1
|
Yin P, Su Z, Shu X, Dong Z, Tian Y. Role of TREM2 in immune and neurological diseases: Structure, function, and implications. Int Immunopharmacol 2024; 143:113286. [PMID: 39378652 DOI: 10.1016/j.intimp.2024.113286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Triggering Receptor Expressed on Myeloid Cells 2 (TREM2), a transmembrane receptor initially linked to neurodegenerative diseases, has recently emerged as a key player in conditions such as obesity and cancer. This review explores the structure, function, and mechanisms of TREM2 across these diverse pathological contexts, with a particular focus on its critical roles in immune regulation and neuroprotection. TREM2 primarily modulates cellular activity by binding extracellular ligands, thereby activating downstream signaling pathways and exerting immunomodulatory effects. Additionally, the therapeutic potential of targeting TREM2 is discussed, emphasizing its promise as a future treatment strategy for various diseases.
Collapse
Affiliation(s)
- Peng Yin
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoliang Su
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiaozheng Shu
- BioRegen Biomedical (Changzhou, Jiangsu) Co., Ltd, Changzhou, Jiangsu 213125, China
| | - Zhifeng Dong
- Department of Cardiovascular Medicine, Yancheng Third People's Hospital, 224000, China.
| | - Yu Tian
- International Genome Center, Jiangsu University, Zhenjiang 212013, China; School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Samal M, Srivastava V, Khan M, Insaf A, Penumallu NR, Alam A, Parveen B, Ansari SH, Ahmad S. Therapeutic Potential of Polyphenols in Cellular Reversal of Patho-Mechanisms of Alzheimer's Disease Using In Vitro and In Vivo Models: A Comprehensive Review. Phytother Res 2024. [PMID: 39496498 DOI: 10.1002/ptr.8344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 11/06/2024]
Abstract
Alzheimer's disease (AD) is considered one of the most common neurological conditions associated with memory and cognitive impairment and mainly affects people aged 65 or above. Even with tremendous progress in modern neuroscience, a permanent remedy or cure for this crippling disease is still unattainable. Polyphenols are a group of naturally occurring potent compounds that can modulate the neurodegenerative processes typical of AD. The present comprehensive study has been conducted to find out the preclinical and clinical potential of polyphenols and elucidate their possible mechanisms in managing AD. Additionally, we have reviewed different clinical studies investigating polyphenols as single compounds or cotherapies, including those currently recruiting, completed, terminated, withdrawn, or suspended in AD treatment. Natural polyphenols were systematically screened and identified through electronic databases including Google Scholar, PubMed, and Scopus based on in vitro cell line studies and preclinical data demonstrating their potential for neuroprotection. A total of 63 significant polyphenols were identified. A multimechanistic pathway for polyphenol's mode of action has been proposed in the study. Out of 63, four potent polyphenols have been identified as promising potential candidates, based on their reported clinical efficacy. Polyphenols hold tremendous scope for the development of a future drug molecule as a phytopharmaceutical that may be incorporated as an adjuvant to the therapeutic regime. However, more high-quality studies with novel delivery methods and combinatorial approaches are required to overcome obstacles such as bioavailability and blood-brain barrier crossing to underscore the therapeutic potential of these compounds in AD management.
Collapse
Affiliation(s)
- Monalisha Samal
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Varsha Srivastava
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Muzayyana Khan
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Areeba Insaf
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Aftab Alam
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Bushra Parveen
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shahid Hussain Ansari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine, Bioactive Natural Product Laboratory, Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
3
|
Cui X, Zheng Z, Rahman MU, Hong X, Ji X, Li Z, Chen HF. Drude2019IDPC polarizable force field reveals structure-function relationship of insulin. Int J Biol Macromol 2024; 280:136256. [PMID: 39366599 DOI: 10.1016/j.ijbiomac.2024.136256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Intrinsically disordered proteins (IDPs) lack stable tertiary structures under physiological conditions, yet play key roles in biological processes and associated with human complex diseases. Their conformational characteristics and high content of charged residues make the use of polarizable force fields an advantageous for simulating IDPs. The Drude2019IDP polarizable force field, previously introduced, has demonstrated comprehensive enhancements and improvements in dipeptides, short peptides, and IDPs, achieving a balanced sampling between IDPs and structured proteins. However, the performance in simulating 5 dipeptides was found to be underestimate. Therefore, we individually performed reweighting and grid-based energy correction map (CMAP) optimization for these 5 dipeptides, resulting in the enhanced Drude2019IDPC force field. The performance of Drude2019IDPC was evaluated with 5 dipeptides, 5 disordered short peptides, and a representative IDP. The results demonstrated a marked improvement comparing with original Drude2019IDP. To further substantiate the capabilities of Drude2019IDPC, MD simulation and Markov state model (MSM) were applied to wild type and mutant for insulin, to elucidate the difference of conformational characteristics and transition path. The findings reveal that mutation can maintain the monomorphic characteristics, providing insights for engineered insulin development. These results indicate that Drude2019IDPC could be used to reveal the structure-function relationship for other proteins.
Collapse
Affiliation(s)
- Xiaochen Cui
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhuoqi Zheng
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mueed Ur Rahman
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaokun Hong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Xiaoyue Ji
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhengxin Li
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
4
|
Joshi N, Vaidya B, Sharma SS. Transient receptor potential channels as an emerging target for the treatment of Alzheimer's disease: Unravelling the potential of pharmacological interventions. Basic Clin Pharmacol Toxicol 2024; 135:375-400. [PMID: 39209323 DOI: 10.1111/bcpt.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/09/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a devastating disorder with a multifaceted aetiology characterized by dementia, which later progresses to cognitive impairment. Significant efforts have been made to develop pharmacological interventions that slow down the pathogenesis of AD. However, conventional drugs have failed to satisfactorily treat AD and are more focussed towards symptomatic management. Thus, there is a gap in the literature regarding novel targets and modulators targeting them for the effective treatment of AD. Recent studies have demonstrated that modulation of transient receptor potential (TRP) channels has the potential to halt AD pathogenesis at an early stage and rescue hippocampal neurons from death. Amongst several members, TRP channels like TRPA1, TRPC6, TRPM2 and TRPV2 have shown promising results in the attenuation of neurobehavioural cognitive deficits as well as signalling pathways governing such cognitive decline. Furthermore, as these channels govern the ionic balance in the cell, their beneficial effects have also been known to maintain the homeostasis of Ca2+, which is the major culprit eliciting the vicious cycle of excitotoxicity, mitochondrial dysfunction, ROS generation and neurodegeneration. Despite such tremendous potential of TRP channel modulators, their clinical investigation remains elusive. Therefore, in the present review, we have discussed such agents in the light of TRP channels as molecular targets for the amelioration of AD both at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Nishit Joshi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Bhupesh Vaidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| | - Shyam Sunder Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Mohali, India
| |
Collapse
|
5
|
Navabi SM, Elieh-Ali-Komi D, Afshari D, Goudarzi F, Mohammadi-Noori E, Heydari K, Heydarpour F, Kiani A. Adjunctive silymarin supplementation and its effects on disease severity, oxidative stress, and inflammation in patients with Alzheimer's disease. Nutr Neurosci 2024; 27:1077-1087. [PMID: 38353101 DOI: 10.1080/1028415x.2023.2301163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND Brain tissue in Alzheimer's patients is exposed to oxidative stress. Silymarin is an adjunct drug that has anti-inflammatory and antioxidant properties. OBJECTIVE This study aimed to evaluate the effect of silymarin on biomarkers of oxidative stress, inflammation, and disease severity in Alzheimer's patients. METHODS This randomized, single-blind clinical trial study was performed on 33 patients with Alzheimer's disease (AD) whose disease was confirmed by DSM-5 criteria and by brain imaging. Patients in the case group received three 250 mg silymarin capsules daily (each containing 150 mg silymarin), as an adjunctive medication in addition to the routine medication regimen. In the placebo group (control), patients received the same amount of placebo. All patients underwent Mini Mental State Exam (MMSE) and a panel of blood tests including malondialdehyde, neopterin, catalase, paraoxonase-1, total oxidative status, and total antioxidant capacity to reevaluate the changes pre/postintervention at the end of the trimester. RESULTS The catalase and MDA serum levels after the adjunctive silymarin treatment decreased significantly (Catalasebefore silymarin = 9.29 ± 7.02 vs Catalaseafter silymarin = 5.32 ± 2.97, p = 0.007 and MDAbefore silymarin = 4.29 ± 1.90 vs MDAafter silymarin = 1.66 ± 0.84, p < 0.001) while MMSE increased notably (MMSEbefore silymarin = 10.39 ± 6.42 vs MMSEafter silymarin = 13.37 ± 6.81, p < 0.001). CONCLUSION Silymarin can be effective as an adjunct drug and a powerful antioxidant in reducing oxidative stress and improving the course of AD.
Collapse
Affiliation(s)
- Seyed Mohammad Navabi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Allergology and Immunology, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Berlin, Germany
| | - Daryoush Afshari
- Department of Neurology, College of Medicine, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Mohammadi-Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiana Heydari
- Department of Clinical Pharmacy, Faculty of Pharmacy, Islamic, Azad, University of Tehran, Tehran, Iran
| | - Fatemeh Heydarpour
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Arendt P, Römpler K, Brix B, Borchardt-Lohölter V, Busse M, Busse S. Differentiation of Alzheimer's disease from other neurodegenerative disorders using chemiluminescence immunoassays measuring cerebrospinal fluid biomarkers. FRONTIERS IN DEMENTIA 2024; 3:1455619. [PMID: 39410947 PMCID: PMC11473414 DOI: 10.3389/frdem.2024.1455619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Introduction Prior research identified four neurochemical cerebrospinal fluid (CSF) biomarkers, Aβ1-42, Aβ1-40, tTau, and pTau(181), as core diagnostic markers for Alzheimer's disease (AD). Determination of AD biomarkers using immunoassays can support differential diagnosis of AD vs. several neuropsychiatric disorders, which is important because the respective treatment regimens differ. Results of biomarker determination can be classified according to the Amyloid/Tau/Neurodegeneration (ATN) system into profiles. Less is known about the clinical performance of chemiluminescence immunoassays (ChLIA) measuring specific biomarkers in CSF samples from patients suffering from neuropsychiatric impairments with various underlying causes. Methods Chemiluminescence immunoassays (ChLIAs, EUROIMMUN) were used to determine Beta-Amyloid (1-40), Beta-Amyloid (1-42), Total-Tau, and pTau(181) concentrations in precharacterized cerebrospinal fluid (CSF) samples from 219 AD patients, 74 patients with mild cognitive impairment (MCI), and 220 disease control (DC) patients. Results 83.0% of AD patients had ATN profiles consistent with AD, whereas 85.5% of DC patients and 77.0% of MCI patients had profiles inconsistent with AD. AD patients showed significantly lower amyloid ratio Aβ1-42/Aβ1-40 (mean: 0.07) and significantly higher concentrations of tTau (mean: 901.6 pg/ml) and pTau(181) (mean: 129 pg/ml) compared to DC and MCI patients (all p values < 0.0071). Discussion The ChLIAs effectively determined specific biomarkers and can support differential diagnostics of AD. Their quality was demonstrated in samples from 513 patients with cognitive impairments, representing a realistic mix of underlying causes for seeking treatment at a memory clinic.
Collapse
Affiliation(s)
- Philipp Arendt
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Katharina Römpler
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Britta Brix
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Viola Borchardt-Lohölter
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Lübeck, Germany
| | - Mandy Busse
- Department for Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke-University of Magdeburg, Magdeburg, Germany
| | - Stefan Busse
- Department of Psychiatry and Psychotherapy, Medical Faculty University Hospital Magdeburg, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
7
|
El-Ghazawi K, Eyo UB, Peirce SM. Brain Microvascular Pericyte Pathology Linking Alzheimer's Disease to Diabetes. Microcirculation 2024; 31:e12877. [PMID: 39222475 PMCID: PMC11471384 DOI: 10.1111/micc.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 09/04/2024]
Abstract
The brain microvasculature, which delivers oxygen and nutrients and forms a critical barrier protecting the central nervous system via capillaries, is deleteriously affected by both Alzheimer's disease (AD) and type 2 diabetes (T2D). T2D patients have an increased risk of developing AD, suggesting potentially related microvascular pathological mechanisms. Pericytes are an ideal cell type to study for functional links between AD and T2D. These specialized capillary-enwrapping cells regulate capillary density, lumen diameter, and blood flow. Pericytes also maintain endothelial tight junctions to ensure blood-brain barrier integrity, modulation of immune cell extravasation, and clearance of toxins. Changes in these phenomena have been observed in both AD and T2D, implicating "pericyte pathology" as a common feature of AD and T2D. This review examines the mechanisms of AD and T2D from the perspective of the brain microvasculature, highlighting how pericyte pathology contributes to both diseases. Our review identifies voids in understanding how AD and T2D negatively impact the brain microvasculature and suggests future studies to examine the intersections of these diseases.
Collapse
Affiliation(s)
- Kareem El-Ghazawi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B. Eyo
- Department of Neuroscience, University of Virginia Center for Brain Immunology and Glia School of Medicine, Charlottesville, VA, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
8
|
Kolobova E, Petrushanko I, Mitkevich V, Makarov AA, Grigorova IL. β-Amyloids and Immune Responses Associated with Alzheimer's Disease. Cells 2024; 13:1624. [PMID: 39404388 PMCID: PMC11475064 DOI: 10.3390/cells13191624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
Alzheimer's disease (AD) is associated with the accumulation of β-amyloids (Aβs) and the formation of Aβ plaques in the brain. Various structural forms and isoforms of Aβs that have variable propensities for oligomerization and toxicity and may differentially affect the development of AD have been identified. In addition, there is evidence that β-amyloids are engaged in complex interactions with the innate and adaptive immune systems, both of which may also play a role in the regulation of AD onset and progression. In this review, we discuss what is currently known about the intricate interplay between β-amyloids and the immune response to Aβs with a more in-depth focus on the possible roles of B cells in the pathogenesis of AD.
Collapse
Affiliation(s)
- Elizaveta Kolobova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| | - Irina Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Vladimir Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Alexander A Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
| | - Irina L Grigorova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (E.K.); (I.P.); (V.M.); (A.A.M.)
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117513 Moscow, Russia
| |
Collapse
|
9
|
Panizza E, Cerione RA. An interpretable deep learning framework identifies proteomic drivers of Alzheimer's disease. Front Cell Dev Biol 2024; 12:1379984. [PMID: 39355118 PMCID: PMC11442384 DOI: 10.3389/fcell.2024.1379984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/22/2024] [Indexed: 10/03/2024] Open
Abstract
Alzheimer's disease (AD) is the leading neurodegenerative pathology in aged individuals, but many questions remain on its pathogenesis, and a cure is still not available. Recent research efforts have generated measurements of multiple omics in individuals that were healthy or diagnosed with AD. Although machine learning approaches are well-suited to handle the complexity of omics data, the models typically lack interpretability. Additionally, while the genetic landscape of AD is somewhat more established, the proteomic landscape of the diseased brain is less well-understood. Here, we establish a deep learning method that takes advantage of an ensemble of autoencoders (AEs) - EnsembleOmicsAE-to reduce the complexity of proteomics data into a reduced space containing a small number of latent features. We combine brain proteomic data from 559 individuals across three AD cohorts and demonstrate that the ensemble autoencoder models generate stable latent features which are well-suited for downstream biological interpretation. We present an algorithm to calculate feature importance scores based on the iterative scrambling of individual input features (i.e., proteins) and show that the algorithm identifies signaling modules (AE signaling modules) that are significantly enriched in protein-protein interactions. The molecular drivers of AD identified within the AE signaling modules derived with EnsembleOmicsAE were missed by linear methods, including integrin signaling and cell adhesion. Finally, we characterize the relationship between the AE signaling modules and the age of death of the patients and identify a differential regulation of vimentin and MAPK signaling in younger compared with older AD patients.
Collapse
Affiliation(s)
- Elena Panizza
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
| | - Richard A. Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY, United States
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
10
|
Qiang RR, Xiang Y, Zhang L, Bai XY, Zhang D, Li YJ, Yang YL, Liu XL. Ferroptosis: A new strategy for targeting Alzheimer's disease. Neurochem Int 2024; 178:105773. [PMID: 38789042 DOI: 10.1016/j.neuint.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a complex pathogenesis, which involves the formation of amyloid plaques and neurofibrillary tangles. Many recent studies have revealed a close association between ferroptosis and the pathogenesis of AD. Factors such as ferroptosis-associated iron overload, lipid peroxidation, disturbances in redox homeostasis, and accumulation of reactive oxygen species have been found to contribute to the pathological progression of AD. In this review, we explore the mechanisms underlying ferroptosis, describe the link between ferroptosis and AD, and examine the reported efficacy of ferroptosis inhibitors in treating AD. Finally, we discuss the potential challenges to ferroptosis inhibitors use in the clinic, enabling their faster use in clinical treatment.
Collapse
Affiliation(s)
| | - Yang Xiang
- College of Physical Education, Yan'an University, Shaanxi, 716000, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Die Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Jing Li
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, China.
| |
Collapse
|
11
|
Thapa R, Ahmad Bhat A, Shahwan M, Ali H, PadmaPriya G, Bansal P, Rajotiya S, Barwal A, Siva Prasad GV, Pramanik A, Khan A, Hing Goh B, Dureja H, Kumar Singh S, Dua K, Gupta G. Proteostasis disruption and senescence in Alzheimer's disease pathways to neurodegeneration. Brain Res 2024; 1845:149202. [PMID: 39216694 DOI: 10.1016/j.brainres.2024.149202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/29/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Alzheimer's Disease (AD) is a progressive neurological disease associated with behavioral abnormalities, memory loss, and cognitive impairment that cause major causes of dementia in the elderly. The pathogenetic processes cause complex effects on brain function and AD progression. The proper protein homeostasis, or proteostasis, is critical for cell health. AD causes the buildup of misfolded proteins, particularly tau and amyloid-beta, to break down proteostasis, such aggregates are toxic to neurons and play a critical role in AD pathogenesis. The rise of cellular senescence is accompanied by aging, marked by irreversible cell cycle arrest and the release of pro-inflammatory proteins. Senescent cell build-up in the brains of AD patients exacerbates neuroinflammation and neuronal degeneration. These cells senescence-associated secretory phenotype (SASP) also disturbs the brain environment. When proteostasis failure and cellular senescence coalesce, a cycle is generated that compounds each other. While senescent cells contribute to proteostasis breakdown through inflammatory and degradative processes, misfolded proteins induce cellular stress and senescence. The principal aspects of the neurodegenerative processes in AD are the interaction of cellular senescence and proteostasis failure. This review explores the interconnected roles of proteostasis disruption and cellular senescence in the pathways leading to neurodegeneration in AD.
Collapse
Affiliation(s)
- Riya Thapa
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Asif Ahmad Bhat
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - G PadmaPriya
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Pooja Bansal
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | - Sumit Rajotiya
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Amit Barwal
- Chandigarh Pharmacy College, Chandigarh Group of College, Jhanjeri, Mohali - 140307, Punjab, India
| | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh-531162, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia; Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, UAE; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
12
|
Römpler K, Arendt P, Brix B, Borchardt-Lohölter V, Schulz A, Busse M, Busse S. Evaluation of the EUROIMMUN automated chemiluminescence immunoassays for measurement of four core biomarkers for Alzheimer's disease in cerebrospinal fluid. Pract Lab Med 2024; 41:e00425. [PMID: 39314784 PMCID: PMC11417521 DOI: 10.1016/j.plabm.2024.e00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Robust immunoassays for quantification of Alzheimer's disease (AD)-specific biomarkers are required for routine diagnostics. We report analytical performance characteristics of four new chemiluminescence immunoassays (ChLIA, EUROIMMUN) running on closed, fully automated random-access instruments for quantification of Aβ1-40, Aβ1-42, tTau, and pTau(181) in human cerebrospinal fluid (CSF). Methods ChLIAs were validated according to the guidelines of the Clinical and Laboratory Standards Institute (CLSI). Optimal cut-offs for biomarkers and biomarker ratios were determined using samples from 219 AD patients and 220 patients with AD-related symptoms. For performance comparison, biomarker concentrations were measured in 110 diagnostic leftover samples using the ChLIAs and established Lumipulse G assays (Fujirebio). Results All ChLIAs met CLSI criteria. Overall agreement between assays was 89.0%-97.3 % with highly correlating results (Pearson's correlation coefficients: 0.82-0.99). Passing-Bablok regression analysis revealed systematic differences. Discussion EUROIMMUN ChLIAs showed good analytical performances and represent new valuable tools for diagnostics of AD.
Collapse
Affiliation(s)
- Katharina Römpler
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Philipp Arendt
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Britta Brix
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Viola Borchardt-Lohölter
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Anette Schulz
- Institute for Experimental Immunology, Affiliated to EUROIMMUN Medizinische Labordiagnostika AG, Seekamp 31, 23560, Luebeck, Germany
| | - Mandy Busse
- Department for Experimental Obstetrics and Gynecology, Otto von Guericke University Magdeburg, Medical Faculty, Gerhart-Hauptmann-Str. 35, 39180, Magdeburg, Germany
- University Hospital for Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Stefan Busse
- University Hospital for Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| |
Collapse
|
13
|
Krawczuk D, Kulczyńska-Przybik A, Mroczko B. Clinical Application of Blood Biomarkers in Neurodegenerative Diseases-Present and Future Perspectives. Int J Mol Sci 2024; 25:8132. [PMID: 39125699 PMCID: PMC11311320 DOI: 10.3390/ijms25158132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
14
|
Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci 2024; 16:1402774. [PMID: 39086755 PMCID: PMC11288848 DOI: 10.3389/fnagi.2024.1402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and the most prevalent form of dementia. The main hallmarks for the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of highly hyperphosphorylated Tau protein as neurofibrillary tangles. The brain consumes more oxygen than any other organs, so it is more easily to be affected by hypoxia. Hypoxia has long been recognized as one of the possible causes of AD and other neurodegenerative diseases, but the exact mechanism has not been clarified. In this review, we will elucidate the connection between hypoxia-inducible factors-1α and AD, including its contribution to AD and its possible protective effects. Additionally, we will discuss the relationship between oxidative stress and AD as evidence show that oxidative stress acts on AD-related pathogenic factors such as mitochondrial dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD. Given the close association between hypoxia, oxidative stress, and AD, along with current research on the protective effects of antioxidants against AD, we speculate that antioxidants could be a potential therapeutic approach for AD and worth further study.
Collapse
Affiliation(s)
- Borui Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhihui Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
16
|
Bonanni R, Cariati I, Cifelli P, Frank C, Annino G, Tancredi V, D'Arcangelo G. Exercise to Counteract Alzheimer's Disease: What Do Fluid Biomarkers Say? Int J Mol Sci 2024; 25:6951. [PMID: 39000060 PMCID: PMC11241657 DOI: 10.3390/ijms25136951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases (NDs) represent an unsolved problem to date with an ever-increasing population incidence. Particularly, Alzheimer's disease (AD) is the most widespread ND characterized by an accumulation of amyloid aggregates of beta-amyloid (Aβ) and Tau proteins that lead to neuronal death and subsequent cognitive decline. Although neuroimaging techniques are needed to diagnose AD, the investigation of biomarkers within body fluids could provide important information on neurodegeneration. Indeed, as there is no definitive solution for AD, the monitoring of these biomarkers is of strategic importance as they are useful for both diagnosing AD and assessing the progression of the neurodegenerative state. In this context, exercise is known to be an effective non-pharmacological management strategy for AD that can counteract cognitive decline and neurodegeneration. However, investigation of the concentration of fluid biomarkers in AD patients undergoing exercise protocols has led to unclear and often conflicting results, suggesting the need to clarify the role of exercise in modulating fluid biomarkers in AD. Therefore, this critical literature review aims to gather evidence on the main fluid biomarkers of AD and the modulatory effects of exercise to clarify the efficacy and usefulness of this non-pharmacological strategy in counteracting neurodegeneration in AD.
Collapse
Affiliation(s)
- Roberto Bonanni
- Department of Biomedicine and Prevention, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Ida Cariati
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Pierangelo Cifelli
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Claudio Frank
- UniCamillus-Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| | - Giuseppe Annino
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Sports Engineering Laboratory, Department of Industrial Engineering, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| | - Giovanna D'Arcangelo
- Department of Systems Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
- Centre of Space Bio-Medicine, "Tor Vergata" University of Rome, 00133 Rome, Italy
| |
Collapse
|
17
|
Mei SY, Zhang N, Wang MJ, Lv PR, Liu Q. Microglial purinergic signaling in Alzheimer's disease. Purinergic Signal 2024:10.1007/s11302-024-10029-8. [PMID: 38910192 DOI: 10.1007/s11302-024-10029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and fatal neurodegenerative disease. The prevalent features of AD pathogenesis are the appearance of β-amyloid (Aβ) plaques and neurofibrillary tangles, which cause microglial activation, synaptic deficiency, and neuronal loss. Microglia accompanies AD pathological processes and is also linked to cognitive deficits. Purinergic signaling has been shown to play a complex and tight interplay with the chemotaxis, phagocytosis, and production of pro-inflammatory factors in microglia, which is an important mechanism for regulating microglia activation. Here, we review recent evidence for interactions between AD, microglia, and purinergic signaling and find that the purinergic P2 receptors pertinently expressed on microglia are the ionotropic receptors P2X4 and P2X7, and the subtypes of P2YRs expressed by microglia are metabotropic receptors P2Y2, P2Y6, P2Y12, and P2Y13. The adenosine P1 receptors expressed in microglia include A1R, A2AR, and A2BR. Among them, the activation of P2X4, P2X7, and adenosine A1, A2A receptors expressed in microglia can aggravate the pathological process of AD, whereas P2Y2, P2Y6, P2Y12, and P2Y13 receptors expressed by microglia can induce neuroprotective effects. However, A1R activation also has a strong neuroprotective effect and has a significant anti-inflammatory effect in chronic neuroinflammation. These receptors regulate a variety of pathophysiological processes in AD, including APP processing, Aβ production, tau phosphorylation, neuroinflammation, synaptic dysfunction, and mitochondrial dysfunction. This review also provides key pharmacological advances in purinergic signaling receptors.
Collapse
Affiliation(s)
- Shu-Ya Mei
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Ning Zhang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Meng-Jing Wang
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China
| | - Pei-Ran Lv
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| | - Qi Liu
- School of Acupuncture and Tuina, Shaanxi University of Traditional Chinese Medicine, No. 1 Middle Section of Shi-Ji Avenue, Xianyang, Shaanxi, 712046, People's Republic of China.
| |
Collapse
|
18
|
Yang J, Zhi W, Wang L. Role of Tau Protein in Neurodegenerative Diseases and Development of Its Targeted Drugs: A Literature Review. Molecules 2024; 29:2812. [PMID: 38930877 PMCID: PMC11206543 DOI: 10.3390/molecules29122812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Tau protein is a microtubule-associated protein that is widely distributed in the central nervous system and maintains and regulates neuronal morphology and function. Tau protein aggregates abnormally and forms neurofibrillary tangles in neurodegenerative diseases, disrupting the structure and function of neurons and leading to neuronal death, which triggers the initiation and progression of neurological disorders. The aggregation of tau protein in neurodegenerative diseases is associated with post-translational modifications, which may affect the hydrophilicity, spatial conformation, and stability of tau protein, promoting tau protein aggregation and the formation of neurofibrillary tangles. Therefore, studying the role of tau protein in neurodegenerative diseases and the mechanism of aberrant aggregation is important for understanding the mechanism of neurodegenerative diseases and finding therapeutic approaches. This review describes the possible mechanisms by which tau protein promotes neurodegenerative diseases, the post-translational modifications of tau protein and associated influencing factors, and the current status of drug discovery and development related to tau protein, which may contribute to the development of new therapeutic approaches to alleviate or treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiakai Yang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| | - Lifeng Wang
- Graduate Collaborative Training Base of Academy of Military Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China;
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China
| |
Collapse
|
19
|
Yang Y, Qiu L. Research Progress on the Pathogenesis, Diagnosis, and Drug Therapy of Alzheimer's Disease. Brain Sci 2024; 14:590. [PMID: 38928590 PMCID: PMC11201671 DOI: 10.3390/brainsci14060590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
As the population ages worldwide, Alzheimer's disease (AD), the most prevalent kind of neurodegenerative disorder among older people, has become a significant factor affecting quality of life, public health, and economies. However, the exact pathogenesis of Alzheimer's remains elusive, and existing highly recognized pathogenesis includes the amyloid cascade hypothesis, Tau neurofibrillary tangles hypothesis, and neuroinflammation hypothesis. The major diagnoses of Alzheimer's disease include neuroimaging positron emission computed tomography, magnetic resonance imaging, and cerebrospinal fluid molecular diagnosis. The therapy of Alzheimer's disease primarily relies on drugs, and the approved drugs on the market include acetylcholinesterase drugs, glutamate receptor antagonists, and amyloid-β monoclonal antibodies. Still, the existing drugs can only alleviate the symptoms of the disease and cannot completely reverse it. This review aims to summarize existing research results on Alzheimer's disease pathogenesis, diagnosis, and drug therapy, with the objective of facilitating future research in this area.
Collapse
Affiliation(s)
- Yixuan Yang
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
| | - Lina Qiu
- College of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
20
|
Bhatt IS, Garay JAR, Bhagavan SG, Ingalls V, Dias R, Torkamani A. A genome-wide association study reveals a polygenic architecture of speech-in-noise deficits in individuals with self-reported normal hearing. Sci Rep 2024; 14:13089. [PMID: 38849415 PMCID: PMC11161523 DOI: 10.1038/s41598-024-63972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Speech-in-noise (SIN) perception is a primary complaint of individuals with audiometric hearing loss. SIN performance varies drastically, even among individuals with normal hearing. The present genome-wide association study (GWAS) investigated the genetic basis of SIN deficits in individuals with self-reported normal hearing in quiet situations. GWAS was performed on 279,911 individuals from the UB Biobank cohort, with 58,847 reporting SIN deficits despite reporting normal hearing in quiet. GWAS identified 996 single nucleotide polymorphisms (SNPs), achieving significance (p < 5*10-8) across four genomic loci. 720 SNPs across 21 loci achieved suggestive significance (p < 10-6). GWAS signals were enriched in brain tissues, such as the anterior cingulate cortex, dorsolateral prefrontal cortex, entorhinal cortex, frontal cortex, hippocampus, and inferior temporal cortex. Cochlear cell types revealed no significant association with SIN deficits. SIN deficits were associated with various health traits, including neuropsychiatric, sensory, cognitive, metabolic, cardiovascular, and inflammatory conditions. A replication analysis was conducted on 242 healthy young adults. Self-reported speech perception, hearing thresholds (0.25-16 kHz), and distortion product otoacoustic emissions (1-16 kHz) were utilized for the replication analysis. 73 SNPs were replicated with a self-reported speech perception measure. 211 SNPs were replicated with at least one and 66 with at least two audiological measures. 12 SNPs near or within MAPT, GRM3, and HLA-DQA1 were replicated for all audiological measures. The present study highlighted a polygenic architecture underlying SIN deficits in individuals with self-reported normal hearing.
Collapse
Affiliation(s)
- Ishan Sunilkumar Bhatt
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA.
| | - Juan Antonio Raygoza Garay
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, 52242, USA
| | - Srividya Grama Bhagavan
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Valerie Ingalls
- Department of Communication Sciences and Disorders, University of Iowa, 250 Hawkins Dr, Iowa City, IA, 52242, USA
| | - Raquel Dias
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32608, USA
| | - Ali Torkamani
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
21
|
Ma BQ, Jia JX, Wang H, Li SJ, Yang ZJ, Wang XX, Yan XS. Cannabidiol improves the cognitive function of SAMP8 AD model mice involving the microbiota-gut-brain axis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:471-479. [PMID: 38590254 DOI: 10.1080/15287394.2024.2338914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cannabidiol (CBD), a natural component extracted from Cannabis sativa L. exerts neuroprotective, antioxidant, and anti-inflammatory effects in Alzheimer's disease (AD), a disease characterized by impaired cognition and accumulation of amyloid-B peptides (Aβ). Interactions between the gut and central nervous system (microbiota-gut-brain axis) play a critical role in the pathogenesis of neurodegenerative disorder AD. At present investigations into the mechanisms underlying the neuroprotective action of CBD in AD are not conclusive. The aim of this study was thus to examine the influence of CBD on cognition and involvement of the microbiota-gut-brain axis using a senescence-accelerated mouse prone 8 (SAMP8) model. Data demonstrated that administration of CBD to SAMP8 mice improved cognitive function as evidenced from the Morris water maze test and increased hippocampal activated microglia shift from M1 to M2. In addition, CBD elevated levels of Bacteriodetes associated with a fall in Firmicutes providing morphologically a protective intestinal barrier which subsequently reduced leakage of intestinal toxic metabolites. Further, CBD was found to reduce the levels of hippocampal and colon epithelial cells lipopolysaccharide (LPS), known to be increased in AD leading to impaired gastrointestinal motility, thereby promoting neuroinflammation and subsequent neuronal death. Our findings demonstrated that CBD may be considered a beneficial therapeutic drug to counteract AD-mediated cognitive impairment and restore gut microbial functions associated with the observed neuroprotective mechanisms.
Collapse
Affiliation(s)
- Bing-Qian Ma
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
| | - Jian-Xin Jia
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| | - Si-Jia Li
- Teaching and Research Department of Golden Chamber, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Zhan-Jun Yang
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
- Department of Human Anatomy, Chifeng University, Inner Mongolia, China
| | - Xin-Xin Wang
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Teaching and Research Department of Golden Chamber, Liaoning University of Traditional Chinese Medicine, Liaoning, China
| | - Xu-Sheng Yan
- Basic Medical and Forensic Medicine, Baotou Medical College, Inner Mongolia, China
- Key Laboratory of Human Anatomy, Education Department of Inner Mongolia Autonomous Region, Inner Mongolia, China
| |
Collapse
|
22
|
Alexandre-Silva V, Cominetti MR. Unraveling the dual role of ADAM10: Bridging the gap between cancer and Alzheimer's disease. Mech Ageing Dev 2024; 219:111928. [PMID: 38513842 DOI: 10.1016/j.mad.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/07/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
An inverse association between Alzheimer's disease (AD) and cancer has been proposed. Patients with a cancer history have a decreased risk of developing AD, and AD patients have a reduced cancer incidence, which is not seen in vascular dementia patients. Given this association, common molecular and biological mechanisms that could explain this inverse relationship have been proposed before, such as Peptidylprolyl Cis/Trans Isomerase, NIMA-Interacting 1 (Pin1), Wingless and Int-1 (Wnt), and transformation-related protein 53 (p53)-mediated pathways, along with inflammation and oxidative stress-related proteins. A Disintegrin And Metalloprotease 10 (ADAM10) is a protease responsible for the cleavage of key AD- and cancer-related substrates, and it has inverse roles in those diseases: neuroprotective and disease-promoting, respectively. Thus, herein, we review the relevant literature linking AD and cancer and propose how ADAM10 activity might modulate the inverse association between the diseases. Understanding how this protease mediates those two conditions might raise some considerations in the ADAM10 pharmacological modulation for treating AD and cancer.
Collapse
|
23
|
Pagotto GLDO, dos Santos LMO, Osman N, Lamas CB, Laurindo LF, Pomini KT, Guissoni LM, de Lima EP, Goulart RDA, Catharin VMCS, Direito R, Tanaka M, Barbalho SM. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer's Dementia: Clinical Trial Systematic Review. Antioxidants (Basel) 2024; 13:651. [PMID: 38929090 PMCID: PMC11201198 DOI: 10.3390/antiox13060651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Alzheimer's disease (AD) is a stealthy and progressive neurological disorder that is a leading cause of dementia in the global elderly population, imposing a significant burden on both the elderly and society. Currently, the condition is treated with medications that alleviate symptoms. Nonetheless, these drugs may not consistently produce the desired results and can cause serious side effects. Hence, there is a vigorous pursuit of alternative options to enhance the quality of life for patients. Ginkgo biloba (GB), an herb with historical use in traditional medicine, contains bioactive compounds such as terpenoids (Ginkgolides A, B, and C), polyphenols, organic acids, and flavonoids (quercetin, kaempferol, and isorhamnetin). These compounds are associated with anti-inflammatory, antioxidant, and neuroprotective properties, making them valuable for cognitive health. A systematic search across three databases using specific keywords-GB in AD and dementia-yielded 1702 documents, leading to the selection of 15 clinical trials for synthesis. In eleven studies, GB extract/EGb 761® was shown to improve cognitive function, neuropsychiatric symptoms, and functional abilities in both dementia types. In four studies, however, there were no significant differences between the GB-treated and placebo groups. Significant improvements were observed in scores obtained from the Mini-Mental State Examination (MMSE), Short Cognitive Performance Test (SKT), and Neuropsychiatric Inventory (NPI). While the majority of synthesized clinical trials show that Ginkgo biloba has promising potential for the treatment of these conditions, more research is needed to determine optimal dosages, effective delivery methods, and appropriate pharmaceutical formulations. Furthermore, a thorough assessment of adverse effects, exploration of long-term use implications, and investigation into potential drug interactions are critical aspects that must be carefully evaluated in future studies.
Collapse
Affiliation(s)
- Guilherme Lopes de Oliveira Pagotto
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Livia Maria Oliveira dos Santos
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Najwa Osman
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, Universidade Federal de São Carlos, UFSCar, São Carlos 13565-905, SP, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil
| | - Karina Torres Pomini
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Leila M. Guissoni
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Virginia M. C. Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical & Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
- Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília 17525-902, SP, Brazil; (G.L.d.O.P.); (L.M.O.d.S.); (N.O.); (L.F.L.); (K.T.P.); (L.M.G.); (E.P.d.L.); (V.M.C.S.C.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Marília 17525-902, SP, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
| |
Collapse
|
24
|
Wang F, Wang A, Huang Y, Gao W, Xu Y, Zhang W, Guo G, Song W, Kong Y, Wang Q, Wang S, Shi F. Lipoproteins and metabolites in diagnosing and predicting Alzheimer's disease using machine learning. Lipids Health Dis 2024; 23:152. [PMID: 38773573 PMCID: PMC11107010 DOI: 10.1186/s12944-024-02141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disorder that poses a substantial economic burden. The Random forest algorithm is effective in predicting AD; however, the key factors influencing AD onset remain unclear. This study aimed to analyze the key lipoprotein and metabolite factors influencing AD onset using machine-learning methods. It provides new insights for researchers and medical personnel to understand AD and provides a reference for the early diagnosis, treatment, and early prevention of AD. METHODS A total of 603 participants, including controls and patients with AD with complete lipoprotein and metabolite data from the Alzheimer's disease Neuroimaging Initiative (ADNI) database between 2005 and 2016, were enrolled. Random forest, Lasso regression, and CatBoost algorithms were employed to rank and filter 213 lipoprotein and metabolite variables. Variables with consistently high importance rankings from any two methods were incorporated into the models. Finally, the variables selected from the three methods, with the participants' age, sex, and marital status, were used to construct a random forest predictive model. RESULTS Fourteen lipoprotein and metabolite variables were screened using the three methods, and 17 variables were included in the AD prediction model based on age, sex, and marital status of the participants. The optimal random forest modeling was constructed with "mtry" set to 3 and "ntree" set to 300. The model exhibited an accuracy of 71.01%, a sensitivity of 79.59%, a specificity of 65.28%, and an AUC (95%CI) of 0.724 (0.645-0.804). When Mean Decrease Accuracy and Gini were used to rank the proteins, age, phospholipids to total lipids ratio in intermediate-density lipoproteins (IDL_PL_PCT), and creatinine were among the top five variables. CONCLUSIONS Age, IDL_PL_PCT, and creatinine levels play crucial roles in AD onset. Regular monitoring of lipoproteins and their metabolites in older individuals is significant for early AD diagnosis and prevention.
Collapse
Affiliation(s)
- Fenglin Wang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Aimin Wang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yiming Huang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Wenfeng Gao
- Department of Rheumatology and Immunology, Affiliated Hospital of Shandong Second Medical University, Weifang, Shandong, 261031, China
| | - Yaqi Xu
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Wenjing Zhang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Guiya Guo
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Wangchen Song
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Yujia Kong
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Qinghua Wang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China
| | - Suzhen Wang
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China.
| | - Fuyan Shi
- Department of Health Statistics, School of Public Health, Shandong Second Medical University, Weifang, Shandong, 261053, China.
| |
Collapse
|
25
|
Chen H, Zhang CJ, Zhao ZY, Gao YY, Zhao JT, Li XX, Zhang M, Wang H. Mechanisms underlying LncRNA SNHG1 regulation of Alzheimer's disease involve DNA methylation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:428-435. [PMID: 38551404 DOI: 10.1080/15287394.2024.2334248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease associated with long non-coding RNAs and DNA methylation; however, the mechanisms underlying the role of lncRNA small nucleolar RNA host gene 1 (lncRNA SNHG1) and subsequent involvement of DNA methylation in AD development are not known. The aim of this study was to examine the regulatory mechanisms attributed to lncRNA SNHG1 gene utilizing 2 strains of senescence-accelerated mouse prone 8 (SAMP8) model of AD and compared to senescence-accelerated mouse resistant (SAMR) considered a control. Both strains of the mouse were transfected with either blank virus, psLenti-U6-SNHG1(low gene expression) virus, and psLenti-pA-SNHG1(gene overexpression) virus via a single injection into the brains for 2 weeks. At 2 weeks mice were subjected to a Morris water maze to determine any behavioral effects followed by sacrifice to extract hippocampal tissue for Western blotting to measure protein expression of p-tau, DNMT1, DNMT3A, DNMT3B, TET1, and p-Akt. No marked alterations were noted in any parameters following blank virus transfection. In SAMP8 mice, a significant decrease was noted in protein expression of DNMT1, DNMT3A, DNMT3B, and p-Akt associated with rise in p-tau and TET1. Transfection with ps-Lenti-U6-SNHG1 alone in SAMR1 mice resulted in a significant rise in DNMTs and p-Akt and a fall in p-tau and TET1. Transfection of SAMP8 with ps-Lenti-U6-SNHG1 blocked effects on overexpression noted in this mouse strain. However, knockdown of lncRNA SNHG1 yielded the opposite results as found in SAMR1 mice. In conclusion, the knockdown of lncRNA SNHG1 enhanced DNA methylation through the PI3K/Akt signaling pathway, thereby reducing the phosphorylation levels of tau in SAMP8 AD model mice with ameliorating brain damage attributed to p-tau accumulation with consequent neuroprotection.
Collapse
Affiliation(s)
- Hong Chen
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Chun-Jie Zhang
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
- Center of Collaborative Innovation in Translational Medicine, Baotou Medical College, Inner Mongolia, China
| | - Zhi-Ying Zhao
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Yang-Yang Gao
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Jian-Tian Zhao
- Institute of Public Health, Baotou Medical College, Inner Mongolia, China
| | - Xiao-Xu Li
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - Ming Zhang
- Institute of Neuroscience and Medical Technology, Department of Anatomy, Baotou Medical College, Inner Mongolia, China
| | - He Wang
- School of Health Sciences, University of Newcastle, Newcastle, Australia
| |
Collapse
|
26
|
Venkatesh Y, Marotta NP, Lee VMY, Petersson EJ. Highly tunable bimane-based fluorescent probes: design, synthesis, and application as a selective amyloid binding dye. Chem Sci 2024; 15:6053-6063. [PMID: 38665526 PMCID: PMC11040648 DOI: 10.1039/d4sc00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
Small molecule fluorescent probes are indispensable tools for a broad range of biological applications. Despite many probes being available, there is still a need for probes where photophysical properties and biological selectivity can be tuned as desired. Here, we report the rational design and synthesis of a palette of fluorescent probes based on the underexplored bimane scaffold. The newly developed probes with varied electronic properties show tunable absorption and emission in the visible region with large Stokes shifts. Probes featuring electron-donating groups exhibit rotor effects that are sensitive to polarity and viscosity by "intramolecular charge transfer" (ICT) and twisted intramolecular charge transfer (TICT) mechanisms, respectively. These properties enable their application as "turn-on" fluorescent probes to detect fibrillar aggregates of the α-synuclein (αS) protein that are a hallmark of Parkinson's disease (PD). One probe shows selective binding to αS fibrils relative to soluble proteins in cell lysates and amyloid fibrils of tau and amyloid-β. Finally, we demonstrate the diagnostic potential of the probe in selectively detecting αS fibrils amplified from PD with dementia (PDD) patient samples.
Collapse
Affiliation(s)
- Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Nicholas P Marotta
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania 3600 Spruce Street Philadelphia PA 19104 USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, University of Pennsylvania 3600 Spruce Street Philadelphia PA 19104 USA
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania 421 Curie Boulevard Philadelphia PA 19104 USA
| |
Collapse
|
27
|
Kiss E, Kins S, Gorgas K, Venczel Szakács KH, Kirsch J, Kuhse J. Another Use for a Proven Drug: Experimental Evidence for the Potential of Artemisinin and Its Derivatives to Treat Alzheimer's Disease. Int J Mol Sci 2024; 25:4165. [PMID: 38673751 PMCID: PMC11049906 DOI: 10.3390/ijms25084165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Plant-derived multitarget compounds may represent a promising therapeutic strategy for multifactorial diseases, such as Alzheimer's disease (AD). Artemisinin and its derivatives were indicated to beneficially modulate various aspects of AD pathology in different AD animal models through the regulation of a wide range of different cellular processes, such as energy homeostasis, apoptosis, proliferation and inflammatory pathways. In this review, we aimed to provide an up-to-date overview of the experimental evidence documenting the neuroprotective activities of artemi-sinins to underscore the potential of these already-approved drugs for treating AD also in humans and propose their consideration for carefully designed clinical trials. In particular, the benefits to the main pathological hallmarks and events in the pathological cascade throughout AD development in different animal models of AD are summarized. Moreover, dose- and context-dependent effects of artemisinins are noted.
Collapse
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 69120 Kaiserslautern, Germany;
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Kinga Hajnal Venczel Szakács
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mures, 540142 Târgu Mures, Romania;
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany; (K.G.); (J.K.)
| |
Collapse
|
28
|
Rani A, Zia-Ul-Sabah, Tabassum F, Sharma AK. Molecular interplay between phytoconstituents of Ficus Racemosa and neurodegenerative diseases. Eur J Neurosci 2024; 59:1833-1847. [PMID: 38217338 DOI: 10.1111/ejn.16250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/15/2024]
Abstract
Neurodegenerative diseases (NDs) are a significant global health concern, primarily affecting middle and older populations. Recently, there has been growing interest in herbal therapeutics as a potential approach to address diverse neuropathological conditions. Despite the widespread prevalence of NDs, limited phytochemical has been reported for their promising therapeutic potential with distinct underlying mechanisms. Additionally, the intricate molecular pathways influenced by herbal phytoconstituents, particularly in neurodegenerative disorders, are also not well documented. This report explores the phytoconstituents of Ficus racemosa (F. racemosa), an unfamiliar plant of the Moraceae family, for their potential interactions with pathological pathways of NDs. The influential phytoconstituents of F. racemosa, including polyphenols, glycosides, terpenoids, and furocoumarin, have been reported for targeting diverse pathological states. We proposed the most convincing molecular interplay between leading phytoconstituents and detrimental signalling cascades. However, extensive research is required to thoroughly understand the phytochemical persuaded intricate molecular pathway. The comprehensive evidence strongly suggests that F. racemosa and its natural compounds could be valuable in treating NDs. This points towards an exciting path for future research and the development of potential treatments based on a molecular level.
Collapse
Affiliation(s)
- Anu Rani
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| | - Zia-Ul-Sabah
- Department of Medicine, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, Vision College, Riyadh, Saudi Arabia
| | - Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana, India
| |
Collapse
|
29
|
Wenger K, Viode A, Kumar M, Steen H, Steen JA. Quantitative profiling of posttranslational modifications of pathological tau via sarkosyl fractionation and mass spectrometry. Nat Protoc 2024; 19:1235-1251. [PMID: 38291250 DOI: 10.1038/s41596-023-00939-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/23/2023] [Indexed: 02/01/2024]
Abstract
Tau protein aggregation is associated with posttranslational modifications (PTMs) in 75% of all dementia cases. The distribution of tau pathology and the presence of specific tau phosphorylation sites of interest are typically visualized and measured using antibodies. However, previous knowledge of the target epitopes is required. Additionally, antibodies can be used in a semi-quantitative manner but cannot be used to determine the absolute amount of tau or the extent of the modifications at specific sites or domains. Here we present a discovery assay that characterizes the global qualitative and quantitative tau modification landscape of a sample without a priori knowledge. Our workflow uses sarkosyl fractionation to extract the pathological tau species from sample-limited brain specimens, followed by mass spectrometry (MS) to characterize and quantify tau PTMs. The two-step MS-based proteomics approach includes an exploratory tau PTM analysis and a targeted full-length expressed stable isotope-labeled tau assay, which monitors specific unmodified tau peptides using a heavy isotope-labeled internal standard as a reference. This enables the absolute quantification of the respective tau peptides and the total tau amount in the sample, thus providing the modification extent of tau PTMs. This approach provides precise, comprehensive, qualitative and quantitative tau PTM profiling of the sample. It also enables the detailed molecular comparison of tau across multiple experiments, including a comparison between neurodegenerative diseases, stages of the disease, human patient heterogeneity and characterization of animal models. The approach is useful for studying the molecular features of pathological tau in neurodegeneration. The procedure requires 7-8 d and is suitable for users with expertise in targeted and untargeted MS-based protein analysis.
Collapse
Affiliation(s)
- Kathrin Wenger
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Arthur Viode
- Departments of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mukesh Kumar
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hanno Steen
- Departments of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Neurobiology Program, Boston Children's Hospital, Boston, MA, USA
| | - Judith A Steen
- F.M. Kirby Neurobiology Center, Department of Neurobiology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Axenhus M, Doeswijk T, Nilsson P, Matton A, Winblad B, Tjernberg L, Schedin-Weiss S. DEAD Box Helicase 24 Is Increased in the Brain in Alzheimer's Disease and AppN-LF Mice and Influences Presymptomatic Pathology. Int J Mol Sci 2024; 25:3622. [PMID: 38612434 PMCID: PMC11011903 DOI: 10.3390/ijms25073622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
At the time of diagnosis, Alzheimer's disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, we used an unbiased 18O labelling proteomics approach to identify proteins showing altered levels in the AD brain. We studied the relationship between the protein with the highest increase in hippocampus, DEAD box Helicase 24 (DDX24), and AD pathology. We visualised DDX24 in the human brain and in a mouse model for Aβ42-induced AD pathology-AppNL-F-and studied the interaction between Aβ and DDX24 in primary neurons. Immunohistochemistry in the AD brain confirmed the increased levels and indicated an altered subcellular distribution of DDX24. Immunohistochemical studies in AppNL-F mice showed that the increase of DDX24 starts before amyloid pathology or memory impairment is observed. Immunocytochemistry in AppNL-F primary hippocampal neurons showed increased DDX24 intensity in the soma, nucleus and nucleolus. Furthermore, siRNA targeting of DDX24 in neurons decreased APP and Aβ42 levels, and the addition of Aβ42 to the medium reduced DDX24. In conclusion, we have identified DDX24 as a protein with a potential role in Aβ-induced AD pathology.
Collapse
Affiliation(s)
- Michael Axenhus
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Tosca Doeswijk
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Campus Huddinge, Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Lars Tjernberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Sophia Schedin-Weiss
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
31
|
Tang J, Chen Q, Fu Z, Liang Y, Xu G, Zhou H, He B. Interaction between Aβ and tau on reversion and conversion in mild cognitive impairment patients: After 2-year follow-up. Heliyon 2024; 10:e26839. [PMID: 38463796 PMCID: PMC10923662 DOI: 10.1016/j.heliyon.2024.e26839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Background The role of amyloid-β (Aβ) and tau in reversion and conversion in patients with mild cognitive impairment (MCI) remains unclear. This study aimed to investigate the influence of cerebrospinal fluid (CSF) Aβ and tau on reversion and conversion and the temporal sequence of their pathogenicity in MCI patients. Methods 179 MCI patients were recruited from the Alzheimer's Disease Neuroimaging Initiative database and classified into two groups based on cognitive changes after follow-up: reversal group (MCI to cognitively normal) and conversion group (MCI to Alzheimer's disease). CSF biomarkers and cognitive function were measured at baseline and 2-year follow-up. Partial correlation was used to analyze the association between CSF biomarkers and cognitive function, and multivariable logistic regression to identify independent risk factors for cognitive changes at baseline and 2-year follow-up. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive ability of these risk factors for cognitive changes. Results The differences in cognitive function and CSF biomarkers between the two groups remained consistent with baseline after 2-year follow-up. After controlling for confounding variables, there was still a correlation between CSF biomarkers and cognitive function at baseline and 2-year follow-up. Multivariable regression analysis found that at baseline, only Aβ level was independently associated with cognitive changes, while Aβ and tau were both predictive factors after 2-year follow-up. ROC curve analysis revealed that the combination of Aβ and tau [area under the curve (AUC) 0.91, sensitivity 84%, specificity 86%] in predicting cognitive changes after 2-year follow-up had better efficacy than baseline Aβ alone (AUC 0.81). Conclusion Aβ may precede Tau in causing cognitive changes, and the interaction between the two mediates cognitive changes in patients. This study provides new clinical evidence to support the view that Aβ pathology precedes tau pathology, which together contribute to the changes in cognitive function.
Collapse
Affiliation(s)
- Jinzhi Tang
- Neurological Function Examination Room, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Qiuping Chen
- Neurological Function Examination Room, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Zhenfa Fu
- Department of Rehabilitation, Guangzhou Panyu Health Management Center (Guangzhou Panyu Rehabilitation Hospital), Guangzhou, PR China
| | - Yuqun Liang
- Department of Rehabilitation, Guangzhou Panyu Health Management Center (Guangzhou Panyu Rehabilitation Hospital), Guangzhou, PR China
| | - Guohua Xu
- Department of Rehabilitation, Guangzhou Panyu Health Management Center (Guangzhou Panyu Rehabilitation Hospital), Guangzhou, PR China
| | - Huan Zhou
- Neurological Function Examination Room, The First Affiliated Hospital of Jinan University, Guangzhou, PR China
| | - Bingjie He
- Department of Rehabilitation, Guangzhou Panyu Health Management Center (Guangzhou Panyu Rehabilitation Hospital), Guangzhou, PR China
| | | |
Collapse
|
32
|
Nabizadeh F, Zafari R. Progranulin and neuropathological features of Alzheimer's disease: longitudinal study. Aging Clin Exp Res 2024; 36:55. [PMID: 38441695 PMCID: PMC10914850 DOI: 10.1007/s40520-024-02715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Progranulin is an anti-inflammatory protein that plays an essential role in the synapse function and the maintenance of neurons in the central nervous system (CNS). It has been shown that the CSF level of progranulin increases in Alzheimer's disease (AD) patients and is associated with the deposition of amyloid-beta (Aβ) and tau in the brain tissue. In this study, we aimed to assess the longitudinal changes in cerebrospinal fluid (CSF) progranulin levels during different pathophysiological stages of AD and investigate associated AD pathologic features. METHODS We obtained the CSF and neuroimaging data of 1001 subjects from the ADNI database. The participants were classified into four groups based on the A/T/N framework: A + /TN + , A + /TN-, A-/TN + , and A-/TN-. RESULTS Based on our analysis there was a significant difference in CSF progranulin (P = 0.001) between ATN groups. Further ANOVA analysis revealed that there was no significant difference in the rate of change of CSF-progranulin ATN groups. We found that the rate of change of CSF progranulin was associated with baseline Aβ-PET only in the A-/TN + group. A significant association was found between the rate of change of CSF progranulin and the Aβ-PET rate of change only in A-/TN + CONCLUSION: Our findings revealed that an increase in CSF progranulin over time is associated with faster formation of Aβ plaques in patients with only tau pathology based on the A/T/N classification (suspected non-Alzheimer's pathology). Together, our findings showed that the role of progranulin-related microglial activity on AD pathology can be stage-dependent, complicated, and more prominent in non-AD pathologic changes. Thus, there is a need for further studies to consider progranulin-based therapies for AD treatment.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Neurology, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
33
|
Han M, Saxton A, Currey H, Waldherr SM, Liachko NF, Kraemer BC. Transgenic Dendra2::tau expression allows in vivo monitoring of tau proteostasis in Caenorhabditis elegans. Dis Model Mech 2024; 17:dmm050473. [PMID: 38469687 PMCID: PMC10985736 DOI: 10.1242/dmm.050473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
Protein homeostasis is perturbed in aging-related neurodegenerative diseases called tauopathies, which are pathologically characterized by aggregation of the microtubule-associated protein tau (encoded by the human MAPT gene). Transgenic Caenorhabditis elegans serve as a powerful model organism to study tauopathy disease mechanisms, but moderating transgenic expression level has proven problematic. To study neuronal tau proteostasis, we generated a suite of transgenic strains expressing low, medium or high levels of Dendra2::tau fusion proteins by comparing integrated multicopy transgene arrays with single-copy safe-harbor locus strains generated by recombinase-mediated cassette exchange. Multicopy Dendra2::tau strains exhibited expression level-dependent neuronal dysfunction that was modifiable by known genetic suppressors or an enhancer of tauopathy. Single-copy Dendra2::tau strains lacked distinguishable phenotypes on their own but enabled detection of enhancer-driven neuronal dysfunction. We used multicopy Dendra2::tau strains in optical pulse-chase experiments measuring tau turnover in vivo and found that Dendra2::tau turned over faster than the relatively stable Dendra2. Furthermore, Dendra2::tau turnover was dependent on the protein expression level and independent of co-expression with human TDP-43 (officially known as TARDBP), an aggregating protein interacting with pathological tau. We present Dendra2::tau transgenic C. elegans as a novel tool for investigating molecular mechanisms of tau proteostasis.
Collapse
Affiliation(s)
- Marina Han
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Aleen Saxton
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Sarah M. Waldherr
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Nicole F. Liachko
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Brian C. Kraemer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
34
|
Ruiz-Gabarre D, Vallés-Saiz L, Carnero-Espejo A, Ferrer I, Hernández F, Garcia-Escudero R, Ávila J, García-Escudero V. Intron retention as a productive mechanism in human MAPT: RNA species generated by retention of intron 3. EBioMedicine 2024; 100:104953. [PMID: 38181704 PMCID: PMC10789595 DOI: 10.1016/j.ebiom.2023.104953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/10/2023] [Accepted: 12/19/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Tau is a microtubule-binding protein encoded by the MAPT gene. Tau is essential for several physiological functions and associated with pathological processes, including Alzheimer's disease (AD). Six tau isoforms are typically described in the central nervous system, but current research paints a more diverse landscape and a more nuanced balance between isoforms. Recent work has described tau isoforms generated by intron 11 and intron 12 retention. This work adds to that evidence, proving the existence of MAPT transcripts retaining intron 3. Our aim is to demonstrate the existence of mature MAPT RNA species that retain intron 3 in human brain samples and to study its correlation with Alzheimer's disease across different regions. METHODS Initial evidence of intron-3-retaining MAPT species come from in silico analysis of RNA-seq databases. We further demonstrate the existence of these mature RNA species in a human neuroepithelioma cell line and human brain samples by quantitative PCR. We also use digital droplet PCR to demonstrate the existence of RNA species that retain either intron 3, intron 12 or both introns. FINDINGS Intron-3-retaining species are even more prominently present that intron-12-retaining ones. We show the presence of MAPT transcripts that retain both introns 3 and 12. These intron-retaining species are diminished in brain samples of patients with Alzheimer's disease with respect to individuals without dementia. Conversely, relative abundance of intron-3- or intron-12-retaining MAPT species with respect to double-retaining species as well as their percentage of expression with respect to total MAPT are increased in patients with Alzheimer's disease, especially in hippocampal samples. Among these TIR-MAPT species, TIR3+12 double truncation allows better classification potential of Alzheimer's disease samples. Moreover, we find a significant increase in intron-3- or intron-12-retaining species and its relative abundance with respect to double-retaining MAPT species in cerebellum in contrast to frontal lateral cortex and hippocampus in individuals with no signs of dementia. INTERPRETATION Intron retention constitutes a potential mechanism to generate Tau isoforms whose mature RNA expression levels correlate with Alzheimer's pathology showing its potential as a biomarker associated to the disease. FUNDING This research was funded by the Spanish Ministry of Science, Innovation and Universities: PGC2018-096177-B-I00 (J.A.); Spanish Ministry of Science and Innovation (MCIN): PID2020-113204GB-I00 (F.H.) and PID2021-123859OB-100 from MCIN/AEI/10.13039/501100011033/FEDER, UE (J.A.). It was also supported by CSIC through an intramural grant (201920E104) (J.A.) and the Centre for Networked Biomedical Research on Neurodegenerative Diseases (J.A.). The Centro de Biología Molecular Severo Ochoa (CBMSO) is a Severo Ochoa Center of Excellence (MICIN, award CEX2021-001154-S).
Collapse
Affiliation(s)
- Daniel Ruiz-Gabarre
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain; Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049, Madrid, Spain; Graduate Programa in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Laura Vallés-Saiz
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049, Madrid, Spain
| | - Almudena Carnero-Espejo
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain; Graduate Programa in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain
| | - Isidro Ferrer
- Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, 08907, Barcelona, Spain; Bellvitge University Hospital, IDIBELL (Bellvitge Biomedical Research Centre), 08908, Barcelona, Spain; Institute of Neurosciences, University of Barcelona, 08035, Barcelona, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049, Madrid, Spain
| | - Ramon Garcia-Escudero
- Biomedical Oncology Unit, CIEMAT, 28040, Madrid, Spain; Research Institute Hospital 12 de Octubre (imas12), 28041, Madrid, Spain; Networking Research Centre on Cancer (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), 28049, Madrid, Spain; Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Vega García-Escudero
- Anatomy, Histology and Neuroscience Department, School of Medicine, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain; Graduate Programa in Neuroscience, Universidad Autónoma de Madrid (UAM), 28029, Madrid, Spain; Networking Research Centre on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, 28029, Madrid, Spain; Institute for Molecular Biology-IUBM (Universidad Autónoma de Madrid), 28049, Madrid, Spain.
| |
Collapse
|
35
|
Wei M, Wu T, Chen N. Bridging neurotrophic factors and bioactive peptides to Alzheimer's disease. Ageing Res Rev 2024; 94:102177. [PMID: 38142891 DOI: 10.1016/j.arr.2023.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder. As the demographic shifting towards an aging population, AD has emerged as a prominent public health concern. The pathogenesis of AD is complex, and there are no effective treatment methods for AD until now. In recent years, neurotrophic factors and bioactive peptides including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), irisin, melatonin, have been discovered to exert neuroprotective functions for AD. Bioactive peptides can be divided into two categories based on their sources: endogenous and exogenous. This review briefly elaborates on the pathogenesis of AD and analyzes the regulatory effects of endogenous and exogenous peptides on the pathogenesis of AD, thereby providing new therapeutic targets for AD and a theoretical basis for the application of bioactive peptides as adjunctive therapies for AD.
Collapse
Affiliation(s)
- Minhui Wei
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan 430079, China.
| |
Collapse
|
36
|
Cao R, Du F, Cui Y, Qi M, Zhuang J, Wang J, Zhang M, Zhang X, Liu Z, Zou L, Xiao W, Chen G. Synthesis and biological evaluations of 8-biaryl-2,2-dimethylbenzopyranamide derivatives against Alzheimer's disease and ischemic stroke. Bioorg Chem 2024; 143:107064. [PMID: 38150937 DOI: 10.1016/j.bioorg.2023.107064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
Alzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. Stroke has still been a significant challenge in clinics for a long time, which is the second leading cause of death in the world, especially ischemic stroke. Both Alzheimer's disease and stroke are closely related to oxidative stress and HIF-1 signaling pathways in nerve cells. Herein, we describe our structure-based design, synthesis, and biological evaluation of a new class of 8-biaryl-2,2-dimethylbenzopyranamide derivatives as natural product derivatives. Our efforts have resulted in the discovery of highly potent neuroprotective agents, as exemplified by compound D13 as a HIF-1α inhibitor, which significant improvement in the behavior of Alzheimer's disease mice and shows great potential improvement of brain infarct volume in pMCAO model rats, improves the increase of blood-brain barrier permeability after cerebral ischemia in rats, neuroprotective effect, reduce the level of apoptotic cells in rats after cerebral ischemia, better than Edaravone.
Collapse
Affiliation(s)
- Ruolin Cao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fangyu Du
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuhang Cui
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Minggang Qi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junning Zhuang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jieru Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Maoying Zhang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyu Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Zhongbo Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Libo Zou
- Life Science and Biology Pharmacy College, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangning Industrial City, Economic and Technological Development Zone, Lianyungang, Jiangsu 222001, China.
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
37
|
Nijakowski K, Owecki W, Jankowski J, Surdacka A. Salivary Biomarkers for Alzheimer's Disease: A Systematic Review with Meta-Analysis. Int J Mol Sci 2024; 25:1168. [PMID: 38256241 PMCID: PMC10817083 DOI: 10.3390/ijms25021168] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease which manifests with progressive cognitive impairment, leading to dementia. Considering the noninvasive collection of saliva, we designed the systematic review to answer the question "Are salivary biomarkers reliable for the diagnosis of Alzheimer's Disease?" Following the inclusion and exclusion criteria, 30 studies were included in this systematic review (according to the PRISMA statement guidelines). Potential biomarkers include mainly proteins, metabolites and even miRNAs. Based on meta-analysis, in AD patients, salivary levels of beta-amyloid42 and p-tau levels were significantly increased, and t-tau and lactoferrin were decreased at borderline statistical significance. However, according to pooled AUC, lactoferrin and beta-amyloid42 showed a significant predictive value for salivary-based AD diagnosis. In conclusion, potential markers such as beta-amyloid42, tau and lactoferrin can be detected in the saliva of AD patients, which could reliably support the early diagnosis of this neurodegenerative disease.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| | - Wojciech Owecki
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Jakub Jankowski
- Student’s Scientific Group in Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland (J.J.)
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland;
| |
Collapse
|
38
|
Can B, Sanlier N. Alzheimer, Parkinson, dementia, and phytochemicals: insight review. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 38189347 DOI: 10.1080/10408398.2023.2299340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Alzheimer's, Parkinson's, and dementia are the leading neurodegenerative diseases that threaten the world with the aging population. Although the pathophysiology of each disease is unique, the steps to be taken to prevent diseases are similar. One of the changes that a person can make alone is to gain the habit of an antioxidant-rich diet. Phytochemicals known for their antioxidant properties have been reported to prevent neurodegenerative diseases in various studies. Phytochemicals with similar chemical structures are grouped. Accordingly, there are two main groups of phytochemicals, flavonoid and non-flavonoid. Various in vitro and in vivo studies on phytochemicals have proven neuroprotective effects by increasing cognitive function with their anti-inflammatory and antioxidant mechanisms. The purpose of this review is to summarize the in vitro and in vivo studies on phytochemicals with neuroprotective effects and to provide insight.
Collapse
Affiliation(s)
- Basak Can
- Nutrition and Dietetics, School of Health Sciences, Istanbul Gelisim University, Istanbul, Turkey
| | - Nevin Sanlier
- School of Health Sciences, Nutrition and Dietetics, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
39
|
Portal B, Södergren M, Parés i Borrell T, Giraud R, Metzendorf NG, Hultqvist G, Nilsson P, Lindskog M. Early Astrocytic Dysfunction Is Associated with Mistuned Synapses as well as Anxiety and Depressive-Like Behavior in the AppNL-F Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 100:1017-1037. [PMID: 38995780 PMCID: PMC11307019 DOI: 10.3233/jad-231461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/14/2024]
Abstract
Background Alzheimer's disease (AD) is the most common neurodegenerative disease. Unfortunately, efficient and affordable treatments are still lacking for this neurodegenerative disorder, it is therefore urgent to identify new pharmacological targets. Astrocytes are playing a crucial role in the tuning of synaptic transmission and several studies have pointed out severe astrocyte reactivity in AD. Reactive astrocytes show altered physiology and function, suggesting they could have a role in the early pathophysiology of AD. Objective We aimed to characterize early synaptic impairments in the AppNL-F knock-in mouse model of AD, especially to understand the contribution of astrocytes to early brain dysfunctions. Methods The AppNL-F mouse model carries two disease-causing mutations inserted in the amyloid precursor protein gene. This strain does not start to develop amyloid-β plaques until 9 months of age. Thanks to electrophysiology, we investigated synaptic function, at both neuronal and astrocytic levels, in 6-month-old animals and correlate the synaptic activity with emotional behavior. Results Electrophysiological recordings in the hippocampus revealed an overall synaptic mistuning at a pre-plaque stage of the pathology, associated to an intact social memory but a stronger depressive-like behavior. Astrocytes displayed a reactive-like morphology and a higher tonic GABA current compared to control mice. Interestingly, we here show that the synaptic impairments in hippocampal slices are partially corrected by a pre-treatment with the monoamine oxidase B blocker deprenyl or the fast-acting antidepressant ketamine (5 mg/kg). Conclusions We propose that reactive astrocytes can induce synaptic mistuning early in AD, before plaques deposition, and that these changes are associated with emotional symptoms.
Collapse
Affiliation(s)
- Benjamin Portal
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Moa Södergren
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | - Romain Giraud
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Nicole G. Metzendorf
- Department of Pharmacy, Division of Protein Drug Design, Uppsala University, Uppsala, Sweden
| | - Greta Hultqvist
- Department of Pharmacy, Division of Protein Drug Design, Uppsala University, Uppsala, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Maria Lindskog
- Department for Medical Cell Biology, Uppsala University, Uppsala, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Nowell J, Raza S, Livingston NR, Sivanathan S, Gentleman S, Edison P. Do Tau Deposition and Glucose Metabolism Dissociate in Alzheimer's Disease Trajectory? J Alzheimers Dis 2024; 101:987-999. [PMID: 39302365 DOI: 10.3233/jad-240434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Tau aggregation demonstrates close associations with hypometabolism in Alzheimer's disease (AD), although differing pathophysiological processes may underlie their development. Objective To establish whether tau deposition and glucose metabolism have different trajectories in AD progression and evaluate the utility of global measures of these pathological hallmarks in predicting cognitive deficits. Methods 279 participants with amyloid-β (Aβ) status, and T1-weighted MRI scans, were selected from the Alzheimer's Disease Neuroimaging Initiative (http://adni.loni.usc.edu). We created the standard uptake value ratio images using Statistical Parametric Mapping 12 for [18F]AV1451-PET (tau) and [18F]FDG-PET (glucose metabolism) scans. Voxel-wise group and single-subject level SPM analysis evaluated the relationship between global [18F]FDG-PET and [18F]AV1451-PET depending on the Aβ status. Linear models assessed whether tau deposition or glucose metabolism better predicted clinical progression. Results There was a dissociation between global cerebral glucose hypometabolism and global tau load in amyloid-positive AD and amyloid-negative mild cognitive impairment (MCI) (p > 0.05). Global hypometabolism was only associated with global cortical tau in amyloid-positive MCI. Voxel-level single subject tau load better predicted neuropsychological performance, Alzheimer's disease assessment scale-cognitive (ADAS-Cog) 13 score, and one-year change compared with regional and global hypometabolism. Conclusions A dissociation between tau pathology and glucose metabolism at a global level in AD could imply that other pathological processes influence glucose metabolism. Furthermore, as tau is a better predictor of clinical progression, these processes may have independent trajectories and require independent consideration in the context of therapeutic interventions.
Collapse
Affiliation(s)
- Joseph Nowell
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Sanara Raza
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Nicholas R Livingston
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Shayndhan Sivanathan
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Division of Neurology, Faculty of Medicine, Imperial College London, London, UK
- School of Medicine, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|
41
|
Morroni F, Caccamo A. Advances and Challenges in Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S417-S431. [PMID: 39422937 DOI: 10.3233/jad-230783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and behavioral impairments. Despite extensive research efforts, effective treatment options for AD remain limited. Recently, gene therapy has emerged as a promising avenue for targeted intervention in the pathogenesis of AD. This review will provide an overview of clinical and preclinical studies where gene therapy techniques have been utilized in the context of AD, highlighting their potential as novel therapeutic strategies. While challenges remain, ongoing research and technological advancement continue to enhance the potential of gene therapy as a targeted and personalized therapeutic approach for AD.
Collapse
Affiliation(s)
- Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antonella Caccamo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
42
|
Alghamdi M, Braidy N. Functional Magnetic Resonance Imaging in Alzheimer's Disease Drug Trials: A Mini-Review. J Alzheimers Dis 2024; 101:S567-S578. [PMID: 39422944 DOI: 10.3233/jad-231276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Background Alzheimer's disease (AD) is a progressive neurodegenerative pathology that leads to cognitive decline and dementia, particularly in older adults. It disrupts brain structure and function, with neurotoxic amyloid-β (Aβ) plaques being a primary pathological hallmark. Pharmacotherapeutic trials targeting Aβ and other AD pathological features aim to slow disease progression. Functional magnetic resonance imaging (fMRI) is a non-invasive tool that visualizes brain functional activity, aiding in evaluating the efficacy of AD drugs in clinical trials. Objective This mini-review explores the role of fMRI in evaluating the impact of AD pharmacotherapeutic clinical trials conducted in the past seven years. Methods Literature was systematically searched using two databases. The risk of bias was assessed with the Revised Cochrane risk-of-bias tool (RoB-2) for randomized clinical trials (RCTs). Results Four studies using fMRI to investigate AD drug efficacy were included. Cholinesterase, glutamatergic, and serotonergic drugs showed significant positive effects on brain functional activity, especially within the default mode network. Functional connectivity (FC) changes due to drug intake were linked to cerebellar and cholinergic decline in AD, correlating with improved global cognition and fMRI task performance. Conclusions Recent RCTs demonstrate fMRI's ability to reveal longitudinal FC pattern changes in response to AD drug treatments across disease stages. Positive FC changes in distinct brain regions suggest potential compensatory mechanisms from drug intake. However, these drugs have limited efficacy, necessitating further research to enhance specific pharmacological interventions for clinical application.
Collapse
Affiliation(s)
- Mohammed Alghamdi
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
- Department of Radiology and Medical Imaging, Faculty of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
43
|
Rodríguez JJ, Gardenal E, Zallo F, Arrue A, Cabot J, Busquets X. Astrocyte S100β expression and selective differentiation to GFAP and GS in the entorhinal cortex during ageing in the 3xTg-Alzheimer's disease mouse model. Acta Histochem 2024; 126:152131. [PMID: 38159478 DOI: 10.1016/j.acthis.2023.152131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
The study of astrocytes and its role in the development and evolution of neurodegenerative diseases, including Alzheimer's disease (AD) is essential to fully understand their aetiology. The aim if this study is to deepen into the concept of the heterogeneity of astrocyte subpopulations in the EC and in particular the identification of differentially functioning astrocyte subpopulations that respond differently to AD progression. S100β protein belongs to group of small calcium regulators of cell membrane channels and pumps that are expressed by astrocytes and is hypothesised to play and have a relevant role in AD development. We analysed the selective differentiation of S100β-positive astrocytes into Glutamine synthetase (GS) and Glial fibrillary acidic protein (GFAP)-positive sub-groups in the entorhinal cortex (EC) of AD triple transgenic animal model (3xTg-AD). EC is the brain region earliest affected in humans AD but also in this closest animal model regarding their pathology and time course. We observed no changes in the number of S100β-positive astrocytes between 1 and 18 months of age in the EC of 3xTg-AD mice. However, we identified relevant morphological changes in S100β/GFAP positive astrocytes showing a significant reduction in their surface and volume whilst an increase in number and percentage. Furthermore, the percentage of S100β/GS positive astrocyte population was also increased in 18 months old 3xTg-AD mice compared to the non-Tg mice. Our findings reveal the presence of differentially controlled astrocyte populations that respond differently to AD progression in the EC of 3xTg-AD mice. These results highpoints the major astrocytic role together with its early and marked affection in AD and arguing in favour of its importance in neurogenerative diseases and potential target for new therapeutic approaches.
Collapse
Affiliation(s)
- J J Rodríguez
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - E Gardenal
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - F Zallo
- Functional Neuroanatomy Group, IKERBASQUE, Basque Foundation for Science, Dept. of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48009 Bilbao, 48940 Leioa, Bizkaia, Spain
| | - A Arrue
- Neurochemical Research Unit, Bizkaia Mental Health Network, Osakidetza-Basque Health Service, Barakaldo 48903, Spain
| | - Joan Cabot
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain
| | - X Busquets
- Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, 07122 Palma, Spain.
| |
Collapse
|
44
|
Xiong L, She L, Sun J, Xu X, Li L, Zeng Y, Tang H, Liang G, Wang W, Zhao X. Isolinderalactone Ameliorates the Pathology of Alzheimer's Disease by Inhibiting the JNK Signaling Pathway. JOURNAL OF NATURAL PRODUCTS 2023; 86:2718-2729. [PMID: 38081625 DOI: 10.1021/acs.jnatprod.3c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Neuronal cell damage is a major cause of cognitive impairment in Alzheimer's disease (AD). Multiple factors, such as amyloid deposition, tau hyperphosphorylation, and neuroinflammation, can lead to neuronal cell damage. Therefore, the development of multi-target drugs with broad neuroprotective effects may be an effective strategy for the treatment of AD. Natural products have become an important source of drug discovery because of their good pharmacological activity, multiple targets, and low toxicity. In this study, we screened a natural compound library and found that the fat-soluble sesquiterpene natural compound isolinderalactone (Iso) extracted from the dried root pieces of Lindera aggregata had the ability to alleviate cellular damage induced by β-amyloid-1-42 (Aβ1-42). The role and mechanism of Iso in AD have not yet been reported. Herein, we demonstrated that Iso significantly reduced the level of apoptosis in PC12 cells. Besides, Iso treatment reduced amyloid deposition, neuron apoptosis, and neuroinflammation, ultimately improving the cognitive dysfunction of APP/PS1 (APPswe/PSEN 1dE9) mice. Notably, Iso-10 mg/kg showed superior improved effects in APP/PS1 mice compared with the positive control drug donepezil-5 mg/kg. Mechanistically, the results of RNA sequencing combined with Western blots showed that Iso exerted its therapeutic effect by inhibiting the c-Jun N-terminal kinase (JNK) signaling pathway. Taken together, our findings suggest that Iso is a potential drug candidate for the treatment of AD.
Collapse
Affiliation(s)
- Li Xiong
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Lingyu She
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Jinfeng Sun
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China
| | - Xiangwei Xu
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Liwei Li
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Yuqing Zeng
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Hao Tang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Guang Liang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Wei Wang
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| | - Xia Zhao
- Affiliated Yongkang First People's Hospital and School of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
| |
Collapse
|
45
|
Sevastre-Berghian AC, Ielciu I, Bab T, Olah NK, Neculicioiu VS, Toma VA, Sevastre B, Mocan T, Hanganu D, Bodoki AE, Roman I, Lucaciu RL, Hangan AC, Hașaș AD, Decea RM, Băldea I. Betula pendula Leaf Extract Targets the Interplay between Brain Oxidative Stress, Inflammation, and NFkB Pathways in Amyloid Aβ 1-42-Treated Rats. Antioxidants (Basel) 2023; 12:2110. [PMID: 38136229 PMCID: PMC10740548 DOI: 10.3390/antiox12122110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease (AD) is known as the primary and most common cause of dementia in the middle-aged and elderly population worldwide. Chemical analyses of B. pendula leaf extract (BPE), performed using spectrophotometric and chromatographic methods (LC/MS), revealed high amounts of polyphenol carboxylic acids (gallic, chlorogenic, caffeic, trans-p-coumaric, ferulic, and salicylic acids), as well as flavonoids (apigenin, luteolin, luteolin-7-O-glucoside, naringenin, hyperoside, quercetin, and quercitrin). Four groups of Wistar rats were used in this experiment (n = 7/group): control (untreated), Aβ1-42 (2 μg/rat intracerebroventricular (i.c.v.), Aβ1-42 + BPE (200 mg/Kg b.w.), and DMSO (10 μL/rat). On the first day, one dose of Aβ1-42 was intracerebroventricularly administered to animals in groups 2 and 3. Subsequently, BPE was orally administered for the next 15 days to group 3. On the 16th day, behavioral tests were performed. Biomarkers of brain oxidative stress Malondialdehyde (MDA), (Peroxidase (PRx), Catalase (CAT), and Superoxid dismutase (SOD) and inflammation (cytokines: tumor necrosis factor -α (TNF-α), Interleukin 1β (IL-1β), and cyclooxygenase-2 (COX 2)) in plasma and hippocampus homogenates were assessed. Various protein expressions (Phospho-Tau (Ser404) (pTau Ser 404), Phospho-Tau (Ser396) (pTau Ser 396), synaptophysin, and the Nuclear factor kappa B (NFkB) signaling pathway) were analyzed using Western blot and immunohistochemistry in the hippocampus. The results show that BPE diminished lipid peroxidation and neuroinflammation, modulated specific protein expression, enhanced the antioxidant capacity, and improved spontaneous alternation behavior, suggesting that it has beneficial effects in AD.
Collapse
Affiliation(s)
- Alexandra-Cristina Sevastre-Berghian
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Irina Ielciu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania;
| | - Timea Bab
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania; (T.B.); (N.-K.O.)
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Neli-Kinga Olah
- PlantExtrakt Ltd., Rădaia, 407059 Cluj-Napoca, Romania; (T.B.); (N.-K.O.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Vasile Goldiş” Western University of Arad, 310025 Arad, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Vlad Alexandru Toma
- Department of Molecular Biology and Biotechnology, Babes-Bolyai University, 400371 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Department of Clinical and Paraclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (A.-D.H.)
| | - Teodora Mocan
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400010 Cluj-Napoca, Romania;
| | - Andreea Elena Bodoki
- Department of Inorganic Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.B.); (A.C.H.)
| | - Ioana Roman
- Department of Experimental Biology and Biochemistry, Institute of Biological Research, 400015 Cluj-Napoca, Romania;
| | - Roxana Liana Lucaciu
- Department of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 Victor Babeș Street, 400000 Cluj-Napoca, Romania;
| | - Adriana Corina Hangan
- Department of Inorganic Chemistry, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (A.E.B.); (A.C.H.)
| | - Alina-Diana Hașaș
- Department of Clinical and Paraclinical Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (B.S.); (A.-D.H.)
| | - Roxana Maria Decea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| | - Ioana Băldea
- Department of Physiology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania; (A.-C.S.-B.); (T.M.); (R.M.D.); (I.B.)
| |
Collapse
|
46
|
Wang H, Sun M, Li W, Liu X, Zhu M, Qin H. Biomarkers associated with the pathogenesis of Alzheimer's disease. Front Cell Neurosci 2023; 17:1279046. [PMID: 38130871 PMCID: PMC10733517 DOI: 10.3389/fncel.2023.1279046] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive degenerative neurological illness with insidious onset. Due to the complexity of the pathogenesis of AD and different pathological changes, the clinical phenotypes of dementia are diverse, and these pathological changes also interact with each other. Therefore, it is of great significance to search for biomarkers that can diagnose these pathological changes to improve the ability to monitor the course of disease and treat the disease. The pathological mechanism hypothesis with high recognition of AD mainly includes the accumulation of β-amyloid (Aβ) around neurons and hyperphosphorylation of tau protein, which results in the development of neuronal fiber tangles (NFTs) and mitochondrial dysfunction. AD is an irreversible disease; currently, there is no clinical cure or delay in the disease process of drugs, and there is a lack of effective early clinical diagnosis methods. AD patients, often in the dementia stages and moderate cognitive impairment, will seek medical treatment. Biomarkers can help diagnose the presence or absence of specific diseases and their pathological processes, so early screening and diagnosis are crucial for the prevention and therapy of AD in clinical practice. β-amyloid deposition (A), tau pathology (T), and neurodegeneration/neuronal damage (N), also known as the AT (N) biomarkers system, are widely validated core humoral markers for the diagnosis of AD. In this paper, the pathogenesis of AD related to AT (N) and the current research status of cerebrospinal fluid (CSF) and blood related biomarkers were reviewed. At the same time, the limitations of humoral markers in the diagnosis of AD were also discussed, and the future development of humoral markers for AD was prospected. In addition, the contents related to mitochondrial dysfunction, prion virology and intestinal microbiome related to AD are also described, so as to understand the pathogenesis of AD in many aspects and dimensions, so as to evaluate the pathological changes related to AD more comprehensively and accurately.
Collapse
Affiliation(s)
- Hui Wang
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mengli Sun
- College of Life Sciences, Nankai University, Tianjin, China
- Research Center for Tissue Repair and Regeneration Affiliated with the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
| | - Wenhui Li
- College of Life Sciences, Nankai University, Tianjin, China
| | - Xing Liu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Mengfan Zhu
- College of Life Sciences, Nankai University, Tianjin, China
| | - Hua Qin
- College of Life Sciences, Nankai University, Tianjin, China
- Research Center for Tissue Repair and Regeneration Affiliated with the Medical Innovation Research Division and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing, China
| |
Collapse
|
47
|
Scopa C, Barnada SM, Cicardi ME, Singer M, Trotti D, Trizzino M. JUN upregulation drives aberrant transposable element mobilization, associated innate immune response, and impaired neurogenesis in Alzheimer's disease. Nat Commun 2023; 14:8021. [PMID: 38049398 PMCID: PMC10696058 DOI: 10.1038/s41467-023-43728-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 11/06/2023] [Indexed: 12/06/2023] Open
Abstract
Adult neurogenic decline, inflammation, and neurodegeneration are phenotypic hallmarks of Alzheimer's disease (AD). Mobilization of transposable elements (TEs) in heterochromatic regions was recently reported in AD, but the underlying mechanisms are still underappreciated. Combining functional genomics with the differentiation of familial and sporadic AD patient derived-iPSCs into hippocampal progenitors, CA3 neurons, and cerebral organoids, we found that the upregulation of the AP-1 subunit, c-Jun, triggers decondensation of genomic regions containing TEs. This leads to the cytoplasmic accumulation of HERVK-derived RNA-DNA hybrids, the activation of the cGAS-STING cascade, and increased levels of cleaved caspase-3, suggesting the initiation of programmed cell death in AD progenitors and neurons. Notably, inhibiting c-Jun effectively blocks all these downstream molecular processes and rescues neuronal death and the impaired neurogenesis phenotype in AD progenitors. Our findings open new avenues for identifying therapeutic strategies and biomarkers to counteract disease progression and diagnose AD in the early, pre-symptomatic stages.
Collapse
Affiliation(s)
- Chiara Scopa
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Samantha M Barnada
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maria E Cicardi
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Mo Singer
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA.
| | - Marco Trizzino
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
48
|
Hu ZL, Yuan YQ, Tong Z, Liao MQ, Yuan SL, Jian Y, Yang JL, Liu WF. Reexamining the Causes and Effects of Cholesterol Deposition in the Brains of Patients with Alzheimer's Disease. Mol Neurobiol 2023; 60:6852-6868. [PMID: 37507575 DOI: 10.1007/s12035-023-03529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 07/20/2023] [Indexed: 07/30/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. Numerous studies have shown that imbalances in cholesterol homeostasis in the brains of AD patients precede the onset of clinical symptoms. In addition, cholesterol deposition has been observed in the brains of AD patients even though peripheral cholesterol does not enter the brain through the blood‒brain barrier (BBB). Studies have demonstrated that cholesterol metabolism in the brain is associated with many pathological conditions, such as amyloid beta (Aβ) production, Tau protein phosphorylation, oxidative stress, and inflammation. In 2022, some scholars put forward a new hypothesis of AD: the disease involves lipid invasion and its exacerbation of the abnormal metabolism of cholesterol in the brain. In this review, by discussing the latest research progress, the causes and effects of cholesterol retention in the brains of AD patients are analyzed and discussed. Additionally, the possible mechanism through which AD may be improved by targeting cholesterol is described. Finally, we propose that improving the impairments in cholesterol removal observed in the brains of AD patients, instead of further reducing the already impaired cholesterol synthesis in the brain, may be the key to preventing cholesterol deposition and improving the corresponding pathological symptoms.
Collapse
Affiliation(s)
- Ze-Lin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Yang-Qi Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Zhen Tong
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Mei-Qing Liao
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Shun-Ling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Jia-Lun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China
| | - Wen-Feng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
49
|
Yin J, Tuo CM, Yu KY, Hu XH, Fan YY, Wu MN. Diurnal Characteristics of the Orexin System Genes and Its Effects on Pathology at Early Stage in 3xTg-AD Mice. Neuromolecular Med 2023; 25:632-643. [PMID: 37843792 DOI: 10.1007/s12017-023-08767-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Orexin and its receptors are closely related to the pathogenesis of Alzheimer's disease (AD). Although the expression of orexin system genes under physiological condition has circadian rhythm, the diurnal characteristics of orexin system genes, and its potential role in the pathogenesis in AD are unknown. In the present study, we hope to elucidate the diurnal characteristics of orexin system genes at the early stage of AD, and to investigate its potential role in the development of AD neuropathology. We firstly detected the mRNA levels of orexin system genes, AD risk genes and core clock genes (CCGs) in hypothalamus and hippocampus in 6-month-old male 3xTg-AD mice and C57BL/6J (wild type, WT) control mice, then analyzed diurnal expression profiles of all genes using JTK_CYCLE algorithm, and did the correlation analysis between expression of orexin system genes and AD risk genes or CCGs. In addition, the expression of β-amyloid protein (Aβ) and phosphorylated tau (p-tau) protein were measured. The results showed that the diurnal mRNA expression profiles of PPO, OX1R, OX2R, Bace2, Bmal1, Per1, Per2 and Cry1 in the hypothalamus, and gene expression of OX1R, OX2R, Bace1, Bmal1, Per1 and Cry2 in the hippocampus in 3xTg-AD mice were different from that in WT mice. Furthermore, there is positive correlation between orexin system genes and AD risk genes or CCGs in the brain in 3xTg-AD mice. In addition, the expression of Aβ and p-tau in hippocampus in 3xTg-AD mice were significantly increased, and the expression of p-tau is higher in night than in day. These results indicate that the abnormal expression profiles of orexin system genes and its interaction with AD risk genes or CCGs might exert important role in the pathogenesis of AD, which will increase the expression of Aβ and p-tau, and accelerate the development of AD.
Collapse
Affiliation(s)
- Jing Yin
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chun-Mei Tuo
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Kai-Yue Yu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiao-Hong Hu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yan-Ying Fan
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Mei-Na Wu
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology, Ministry of Education, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology in Shanxi Province, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
50
|
Shulman M, Kong J, O'Gorman J, Ratti E, Rajagovindan R, Viollet L, Huang E, Sharma S, Racine AM, Czerkowicz J, Graham D, Li Y, Hering H, Haeberlein SB. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer's disease. NATURE AGING 2023; 3:1591-1601. [PMID: 38012285 PMCID: PMC10724064 DOI: 10.1038/s43587-023-00523-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
In Alzheimer's disease, the spread of aberrantly phosphorylated tau is an important criterion in the Braak staging of disease severity and correlates with disease symptomatology. Here, we report the results of TANGO ( NCT03352557 ), a randomized, double-blind, placebo-controlled, parallel-group and multiple-dose long-term trial of gosuranemab-a monoclonal antibody to N-terminal tau-in patients with early Alzheimer's disease. The primary objective was to assess the safety and tolerability of gosuranemab compared to placebo. The secondary objectives were to assess the efficacy of multiple doses of gosuranemab in slowing cognitive and functional impairment (using the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) scores at week 78) and evaluate the immunogenicity of gosuranemab (using the incidence of anti-gosuranemab antibody responses). Participants were randomized (n = 654); received (n = 650) low-dose (125 mg once every 4 weeks (q4w), n = 58; 375 mg q12w, n = 58), intermediate-dose (600 mg q4w, n = 106) or high-dose (2,000 mg q4w, n = 214) gosuranemab or placebo (q4w, n = 214) intravenously for 78 weeks; and assigned to cerebrospinal fluid (n = 327) and/or tau positron emission tomography (n = 357) biomarker substudies. Gosuranemab had an acceptable safety profile and was generally well tolerated (incidence of serious adverse events: placebo, 12.1%; low dose, 10.3%; intermediate dose, 12.3%; high dose, 11.7%). The incidence of treatment-emergent gosuranemab antibody responses was low at all time points. No significant effects were identified in cognitive and functional tests as no dose resulted in a favorable change from the baseline CDR-SB score at week 78 compared to placebo control (adjusted mean change: placebo, 1.85; low dose, 2.20; intermediate dose, 2.24; high dose, 1.85). At week 76, all doses caused significant (P < 0.0001) reductions in the cerebrospinal fluid levels of unbound N-terminal tau compared to placebo.
Collapse
Affiliation(s)
| | | | | | - Elena Ratti
- Biogen, Cambridge, MA, USA
- Takeda Pharmaceuticals, Cambridge, MA, USA
| | | | - Louis Viollet
- Biogen, Cambridge, MA, USA
- Moderna, Cambridge, MA, USA
| | | | | | - Annie M Racine
- Biogen, Cambridge, MA, USA
- Alexion, AstraZeneca Rare Disease, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|