 DOI: 10.1007/s12035-015-9122-5] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 01/07/2023]
Abstract
Neuronal nuclei (NeuN) is a well-recognized "marker" that is detected exclusively in post-mitotic neurons and was initially identified through an immunological screen to produce neuron-specific antibodies. Immunostaining evidence indicates that NeuN is distributed in the nuclei of mature neurons in nearly all parts of the vertebrate nervous system. NeuN is highly conserved among species and is stably expressed during specific stages of development. Therefore, NeuN has been considered to be a reliable marker of mature neurons for the past two decades. However, this role has been challenged by recent studies indicating that NeuN staining is variable and even absent during certain diseases and specific physiological states. More importantly, despite the widespread use of the anti-NeuN antibody, the natural identity of the NeuN protein remained elusive for 17 years. NeuN was recently eventually identified as an epitope of Rbfox3, which is a novel member of the Rbfox1 family of splicing factors. This identification might provide a novel perspective on NeuN expression during both physiological and pathological conditions. This review summarizes the current progress on the biochemical identity and biological significance of NeuN and recommends caution when applying NeuN immunoreactivity as a definitive marker of mature neurons in certain diseases and specific physiological states.
Collapse
Affiliation(s)
- Wei Duan
- Department of Neurology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Yu-Ping Zhang
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Zhi Hou
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China
| | - Chen Huang
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - He Zhu
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA.,Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.,The Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, 37232, USA
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| | - Qing Yin
- Department of Rehabilitation and Physical Therapy, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
31
|
Malm T, Mariani M, Donovan LJ, Neilson L, Landreth GE. Activation of the nuclear receptor PPARδ is neuroprotective in a transgenic mouse model of Alzheimer's disease through inhibition of inflammation. J Neuroinflammation 2015; 12:7. [PMID: 25592770 PMCID: PMC4310027 DOI: 10.1186/s12974-014-0229-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/21/2014] [Indexed: 12/23/2022] Open
Abstract
Background Alzheimer’s disease (AD) is a multifactorial disorder associated with the accumulation of soluble forms of beta-amyloid (Aβ) and its subsequent deposition into plaques. One of the major contributors to neuronal death is chronic and uncontrolled inflammatory activation of microglial cells around the plaques and their secretion of neurotoxic molecules. A shift in microglial activation towards a phagocytic phenotype has been proposed to confer benefit in models of AD. Peroxisome proliferator activator receptor δ (PPARδ) is a transcription factor with potent anti-inflammatory activation properties and PPARδ agonism leads to reduction in brain Aβ levels in 5XFAD mice. This study was carried out to elucidate the involvement of microglial activation in the PPARδ-mediated reduction of Aβ burden and subsequent outcome to neuronal survival in a 5XFAD mouse model of AD. Methods 5XFAD mice were orally treated with the PPARδ agonist GW0742 for 2 weeks. The brain Aβ load, glial activation, and neuronal survival were assessed by immunohistochemistry and quantitative PCR. In addition, the ability of GW0742 to prevent direct neuronal death as well as inflammation-induced neuron death was analyzed in vitro. Results Our results show for the first time that a short treatment period of 5XFAD mice was effective in reducing the parenchymal Aβ load without affecting the levels of intraneuronal Aβ. This was concomitant with a decrease in overall microglial activation and reduction in proinflammatory mediators. Instead, microglial immunoreactivity around Aβ deposits was increased. Importantly, the reduction in the proinflammatory milieu elicited by GW0742 treatment resulted in attenuation of neuronal loss in vivo in the subiculum of 5XFAD mice. In addition, whereas GW0742 failed to protect primary neurons against glutamate-induced cell death, it prevented inflammation-induced neuronal death in microglia-neuron co-cultures in vitro. Conclusions This study demonstrates that GW0742 treatment has a prominent anti-inflammatory effect in 5XFAD mice and suggests that PPARδ agonists may have therapeutic utility in treating AD.
Collapse
Affiliation(s)
- Tarja Malm
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA. .,Department of Neurobiology, A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - Monica Mariani
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Lauren J Donovan
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Lee Neilson
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Gary E Landreth
- Department of Neurosciences, Alzheimer Research Laboratory, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
32
|
Schawkat K, Di Santo S, Seiler S, Ducray AD, Widmer HR. Loss of Nogo-A-expressing neurons in a rat model of Parkinson's disease. Neuroscience 2014; 288:59-72. [PMID: 25554426 DOI: 10.1016/j.neuroscience.2014.12.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/15/2022]
Abstract
The myelin-associated protein Nogo-A is among the most potent neurite growth inhibitors in the adult CNS. Recently, Nogo-A expression was demonstrated in a number of neuronal subpopulations of the adult and developing CNS but at present, little is known about the expression of Nogo-A in the nigrostriatal system, a brain structure severely affected in Parkinson's disease (PD). The present study sought to characterize the expression pattern of Nogo-A immunoreactive (ir) cells in the adult ventral mesencephalon of control rats and in the 6-hydroxydopamine (6-OHDA) rat model of PD. Immunohistochemical analyses of normal adult rat brain showed a distinct expression of Nogo-A in the ventral mesencephalon, with the highest level in the substantia nigra pars compacta (SNc) where it co-localized with dopaminergic neurons. Analyses conducted 1week and 1 month after unilateral striatal injections of 6-OHDA disclosed a severe loss of the number of Nogo-A-ir cells in the SNc. Notably, at 1week after treatment, more dopaminergic neurons expressing Nogo-A were affected by the 6-OHDA toxicity than Nogo-A-negative dopaminergic neurons. However, at later time points more of the surviving dopaminergic neurons expressed Nogo-A. In the striatum, both small and large Nogo-A-positive cells were detected. The large cells were identified as cholinergic interneurons. Our results suggest yet unidentified functions of Nogo-A in the CNS beyond the inhibition of axonal regeneration and plasticity, and may indicate a role for Nogo-A in PD.
Collapse
Affiliation(s)
- K Schawkat
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Di Santo
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - S Seiler
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - A D Ducray
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| | - H R Widmer
- Department of Neurosurgery, Neurocenter and Regenerative Neuroscience Cluster, University of Bern, Inselspital, CH-3010 Bern, Switzerland.
| |
Collapse
|
33
|
De Miranda BR, Popichak KA, Hammond SL, Miller JA, Safe S, Tjalkens RB. Novel para-phenyl substituted diindolylmethanes protect against MPTP neurotoxicity and suppress glial activation in a mouse model of Parkinson's disease. Toxicol Sci 2014; 143:360-73. [PMID: 25406165 DOI: 10.1093/toxsci/kfu236] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The orphan nuclear receptor NR4A2 (Nurr1) constitutively regulates inflammatory gene expression in glial cells by suppressing DNA binding activity of NF-κB. We recently reported that novel 1,1-bis(3'-indolyl)-1-(p-substitutedphenyl)methane (C-DIM) compounds that activate NR4A family nuclear receptors in cancer lines also suppress inflammatory gene expression in primary astrocytes and prevent loss of dopaminergic neurons in mice exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp). In this study, we postulated that the basis for this neuroprotection involves blockade of glial activation and subsequent expression of NF-κB-regulated inflammatory genes. To examine this mechanism, we treated transgenic NF-κB/EGFP reporter mice with MPTPp for 7 days (MPTPp7d) followed by daily oral gavage with either vehicle (corn oil; MPTPp14d) or C-DIMs containing p-methoxyphenyl (C-DIM5), p-hydroxyphenyl (C-DIM8), or p-chlorophenyl (C-DIM12) groups. Each compound conferred significant protection against progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc), even when given after 7 days of dosing with MPTPp. C-DIM12 had the greatest neuroprotective activity in MPTPp-treated mice, and was also the most potent compound in suppressing activation of microglia and astrocytes, expression of cytokines and chemokines in quantitative polymerase chain reaction (qPCR) array studies, and in reducing expression of NF-κB/EGFP in the SN. C-DIM12 prevented nuclear export of Nurr1 in dopaminergic neurons and enhanced expression of the Nurr1-regulated proteins tyrosine hydroxylase and the dopamine transporter. These data indicate that NR4A-active C-DIM compounds protect against loss of dopamine neurons in the MPTPp model of PD by preventing glial-mediated neuronal injury and by supporting a dopaminergic phenotype in TH-positive neurons in the SNpc.
Collapse
Affiliation(s)
- Briana R De Miranda
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Katriana A Popichak
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Sean L Hammond
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - James A Miller
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Stephen Safe
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| | - Ronald B Tjalkens
- *Department of Environmental and Radiological Health Sciences, Center for Environmental Medicine, Colorado State University, Fort Collins, Colorado 80523-1680, Texas A&M Health Science Center, Houston, TX 77030, Texas and Department of Veterinary Physiology and Pharmacology, Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843, Texas
| |
Collapse
|
34
|
Immunocytochemical markers of neuronal maturation in human diagnostic neuropathology. Cell Tissue Res 2014; 359:279-94. [DOI: 10.1007/s00441-014-1988-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/08/2014] [Indexed: 12/13/2022]
|
35
|
Li G, Zhang W, Baker MS, Laritsky E, Mattan-Hung N, Yu D, Kunde-Ramamoorthy G, Simerly RB, Chen R, Shen L, Waterland RA. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus. Hum Mol Genet 2013; 23:1579-90. [PMID: 24186871 DOI: 10.1093/hmg/ddt548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these processes, it is essential to develop approaches to disentangle the cellular and regional heterogeneity of hypothalamic developmental epigenetics. We therefore performed genome-scale DNA methylation profiling in hypothalamic neurons and non-neuronal cells at postnatal day 0 (P0) and P21 and found, surprisingly, that most of the DNA methylation differences distinguishing these two cell types are established postnatally. In particular, neuron-specific increases in DNA methylation occurred extensively at genes involved in neuronal development. Quantitative bisulfite pyrosequencing verified our methylation profiling results in all 15 regions examined, and expression differences were associated with DNA methylation at several genes. We also identified extensive methylation differences between the arcuate (ARH) and paraventricular nucleus of the hypothalamus (PVH). Integrating these two data sets showed that genomic regions with PVH versus ARH differential methylation strongly overlap with those undergoing neuron-specific increases from P0 to P21, suggesting that these developmental changes occur preferentially in either the ARH or PVH. In particular, neuron-specific methylation increases at the 3' end of Shh localized to the ARH and were positively associated with gene expression. Our data indicate a key role for DNA methylation in establishing the gene expression potential of diverse hypothalamic cell types, and provide the novel insight that early postnatal life is a critical period for cell type-specific epigenetic development in the murine hypothalamus.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol 2013; 141:43-55. [DOI: 10.1007/s00418-013-1159-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2013] [Indexed: 10/26/2022]
|
37
|
Jensen P, Heimberg M, Ducray AD, Widmer HR, Meyer M. Expression of trefoil factor 1 in the developing and adult rat ventral mesencephalon. PLoS One 2013; 8:e76592. [PMID: 24116124 PMCID: PMC3792045 DOI: 10.1371/journal.pone.0076592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/03/2013] [Indexed: 12/04/2022] Open
Abstract
Trefoil factor 1 (TFF1) belongs to a family of secreted peptides with a characteristic tree-looped trefoil structure. TFFs are mainly expressed in the gastrointestinal tract where they play a critical role in the function of the mucosal barrier. TFF1 has been suggested as a neuropeptide, but not much is known about its expression and function in the central nervous system. We investigated the expression of TFF1 in the developing and adult rat midbrain. In the adult ventral mesencephalon, TFF1-immunoreactive (-ir) cells were predominantly found in the substantia nigra pars compacta (SNc), the ventral tegmental area (VTA) and in periaqueductal areas. While around 90% of the TFF1-ir cells in the SNc co-expressed tyrosine hydroxylase (TH), only a subpopulation of the TH-ir neurons expressed TFF1. Some TFF1-ir cells in the SNc co-expressed the calcium-binding proteins calbindin or calretinin and nearly all were NeuN-ir confirming a neuronal phenotype, which was supported by lack of co-localization with the astroglial marker glial fibrillary acidic protein (GFAP). Interestingly, at postnatal (P) day 7 and P14, a significantly higher proportion of TH-ir neurons in the SNc co-expressed TFF1 as compared to P21. In contrast, the proportion of TFF1-ir cells expressing TH remained unchanged during postnatal development. Furthermore, significantly more TH-ir neurons expressed TFF1 in the SNc, compared to the VTA at all four time-points investigated. Injection of the tracer fluorogold into the striatum of adult rats resulted in retrograde labeling of several TFF1 expressing cells in the SNc showing that a significant fraction of the TFF1-ir cells were projection neurons. This was also reflected by unilateral loss of TFF1-ir cells in SNc of 6-hydroxylase-lesioned hemiparkinsonian rats. In conclusion, we show for the first time that distinct subpopulations of midbrain dopaminergic neurons express TFF1, and that this expression pattern is altered in a rat model of Parkinson’s disease.
Collapse
Affiliation(s)
- Pia Jensen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Neurosurgery, University of Bern, Bern, Switzerland
| | - Michel Heimberg
- Department of Neurosurgery, University of Bern, Bern, Switzerland
| | | | - Hans R. Widmer
- Department of Neurosurgery, University of Bern, Bern, Switzerland
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
38
|
Sarnat HB. Clinical neuropathology practice guide 5-2013: markers of neuronal maturation. Clin Neuropathol 2013; 32:340-69. [PMID: 23883617 PMCID: PMC3796735 DOI: 10.5414/np300638] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/23/2013] [Indexed: 11/18/2022] Open
Abstract
This review surveys immunocytochemical and histochemical markers of neuronal lineage for application to tissue sections of fetal and neonatal brain. They determine maturation of individual nerve cells as the tissue progresses to mature architecture. From a developmental perspective, neuronal markers are all about timing. These diverse cellular labels may be classified in two ways: 1) time of onset of expression (early; intermediate; late); 2) labeling of subcellular structures or metabolic functions (nucleoproteins; synaptic vesicle proteins; enolases; cytoskeletal elements; calcium-binding; nucleic acids; mitochondria). Apart from these positive markers of maturation, other negative markers are expressed in primitive neuroepithelial cells and early stages of neuroblast maturation, but no longer are demonstrated after initial stages of maturation. These examinations are relevant for studies of normal neuroembryology at the cellular level. In fetal and perinatal neuropathology they provide control criteria for application to malformations of the brain, inborn metabolic disorders and acquired fetal insults in which neuroblastic maturation may be altered. Disorders, in which cells differentiate abnormally, as in tuberous sclerosis and hemimegalencephaly, pose another yet aspect of mixed cellular lineage. The measurement in living patients, especially neonates, of serum and CSF levels of enolases, chromogranins and S-100 proteins as biomarkers of brain damage may potentially be correlated with their corresponding tissue markers at autopsy in infants who do not survive. The neuropathological markers here described can be performed in ordinary hospital laboratories, not just research facilities, and offer another dimension of diagnostic precision in interpreting abnormally developed fetal and postnatal brains.
Collapse
|
39
|
|
40
|
Morterá P, Herculano-Houzel S. Age-related neuronal loss in the rat brain starts at the end of adolescence. Front Neuroanat 2012; 6:45. [PMID: 23112765 PMCID: PMC3481355 DOI: 10.3389/fnana.2012.00045] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/09/2012] [Indexed: 02/03/2023] Open
Abstract
Aging-related changes in the brain have been mostly studied through the comparison of young adult and very old animals. However, aging must be considered a lifelong process of cumulative changes that ultimately become evident at old age. To determine when this process of decline begins, we studied how the cellular composition of the rat brain changes from infancy to adolescence, early adulthood, and old age. Using the isotropic fractionator to determine total numbers of neuronal and non-neuronal cells in different brain areas, we find that a major increase in number of neurons occurs during adolescence, between 1 and 2-3 months of age, followed by a significant trend of widespread and progressive neuronal loss that begins as early as 3 months of age, when neuronal numbers are maximal in all structures, until decreases in numbers of neurons become evident at 12 or 22 months of age. Our findings indicate that age-related decline in the brain begins as soon as the end of adolescence, a novel finding has important clinical and social implications for public health and welfare.
Collapse
Affiliation(s)
- Priscilla Morterá
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Instituto Nacional de Neurociência Translacional São Paulo, Brazil
| | | |
Collapse
|
41
|
Burré J, Sharma M, Südhof TC. Systematic mutagenesis of α-synuclein reveals distinct sequence requirements for physiological and pathological activities. J Neurosci 2012; 32:15227-42. [PMID: 23100443 PMCID: PMC3506191 DOI: 10.1523/jneurosci.3545-12.2012] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 08/20/2012] [Accepted: 09/02/2012] [Indexed: 12/22/2022] Open
Abstract
α-Synuclein is an abundant presynaptic protein that binds to phospholipids and synaptic vesicles. Physiologically, α-synuclein functions as a SNARE-protein chaperone that promotes SNARE-complex assembly for neurotransmitter release. Pathologically, α-synuclein mutations and α-synuclein overexpression cause Parkinson's disease, and aggregates of α-synuclein are found as Lewy bodies in multiple neurodegenerative disorders ("synucleinopathies"). The relation of the physiological functions to the pathological effects of α-synuclein remains unclear. As an initial avenue of addressing this question, we here systematically examined the effect of α-synuclein mutations on its physiological and pathological activities. We generated 26 α-synuclein mutants spanning the entire molecule, and analyzed them compared with wild-type α-synuclein in seven assays that range from biochemical studies with purified α-synuclein, to analyses of α-synuclein expression in cultured neurons, to examinations of the effects of virally expressed α-synuclein introduced into the mouse substantia nigra by stereotactic injections. We found that both the N-terminal and C-terminal sequences of α-synuclein were required for its physiological function as SNARE-complex chaperone, but that these sequences were not essential for its neuropathological effects. In contrast, point mutations in the central region of α-synuclein, referred to as nonamyloid β component (residues 61-95), as well as point mutations linked to Parkinson's disease (A30P, E46K, and A53T) increased the neurotoxicity of α-synuclein but did not affect its physiological function in SNARE-complex assembly. Thus, our data show that the physiological function of α-synuclein, although protective of neurodegeneration in some contexts, is fundamentally distinct from its neuropathological effects, thereby dissociating the two activities of α-synuclein.
Collapse
Affiliation(s)
- Jacqueline Burré
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305-5453, and
| | - Manu Sharma
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305-5453, and
| | - Thomas C. Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305-5453, and
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305-5453
| |
Collapse
|
42
|
Mezey S, Krivokuca D, Bálint E, Adorján A, Zachar G, Csillag A. Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J Comp Neurol 2012; 520:100-16. [PMID: 21674497 DOI: 10.1002/cne.22696] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To understand better the rate of neurogenesis and the distribution of new neurons in posthatch domestic chicks, we describe and compare the expression of the neuronal nuclei protein (NeuN, a.k.a. Fox-3) and doublecortin antigens in the whole brain of chicks 2 days, 8 days, and 14 weeks posthatch. In the forebrain ventricular and paraventricular zones, the density of bromodeoxyuridine-, NeuN-, and doublecortin-labeled cells was compared between chicks 24 hours and 7 days after an injection of bromodeoxyuridine (2 and 8 days posthatch, respectively). The distribution of NeuN-labeled neurons was similar to Nissl-stained tissue, with the exception of some areas where neurons did not express NeuN: cerebellar Purkinje cells and olfactory bulb mitral cells. The ventral tegmental area of 2-day-old chicks was also faintly labeled. The distribution of doublecortin was similar at all timepoints, with doublecortin-labeled profiles located throughout all forebrain areas as well as in the cerebellar granule cell layer. However, doublecortin labeling was not detectable in any midbrain or brainstem areas. Our data indicate that a significant number of new neurons is still formed in the telencephalon of posthatch domestic chicks, whereas subtelencephalic areas (except for the cerebellum) finish their neuronal expansion before hatching. Most newly formed cells in chicks leave the paraventricular zone after hatching, but a pool of neurons stays in the vicinity of the ventricular zone and matures in situ within 7 days. Proliferating cells often migrate laterally along forebrain laminae into still-developing brain areas.
Collapse
Affiliation(s)
- Szilvia Mezey
- Department of Anatomy, Histology and Embryology, Semmelweis University, Tüzoltó u. 58, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
43
|
Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochem Biophys Res Commun 2012; 418:541-6. [DOI: 10.1016/j.bbrc.2012.01.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/13/2012] [Indexed: 11/20/2022]
|
44
|
Airavaara M, Harvey BK, Voutilainen MH, Shen H, Chou J, Lindholm P, Lindahl M, Tuominen RK, Saarma M, Hoffer B, Wang Y. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant 2011; 21:1213-23. [PMID: 21943517 DOI: 10.3727/096368911x600948] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) is a recently discovered protein, which belongs to the evolutionarily conserved CDNF/MANF family of neurotrophic factors. The degeneration of dopamine neurons following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment is well characterized, and efficacy in this model is considered a standard criterion for development of parkinsonian therapies. MPTP is a neurotoxin, which produces parkinsonian symptoms in humans and in C57/Bl6 mice. To date, there are no reports about the effects of CDNF on dopamine neuron survival or function in the MPTP rodent model, a critical gap. Therefore, we studied whether CDNF has neuroprotective and neurorestorative properties for the nigrostriatal dopamine system after MPTP injections in C57/Bl6 mice. We found that bilateral striatal CDNF injections, given 20 h before MPTP, improved horizontal and vertical motor behavior. CDNF pretreatment increased tyrosine hydroxylase (TH) immunoreactivity in the striatum and in the substantia nigra pars reticulata (SNpr), as well as the number of TH-positive cells in substantia nigra pars compacta (SNpc). Posttreatment with CDNF, given 1 week after MPTP injections, increased horizontal and vertical motor behavior of mice, as well as dopamine fiber densities in the striatum and the number of TH-positive cells in SNpc. CDNF did not alter any of the analyzed dopaminergic biomarkers or locomotor behavior in MPTP-untreated animals. We conclude that striatal CDNF administration is both neuroprotective and neurorestorative for the TH-positive cells in the nigrostriatal dopamine system in the MPTP model, which supports the development of CDNF-based treatment for Parkinson's disease.
Collapse
Affiliation(s)
- Mikko Airavaara
- Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chocyk A, Przyborowska A, Dudys D, Majcher I, Maćkowiak M, Wędzony K. The impact of maternal separation on the number of tyrosine hydroxylase-expressing midbrain neurons during different stages of ontogenesis. Neuroscience 2011; 182:43-61. [PMID: 21396433 DOI: 10.1016/j.neuroscience.2011.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 12/19/2022]
Abstract
Early life stressors have life-long functional and anatomical consequences. Though many neurotransmitters are involved in the functional impact of early life stress, dopamine seems to be important because of its roles in motor control, adaptation to stressful conditions, mood, cognition, attention and reward. Thus, in the present study, we investigated the way that early life stress, in the form of maternal separation (MS), affects the populations of tyrosine hydroxylase-immunoreactive (TH-IR) dopaminergic neurons in rat midbrain structures during ontogenesis. We included in the study the sub-regions of the substantia nigra (SN) and the ventral tegmental area (VTA). In both the control and MS rats, we found that the estimated total number of TH-expressing neurons fluctuated during ontogenesis. Moreover, MS influenced the number of TH-IR cells, especially in the SN pars reticulata (SNr) and VTA. Shortly after the termination of MS, on postnatal day (PND) 15, a decrease in the estimated total number of TH-IR neurons was observed in the SNr and VTA (in both males and females). On PND 35, MS caused a transient increase in the number of TH-IR cells only in the SNr of female rats. On PND 70, MS affected the number of TH-IR neurons in the VTA of females; specifically, an increase in the number of these cells was observed. Additionally, MS did not alter TH-IR cell sizes or the total levels of TH (measured by Western blot analysis) in the SN and VTA for all stages of ontogenesis in both males and females. The results from the study herein indicate that early life stress has enduring effects on the populations of midbrain TH-expressing dopaminergic neurons (especially in female rats), which are critically important for dopamine-regulated brain function throughout ontogenesis.
Collapse
Affiliation(s)
- A Chocyk
- Laboratory of Pharmacology and Brain Biostructure, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
46
|
Increased subventricular zone-derived cortical neurogenesis after ischemic lesion. Exp Neurol 2010; 226:90-9. [DOI: 10.1016/j.expneurol.2010.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 08/03/2010] [Accepted: 08/07/2010] [Indexed: 02/04/2023]
|
47
|
Number and nuclear morphology of TH+ and TH- neurons in the mouse ventral midbrain using epifluorescence stereology. Exp Neurol 2010; 225:328-40. [PMID: 20637754 DOI: 10.1016/j.expneurol.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/06/2010] [Accepted: 07/08/2010] [Indexed: 11/22/2022]
Abstract
The accurate and reliable counting of tyrosine hydroxylase positive (TH+) and tyrosine hydroxylase negative (TH-) neurons in the ventral midbrain is an important measure in studies related to Parkinson's disease and many other disorders associated with this region. Despite recent advancements, the use of stereology remains limited due to a variety of challenges for many users. We implemented a real-time fluorescence detection method and the use of an antibody to the neuron specific nuclear antigen (NeuN) to overcome some challenges for users. We found that the regional value for the two different cell types (TH+ and TH-) varied with the method of detection (chromogenic versus fluorescence) and with different nuclear markers (Nissl, DAPI, or NeuN). The number of both TH+ and TH- neurons was higher using fluorescence detection. The number of TH- neurons was higher using NeuN as a neuronal nuclear marker compared to DAPI. We identified 3 types of neuronal nuclei using NeuN staining characteristics. The method is applicable for mouse and rat. We describe a practical approach for epifluorescence-based counting of these two types of neurons that may offer significant advantages over existing methods for potential users.
Collapse
|